Reciprocity maps with restricted ramification
Romyar T. Sharifi

Abstract

We compare two maps that arise in study of the cohomology of global fields with
ramification restricted to a finite set S of primes. One of these maps, which we call an
S-reciprocity map, interpolates the values of cup products in S-ramified cohomology. In
the case of p-ramified cohomology of the pth cyclotomic field for an odd prime p, we use
this to exhibit an intriguing relationship between particular values of the cup product on
cyclotomic p-units. We then consider higher analogues of the S-reciprocity map and relate
their cokernels to the graded quotients in augmentation filtrations of Iwasawa modules.

1 Introduction

The primary goal among several in this work is the comparison of two maps that arise in the
Galois cohomology of global fields with restricted ramification, which might at first appear
rather unrelated. In this introduction, we introduce the two maps for a fixed global field. In
the body of the paper, we shall study the maps that they induce up towers of such fields.

Fix a prime p, a global field F of characteristic not equal to p, and a finite set of primes
S of F including all those above p and any real infinite places. We suppose that either p is
odd or F has no real places. We will use the terms S-ramified and S-split to mean unramified
outside of the primes in § and completely split at the primes in S, respectively. Let Gr s denote
the Galois group of the maximal S-ramified extension Fg of F'.

We will be concerned with three objects related to the arithmetic of F':

e the pro-p completion % of the S-units of F,
o the Galois group X of the maximal S-ramified abelian pro-p extension of F', and
e the Galois group Yr of the maximal unramified, S-split abelian p-extension Hf of F.

Each of these three groups has a fairly simple cohomological description. That is, % is canon-
ically isomorphic to the continuous cohomology group H'(Grs,Z,(1)) via Kummer theory,
and X is canonically isomorphic to its Pontryagin double dual expressed as H' (Grs,Q,/Z,)" .
As a quotient of X, the group Yr is identified with the image of the Poitou-Tate map

H'(Grs,Qp/7p)" — H*(GFs,Zp(1)),
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where AV denotes the Pontryagin dual of a topological abelian group A. Alternatively, we may
use class field theory and Kummer theory to identify Y with a subgroup of H*(Grs,Z,(1)).
That these provide the same identification is non-obvious: see Theorem for a proof.

The group Gr s acts trivially on its abelian quotient X via conjugation. The S-reciprocity
map for F is then a homomorphism

Wr: Ur — H*(Grs, Xp(1))
that interpolates values of the cup products
H'(Grs,Z/p"Z) x H'(Grs5,Zp(1)) = H*(Gr s, fpn)
in the sense that if p € Hom(Xp,Z/p"Z) C X} and p* denotes the induced map
p*: HX(Grs, Xr(1)) — H*(Grs, W),

then for any a € %, we have
pUa=p*(¥r(a)).
In fact, ¥r may itself be viewed as left cup product with the element of H' (Grs,XF) that
is the quotient map Grs — Xr. In the case that F is abelian, the S-reciprocity map turns
out to be of considerable arithmetic interest, its values relating to p-adic L-values of cuspidal
eigenforms that satisfy congruences with Eisenstein series (see [Sh3] and [FK2]).
We also have a second homomorphism

Or: U — HI(GF75,YI>/)\/

that can be defined as follows. Let ¢ denote the quotient of the group ring Z,[Yr| by the
square of its augmentation ideal, so that we have an exact sequence

0—=Yr =% —7Zp,—0

of Z,[GF s]-modules, the G s-cocycle determining the class of the extension being the quo-
tient map Grs — Yr. Foreach v € S, choose a prime over v in Fg and thereby a homomorphism
Jv: GE, — Gps from the absolute Galois group of F,. The exact sequence is split as a sequence
of Z,|Gr,]-modules for the action induced by j.

We have a cup product pairing

H'(Grs,Zp(1)) x H*™'(Grs, Y¢') — H*(Grys, Yy (1)).

As G has p-cohomological dimension 2, its target may be identified with the quotient of
H*(Grs,% V(1)) by the image of H?(GF, l,~) under the maps induced by the Tate twisted
dual sequence

0— = — V(1) = Y (1) = 0.
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The dual of the local splitting of %" — Z,, and the sum of invariant maps of local class field
theory provide maps

H*(Gps, 7" (1)) = @ H*(GF,, ip=) = Qp/Zp,

vesS
and their composite is trivial on H 2(GF’S, Up=). Thus, we have a well-defined pairing
H'(Grs,Zp(1)) x H ' (Grs,Y¢ ) = Qp/Zp,

and we consider the resulting map from its first term to the Pontryagin dual of its second. For
i =1, this map is precisely ®f. For i = 2, it is identified with a map

qr: H*(Grs,Z,(1)) — Y.

An alternate, but equivalent, definition of these maps is given in Section (see also
Section [2.3). Note that ®f and gr need not be canonical, as they can depend on the choices
of primes of Fg over each v € § (or rather, the primes of Hr below them).

So that we may compare Wr and Op, let us examine their codomains. As G acts trivially
on X and has p-cohomological dimension 2, we have

H*(Grs,Xr(1)) = H*(Grs,Zp(1)) ®7, XF.
Moreover, there are canonical isomorphisms
H'(Grs,Yy)" = Homes(Xr,Y¢)" = Hom(Yr @z, Xr,Qp/Zy)" = Yr @7, XF,

through which we identify the leftmost and rightmost groups in the equation.
We may now state our key result, the Iwasawa-theoretic generalization of which is found

in Theorem [3.1.41

Theorem. The map qr is a splitting of the injection of Y in H*(Gr.s,Z,(1)) given by Poitou-
Tate duality, and the diagram

¥
Up — = H*(Grs, Zp(1)) ©z, Xp

—oy lw@id
Yr @z, XF

commultes.



The case that F = Q(u,,) for an odd prime p and S contains only the prime over p provides
an entertaining application that is studied in Section Consider the cup product pairing

(,): OZ/FXOZ/F%YF(XJZP,LLP.

Let A= Gal(F/Q), let ®: A — Z be the Teichmiiller character, and for odd i € Z, let n; €

Ur denote the projection of (1 — ¢ p)p_1 to the ! -eigenspace ?/F(l_i) of %r. Suppose
that Vandiver’s conjecture holds at p and that two distinct eigenspaces YF(] b and Y}“"') of
Yr are nonzero for even k,k’ € Z. Then a simple argument using Theorem [1| tells us that
(Mp—i> Mit-'—1) is nonzero if and only if (1,_x, Nkir—1) is nonzero (see Theorem 3.2.1). We
find this rather intriguing, as the two values lie in distinct eigenspaces of Yr ®z, U, that would
at first glance appear to bear little relation to one another.

In a sequel to this paper [Sh4], we will apply Theorem (1| to the study of Selmer groups of
modular representations. In particular, we will consider a main conjecture of sorts for a dual
Selmer group of the family of residual representations attached to cuspidal eigenforms that
satisfy mod p congruences with ordinary Eisenstein series, proving it under certain assump-
tions. This work allows characters with parity opposite to that imposed in earlier well-known
work of Greenberg and Vatsal [GV], which complicates the structure of the Selmer groups
considerably.

In Section 4} we turn to the study of higher S-reciprocity maps arising from the filtration
of the completed group ring Q@ = Z,[X ] by the powers of its augmentation ideal /. Forn > 1,
the nth higher S-reciprocity map

W HY (Grs, Q/1'(1)) = HX(Grs, Zp(1)) @z, I /1"
is defined as the connecting homomorphism arising from the exact sequence
0—1"/I""!' - /"t - Q/I"—o.

The map ‘Pg,l) is just Wr: for this, recall that Q/I = Z, and I /I* = X.

(n)
E/

extension E/F in which one replaces the Z,-algebra Q by Z,[Gal(E/F)] and the augmen-

The higher reciprocity maps ‘I’;fl) have analogues W, for every finite S-ramified p-

tation ideal / by the corresponding augmentation ideal. By the results of [LLSWW], the

(n)
E/F

H*(Ggs5,Z,(1)) for Gg s = Gal(Fs/E). This isomorphism extends to general pro-p exten-
sions E /F by using the S-ramified Iwasawa cohomology of E (see Theorem 4.1.2).
Suppose now that E/F is a Z,-extension. We consider Yr and the Galois group Yg of

cokernel of W is isomorphic to the nth graded quotient in the augmentation filtration of

the maximal unramified, S-split abelian pro-p extension of E. Restriction defines a map
Rg/p: Yg/IYg — Yp that can be fit into a six term exact sequence as in (4.4). This sequence has
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its origins in work of Iwasawa [Iw2] and is found more directly in the appendix to [HS]. We
aim to understand the higher graded quotients I"Yg /I"*1Yg in terms of the higher S-reciprocity
maps.

To this end, we define in Section a restriction of ‘Pgl/)F to a map

Yy U — Ve @g, I/,

where %", consists of those elements of H' (GFrs,Q/I"(1)) with locally trivial image under

E/F

EJF We then construct a map

Rt 'Y /1" Y — coker vy

that is an analogue of R/ for the higher graded quotients in the augmentation filtration of
YE.
Theorem 4.2.2| provides a 6-term exact sequence into which R

(n)
E/F
improves the main result of [Shl] (see Corollary 6.4 therein), stated there in terms of Massey

fits. This significantly

products, that RE;)F is an isomorphism in the special case of perfect control that S consists of

a single prime that does not split at all in E.
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2 Cohomology

The following section provides preliminaries on the Iwasawa-theoretic generalizations of Tate
and Poitou-Tate duality that we require. For the case of a complete local noetherian ring with
finite residue field, these dualities are detailed in [Ne]. The case of a general profinite ring can
be found in [Li]. We use the standard conventions for signs of differentials on complexes, as
in [Nel Chapter 1].

