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We experimentally investigate the settling of millimetre-sized thin disks in quiescent
air. The range of physical parameters is chosen to be relevant to plate crystals settling
in the atmosphere: the diameter-to-thickness aspect ratio is χ = 25–60, the Reynolds
numbers based on the disk diameter and fall speed are Re = O(102) and the inertia ratio
is I∗ = O(1). Thousands of trajectories are reconstructed for each disk type by planar
high-speed imaging, using the method developed by Baker & Coletti (J. Fluid Mech., vol.
943, 2022, A27). Most disks either fall straight vertically with their maximum projected
area normal to gravity or tumble while drifting laterally at an angle< 20◦. Two of the three
disk sizes considered exhibit bimodal behaviour, with both non-tumbling and tumbling
modes occurring with significant probabilities, which stresses the need for a statistical
characterization of the process. The smaller disks (1 mm in diameter, Re = 96) have a
stronger tendency to tumble than the larger disks (3 mm in diameter, Re = 360), at odds
with the diffused notion that Re = 100 is a threshold below which falling disks remain
horizontal. Larger fall speeds (and, thus, smaller drag coefficients) are found with respect
to existing correlations based on experiments in liquids, demonstrating the role of the
density ratio in setting the vertical velocity. The data supports a simple scaling of the
rotational frequency based on the equilibrium between drag and gravity, which remains to
be tested in further studies where disk thickness and density ratio are varied.
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1. Introduction

The primary motivation of the present work is the need for a predictive understanding of
the settling of frozen precipitation, a fundamental natural process with deep ramifications.
This is essential for improving the forecast of weather and snow accumulation on the
ground (Hong, Dudhia & Chen 2004; Lehning et al. 2008). The parameterization of
hydrometeor fall speed also influences the simulated properties of atmospheric clouds
(Khvorostyanov & Curry 2002), which in turn are among the main sources of uncertainty
in climate projections (Bodenschatz et al. 2010; IPCC 2021). Additionally, the orientation
of ice particles is key to our understanding of polarimetric radar measurements for weather
predictions and cloud monitoring (Radenz et al. 2019). The precipitation process is
complicated by the wide variety of frozen hydrometeors present in different micro-physical
conditions, resulting in a range of densities, sizes, shapes and velocities (Heymsfield &
Westbrook 2010; Pruppacher & Klett 2010; Garrett & Yuter 2014; Nemes et al. 2017; Li
et al. 2021).
Here we focus on plate crystals, which exhibit a remarkably simple shape (typically

hexagonal) and represent a large fraction of all frozen hydrometeors in atmospheric
clouds (Pruppacher & Klett 2010). Higuchi (1956) observed plates with diameters between
0.1–1.2 mm, the most probable being 0.75 mm. Kajikawa (1972) reported diameters
ranging from 0.5−2 mm, aligned with the findings of Ono (1969). Auer & Veal (1970)
collected plate crystals up to 3 mm in diameter. Less variability is observed for the plate
thickness: Ono (1969) measured it to be up to 60 μm, while Kajikawa (1972) found
it consistently near 50 μm. The density is typically taken as that of ice ≈917 kg m−3

(Jayaweera & Cottis 1969; Cheng,Wang &Hashino 2015). Measured terminal velocities of
plate crystals show a spread from 0.5 m s−1 to over 2 m s−1, with the variations for a given
size of ±0.3–0.7 m s−1 (Kajikawa 1972; Barthazy & Schefold 2006). These observations
have informed empirical formulations to predict the crystal fall speed based on diameter,
mass and/or projected area normal to the direction of fall (Böhm 1989; Heymsfield &
Westbrook 2010; Tagliavini et al. 2021a).
It is often assumed that ice crystals maintain their direction of maximum extension

approximately horizontal while settling (Sassen 1980; Matrosov et al. 2001; Wang 2021).
A variety of other styles, however, have been observed for plate crystals, including
oscillatory and tumbling motions (Kajikawa 1992; Mitchell 1996). Above a threshold
level of the Reynolds number Re, the wake behind a free-falling object oscillates and
produces unsteady loads, coupling the object motion and the wake itself (Ern et al.
2012; Mathai et al. 2018). Here Re = VtD/ν, where Vt is the terminal velocity, D is the
plate diameter and ν is the air kinematic viscosity. Willmarth, Hawk & Harvey (1964)
and List & Schemenauer (1971) reported a threshold Re ≈ 100 for thin disks. The field
observations cited above imply that Re for plate crystals can span two orders of magnitude
(Re ≈ 5–500), suggesting a variety of possible falling style scenarios and sensitivity to
environmental perturbations. In fact, the laboratory observations of falling crystals by
Kajikawa (1992) indicated oscillatory motions as early as Re ≈ 40.
The general problem of the falling behaviour of thin disks has attracted considerable

attention. Due to the strong coupling between torque and drag, the dynamics are richer
than for spheres (which also present a multiplicity of regimes; Jenny, Duek & Bouchet
2004; Zimmermann et al. 2011; Uhlmann & Doychev 2014; Mathai et al. 2016; Brandt
& Coletti 2022; Raaghav, Poelma & Breugem 2022). In their seminal laboratory study,
Willmarth et al. (1964) considered the parameter space defined by Re and the inertia ratio
I∗ = I/(ρf D5). The latter compares the disk’s moment of inertia to that of the fluid sphere
circumscribing it. For a circular disk of thickness h, I∗ = (π/64)ρ̃/χ , where ρ̃ = ρd/ρf
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is the disk-to-fluid density ratio and χ = D/h is the disk diameter-to-thickness aspect
ratio. Three motion regimes were identified in non-overlapping regions of the Re − I∗
plane: stable (persistent horizontal orientation independent of initial conditions), fluttering
(back and forth lateral oscillation), and tumbling (continuously turning end-over-end).
Field et al. (1997) performed further experiments that distinguished between periodic and
chaotic fluttering, the latter referring to oscillations with growing amplitudes until the disk
overturns and tumbles above a critical inclination. During tumbling, the rotation-induced
net lift leads to lateral drifting (Field et al. 1997; Mittal, Seshadri & Udaykumar 2004;
Fabre, Assemat & Magnaudet 2011; Ern et al. 2012). A limitation of this parameter space
is that Re is not an ideal control parameter, because Vt is an output quantity not known
a priori (Mathai, Lohse & Sun 2020). Auguste, Magnaudet & Fabre (2013) described
their numerical results via a regime map defined by I∗ and the Archimedes number
Ar = √

(3/32)UgD/ν, where Ug = {2|ρ̃ − 1|gh}1/2 is the gravitational velocity (g being
the gravitational acceleration). These authors also identified non-planar regimes involving
a slow precession of the trajectory plane. Chrust, Bouchet & Dušek (2013) represented
their computational findings using the non-dimensional disk mass m∗ (which equals
16I∗ for their infinitely thin disks) and the Galileo number Ga = UgD/ν. (Note that Ar
and Ga only differ by the numerical prefactor, and that they have been used somewhat
interchangeably in the literature; e.g. Ern et al. 2012.)
These numerical studies pointed out the bistability of certain ranges of the parameter

space, i.e. the possibility that multiple falling modes may coexist. The behaviour of falling
and rising disks and cylinders was mapped against Ga and I∗ in various other studies,
e.g. Namkoong, Yoo & Choi (2008), Mathai et al. (2017), Toupoint, Ern & Roig (2019).
Similar dynamics have also been investigated for rectangular plates/cards (Belmonte,

Eisenberg & Moses 1998; Mahadevan, Ryu & Samuel 1999; Pesavento & Wang 2004;
Andersen, Pesavento & Wang 2005; Jones & Shelley 2005; Eloy, Souilliez & Schouveiler
2007; Lau, Huang & Xu 2018). These studies, often motivated by flight mechanics
and typically focused on the range Re = O(102−103) and I∗ < 1, indicated that a
fluttering-to-tumbling transition occurs as I∗ increases. However, for heavy plates with
I∗ > 1, experiments of Heisinger, Newton & Kanso (2014) and simulations of Lau et al.
(2018) found that a quasi-steady descent is recovered in the limit of large I∗, as the object
inertia dominates over the aerodynamic forces. Figure 1 depicts the I∗ − Ga regime map
based on several of the above-mentioned studies and indicates the cases considered in
the present paper, which are designed to be representative of plate crystals falling in the
atmosphere.
The falling style influences the drag, lift and torque coefficients. Correlations linking

the latter to the orientation of non-spherical objects have been proposed by Rosendahl
(2000), Yin et al. (2003) and Zastawny et al. (2012). Recently, advanced formulations for
estimating Vt (and the associated drag coefficient CD) for realistic ice crystal shapes were
proposed for fixed falling orientations (Tagliavini et al. 2021a,b). However, it is not trivial
to determine the level of fluid inertia beyond which the wake becomes strongly coupled
with the object motion (Auguste et al. 2013). Bagheri & Bonadonna (2016) highlighted the
importance of the unsteady dynamics towards the terminal velocity, and McCorquodale
& Westbrook (2021b) noted the onset of unsteady motions for thin disks resulted in a
distinct change in the CD − Re relation. The net effect of the falling style on the fall speed
over a broad range of parameters remains to be understood. Pesavento & Wang (2004)
found tumbling plates to fall slower than gliding ones, while Bagheri & Bonadonna (2016)
concluded that the rotation of non-spherical free-falling particles yields a faster descent by
reducing the mean projected area.
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Figure 1. Disks in the current study placed among data from previous studies in the parameter space of the
inertia ratio I∗ versus Galileo number Ga. Solid black lines show the falling mode boundaries identified by
Auguste et al. (2013). Dashed black lines indicate upper and lower boundaries of the region of bistability found
by Lau et al. (2018). Red, black and blue stars indicate the 1, 2 and 3 mm disks used in this study, respectively.
Data from other publications digitized using WebPlotDigitizer (Rohatgi 2021).