2.1 Connecting maps and cup products

Let G be a profinite group, and let A be a profinite ring. We suppose that A is a topological
R-algebra for a commutative profinite ring R in its center. For later use, we fix a set .# of open
ideals of A that forms a basis of neighborhoods of 0 in A.
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Let 75 ¢ denote the category of topological A-modules endowed with a continuous A-
linear action of G, which is to say topological A[G]-modules, with morphisms the continuous
A[G]-module homomorphisms. Let €5 ¢ (resp., Z4 ) denote the full subcategories of com-
pact (resp., discrete) A-modules. Let G (resp., Z4) denote the full subcategories of modules
with trivial G-actions.

Let

0AS5BEC—0 (2.1)

be a short exact sequence in 65 g or Z, . Such a sequence gives rise to a short exact sequence
0— C(G,A) — C(G,B) = C(G,C) =0

of inhomogeneous continuous G-cochain complexes (see Appendix [A.2), and the maps be-
tween the terms of the complexes are continuous with respect to the topologies on spaces of
continuous maps of Lemmaw In the case that the modules of are in 6 g, we sup-
pose in what follows that G has the property that the cohomology groups H'(G,M) of C(G,M)
are finite for every finite Z[G|-module M. The following is standard.

Lemma 2.1.1. Let s: C — B be a continuous function that splits  of (2.1)). Define
d': H(G,C) — H(G,A)

on the class of a cocycle f to be the class of 1™ odé(so f), where dg denotes the ith differential
on C(G,B). The resulting sequence

... = H'(G,A) — H'(G,B) — H'(G,C) 2> H(G,A) — -
is exact in G (resp., D).

Proof. The existence of s in the case of G ¢ is just [RZ, Proposition 2.2.2]. That d' is a ho-
momorphism of A-modules and that the sequence is exact are standard. That the cohomology
groups lie in the stated categories are Lemma and Proposition That the homo-
morphisms are continuous in the case of 6, ¢ follows quickly from Proposition M [

Suppose now that 7 has a continuous splitting s: C — B of A-modules. Then we obtain a
I-cocycle
Xx: G — Homp ¢(C,A)
given by
x(0)(c) =os(cc) —s(c) (2.2)
for ¢ € C, the class of which is independent of s. Conversely, the Galois action on B is
prescribed by the cocycle using (2.2)). As usual, s gives rise to a A-module splittingz: B — A

of 1 such that 1 of 4 s o 7 is the identity.
The following is well-known (see, e.g., [Fl, Proposition 3]).
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Lemma 2.1.2. Endow Hompy, ¢s(C,A) with the compact-open topology.
a. The group Homy ¢s(C,A) is an object of Tr .
b. The canonical evaluation map C x Homy ¢s(C,A) — A is continuous.
c. The 1-cocycle y: G — Homy ¢s(C,A) is continuous.

We wish to compare our connecting homomorphisms with cup products. By Lemma
[A.2.3] we have continuous cup products

C'(G,Homy s(C,A)) x C/(G,C) = C'*/(G,A)

that satisfy A(p U f) = pUAS forall A € A, p € C/(G,Homp ¢s(C,A)), and f € C/(G,C).
For p = x (with i = 1), the cup product y U f € C/*1(G,A) may be described explicitly by the
(j+ 1)-cochain
(xUf)(o,1)=x(0)of(7)

for 6 € G and 7 a j-tuple in G. We set ¥ (f) = x U f.
Remark 2.1.3. For a cochain complex X and j € Z, the complex X[;] is that with X [j]' = X+
and differential dx|; on X[;] that is (—1)/ times the differential dy on X.

Since d(x U f) = (—1)/x Udf, we have maps of sequences of compact or discrete A-
modules

%: C(G,C)—C(G,A)[1]

The map § commutes with the differentials of these complexes up to the sign (—1)/*! in

degree j. The map ¥ may be made into a map of of complexes by adjusting the signs, but we
have no cause to do this here.

Lemma 2.1.4. For all i > 0, the cup product map ¥': H'(G,C) — H' ' (G,A) agrees with the
connecting homomorphism 9"

Proof. Let f be an i-cocycle on G with values in C, and set g = so f. The coboundary of g
has values in A, and one sees immediately that

dg(o,7) = 0s(f(1)) —s(af(1)) = x(0)(0f(7)) = (x U f)(0,7)
for 0 € G and 7 an i-tuple of elements of G. [

If X € I, ¢ is locally compact, then its Pontryagin dual XV = Home(X,R/Z) with G-
action given by (g¢)(x) = ¢ (g~ 'x) for g € G, x € X, and ¢ € X" is a locally compact object
of Jpe G, where A° denotes the opposite ring to A. Pontryagin duality induces an exact equiv-
alence of categories between 6 ¢ and e G.



Now suppose that the exact sequence (2.1)) is of modules in € ¢, and suppose A and C are
endowed with the .#-adic topology. The dual of (2.1) fits in an exact sequence

0—-C" =B —>AY >0 (2.3)

in Zae . The canonical isomorphism Homa (C,A) = Homy-(A",C") (see Proposition|A.1.9)
then produces a continuous 1-cocycle

2" G— Hompo(AY,CY),
from ). A direct computation shows that y* satisfies

x'(0)(9) =—or*(c7'9) +1"(9)

for € AV and t*: AY — B" the map associated to 7. That is, the cocycle —x* defines the
class of the dual extension (2.3) in H'(G,Homue(AY,C")). By Lemma [2.1.4, we therefore
have the following.

Lemma 2.1.5. The cup product map E(V*" is the negative of the connecting homomorphism
H(G,AY) — HT(G,CY).

2.2 Global fields

Let p be a prime number, and now suppose that A is a pro-p ring. Let F be a global field of
characteristic not equal to p, and let S denote a finite set of primes of F' including those above
p and any real places of F. Let §/ (resp., S%) denote the set of finite (resp., real) places in S.
We use G to denote the Galois group of the maximal unramified outside S extension of F'.
Fix, once and for all, a local embedding of the algebraic closure of F at a prime above each
v € § and therefore a homomorphism j,: Gr, — Grs, where Gf, denotes the absolute Galois
group of the completion F, of F at the prime over v.
For M ¢ %GF,S, we consider the direct sum of local cochain complexes

Ci(Grs,M) = @ C(Gr,, M) & @ C(Gr,. M), (2.4)

vessf vES®™

where 5(GFV,M ) denotes the total complex of the Tate complex of continuous cochains for
ves”.

We will be interested in a shift of a usual cone complex. To that end, recall that if X and Y
are cochain complexes and C = Cone(f: X — Y)[—1], then C = X @ Y [—1] with differential

de(x,y) = (dx (x), = f (x) = dy (y))-
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We define the (modified) continuous compactly supported cochain complex of M € J G,

by
L
Ce(Gr,s,M) = Cone(C(Gr,s,M) = Ci(Grs,M))[—1], (2.5)

where {5 = (¢,),cs is the sum of the localization maps ¢, defined by ¢,(f) = f o j,. The ith co-
homology group of C¢(Gr.s,M) (resp., C;(Gr,s,M)) is denoted H.(Gp.s,M) (resp., H (Gr.s,M)).
Note that if M is finite, then H} (GF,s, M) and H'(Gr,s,M) are finite for all i € Z, and as a result,
so are the H!(Grs,M).

For T € €A g, ¢, we may then view each Hi(GRS, T) as an object of %, where * denotes
either no symbol, /, or c. We then have a long exact sequence

ce—> Hé(GF75, T) — Hi(Gpjg, T) — H;(GF75, T) — HCI.+1(GF75, T) —> e

in €. Similarly, we may view each H.(Gpg,A) for A € DA Grs @s an object of 7, and we
obtain a corresponding long exact sequence for such an A.
Suppose that
O: MxN—L

for M € %7Gp,s’ N e %QGF’S, and L € I g, is a continuous, A-balanced, Gr s-equivariant
homomorphism. (Recall that ¢ being A-balanced means that, viewing M as a right A-module,
we have ¢ (mA,n) = ¢(m,An) forallm € M, n € N, and A € A.) Similarly to Lemmal[A.2.3]
we have compatible continuous, A-balanced cup products

Ci(Gr.s,M) x C/(Gp.5,N) = C™ (G, L)

C{(Gr.s,M) x CL(Gr.s,N) =% C-" (G, L)

Ci(Gr.s,M) X CI (Gp5,N) <> CiH (G, L)
of R-modules for all i, j € Z (see [Ne, Section 5.7]). As in Lemma if we introduce
bimodule structures on M, N, and L that commute with the G s-action, and if the pairing ¢ is
also linear for the new left and right actions on M and N, respectively, then the cup products

are likewise linear for them.
Class field theory yields that H.(Grs,T) (and H.(Gps,A)) are trivial for i > 3 and

HZ(Grs,Qp/Zy(1)) = Qp/Zp.
Taking the A-balanced pairing 7V x T (1) — Q,/Zp(1), cup products then give rise to com-
patible isomorphisms in % of Tate and Poitou-Tate duality (see [Li, Theorem 4.2.6]):
Bir: Hi(Grs.T(1)) — H} ™ (Grs,T")"
ﬁll" : Hi<GF,S7 T<1)) - Hg_i(GESv T\/)\/
. H(Grs,T(1)) = H/(Grs, TV)".
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2.3 Connecting maps and cup products

Suppose that we are given an exact sequence of compact or discrete modules as in (2.1) (with
G = Gr,s) and a continuous splitting s: C — B of A-modules. Let : Grs — Homp s(C,A)
be the induced continuous 1-cocycle.