Even though often motivated by atmospheric precipitation, the vast majority of
laboratory studies on falling thin disks have been carried out in liquid fluids (Willmarth
et al. 1964; List & Schemenauer 1971; Jayaweera 1972; Field et al. 1997; Zhong, Chen
& Lee 2011; Heisinger et al. 2014; Westbrook & Sephton 2017; Esteban, Shrimpton &
Ganapathisubramani 2018, 2020; McCorquodale & Westbrook 2021b). This contradiction
was clearly highlighted, for example, by Bagheri & Bonadonna (2016) in their review of
previous work. Re similarity to atmospheric conditions is achieved by scaling up the object,
which facilitates trajectory reconstruction and imaging of the wake. The concern with
extending results at these low density ratios (ρ̃ ≈ 1) to frozen hydrometeors (ρ̃ ≈ 1000)
is embodied by the different ranges of the inertia ratio: in those ‘analogue experiments’ it
is typically I∗ = O(10−3−10−2), while for plate crystals in the atmosphere, I∗ = O(1). In
other words, as remarked by Westbrook & Sephton (2017), the invoked dynamic similarity
(independent of ρ̃) is only valid when the wake oscillations are damped and the drag
is not two-way coupled with the particle kinematics, such that the object falls steadily
and the process is entirely controlled by Re. Additionally, most of the previous studies
have reported results from a small number of realizations for each particle type, with
limited information on their statistical variability, and in particular, on the occurrence
frequency of various falling styles. Considerations on the bistability of certain regions of
the parameter space, and in general the sensitivity to initial conditions, call for an analysis
of the probability distributions of the important observables (Esteban et al. 2018; Lau et al.
2018).
In the present study, we investigate experimentally the dynamics of thin disks falling

in quiescent air, with mass and size directly relevant to plate crystals settling in the
atmosphere. We perform high-speed imaging and capture thousands of trajectories,
analysing both translational and rotational motion. Our study pivots around some
outstanding questions: Which falling style is predominant for disks of different sizes? How
does the rotational–translational coupling affect the fall speed? What determines the time
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Nominal diameter D (mm) h (μm) χ ρ̃ Ug (m s−1) Ga I∗

1 mm 1.27 ± 0.07 50 ± 7.5 25.4 1150 1.06 89.4 2.22
2 mm 2.02 ± 0.03 50 ± 7.5 40.4 1150 1.06 142.2 1.40
3 mm 3.03 ± 0.02 50 ± 7.5 60.6 1150 1.06 213.3 0.93

Table 1. Disk properties and relevant non-dimensional quantities based on the disk geometry and inertial
properties. Here D is the measured mean disk diameter, h is the measured mean disk thickness, both D and h
are listed with ± one standard deviation (σ ) from measurements performed of these quantities. Also included
are the diameter-to-thickness aspect ratio χ = D/h, the density ratio ρ̃ = ρd/ρf , the gravitational velocity
Ug = {2|ρ̃ − 1|gh}1/2, the Galileo number Ga = UgD/ν and the inertia ratio I∗ = (π/64)ρ̃/χ .

scale of the rotational motion? The paper is organized as follows. The methodology is
presented in § 2, detailing the experimental apparatus and measurement procedure (§ 2.1),
the image processing (§ 2.2) and uncertainty analysis (§ 2.3). Results are presented in § 3,
with a demonstration of the observed falling styles in § 3.1, followed by the analysis of
the translational dynamics in § 3.2 and rotational dynamics in § 3.3. In § 4, the results are
further discussed, and the main conclusions are drawn.

2. Methodology

2.1. Materials and experimental apparatus
The utilized particles are solid, thin disks made of polyethylene terephthalate (PET) used
for commercial glitter, with a density of ρd = 1380 kg m−3. The disks settle in air at 20◦C,
with density ρf = 1.2 kg m−3. Three disk sizes are considered, with nominal diameters of
D = 1, 2 and 3 mm, all of thickness h = 50 μm. The dimensions of a subset of 30 disks
per diameter are directly measured and yield the mean and standard deviations listed in
table 1, along with the key physical parameters for each disk type. The diameters are
obtained by imaging disks lying on a tray, while the thicknesses are obtained by tightening
caliper teeth on stacks of various numbers of disks and calculating the average thickness
in each stack, confirming the specification from the vendor.
The disks are imaged as they fall through a large, transparent chamber, about 2 m tall and

5 m3 in volume (schematic shown in figure 2). The apparatus was designed to investigate
the settling of particles in homogeneous turbulence and is described in detail in Carter
et al. (2016) and Petersen, Baker & Coletti (2019). The experimental device, imaging
system and processing approaches deployed in it have successfully reproduced established
results and enabled novel findings on the statistics of the turbulence structure (Carter &
Coletti 2017, 2018), clustering and settling velocity of spherical particles (Petersen et al.
2019), their dispersion and acceleration (Berk & Coletti 2021) and their two-way coupling
with air turbulence. In the present study, no turbulence is forced, and the disks fall in
otherwise quiescent air. A 3 m long cylindrical chute, 15.2 cm in diameter, is connected
to an opening in the chamber ceiling and provides a fall distance of over 4 m from the
release point to the imaging region approximately in the middle of the chamber. Based
on the disk properties, previous studies and acceleration measurements, this is deemed
amply sufficient for the terminal velocity to be attained, history effects from the release
mechanism to be forgotten and the final falling styles to establish (Chrust et al. 2013;
Heisinger et al. 2014; Esteban et al. 2020). The disks are dispensed using a sieve shaker
(Gilson Performer III Model SS-3). A thick layer of disks fills the sieve at all times during
the process, warranting steady operation and approximately constant spatial concentration
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Figure 2. Facility schematic adapted from Carter et al. (2016). (a) Camera arrangement to capture both fields
of view. (b) Laser sheet configuration and definition of global axes, with the imaging region centred in the
chamber shown as a white rectangle.

in the imaging volume throughout the experimental runs (as verified by the imaging
procedure described below). A volume fraction ΦV ≈ 10−5 is targeted, corresponding to
a number density of O(104–105) disks per cubic metre, depending on their size. This is
comparable to concentrations of frozen hydrometeors reported in field studies (Lauber
et al. 2021; Li et al. 2021) and warrants large enough inter-particle distance to prevent
consequential interactions. While it cannot be excluded that individual trajectories are
affected by the presence of nearby wakes, these are expected to have a minor influence on
the statistics of the large number of trajectories we report. This is verified by performing
measurements at reduced concentrations (ΦV ≈ 10−6), leading to analogous results and
conclusions (see the Appendix). We note that the mean inter-disk distance ranges between
11 and 15 diameters for ΦV ≈ 10−5, and between 24 and 31 diameters for ΦV ≈ 10−6.
A high-speed Nd:YLF laser (Photonics, 30 mJ pulse−1) operated at 4300 Hz is

used along with a combination of one cylindrical and two spherical lenses to form a
∼3 mm-thick light sheet. This is shined through the transparent ceiling to illuminate a
vertical plane about the centre of the chamber under the chute opening. The illuminated
plane is associated to x, y and z coordinates in the horizontal, vertical upward and
out-of-plane direction, respectively, and is imaged by two high-speed CMOS cameras
(Phantom VEO 640) synchronized with the laser. Different objectives are used on each
camera: a 105 mm Nikon lens for a larger field of view (LFV), and a 200 mm Nikon lens
for a smaller field of view (SFV), nested within the LFV. Images are taken at a resolution
of 1280 × 960 pixels, such that the LFV is 11.2 × 8.4 cm2 with 11.4 pixels mm−1,
and the SFV is 4.8 × 3.6 cm2 with 26.6 pixels mm−1. The dual imaging set-up extends
the dynamic range of the measurements: the LFV captures longer and more numerous
trajectories, while the higher resolution of the SFV enables more accurate reconstruction
of the translational and rotational kinematics. All statistics obtained from the LFV are
effectively indistinguishable to those from SFV, indicating that the disk motions in the
imaging plane are reconstructed with sufficient resolution. We will therefore report results
from the LFV only. A minimum of five experimental runs is performed for each disk type,
with each run lasting approximately 10 s.
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100 pixels

100 pixels

(c)(b)(a)

( f )(e)(d )

Figure 3. Sample images from measurements. Snapshots (a) to (c) shown at increasing disk diameter for the
smaller FOV; (d) to ( f ) are for the larger FOV. For reference, a scale bar of 100 pixels is also shown.

2.2. Reconstruction of the disk trajectories
Background subtraction is first applied to the raw images based on the per-pixel minimum
intensity across each run. Example raw images are shown in figure 3. An intensity
threshold is then applied to identify all disks in the field of view. These are bright due to the
glitter’s shiny finish; thus, the number of identified objects is practically insensitive to the
exact threshold. We then remove out-of-focus objects via additional thresholding based on
size and sharpness. At the present resolution, even the smaller disks have diameters of
∼14 pixels in the LFV; thus, the size-based thresholding is straightforward. For the
sharpness, we use the Sobel approximation to compute the intensity gradients within each
object, with components Gx and Gy. The variance of |GxGy| from all pixels defines the
object sharpness. The threshold on the latter is set based on visual inspection of tens of
disks, and its precise value has no appreciable influence on the statistics we will present.
Measured properties of the imaged disks include their centroid position (x0, y0), the

major and minor axis lengths of the ellipse best fit to the particle image (dM and dm),
and the orientation of the major axis off the horizontal (θ); see figure 4(a). The disks’
shiny finish causes a slight glare and, therefore, they appear thicker than their actual
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Ellipse fit

Major axis, dM
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Centroid, (x0, y0)

p̂

(c)(b)(a)

Figure 4. (a) A 3 mm disk image example with ellipse fit and measured properties from the disk detection.
(b) Disk orientation vector, p̂, and its components shown in black. Global axes are shown in grey. Relative
angles between p̂ and each of the global axes are shown with coloured arcs. (c) Axes in the reference frame of
the disk shown in black, relative to the global axes in grey.

physical dimension. For this reason, following Baker & Coletti (2022), a shift of −δdm
is applied to the measured distribution of dm to retrieve the known size range.
To reconstruct the disk trajectories, a nearest-neighbour in-house PTV algorithm is

applied to track the object centroids. At the present spatio-temporal resolution, the disk
frame-to-frame movement is typically about 3.0–4.8 pixels or 0.21D−0.14D, which leaves
no ambiguity in tracking the sparse objects. To reduce unavoidable noise due to the finite
resolution and accuracy, a Gaussian filtering procedure is applied to the trajectories. The
temporal kernel τk is chosen as the smallest value beyond which the acceleration variance
decays exponentially. Such a procedure, originally proposed by Voth et al. (2002), has
been applied by several groups to both tracers and heavy particles (Mordant, Crawford
& Bodenschatz 2004a; Gerashchenko et al. 2008; Ebrahimian, Sean Sanders & Ghaemi
2019), and extensively by our group to spherical particles in air (Berk & Coletti 2021)
and in water (Baker 2021), snow and ice particles in the atmosphere (Nemes et al. 2017;
Li et al. 2021), and recently non-spherical particles (Baker & Coletti 2022). We adopt
τk = 3.95 ms or 17 image frames for all disks, which is an order of magnitude smaller
than the characteristic tumbling period; see § 3.3.
The imaged trajectories are two-dimensional (2-D) projections of the three-dimensional