We wish to define a certain Selmer complex for B under the assumption that the class of ¥
is locally trivial in the sense that ¢, () is a Gr,-coboundary for each v € S. For this, we need
the following lemma, the proof of which is straightforward and left to the reader.

Lemma 2.3.1. Fix a continuous homomorphism @,: C — A of A-modules. Give A, B, and C
the Gg,-actions induced by j, and their G s-actions. The following are equivalent:

(l) gv(%) - d(Pv,
(ii) s —10 @, is Gf,-equivariant,
(iii) t+ @, o is Gf,-equivariant.

For each v € S, assume that /,()) is a coboundary, and choose ¢, as in Lemma
Note that the following construction can be affected by these choices, even on cohomology.
If Homy ¢s(C,A) has trivial G s-action, then it is always possible to choose ¢, = 0. We then
define

C;(Grs,B) = Cone(C(Grs,B) - C/(Grs,A))[1],

where tg is defined as the composition of /g with the map of complexes determined by #, =
t+ @, o 7 in its v-coordinate.

It should be noted that the complex Cy(Grs,B) depends in general upon the choices of
local embeddings. In fact, we have the following lemma.

Lemma 2.3.2. For ¢ € Ggg, consider the homomorphisms j,, for v € S that are defined on
T € Gr, by ji(t) = 6j,(t)0~!, and form the corresponding localization maps f,. Define
@,:C—AonceCby
¢i(c) = 0py(cc) — x(0)(c),

and let tg be the map induced in the v-coordinate by the composition t,,0 l,, where t, =t + @ o
7. Then the diagram

C(Grs,B) —=C/(Grs.A)

| X

C(GFys,B) 5, Ci(Grs,A)

of maps of complexes commutes. Here, 6* is the isomorphism induced by the standard action

of © on cochains, and the right-hand vertical map is induced by the action of ¢ on coefficients,
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where the action of Gf, on A is understood to be attained through j, on the upper row and j,
on the lower.

Proof. Let v € S and T € Gp,. We claim first that the above choice of ¢/ makes 7, into a
GF,-equivariant map for the Gp,-actions induced by j;,. By Lemma[2.3.1}, it suffices to check
the Galois-equivariance of s, = s —1¢)], given the Galois-equivariance of s, = s —1¢,. Set
7, = j,(7) and 7, = j,(7). As maps on C, we have

-1,

st =5t —1(cp,67 7 —x(0)t) = 05,067!

/ —1 / -1
7,=0s5T,0 ~ =71,05,0 °,

and we then check

05,6 '=0s6c ' —1069p,06 ' =s+1xy—10p,06 ' =4,

We verify commutativity of the diagram. For f € Ci(GF,S,B), and now taking 7 to be an
i-tuple in Gr,, we have

(ol 00" (f)(1) = (oo™ (f))(oTo™") = (to +ogm — 2 (0)0m)(f(T)),
and 1 applied to the latter value is the following map applied to f(7,):
1o+ o1Qr+stoc—osn=co(l—st+1Q,1) =00 (1t +1¢,T) =100t

In other words, we have

(ol,007(f))(7) = (00n)(f(%) = (oot oby(f))(1).
]

In particular, we see that, even when the Galois action on Homy, ¢s(C ,A) is trivial, the dia-
gram in Lemma(2.3.2](and the resulting diagram on cohomology) would not have to commute
if instead we took our canonical choices @, = ¢, = 0, since we could have (o) # 0. In other
words, the Selmer complex depends upon our choice of local embeddings.

For later purposes, it is notationally convenient for us to work with the Tate twist of the se-
quence (2.1). We have the following exact sequences, with the third requiring the assumption
that each ¢, () is a coboundary:

0 — C(Grs,A(1)) = C(Gfrs,B(1)) = C(GFs,C(1)) = 0 (2.6)
0— CC(GRS,A(I)) — CC(GF’S,B(I)) — CC(GF75,C(1)) —0 (27)
0 — Ce(Grs,A(1)) = C4(Grs,B(1)) = C(Gps,C(1)) = 0. (2.8)
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These yield connecting maps

kb: H (Grs,C(1)) — HT(Grs,A(1))
K. p: H.(Grs,C(1)) = H:" (Grs,A(1))
A(

C(
K; g H'(Gps,C(1)) — H"Y(Grs,A(1))

of A-modules.
We have continuous cup products for any i, j € Z, given by

C'(Gr.s,Homp o5 (C,A)) x C/(Gr5,C(1)) = C(Gs,A(1)).
As before, setting 7 (f) = x U f, we obtain a map of sequences of A-modules
X: C(Grs,C(1)) = C(Grs, A(1))[1]

that is a map of complexes up to the signs of the differentials. In a similar manner, we have
maps of sequences of A-modules

Ze: Ce(Grs,C(1)) = Ce(Grgs,A(1))[1]
Zf: C<GF757C(1)) - CL(GF.S'aA(l))[l]

with the same property, given explicitly as follows. First, for f = (f1, f2) € C.(Grs,C(1)),
where f € C/(Grs,C(1)) and f» € Ci~'(GR,,C(1)), we set

X(f) =xUe f=xUf1,—Ls(x)U f2),

where the second cup product is the sum of the local cup products at v € S. In the case that the
class of x is locally a coboundary (of ¢, at v € S), we set @5 = (@,),ecs and let

% = (X, —s) € CH(GE5,Homp ¢s(C,A))

be the canonical cocycle lifting x. For f € C'(Grs,C(1)), we then define

() =2V f = (U f,—esUls(f)) € CH (Grs,A(1). (2.9)
Proposition 2.3.3. One has Ky = }', K. = ., and K} = ¥ for all i € Z.

Proof. We treat the cases one-by-one, showing that the maps agree on cocycles. The first
equality is Lemma For the next, let f = (fi, f2) € C.(Grs,C(1)) be a cocycle, which is
to say that df; = 0 and df, = —ls(f1). Set g = (g1,82) = (so f1,s0 f2). For i > 1, one then
has that

dgi(o,7) = x(0)(0/i(7))
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for 0 € Grs and 7 an i-tuple in Gf 5 and

dgx(0,7) = —Ls(81)(0,7) +Ls(x)(0)(0./2(7)),

where 6 € G, and 7 is an (i — 1)-tuple in Gp,. It follows that

dg = (d(g1),—Vs(g1) —d(g2)) = (x U fi,—ls(x) U f2),

fori>1.

For i = 0, we remark that Z°(Grs,C(1)) — Z°(Gr,,C(1)) is injective for any prime v, so
the only cocycles in C?(Gr5,C(1)) are sums of cocycles in C~!(Gr,, B(1)) for real places v.
For any i < 0 and any real v, we may then use repeated right cup product with a 2-cocycle with
class generating I:IZ(GE,, Zp) to reduce the question to i > 1, as right cup product commutes
not only with k. p by definition of the connecting homomorphism and the compatibility of left
cup product and coboundary on the level of cocycles, but also with ¥, by associativity of the
cup product on the level of complexes.

Finally, assume that the class of y is locally trivial, and let f be a cocycle in C'(Gr,C(1)).
We lift it to (so f,0) in

Cl(Grs,B(1)) = C'(Grs,B(1)) ©C; ' (GR,. A(1)).
Using the first case, its coboundary is then

(xUf,—ts(sof))=(xUf,—@sols(f)) = (xUf,—@sUls(f)).

2.4 Duality

Suppose now that our exact sequence (2.1)) is in Gp g,y We will assume that A and C are
endowed with the .#-adic topology and that 7 has a (continuous) splitting s: C — B of A-
modules. The map of Proposition provides a cocycle

X2 Grs — Hompo(AY,CY)
attached to x. The cocycle —x* defines BV as an extension of C¥ by AV. Let
vp: H'(Gps,AY)Y — H'(Grs,CY)"

denote the Pontryagin dual map of KI’;(I)V, and define v{iB = (Ké,B(Uv)v and V},B = (K},B(l)v)v
similarly. By Poitou-Tate duality and a careful check of signs, we have the following rather
standard result.
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Lemma 2.4.1. The following diagram commutes:

i

Hi(Grs,C(1)) H™™(Gps,A(1))

: v
) ( 1)l+1 2— l
H} '(Gps,CY)Y HZ ' (Gps,AY)Y,

Similarly, we have

ﬁH—l ( )H—l 2— loﬁ
Proof. For f € H(Grs,C(1)) and g € HCZ”'(GFVS,AV), we have
(B o) (£)(8) = By (xUM)(g) =8V (xUSf) = (1) (X" Ueg) U £,

the latter equality by [Nel 5.3.3.2-4], while

((v25 o BE)NN(8) = BE() (1€ 51y (8)) = —(X " Uc g) U S

We also require the following general lemma, the proof of which is an simple exercise.