(3-D) trajectories along the x–y imaging plane. In the present regime with relatively
large fall speeds, all imaged trajectories in the field of view are closely approximated by
straight lines, with an average correlation coefficient typically larger than 0.95. While the
reconstructed trajectories are curvilinear, the linear best fit allows for definition of a single
inclination angle for each trajectory. We denote with ψ the angle between a 3-D trajectory
and the vertical, and with φ the corresponding angle of its 2-D projection. While the 2-D
imaging approach directly measures φ, in § 3.2 we shall see how one can estimate ψ via
reasonable assumptions on the rotational dynamics.
The values of θ and dm are used to determine the instantaneous 3-D orientation

along each trajectory, relying on the known disk geometry and the relatively high spatial
resolution, following the approach recently introduced by Baker & Coletti (2022). The
components of the unit vector p̂ = [px py pz] aligned with the disk’s axis of rotational
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symmetry (figure 4b) are calculated as

px = cos(θx) = sin(θ)

√
1 −

(
dm − δdm

D

)2

, (2.1)

py = cos(θy) = cos(θ)

√
1 −

(
dm − δdm

D

)2

∗ −sign(θ), (2.2)

pz = cos(θz) = dm − δdm
D

. (2.3)

Figure 4(c) depicts the coordinate axes attached to the frame of reference of the disk,
with zp aligned with p̂ by construction. Tumbling is defined as the edge-over-edge rotation,
i.e. with the rotation vector ω perpendicular to p̂; while spinning is defined as rotation
about zp, i.e. with ω parallel to p̂ (Voth & Soldati 2017). In our planar imaging, xp and
yp are indistinguishable and only tumbling can be measured. As for the translational
motion, Gaussian filtering is applied to calculate the first and second derivatives of the
orientation vector, ˙̂p = ∂ p̂/∂t and ¨̂p = ∂2p̂/∂t2, obtaining the tumbling angular velocity
ωt and tumbling angular acceleration αt,

ωt = [ωx ωy ωz] = p̂ × ˙̂p, (2.4)

αt = [αx αy αz] = ˙̂p × ¨̂p. (2.5)

Considering the angular acceleration variance as a function of the Gaussian temporal
kernel, the same value of τk used for the translational motion is found appropriate also for
the rotational motion. This is consonant with the notion that the rotational and translational
response times of non-spherical particles are typically of the same order (Voth & Soldati
2017).
The Gaussian filtering imposes a lower limit τk on the temporal duration of the

trajectories. Moreover, only trajectories contained within the ∼3 mm-thick illuminated
volume are reconstructed. As we shall see, the tracked disks fall at an angle smaller
than ∼20◦ from the vertical. Based on the measured velocities, even a tumbling disk
that drifts precisely in the z direction will spend about 5 ms (∼1.3τk) in the illuminated
volume, sufficient for the trajectory to be reconstructed. Thus, the results we present are
not expected to be overshadowed by selection bias.
The present dataset consists of 29 554 trajectories for the 1 mm disks, 10 817 trajectories

for the 2 mm disks and 1118 trajectories for the 3 mm disks. We will denote with
an overbar trajectory-averaged quantities (that is, quantities that are averaged along
each disk trajectory), while an angle bracket will indicate global averaging across all
instantaneous events. An example of a reconstructed trajectory for a tumbling 3 mm
disk is shown in figure 5, along with plots of its main kinematic descriptors. Following
the above-mentioned coordinate system, negative vertical components of velocity and
acceleration are in the downward direction. The periodicity of the motion is apparent,
as well as the lateral drift associated to tumbling.

2.3. Uncertainty analysis
The uncertainty associated with measured quantities is estimated through synthetic
trajectory analysis following the method of Baker & Coletti (2022). Real disk images
from the experiment are used to create a template for each disk size, where one quadrant

962 A3-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

20
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.209


A. Tinklenberg, M. Guala and F. Coletti

50

0

–50

–10

0

–20

–30

–40

–50

–60

–10

0

–20

–30

–40

–50

–60

–10

0

–20

–30

–40

–50

–60

–10

0

–20

–30

–40

–50

–60

–100

–150

10

–27

–28

–29

–30

–31

–32

–33

–27

–28

–29

–30

–31

–32

–33

–27

–28

–29

–30

–31

–32

–33

–27

–28

–29

–30

–31

–32

–33

–27

–28

–29

–30

–31

–32

–33

11 12
–1

.5
–1

.0
–0

.5 0
–2

00
–2

00–1 0 01
20

0
20

00

x (mm)

y 
(m

m
)

y 
(m

m
)

a y 
(m

 s
–2

)

ui (m s–1) ai (m s–2) ωi (rad s–1)pi

–1
.5

–1
.0

–0
.5 0

–2
00

–2
00–1 0 01

20
0

20
00

ux ax

px
py
pz

ωx
ωy
ωzuy ay

0 5 10 15

(c) (e)(d )(b)

(g) (h) (i) ( j)

(a)

( f )

–10

0

–20

–30

–40

–50

–60

Figure 5. Processing result example for a single 3 mm trajectory, showing values along the trajectory
including: (a) ellipse fit with centroid (red) and major axis (black) shown every 1.16 × 10−3 s, coloured
by instantaneous vertical acceleration ay; (b) horizontal velocity ux and vertical velocity uy; (c) horizontal
acceleration ax and vertical acceleration ay; (d) orientation vector components; and (e) angular velocity
components. ( f–j) Portion of the same trajectory from (a–e) shown every 2.33 × 10−4 s, demonstrating the
true temporal resolution and frame-to-frame centroid displacement of the experimental data at 4300 Hz. In
( f ), smoothed ellipse fits with open circles indicating detected disk centroids and solid points corresponding
to the centroid trajectory after implementation of the Gaussian smoothing kernel. Coloured in time with
corresponding data points across (g–j). Both uy and ay are taken positive upwards as shown in figure 4.