Lemma 2.4.2. Suppose that we have an exact triangle of cochain complexes of A-modules
M Ne N L 0 M),
Then the map of complexes
Cone (M = N) Y, Cone (N LA 0)

is a quasi-isomorphism.

Applying Lemma [2.4.2]to the exact triangle

C(Grs,B(1))[—1] = C(GEs,B(1))[—1] = C.(GFs,B(1)) = C(GFs,B(1))

(noting that B =A @ C locally), we see that C(Grs,B(1)) is quasi-isomorphic to

Cone(Cl(GFwC(l)) [_ 1] — CC(GF,SaB(l)))' (2-10)

Assuming that J is locally trivial, we have that y* is locally trivial and

sV

C¢(Grs,B") = Cone(C(Grs,B") 88, (G, CV))[-1l.
The following is now a consequence of Tate and Poitou-Tate duality.
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Proposition 2.4.3. There are natural isomorphisms of topological A-modules
Bip: Hi(Grs,B(1)) = H} (Grs,B")"

that fit into a commutative diagram

i

. . . KB .
-+ = Hi(Grs,A(1)) — H}(Grs5,B(1)) — H'(Grs5,C(1)) — H{"'(Gp5,A) —= -

j A jﬁ},s lﬁé Lﬁlﬂ

. 9_1_1371'(GES’A\/)\/ >~ H;_"(GF,S,BV)V Q_Hgfi(GF"S’C\/)\/ 9-H2”'(GF‘,S,AV)V -

where the lower connecting map is (—1)™! V]% 5

2.5 Iwasawa cohomology

Let K be a Galois extension of F that is S-ramified over a finite extension of F in K, and set
I'=Gal(K/F). Let Q denote the maximal S-ramified extension of K. Let R be a commutative
pro-p ring, and let 2 be a topological basis of open ideals of R. We set A = R[I'], which
is itself a pro-p ring. Typically, we will simply use S to denote the set of primes Sg in any
extension E of F lying above those in S, and Gg s will denote the Galois group of the maximal
S-ramified extension of E. If E is contained in K, we set ¥¢ s = Gal(Q/E). We let A' denote
A viewed as a A[%F s]-module with A acting by left multiplication and ¢ € % s acting by right
multiplication by the image of 6! in T".

Let us review a few results that may be found in [Li], extending work of Nekovar [Ne].
Suppose that T € 6 &, ;. We define the Iwasawa cochain complex as

C*,S<K7 T) - C* (gF,SaAl ®R T)

where * again denotes no symbol, ¢, or [, and where Qg denotes the completed tensor product.
Via a version of Shapiro’s lemma for cochains, we have

Cis(K,T) = lim Co(Yg s, T
ECK

with the inverse limit taken over number fields E containing F with respect to corestriction
maps. We may replace ¥ s with Gg s in the above and obtain a quasi-isomorphic complex,
but the above isomorphism makes the A-module structure more transparent, since 7 is only
assumed to be a Gg s-module for sufficiently large E. We may view the Iwasawa cohomology
group H iS(K ,T) as an object of € by endowing it with the initial topology. Since T is
compact, we have a canonical isomorphism

i,S(KaT) <L1’l (gE s:T)
ECK
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of A-modules.
Similarly, for A € .@Agm, we can and will make the identification

C.(Gks,A) = Cy(Yrs,Hompg ¢1s(A,A)),

where we view A here as a right A-module via right multiplication and a %Fs-module via
left multiplication and put the discrete topology on the A[% s|-module Homg ¢(s(A,A). Direct
limits with respect to restriction maps provide an isomorphism

lign C, (gEﬂg,A) — C*(GK’S,A)
ECK

of complexes of discrete A-modules. Again, we may replace ¥ s with Gg s in this isomor-
phism. Direct limits being exact, we have resulting A-module isomorphisms

lim H (% 5,A) = H.(Gk 5,A).
ECK

Taking T € G Gy, the pairing T x T (1) — p,~ induced by composition gives rise to a
continuous, perfect pairing

Hompes(A, TY) x (A'@rT(1)) = Wy, (9,A®1) = 9(A)(r).
Cup product then induces the following isomorphisms in 6, much as before:

ﬂliT: H;S(K,T(l)) — Hfii(GK,&Tv)v
Bi: Hy(K,T(1)) = H; '(Gk,5,T")"
i Ho (K, T(1) = H Gk 5, TY)Y
(see [Li, Theorem 4.2.6]). These agree with the inverse limits of the duality maps over number
fields in K.
For any complex T in ¢ g, , on which the Gf s-actions factor through I', let T be the

complex in 6 g, that is T as a complex of topological R-modules, has I'-actions those
induced by the G s-action on 7', and has trivial G g-actions.

Lemma 2.5.1. Let T € %R7GF,S be such that the Gr s-action factors through I'. We have the
following natural isomorphisms in €:

a. H>(K,T(1)) =TT,
b. H2g(K,T(1)) = H2g(K,R(1)) Qg TT,
c. H3(K,T(1)) 2 HZ(K,R(1))®rT" if p is odd or K has no real places.
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Proof. By the above remark, we may replace 7 by T in the cohomology groups in question,
thereby assuming that 7' € € g, has a trivial Gr s-action. Write T’ = @1 T, where the finite
Ty run over the A-quotients of 7 by open submodules. We then have

e.s(K,T(1)) = 1im H (K, Ta(1)).
o
Note that there is an exact sequence
02, %2 - Ty =0

of compact Z,-modules with r,s > 0. Since H2 ((K,Z,(1)) 2 Z, and H* ((K,Z (1)) is trivial,
the long exact sequence in cohomology yields that the composite map

Ty — HS,S(szP(l)) ®z, Ta = Hg,s(Ka To(1))

of A-modules is an isomorphism. Part a then follows by taking inverse limits of these com-
patible isomorphisms.

Next, since the map H2 (K, Z;(1)) % H3 (K, Z}(1)) is injective, H2s(K, Ty (1)) is iso-
morphic to the cokernel of the map

H25(K, Z,(1)) @7, 7, 2% 12 (K, Z,,(1)) @, 7.
Thus, the canonical map
Hg;s(K, Zp(1)) @z, Ta — HCZ,S(Kv To(1))
is an isomorphism, and therefore so is
HZ (K, Zp(1)) &z, T — HZg(K,T(1)).
This also holds for 7 = R, so the composite map
HZ (K, Z,(1) &z, T = Hy g(K,Zp(1)) &z, RORT — HZ5(K,R(1)) &r T

is an isomorphism as well, from which part b follows.
Finally, if p is odd or K has no real places, then H3(K,Z,(1)) = 0, and part ¢ follows by
the analogous argument. 0

Suppose now that we have an exact sequence

0-ALBEC=0
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in 6r s and that 7 has a (continuous) splitting s: C — B of R-modules. Again, we have a
continuous 1-cocycle
X g}gg — HomR,CtS(C,A).

On cohomology, we again have connecting maps
Kb Hi(K,C(1)) — HiTH (K,A(1))
Kl gt Hg(K,C(1)) — HIS (K A(1))

of compact A-modules. If we require that each ¢, () be a local coboundary upon restriction
to Gk s, then we also have

krp: Hy(K,C(1)) = HY (K.A(1)),

but in general it is just a map of compact R-modules. Again, these agree with left cup prod-
uct by x, which is to say, the inverse limits of the maps ¥, ¥ , and Yy at the finite level,
respectively.

Consider the dual exact sequence and the resulting cocycle

X*: Yrs — Homg(AY,CY).

We again denote the Pontryagin duals of the resulting ith connecting maps by vé, vj;’ g and, if
x 1s locally cohomologically trivial, v}7 5 on Gk s-cohomology.

Suppose that A and C are endowed with the 2(-adic topology. As in Lemma[2.4.1] we have
the following.

Lemma 2.5.2. The maps Kp and K, 5 coincide with the maps (—1)’“\/2 Pand (—1)FvEiT
respectively, under Poitou-Tate duality.

We define
Cf’S(K,B) = Cf(gpys,/\l ®RB).

Similarly, define

Cy(Gks,B') = lim Cp(“g,s,B ).
ECK

We have the following analogue of Proposition [2.4.3]

Proposition 2.5.3. Suppose that ¥ is locally cohomologically trivial upon restriction to Gk s.

Then there are natural isomorphisms
Bfg: Hy5(K,B(1)) = H} '(Gk.5,B")"

of topological R-modules that are compatible with [36’ 4 and ﬁé in the sense of Proposition

2.4.3| and we have ﬁc’t‘l o KfB = (-1 )z+1 2— ZOBC
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3 S-Reciprocity maps

In this section, we prove our main theorem from the introduction: see Theorem In
Theorem we describe its application to values of cup product pairings.

We continue to let K denote a Galois extension of F' that is S-ramified over a finite exten-
sion of F. From now on, we assume that either p is odd or that K has no real places. We set
R=7,and A=7,[I'], withI" = Gal(K/F) as before.

3.1 The fundamental exact sequences

We briefly run through the Iwasawa modules (i.e., A-modules) of interest. First, we use Xk
denote the Galois group of the maximal S-ramified abelian pro-p extension of K. Let Y
denote the Galois group of the maximal unramified abelian pro-p extension of K in which all
primes above those in S split completely. Let % be the inverse limit under norm maps of the
p-completions of the S-units in number fields in K.