of the real disk is mirrored and stretched to achieve a symmetric geometry with an
exactly known centroid and diameter. These templates are placed on a representative
background extracted from the experimental data. A time sequence of images is generated
with imposed velocities, accelerations, falling styles and rotation rates comparable to
those in the experiments. Specifically, a constant angular velocity of 200 rad s−1 and a
constant linear acceleration g is imposed. A Gaussian filtering procedure is applied to the
centroid trajectories, analogous to the one used for the measurement data: the positions
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Thin disks falling in air

Quantity 1 mm 2 mm 3 mm

x, y 0.01 mm, 0.7% 0.01 mm, 0.7% 0.02 mm, 0.5%
ux, uy 0.01 m s−1, 2.1% 0.01 m s−1, 1.2% 0.01 m s−1, 1.7%
ax, ay 5.4 m s−2, 37.1% 5.6 m s−2, 23.7% 6.8 m s−2, 20.0%
px, py, pz 0.04, 9.6% 0.04, 7.0% 0.02, 3.4%
ωx, ωy, ωz 17.3 rad s−1, 22.9% 16.1 rad s−1, 16.1% 7.7 rad s−1, 13.0%

Table 2. Measurement uncertainty on the disk centroid location, velocity, acceleration, orientation and angular
velocity for each disk size. Listed as dimensional quantities and as a percentage of the characteristic value from
experimental data. For the centroid location (x, y), the characteristic value is taken as the diameter D.

are convolved with the first and second derivative of the chosen Gaussian kernel to
obtain velocities and accelerations, respectively. The synthetic images are then processed
using the same method as the experimental data by performing disk detection, trajectory
reconstruction and orientation measurement. Five independent synthetic trajectories of
various falling styles and dominant rotation directions are generated for each disk
size, yielding O(103) instantaneous realizations. The estimated errors for each quantity,
listed in table 2, are calculated as the root-mean-square (r.m.s.) difference between the
reconstructed and the prescribed values. Percentage errors are calculated by comparison
with the r.m.s. value of the respective quantities from the experimental data. The errors in
the acceleration and angular velocity are sizeable, but will not alter the conclusions.

3. Results

3.1. Falling styles
Figure 6 illustrates examples of different falling styles observed for the 3 mm disks. In
the classifications of Field et al. (1997), these correspond to the stable mode (figure 6a),
fluttering mode (figures 6(b) and 6(c), oscillating with smaller and larger amplitudes,
respectively) and the tumbling mode (figure 6d). In order to identify the falling style, we
quantify the angular excursion Δpy, defined as the range of py values spanned by a disk
during its trajectory. Only trajectories long enough to allow for a full tumble sequence are
considered in this statistic. Ideally, for steadily falling disks, Δpy = 0, while for tumbling
disks, Δpy = 2 (assuming the trajectories are contained in a vertical plane, thus, with
excursions between py = −1 and py = 1); in reality, such limits are only approached. For
fluttering, intermediate values of Δpy are expected depending on the maximum inclination
angle. This quantity captures tumbling in any direction using a single value per trajectory
and yields similar results to those found using Δpx. Figure 7 presents histograms of Δpy
for the three considered disk sizes. A bimodal distribution is observed for the 1 and 3 mm
disks, while for the 2 mm disks, high values of Δpy dominate. The distributions do not
suggest a clear threshold to define fluttering. This is especially elusive because, in the
present range of physical parameters, the lateral excursions typically associated to this
mode are too small to be reliably detected. Therefore, in the following we will simply
denote the trajectories as ‘non-tumbling’ and ‘tumbling’ based on whether Δpy is smaller
or larger than 1.5, respectively. It is clear from figure 7 that the exact value of the threshold
is inconsequential for such definition. We note that the bimodal behaviour of the 1 mm
disks and the consistent tumbling of the 2 mm disks agree with the regime map proposed
by Lau et al. (2018) (see figure 1). However, the same map also predicts the 3 mm disks
would always tumble, which is at odds with the present observations.
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Figure 6. Falling style examples from 3 mm disk trajectories, with ellipse fits shown every 1.14 × 10−3 s. Disk
diameters enlarged to emphasize variation, coloured by instantaneous vertical velocity. Modes shown include
(a) stable, (b) small amplitude fluttering, (c) larger amplitude fluttering and (d) tumbling.
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Figure 7. Histograms of py range along individual trajectories, shown as a percentage of trajectories for the
(a) 1 mm, (b) 2 mm and (c) 3 mm disks.

The non-tumbling disks favour approximately horizontal orientations, maximizing their
projected area in the vertical direction. This is demonstrated in figure 8, where the
probability distribution functions (PDFs) of |py|, are plotted for the 1 and 3 mm disks and
for both falling styles. (The 2 mm disks do not exhibit a statistically significant number of
non-tumbling trajectories.) The axis of rotational symmetry of the non-tumbling disks is
preferentially aligned to the vertical, while instances of non-tumbling disks falling edge-on
are negligibly scarce.
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Figure 8. Distributions of the modulus of disk orientation vector vertical component py, separated by
falling style family. Solid lines indicate non-tumbling and dashed lines indicate tumbling, for the (a) 1 mm,
(b) 2 mm and (c) 3 mm disks. Here, py = 1 represents a perfectly flat orientation, while py = 0 represents
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0.750

–5

–10

–15

–20

–25

–30

0.50

0.25

P
D

F

y 
(m

m
)

0 5105

x (mm)

0 10

|φ| (deg.)