The map ﬁizp induced by cup product is a canonical isomorphism

HZ5(K, Zy(1)) = H' (G 5,Qp/Zp) ",
allowing us to identify the group on the left with Xx. Moreover, the kernel of the natural map
Hes(K,Zy(1)) — H5 (K, Zy(1))

is exactly the kernel of the restriction map Xx — Yg. Therefore, we obtain a canonical injec-
tion
: Y — HF (K, Zy(1)).
Finally, Kummer theory allows us to canonically identify % with H} (K, Z,(1)).
Let 2" denote the quotient of Z,[Xk] by the square of its augmentation ideal Ix,. With

the standard isomorphism Xx — I,/ I%K that takes an element ¢ to (¢ — 1) mod 13251(, this
gives rise to the exact sequence

0=+Xk =2 =7Zp,—0 (3.1)

of compact Z,[Gg s[-modules, where Gk s acts through Ix, / I32€1< by left multiplication on 2~

and trivially on Xk and Z,. The cocycle u: Gg s — Xk that this sequence defines, which is a

homomorphism since Xk has trivial Gk g-action, is just the restriction map on Galois groups.
By part ¢ of Lemmal&‘, our connecting map Klgtw is a homomorphism

‘PKZ %K — Hg(K, Zp(l)) ®Zp %K
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that we call the S-reciprocity map for K. Since u € H'(Gg 5, Xx)?Fs, the equality Kty = il
and Galois equivariance of cup products imply that the S-reciprocity map Wg is a homomor-
phism of A-modules.

Remark 3.1.1. With an additional hypothesis, we may give 2" a continuous, Z,-linear ¥ s-
action that turns into an exact sequence of A-modules. Let Mg be the maximal S-ramified
abelian pro-p extension of K. Suppose that there exists a continuous homomorphism o : I' —
Gal(Mg / F) splitting the restriction map (e.g., that I is free pro-p). As topological spaces, one
then has

Gal(MK/F) = %K xI'

via the inverse of the map that takes (x,y) to xa (7). Using this identification, we define a map
p: Gal(Mg/F) — Xk by p(x,y) = x. It is a cocycle as o is a homomorphism. The cocycle
on Y s resulting from inflation gives rise to a continuous ¥ s-action on 2, extending the
natural Gk s-action (and the conjugation action of %r g on Xg). The class of p is independent
of the splitting, which means that the class of the extension is as well.

The following lemma is easily proven by pushing out the exact sequence (3.1)).
Lemma 3.1.2. Let M € CgZ[th,S with trivial Gk s-action, and write M = @a My, with My, a

finite quotient of M. For
h=(ha)a € Q@HI(GK,&Ma)a
[0

let
h: Ux = H§(K,Z,(1)) — HE(K,M(1)) = H(K,Z,(1)) &gz,M

be the composite map induced by the inverse limit under corestriction of left cup products with
cohomology classes that restrict to hy. Then

(1d®h) O‘PK =h.
As a quotient of 2", we obtain the extension
0—=Yx =% —7Z,—0. (3.2)

In this case, the cocycle ) : Gg s — Yk defining the extension is unramified everywhere and
S-split. Applying parts a and b of Lemma[2.5.1] the first connecting homomorphism is then a
homomorphism

Ok = K}fyi Uk — %K®ZP Yk,

and the second is
qax = K7 g - H3(K,Zp(1)) — Y.
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Proposition 3.1.3. The composition g o 1k is the identity of Yk.

Proof. By Proposition , the map gk agrees with )ZJ% Precomposing it with the map
ch,S(KaZp(l)) —>H52(K,Zp(l)),

the resulting map
Hes(K,Zp(1)) — H5(K Yk (1))
is exactly 72 = Kczg, again by Proposition By Lemma it is Pontryagin dual (under
Poitou-Tate duality) to the map
H'(Gk,s,Y{) — H' (Gk.5,Qp/Zp)

given by —Kog( v = )A(;O, or in other words, the map Yy — X} that takes an element to its
precomposition with the projection Xx — Yx. That being said, gk o ik is as stated. [l

Let
sw: Yk ®Zp Xk = Xk ®Zp Yx

denote the standard isomorphism giving commutativity of the tensor product, i.e., that swaps
the two coordinates of simple tensors.

Theorem 3.1.4. The diagram

%K—>H2(K Zy(1)) &z, Xk

S ®id
ey j wo(gx®id)

Xk ®z, Yx
commutes.

Proof. The skew-symmetry of the cup product yields the commutativity of the outer square in
the following diagram of maps:

HY(K,Z,(1)) Xk &z, Yk H (K, Xk &gz, Y (1))
\ T uL
§(K,Yk(1)),
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Here, the outer maps are as in Section where U is restriction to Xk as above. The down-
ward arrow is the composition of the natural isomorphism

H3 (K, Xk(1)) = H(K,Z,(1)) &z, Xk

with swo (gx ®1id). Recall that gg is )ZJ% on H2(K,Z,(1)) followed by the invariant map.
Since the leftward arrow is the invariant map, the upper-right triangle commutes.
The upward arrow is the composition of the isomorphism

H s(K Yk (1)) 2 Hig(K, Zy(1)) &z, Yy

with the natural isomorphism H (K, Z,(1)) = Xk of Poitou-Tate duality (see Lemma o ).
In other words, noting that (X &z, Yx)" may be canonically identified with Homes(Xk, Y¢),
the Pontryagin dual of the upward arrow is the natural identification

Home (X, YY) — H' (Gk 5, Y¥).
Let Z =% ®Zp Yk, and note that
0—>}:K®Z[)Y[(—>ff—>YK—>O

is still exact. By Lemma , the Pontryagin dual of the map fi> = KC2 4 1n the diagram is
the map
10 =~y H(Gk 5, Homes (X, YY) = H' (Gi 5,Y),

that is cup product with the projection map u € H' (Gk.s,Xk). The dual of the invariant map
is just the identification of HO(GK’S,HomctS(.’{K, YY) with Homes (X, Yy). The composite
map is composition with the projection, so it is again the natural identification. In other words,
the lower-right triangle commutes, so the left half of the diagram commutes, and that is what
was claimed. 0

In general, suppose that L is an S-ramified abelian pro-p extension of K, and set G =
Gal(L/K). The reciprocity map induces

Wy ke U — HS(K,Zy(1)) &z, G,

equal to (id ® mg) o Wk, where mg: Xg — G is the restriction map on Galois groups. We
again refer to W7 x as an S-reciprocity map, for the extension L/K. Note that ¥} /K= TG in
the notation of Lemma[3.1.2]

Consider the localization map

ls: Hy(K,Zp(1))&z,G— [] G

veSk
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obtained from the isomorphisms
chts(GEvv ZP(U) = ZP

for v € Sg and E a number field containing F. Since [],cs, Zp is a free profinite Z,-module,
the map from Yx ®Zp G onto the kernel of /g is an isomorphism.

By Proposition and a standard description of the local reciprocity map in local class
field theory, the v-coordinate of the composition py g = s oWk is the composition of the
natural maps

U — lim lim E)/E;"
E,CK, n
with the local reciprocity map for the (fixed) local extension defined by L/K at v € Sk and the
canonical injection of its Galois group into G. We will let % /x denote the kernel of py k.
Theorem [3.1.4]now has following corollary.

Corollary 3.1.5. For any S-ramified abelian pro-p extension L of K with Galois group G, one

has a commutative diagram

Wk N
Uk Y ®z7,G
(ncﬁm \SWG
G &z, Yk,

where swg is the standard isomorphism yielding commutativity of the tensor product.
This, in turn, has the following notable corollary for the extension defined by Yx.

Corollary 3.1.6. Let Hx be the maximal unramified, S-split abelian pro-p extension of K. The
map
Wy, kU — Yg &z, Yk

has antisymmetric image.

Proof. We apply Corollarym The map py, /x is a sum of local reciprocity maps p,: %k —
Yk that are all trivial since the decomposition group at v in Yx is trivial by definition. Hence,
we have %y, jx = Uk -
We claim that
(my, ®id) 0 Ok = ¥ k-

To see this, first recall that @ = )Z} = K’} 4 by Proposition 2.3.3l As 1k o Ty, is the canonical
map HZ (K, Z,(1)) = H§(K,Z,(1)), we can see by the formula in 2.9) that (my, ®id) o
K}g = kJ,. In turn, this equals (1 ® 7y, ) o k1, which is ¥y, /k by definition. O
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Remark 3.1.7. Let us check that ®f agrees with the likewise-denoted map of the introduction.
If we compose O for i = 1 (or gF for i = 2) with the map H:(Grs,Yr(1)) — H>/(Ggs, Yy )"
of Poitou-Tate duality, we obtain a map f +— (g+— x* U fUg). On the other hand, )f(v*fz induces
a map

H(Grs, Y (1) = H2(Grs.Qp/Zp(1)) > Q2

which we may compose with the pairing
H>™!(Grs, Zy(1)) x H'(Gr.s,Yy') = H*(Grs, Y7 (1)) (3.3)

to obtain the same map f +— (g +— x* U fUg) in the dual.

It thus suffices to see that the map p: H*(Grs,Y¥ (1)) — Q,/Z, described in the in-
troduction agrees with )A(;fz which by Proposition [2.3.3| and the discussion of Section
is the negative of the connecting homomorphism KJ%,@(I)V' The map p is given by lift-

ing from H*(Grs,Y¥ (1)) to H*(Grs, %V (1)), applying restriction and local splittings (i.e.,
(sV)s) to land in H?(Gr.s,Q,/Zp(1)), and then applying the sum of invariant maps. The map
H*(Grs, %V (1)) = H*(Grs,Q,/Z,(1)) that is the connecting homomorphism arising from
the Selmer complex is —(s")s by definition. The map K]%,g( 1y is given by lifting the cocycle
in Z*(Grs, 2V (1)) to C]%(Gp,s, &V (1)), taking its coboundary, and lifting the resulting ele-
ment of B}(GF,S7 DV (1)) to Z3(Gr,s,Qp/Zp(1)). For this, we can lift to Z} (Grs,Q,/Zp(1))

and then map to Z2(Grs,Q,/Z,(1)). That is, KJ%MUV = —)/(v*fz results from

H*(Grs,Y{ (1)) « H*(Grs, 2" (1))
O 2 (Grs, Qp ) Z(1)) = H3(Grs,Qp/Zp(1)),

which by its description is —p. Thus, we have the desired equality.

3.2 A special case

Let F =Q(up), andlet A= Gal(Q(u,)/Q). Let S = Sg = {p, o}, and let {, denote a primitive
pth root of unity. Let @: A — Z7 denote the Teichmiiller character. For a Z), [A]-module M
and j € Z, we let MU) denote its @/ -eigenspace. Finally, set

m= 1= @ en"™
ocA

for odd i € Z.
We will consider the cup product pairing

(, )p,F,S1 Hl(GF,Sa.up) XHI(GF,Suup> — Yr @ Up.

24



of [McS], which we can view as a pairing on the group of elements of F* which have associ-
ated fractional ideals that are pth powers times a power of the prime over p.

Let us say that an integer k is irregular for p if k is even, 2 < k < p — 3, and p divides the
kth Bernoulli number By. For primes of index of irregularity at least 2 that, for instance, satisfy
Vandiver’s conjecture, we have the following consequence of the antisymmetry expressed in

Corollary

Theorem 3.2.1. Suppose that k and k' are irregular for p with k < k' and that Y F(k) and, ngl)
are trivial. Then (Np—, Miri'—1)p,F,s = 0 if and only if (Np—, Miy-ir—1) p,F.s = 0.

Proof. For any r that is irregular for p, we let x,_,: Y — U, denote the Kummer character
attached to 1,_,. Supposing that Yér) =0, fix an [F)-basis of Hom(YF,u,) which contains
the nontrivial ),_, and a dual basis of Yr/p containing elements o, € Y;lfr) for each such
character with x,_,(o,) = {, and x,,—, trivial on all other elements of the basis.

Since

11—k
Xk (Meswr—1)) = My Mo )prs €YE T @ 1,

the coefficient of oy ® 0 in the expansion of Klg(nHk/_l) mod p in terms of the standard
basis of the tensor product is 1], g, Ngx—1]x» Where

C [np—k:nkJrk/— e

(np—k, Nitk/—1) p,F,s = Ok @ Cp

Similarly, the coefficient of o} ® o) is the analogously defined [n,_x, Niix—1]x- The anti-
symmetry of Corollary forces

[Nyt Mk 1k = = [Mp—k'> Mtk 1]k
and, in particular, the result. O

This phenomenon can be seen in the tables of the pairing values for p < 25,000 produced
by the author and McCallum (see [McS]). What is remarkable about Theorem is that it
relates pairing values in distinct eigenspaces of Yr.

Remark 3.2.2. Note that the condition for the vanishing of these pairing values appears in the
statement of [Sh2, Theorem 5.2]. We remark that there is a mistake in said statement that is
rendered inconsequential by Theorem That is, it was accidentally only assumed there
that (Np—k, Mkx'—1)p,F,s = O for all K > k, while this vanishing for all ¥’ # k is used in the
proof (although at one point the condition that k' > k is again written therein).
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4 Higher S-reciprocity maps

In this section, we consider higher S-reciprocity maps, which are generalized Bockstein maps
related to those of [LLSWW]. We employ them to study the graded quotients in the augmen-
tation filtration of completely split Iwasawa modules over Kummer extensions. We provide
an exact sequence into which these graded quotients fit in Theorem [4.2.2]

As in earlier sections, let p be a prime, let F' be a global field of non-p characteristic, and
let S be a finite primes of F' containing the primes over p and all real places. We continue to
suppose that p is odd or F has no real places.

Let L be an S-ramified Galois extension of F. We assume that G = Gal(L/F) is almost
pro-p in the sense that it contains an open normal pro-p subgroup. We now let K be a Galois
subextension of L/F and set H = Gal(L/K) so that

I'=Gal(K/F)=G/H.
Let R be a complete commutative local Noetherian Z,-algebra with finite residue field.
Let T be an R[GF s]-module that is finitely generated over R. We suppose that either
1. T is R-projective, or
ii. L/F is a p-adic Lie extension.

In addition to A = R[I']|, we set Q = R[H]. If L/F is a p-adic Lie extension, then so are
L/K and K/F, and in particular A and Q are noetherian.

4.1 Duality for finitely generated modules

In this subsection, we establish some necessary background, in particular by providing a de-
scription in Theorem of graded quotients of second Iwasawa cohomology groups.

The following is a consequence of [FK1, Proposition 1.6.5] and [LS| Propositions 4.1.1
and 4.1.3].

Proposition 4.1.1 (Fukaya-Kato, Lim-Sharifi). We have homological spectral sequences of
finitely generated A-modules

J=I(T): J2,=Hy(H,H{ (L,T)) = Jyj=HTUK,T),
P=P(T): P = Hi(H,H}{'(L,T)) = Pyj=H5 (K.T),
C=C(T): Cl;=Hi(H H ' (L,T)) = Cipj=H " (K,T),

that are natural in T and an exact sequence of spectral sequences

o= J=2P—-C—=J]— -,
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where J[1] is the spectral sequence that is the shift of J with its second page having (i, j)-term
J2
7]_1

Let I denote the augmentation ideal of Q. Fix n > 0, and suppose either that 7" is R-flat or
that both Q/I" and I"/I"*! are R-flat. Consider the exact sequence of Q[GFs]-modules

0—=I"/I" @rT — Q/I" QT — Q/I"@r T — 0.

Let

‘P(L'})m C HY(K,Q/I"®RrT) — HZ(K,T) &g 1" /1"

be the resulting connecting map. Here, we have used the isomorphism
HI(K, 1"/ @p T) = HZ (K, T) & I" /1"

that exists as Gr,s has p-cohomological dimension 2 and /" /I”+1 has trivial Gk s-action (cf.

Lemma|2.5.1). Note that the map ‘PS)/)K 7 18 a map from the zero group to H § (K,T).

As a consequence of [LLSWW, Remark 3.2.5], we have the following description of the

n)
cokernel of ‘I’L / K,T

Theorem 4.1.2. For each n > 0, we have a natural isomorphism of A-modules

2
)~ I”HS(L, T)
coker‘PL/Kj = —I”+1HS2 7 T)'

Remark 4.1.3. We also have the analogous isomorphisms for our semilocal Iwasawa coho-
mology groups HIZS(L, T) and for the Iwasawa cohomology groups of extensions of a local
field of residue characteristic p.

We next review the two primary ingredients in the proof of Theorem that we shall
require. For a compact Q-module A, we let

(I"®qA)° = ker(I" @ A — I"A)

where the map is induced by multiplication. The statement on the cokernel in the following
lemma is [LLSWW, Lemma 3.2.3] and is the first of two key ingredients in the proof of
Theorem 4.1.2l The statement on the kernel is new and is used in Section 4.2l

Lemma 4.1.4. Let A be a compact Q-module, and consider the exact sequence

0—I"/I" QA — Q/I" T QrA = Q/I"GRrA — 0. (4.1)

IFor this, note that nothing in [LLSWW] required that H be topologically finitely generated, aside from a
desire not to write completed tensor products.
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The connecting homomorphism
O Hi(H,Q/I"&@RrA) — Ay QpI" /1™

in the H-homology of (4.1) has cokernel isomorphic to I'A/I" 1A, If I is Q-flat, then 9, has
kernel isomorphic to (I" @ I1A)°.

Proof. Note that (Q/I" @rA)y = A/I"™A for all m > 0. The cokernel of 9, is then identified
with the kernel of the quotient map A/I"*'A — A/I"A, which is I"A /"' A. Since AQRQ is
H-acyclic for homology, we have that

Hi(H,Q/I" & A) 2 ker((I"@rA)y — (QErA)H) = (I" @ A)°. 4.2)

The map d, is induced by the identity on I" ®q A. In particular, d,, can be identified with a
restriction of the map

I"®agA — I"®a AH.
If 1" is flat over Q, then the latter map has kernel equal to I" ®qIA, and on the subgroup
(I"&qA)° it has the stated kernel. O

The second key ingredient from [LLSWW] is the commutative diagram of A-module ho-
momorphisms
(n)

L/K,T

HY{(K, T @rQ/I") H(K,T)&gl" /" (4.3)

i ]

Hy(H,H2(L,T) &pQ/I") —2~ HA(L, T Qp 1" /1",

where d, is the connecting homomorphism (4.1)) for A = H3(L,T). We then apply Lemma
to obtain Theorem [4.1.2] as the isomorphism on cokernels of the two horizontal maps in

@.3).