1 mm non-tumbling

1 mm tumbling

2 mm tumbling

3 mm non-tumbling

3 mm tumbling

15 20

φ

(b)(a)

Figure 9. (a) Counterclockwise-rotating 1 mm disk major axis shown in black every 4.65 × 10−4 s. Major
axis length enlarged to emphasize rotation direction of the disk. Inclination angle φ of linear fit to red centroid
trajectory defined from dashed vertical line. (b) Distributions of the absolute value of trajectory inclination
angles separated by falling style, where solid lines are used for the non-tumbling disks and dashed are used for
the tumbling disks.

The tumbling disks are observed to drift laterally, in agreement with previous studies of
thin falling bodies (Ern et al. 2012). Figure 9(a) illustrates a sample trajectory for a 1 mm
tumbling disk, with the distributions of φ for the different cases shown in figure 9(b).
While non-tumbling disks tend to fall with quasi-vertical trajectories, tumbling ones reach
up to ∼12◦ and 20◦ for the smaller and larger diameters, respectively. The broadness of the
distributions largely depends on the imaged trajectories being 2-D projections of the 3-D
trajectories, as illustrated in figure 10(a). Indeed, the angle ψ between the 3-D trajectories
and the vertical is related to the projection angle φ by

ψ = atan
(
tanφ

cos γ

)
, (3.1)
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Figure 10. (a) Schematic representation of trigonometric relations used to obtain the 3-D trajectory angle ψ

from the 2-D projection φ. (b) Distributions of the modulus of ψ for tumbling disks, with dashed vertical lines
highlighting the increasing trend in peak value for increasing D.

where γ is the angle between the plane containing the 3-D trajectory and the x–y
imaging plane. Under the standard assumption that the lateral drift is caused mainly by
a rotation-induced lift in the direction of ωt × u (where u is the translational velocity;
e.g. Belmonte et al. 1998; Fabre et al. 2011), we have

cos γ = ωz

|ωt|
, (3.2)

ψ = atan

( tanφ

ωz

|ωt|

)
. (3.3)

The PDF of ψ for the different cases in figure 10(b) clearly shows that the larger
disks experience a stronger lateral drift, which is expected under larger circulation. The
inclination from the vertical, however, is typically smaller than 20◦, implying that the lift
is subdominant with respect to the drag. This is in contrast with the tumbling plates studied
by Belmonte et al. (1998), Mahadevan et al. (1999) and Andersen et al. (2005), which had
lift-to-drag ratios close to unity and fell along directions close to 45◦ from the vertical. The
difference is likely due to the smaller inertia ratio in those studies, I∗ = O(10−1–10−2); in
the present case the moment of inertia of the surrounding fluid is relatively smaller and,
thus, the coupling of rotational and translation motion (driven by the shedding of vortices
at various angles of attack; see Andersen et al. 2005) is less strong. This view is consistent
with our observation that ψ increases for larger disks, which have smaller I∗.

3.2. Translational dynamics
We begin by plotting the terminal velocity Vt = −〈uy〉 versus the disk diameter in
figure 11. The error bars, calculated with the conservative assumption that the number
of independent samples coincide with the number of experimental runs, are comparable
to the symbol size in these and other logarithmic plots. They will be shown later,
however, when reporting the Reynolds number and drag coefficient. Superposing the data
points with trend lines for various types of frozen hydrometeors reported by Kajikawa
(1972) confirms a behaviour in line with plate crystals. The PDFs of the horizontal and
vertical velocity components, ux and uy, respectively, are plotted in figure 12 normalized
by Vt. The statistics of the vertical velocities are reported in table 3, with mean and
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Thin disks falling in air
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Figure 11. Measured Vt values for disks in the current study compared with settling velocities of several
plate crystal hydrometeor varieties. Red, black and blue stars represent the 1, 2 and 3 mm disks, respectively.
Figure adapted from Sassen (1980), with data for thick plates, plates and broad branches from Kajikawa (1972)
and for branched plates and dendrites from Kajikawa (1975). Data from other publications digitized using
WebPlotDigitizer (Rohatgi 2021).

standard deviations consistent with the observations of frozen hydrometeors (Kajikawa
1972; Barthazy & Schefold 2006). For comparison, Gaussian distributions are also shown.
These provide reasonable approximations of the ux distributions, while uy display strong
skewness with high probability of large instantaneous fall speeds. Similar skewness
of the vertical velocity was found for both rising and falling particles, but at volume
fractions where the wake-mediated interaction between particles was significant (Riboux,
Risso & Legendre 2010; Huisman et al. 2016; Alméras et al. 2017; Fornari, Ardekani
& Brandt 2018; Risso 2018). As in those cases, here the skewness can be associated to
the entrainment of the flow in the object’s wake (Riboux et al. 2010): larger downward
fluctuations are more probable due to the rapid entrainment of ambient fluid in the wake
of the falling disks that reduce the pressure difference between leading and trailing edges
along with the instantaneous drag. Moreover, the coupling between translational and
rotational motion (peculiar to the present case with large particle anisotropy) also plays
a role: when the rotating disk is oriented edge-on, the small frontal area supports limited
aerodynamic drag to contrast gravity, leading to larger downward velocities sustained
by the particle inertia. This point will be further discussed in the following section.
Recently, Moriche, Uhlmann & Dušek (2021) looked at individual oblate spheroids falling
in quiescent fluid and also found skewness towards larger downward vertical velocities for
particles with χ = 1.5. A direct comparison to their results, however, is hampered by the
different aspect ratios and density ratios.
Common non-dimensional parameters used to describe the mean fall speed are listed

in table 3, including the drag coefficient CD = 2mg/(ρf AV2
t ) and the Best number X =