4.2 Control theorem for higher graded quotients

We turn to the consideration of the main result of this section. Suppose now that R = Z, and
T =7Zp(1). We refer to

L)k = YL/kz,01)" Hg(K,Q/I"(1)) _>H§(K7Zp(1))®zpln/1n+l

as the nth higher S-reciprocity map for L/K. In the case that H = X, we could set ‘Pg?) =

LKk 8 in the case n = 1. However, in this section, we assume that H = Z,. Under this
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assumption, /"1 = H®" is free of rank 1 over Z,, and the surjection Q/I""! — Q/I" is
Zp-split, since Q/I" is Z,-free.

Let us first review the case n = 0. We have the map Ry /x : (Y.)n — Yk on completely split
Iwasawa modules that is restriction on Galois groups, the map Ny jx: % — %k on inverse
limits of S-unit groups induced by norm maps, and the map X; /x that is the inverse limit of
sums of inclusion maps

P Gal(L'/K'), — Gal(L' /K")

UESK
of decomposition groups taken over number fields L' C L, where K’ = KN L'. By [HS, Corol-
lary A.2] (in the case that the set of primes there is taken to be ), we have a canonical exact
sequence

R
0— YLH ®Z[’H — OZ/K/NL/KQZ/L — kerZL/K — (Y)u i Yk — cokerZL/K —0 44

of A-modules that ties these groups and maps all together. In Theorem below, we extend
this to higher graded quotients of Y7, in the augmentation filtration.
Now let us turn to the case of general n. For brevity, for any compact Z,-module M, let us

set
M{n} =M&z I"/I",

which is of course noncanonically isomorphic to M as a Z,-module. For any ©-module A, let
A denote the submodule of elements of A annihilated by /. We have canonical isomorphisms

Hy(H,A®rQ/I") = (I"®oA)® = (pA){n}, (4.5)

the first by (4.2). Moreover, since H has p-cohomological dimension 1, we have exact se-

quences
0—>E&j—>Ej—>E127j_1—>O (4.6)

for E = (E] j+Eit ;) any of the spectral sequences C, P, and J..
Lemma 4.2.1. The semilocal connecting map
3" mHPS(L.Zy(1){n} = HYs(LZy(1)){n}
as in Lemmawith A= HI%S(L, Zp(1)), and given the isomorphism of (4.5)), is injective.
Proof. By Lemma and the assumption that H = Z,,, we have
kerd)") & wIH (L, Z,y(1)) {n}.

From this, we see that the result for all # is equivalent to the triviality of the H-invariant group
of IH?¢(L,Z,(1)).
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Note that
H}(L,Zy(1)) = ] Zp[H/H],

veSk
where H, denotes the decomposition group at a prime above v. If H, = 0, then the submodule
of H-fixed elements is trivial. Otherwise H /H, is finite, and only the span of the norm element
in Z,[H /H,] is fixed by H, but the norm element is not contained in IZ,[H /H,]. O

Let “ZZL(/"I){ be the global kernel of the nth semilocal higher reciprocity map

Hg (K, Q/1"(1)) = His(K, Zp(1)) {n}

(n)

(i.e., the composition of ‘PL K

with the sum of local restriction maps), and let

yk %(71)( = Yee{n}

denote the map induced by the restriction of ‘I’g})K to ﬁZ/L(;‘I)(
The exact sequence in the following is an extension of [Shl, Theorem 6.3], which in

essence gives its last four terms.

Theorem 4.2.2. If L/K is a Z,-extension, then we have a canonical exact sequence

ker ly(")

L/K
0— p(IYp){n} — — (kerR n
P} = oy (ker ) )
(n)
Iy, Rk n
— = —— coker I/IL( )K — (cokerRy jx){n} —0

of A-modules.

Proof. If n = 0, this follows by definition of Ry /x and l[/é(/))K: 0 — Yk, so we may assume

n > 1. Since H has p-cohomological dimension 1, employing (4.5)), we have
Y1 = ker(pnHg (L, Z,y(1)) = pHi (L, Zy(1))).
The map J; — Ji o with Q/I"(1)-coefficients that is identified by (4.5]) with a map

Hg (K. Q/I"(1)) = pnH§ (L, Zy(1)){n}

therefore restricts to a map éL(';;( " mYr{n}. Since a,‘”) is injective by Lemma 4.2.1}

L/K

we also have
Yy = ker(pnH§ (L, Z,(1)) = Hig(L, Zp(1))n)
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and thereby a map of exact sequences

0,y ———= HY(K,Q/1"(1)) —= H}5(K, Z, (1)) {n}

J& | |

0—— ¥ {n} —> pHA(LZy(1)){n} — HA(L,Zp(1))sr{n},

with the rightmost map being the inverse of the semilocal corestriction by (4.3]). Chasing the
diagram and applying the spectral sequence J for Q/I"(1), we conclude that & L('/l;( 1s surjective
with kernel

keréé% XNy k(UL @7, Q/1").

(In fact, the latter group is isomorphic to Hi (L,Q/I"(1))y by the exactness of for J.)
Next, we have a commutative square

Y {n} —— (Y)u{n}

3 L%T Ry jx®id
(n)
n L/K
20—yl

where the maps arise as restrictions of the maps in (4.3)) and hence by Lemma a map

Ry 'YL/ 1" 1Y, — coker y

on cokernels of the horizontal maps. Set # (") = N, k(%L @z, Q/I"). The result follows
from the map of exact sequences

0——— [n(IYL){I’l} —— ]nYL{n} —— (YL)H{}’I} e InYL/InJrlYL —0

l jl lRL/KQ@id lR(L”/)K

0 —— (ker WL(';)K)/%/(”) — ?/L(/nll/l/(") —> Yg{n} —— coker l;/l(j/l)K —0,

where we have applied Lemma to get the upper left term. ]

Remark 4.2.3. In the proof of Lemma instead of T = Z,(1), we can take T to be any
compact R[Gr s[-module (for any R as before) such that 7(—1) has trivial Gk s-action. In
fact, what is actually needed is that the H-invariant group of IHI%S(L, T) is zero. Theorem
4.2.2| then holds with Z,(1) replaced by any such 7 in the definitions and its statements.
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A Continuous cohomology

In this appendix, we study the continuous cohomology of a profinite group G with coefficients
in topological A[G]-modules for a profinite ring A. We want to view such cohomology groups
themselves as topological A-modules. As we have not found convenient references for the
results we shall need, we list them here, leaving the proofs to the reader.

A.1 Topological modules over a profinite ring

Let A be a profinite ring, which is to say a compact, Hausdorff, totally disconnected topolog-
ical ring with a basis of open neighborhoods of zero consisting of ideals of finite index. We
denote the category of Hausdorff A-modules with continuous A-module homomorphisms by
I, its full subcategory of locally compact (Hausdorff) A-modules by %4 and the full, abelian
subcategories of compact A-modules and discrete A-modules by ¢ and Z,, respectively. The
category of all A-modules, with A-module homomorphisms, will be denoted Modx. We write
X € &/ to indicate that X is an object of a category &7
We begin with the following standard facts.

Lemma A.1.1. Inverse (resp., direct) limits of objects in the category T exist, and they are
endowed with the initial (resp., final) topology with respect to the inverse (resp., direct) system
defining the limit.

For a proof of the following, see [RZ, Lemma 5.1.1].

Lemma A.1.2. Every finite object in I is discrete. Every object in € is an inverse limit of
finite A-module quotients, and every object in D is a direct limit of finite A-submodules.

For topological spaces X and Y, we use Maps(X,Y) to denote the set of continuous maps
from X to Y, which we endow with the compact-open topology. This topology has a subbase
of open sets

V(K,U)={f € Maps(X,¥) | f(K) C U}

for K C X compact and U C Y open. We have the following lemma (cf. [Fl, Proposition 3]).

Lemma A.1.3. For X a topological space and N € J, the abelian group Maps(X,N) is a
topological left A-module under the action defined by (A - f)(x) = A - f(x) for A € A, f €
Maps(X,N), and x € X.

Lemma A.1.4. Let X be a compact space. Let (Ng, Tty g) be an inverse system of finite ob-
Jects and surjective maps in €y, and let (N, 7y ) be the inverse limit of the system. Then the
isomorphism
¢: Maps(X,N) — @Maps(X,Na)
(04
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of A-modules induced by the inverse limit is also a homeomorphism.

Lemma A.1.5. Let (X, laﬁ) be a direct system of finite objects and injective maps in the
category of discrete spaces, and let (X ,14) be the direct limit of the system. Let N € F5. Then
the isomorphism
0: Maps(X,N) — @Maps(Xa,N)
o

of A-modules is a homeomorphism.

Fix a set .# of open ideals of A that forms a basis of neighborhoods of 0 in A. We recall
the following lemma for convenience: see [Li, Proposition 3.1.7] and [Li, Lemma 3.1.4].

Lemma A.1.6.

a. Let M be a finitely generated, compact A-module. Then we have an isomorphism

M = lim M/IM
Ie.y

of topological A-modules.

b. Let M be a finitely generated, compact A-module and N be a compact or discrete A-
module. Or, let M and N be compact A-modules endowed with the .7 -adic topology.
Then

Homp s(M,N) = Homy (M, N).

The following lemma is a consequence of Lemma

Lemma A.1.7. Let M,N € 65, and suppose that N is an inverse limit in 6p of a system

(No, g, ﬁ) of finite A-modules and surjective homomorphisms. Then the isomorphism

Homp ¢is(M,N) = lim Homp ¢s(M, Ne)
o

of groups induced by the inverse limit is also a homeomorphism.
We also have the analogue for discrete A-modules, which is a corollary of Lemma

Lemma A.1.8. Let M,N € Yy, and suppose that M is a direct limit in D of a system
(Mg, 14,8) of finite A-modules and injective homomorphisms. Then the isomorphism

Homp (M,N) = lim Homy (Mg, N)
o

of groups induced by the inverse limit is also a homeomorphism.
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We let A° denote the opposite ring to A. For a topological A-module X, we let
X" = Home(X,R/Z)

denote the Pontryagin dual A°-module. We endow X" with the compact-open topology, and
then X becomes an object in .Z5.. The Pontryagin dual preserves the property of local com-
pactness. For any X € %, the natural map X — (X)" is an isomorphism in Z,. If X is a
compact (resp., discrete) A-module, then X" is a discrete (resp., compact) A°-module. In fact,
the Pontryagin dual provides contravariant, exact equivalences between 6 and Ze.

One may prove the following by employing Lemmas[A.1.6,[A.1.7] and|A.1.8]

Proposition A.1.9. Suppose that A is an R-algebra over a profinite commutative ring R via
a continuous map from R to the center of A. Suppose that T,U € 6 are endowed with the
S -adic topology (e.g., are finitely generated A-modules). Then the map

Homy (T,U) — Homy(UY, T")

that sends p to the map p* with p*(¢) = ¢ op forall € UV is an isomorphism in Cx.

A.2 Cochains and cohomology groups

Let G be a profinite group. We set T g = J[g], Which is to say that J3 ¢ is the category
of topological A-modules with a continuous A-linear action of G with morphisms that are
continuous A[G]-module homomorphisms. We similarly define £ ¢, €a G, and I, ¢.

The category of chain complexes over an additive category <7 that admits kernels and
cokernels will be denoted by Ch(.e7), with Ch™ (.e), Ch™ (.7, and Ch”(.e7) denoting the full
subcategories of bounded below, bounded above, and bounded complexes in .o/

The complex of inhomogeneous continuous cochains provides a functor

C(G,-): Inc — Ch™(Mod,).

For M € 9, g, we endow each C!(G,M) with the compact-open topology. The coboundary
maps in the complex C(G,M) are then continuous as G is a topological group, M is a con-
tinuous G-module, and the action of A on M commutes with the G-action. For M € , g,
we denote the A-modules that are the ith cocycle, coboundary, and cohomology groups for
C(G,M) by Z/(G,M), B(G,M), and H'(G,M), respectively. Both Z(G,M) and B'(G,M)
may be viewed as objects in .7 under the subspace topologies from C'(G,M).

Lemma A.2.1. For A € 9, g, the topological A-modules C'(G,A) are discrete.
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If A € 94 ¢, then A is a direct limit of its finite A[G]-submodules Ay, and we have

H'(G,A) Z1lim H (G,Aq).
i

We endow H'(G,A) with the discrete topology, under which it is an object of Z,. This
of course agrees with the subquotient topology from C(G,A), where we view H(G,A) as
Z!(G,A)/B(G,A). The result in the compact case is found in the following statement, the
proof of which employs Lemma[A.1.4]

Proposition A.2.2. Assume that H' (G,M) is finite for every finite Z[P~'|[G]-module M and
every i > 0, where P is a set of primes of 7 that act invertibly on A. Suppose that T € 6 g,
and write T = 1&1 Ty for some finite A|G)-module quotients Ty. Then the natural map

H'(G,T) — lim H'(G,Tq)

is an isomorphism of A-modules. Moreover, B'(G,T) and Z'(G,T) are closed subspaces of
C!(G,T), and the subquotient topology on H'(G,T) induced by the isomorphism

Z(G,T)

Bi(G,T)

12

H'(G,T)

agrees with the profinite topology induced by the above isomorphism.

Cup products on continuous cohomology exist quite generally, as stated in the following
lemma. For this, if Q denotes a profinite ring, then g _ A ¢ denotes the category of topological
Q-A-bimodules with a continuous commuting action of G.

Lemma A.2.3. Let A, Q, and X be profinite rings. Let M € To_pG N € Ir_s ., and
L € Jo-5 ¢, and suppose that ¢ : M x N — L is a continuous, A-balanced, G-equivariant

homomorphism of Q-YX-bimodules. Then we have continuous, A-balanced cup products
Ci(G,M) x C/(G,N) = CI(G,L)

of Q-X-bimodules for each i, j > 0.

B A comparison of Poitou-Tate and Kummer maps

Let p be a prime number. Let F be a number field, and let S denote a finite set of primes of F
including those above p and any real places. We assume that p is odd or F is purely imaginary.
Poitou-Tate duality provides us with a canonically defined homomorphism

H'(Grs,Qp/Zy)" — Hi(GEs, Zp(1)),
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and hence, via our identifications, a homomorphism Xz — Yr. The natural question to ask is
whether or not this map is the restriction map on Galois groups, and the answer is that in fact
it is. However, at the time of the writing of this appendix as a note, we were unable to find
a proof of this nonobvious but useful fact in the literature. This fact is not strictly necessary
in the paper itself, but we feel that this should appear somewhere in print and fits very nicely
with the theme of the present article. We thank Kay Wingberg and Alexander Schmidt for
helpful discussions regarding the proof.

Theorem B.1. The Poitou-Tate map H'(Gr5,Q,/Z,)" — Hi(Grs,Z,(1)) induces the re-
striction map Xr — Yr on Galois groups.

Proof. Let Fg denote the Galois group of the maximal unramified outside S-extension of F,
and let Og denote its ring of S-integers. Moreover, let Is and Cs be the S-idele group and
S-idele class group of Fy, respectively, and let Ig(F) and Cs(F) denote the S-idéle group and
S-id€le class group of F, respectively. Finally, let Clg g denote the S-class group of F.

We first recall the definition of the Poitou-Tate map

H'(Grs,Qp/Zy)" — Hgy(Grs,Zp(1)).

We find it most convenient to work modulo p" throughout and then take inverse limits. Modulo
p", the Poitou-Tate map arises simply as the composition

H'(Grs,Z/p"Z)" — H(GE.s,Hom(pyn,Cs))" — H*(Grs, i),
where the first map is the dual of the connecting homomorphism arising from the sequence
0 — Z/p"Z — Hom(u,,Is) — Hom(p,n,Cs) — 0
and the second map arises from the duality
HO(Gr.g,Hom(iy,Cs)) x HX(Grs, ) = H2(F,Cs) 2% Q/Z,

where “inv" denotes the invariant map.
Next, we explain the injection Yr < H3,(Grs,Z,(1)), again working modulo p". Recall
that the reciprocity homomorphism

rec: Cs(F)/p" — Xp/p"
is dual to the connecting homomorphism

8: H'(Grs,2/p"Z) — H*(Grs,7)[p"]
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under the cup product
inv

H(Grs, 2)[p"] x H'(Gs,Cs) /" = H(Grs,Cs)[p") = 2/ p"Z.

in the sense that
inv(09 Ua) = ¢(rec(a))

for ¢ € H'(Grs,Z/p"Z) and a € Cs(F)/p".
From the long exact sequence attached to

0— 0§ —1Is—Cs—0

and the fact that the cokernel of Is(F) — Cs(F) is isomorphic to Clgs, we have an isomor-
phism H!(Gr, 0¢') = Clg, and an induced reciprocity map

rec: Clgs/p" — Yr/p".
From the long exact sequence attached to
0— Uy — O iﬁ; — 0,
we obtain an injection that is the composite
Yr/p" S0 Clps/p" =5 HY (Grs, 6)/p" = HX(Grs. ).

This gives the identification of Yr /p” with a subgroup of H Z(GR s, Mpn) arising from Kummer
theory and class field theory.
Putting all of the definitions together, the proposition is reduced to the commutativity of
the diagram
Hom(p,n, Cs) 975 x H*(Grs, ) —— Q/Z

| T

HY(Grs,Z/p"Z) x H (Gps,0f)

| T

H?(Grs,Z) xH"(GFs,Cs) ———Q/Z

in the obvious sense. This diagram can be found (without proof of its commutativity) in
[NSW1, (8.4.6)], though not in the second edition of the book.
To show its commutativity, we replace the right-hand composition with the composition

H*(Gpys,Cs) — H' (Grs,Cs[p"]) — H*(Grs, )
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which is in fact its negative by a standard lemma (e.g., [NSW1, (1.3.4)]), since we have a
commutative diagram

0 ﬁ’SX I Cg 0
P p" p"
0 ﬁSX I Cq 0
0 0 0

noting the p-divisibility of Cs [NSW1, (10.9.5)]. We therefore have a new diagram

H0m<‘upn,CS>GF,S X HQ(GF,SMLLP") —U> Q/Z

| | -

H'(Grs,Z/p"Z) x H'(Grs,Cs[p"]) ——Q/Z

| | |

H?(Grs,Z) x H(Gps,Cs) ——Q/Z

which commutes by two applications of [La, Theorem II1.2.1]. That is, for the lower rectangle,
take the pairing Z x Cs — Cs, and for the upper, take the Galois-equivariant pairing

Is[p"] x Hom(p,n, Is[p"]) — Cs[p"]

given by multiplication on Ig[p"] followed by projection, noting that

Is[p") = lim @) r(Ey).

ECFy veSE
The result follows. 0
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