CDRe2. Here, a classic formulation for CD is used that assumes equilibrium between
gravity and steady drag on a flat falling disk offering the maximum projected frontal area
A = πD2/4. To explore the effect of orientation, we also define an instantaneous drag
coefficient based on the instantaneous projected frontal area Ainst and the simultaneous
vertical velocity uy, CD,inst = 2mg/(ρf Ainstu2y). The PDFs of CD,inst in figure 13 exhibit
long tails, reflecting the skewness of uy and the variability of Ainst. The dominant modes
of the distributions are very close to CD, indicating that the latter does provide a reasonable
mean value representing the ensemble behaviour of all particle types.
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Figure 12. Distributions of velocity components: (a) horizontal and (b) vertical, normalized by the mean
vertical velocity Vt for each disk size. Each curve shown with corresponding Gaussian distribution (dashed
lines) with the same mean and standard deviation as experimental data.

Disk Vt (m s−1) Re CD X

1 mm 1.14 ± 0.17 96.2 0.86 7998
2 mm 1.23 ± 0.31 165.0 0.74 20 234
3 mm 1.79 ± 0.44 360.1 0.35 45 526

Table 3. Disk terminal (vertical) velocities measured in quiescent air, shown with ±σ . Other quantities shown
include the Reynolds number, drag coefficient and Best number, all calculated from the mean Vt for each disk
size.

Figure 14 compares the observed mean fall speeds with previous laboratory results. In
figure 14(a) we plot Re versus Ga, along with the relation Re = Ga (implying Vt = Ug)
and the empirical relation obtained by Brown & Lawler (2003) (and reformulated in terms
of Re and Ga by Cabrera 2021) for spheres. As Ug is the terminal velocity of a flat falling
disk with unitary drag coefficient, Re becoming increasingly larger than Ga reflects the
drop of CD with increasing disk diameter. Despite the present particles being far from
spherical, the agreement with Brown & Lawler (2003) is fair for the 1 and 2 mm disks.
Figures 14(b) and 14(c) plot Re versus X and CD versus Re, respectively, comparing with
several previous studies on disks falling in liquid fluids. The agreement deteriorates with
increasing diameter (and, thus, with Re). Figure 14(d), on the other hand, shows that our
results are consistent with the findings of Bagheri & Bonadonna (2016). These authors
proposed a rescaling of the data by the shape-dependent parameters kS and kN in the
Stokesian and Newtonian drag regimes, respectively; see Bagheri & Bonadonna (2016)
for definitions. Importantly, the higher-Re data in their study were obtained in air, thus, at
density ratios similarly high as in the present study.
The falling style is directly connected to the aerodynamic drag, and thus, it is expected

to influence the fall speed. In figure 15 we display the PDFs of the instantaneous vertical
velocities, separating between non-tumbling and tumbling trajectories. The tumbling
1 mm disks fall measurably faster compared with the non-tumbling ones, while the
opposite is true for the 3 mm particles. The reason for this different behaviour is unclear.
We note, however, that such a difference in settling velocity is smaller than the width of
the distributions.
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Figure 13. Distributions of the instantaneous drag coefficient calculated as CD,inst = 2mg/ρf Ainstu2y from the
instantaneous projected area of the disks in the vertical direction and the instantaneous vertical velocity. Vertical
dashed lines show the (nominal) drag coefficients calculated as CD = 2mg/ρf AV2

t using the maximum disk
projected area and the mean terminal velocity.

Further insight into the translational dynamics is provided by the PDFs of the disk linear
accelerations, displayed in figure 16. The mean of both horizontal and vertical components
is close to zero, as expected for free-falling objects that have reached terminal velocity.
Compared with Gaussian distributions, both components are highly intermittent, with a
non-negligible probability of reaching tens of g’s. Observations of individual realizations
and joint statistics of acceleration and number density, not shown for brevity, confirm that
these extreme events are not related to mutual interactions between disks. The vertical
components are also strongly skewed, i.e. the probability of reaching very large downward
accelerations is even higher. Both the skewness and the kurtosis of the distributions
increase with increasing disk size: as the object inertia increases, the instantaneous
imbalance between gravity and drag can lead to extreme accelerations, especially in the
downward direction (ay < 0).
The inspection of individual trajectories indicates that such extreme acceleration events

are associated to phases of the motion in which the disks fall edge-on (see figure 5).
This is confirmed by figure 17, which displays distributions of the instantaneous vertical
accelerations (here normalized by their r.m.s. values). The results are sorted in ranges of
|py|, highlighting the differences between various orientations: when disks fall edge-on,
the magnitude of the instantaneous accelerations are larger and more intermittent.
Additionally, the distributions are more skewed, with relatively high probability of extreme
downward accelerations. This confirms that instantaneous variability in the vertical
acceleration is intrinsically related to the falling style, and to tumbling in particular.

3.3. Rotational dynamics
In order to quantify the disks’ angular velocity, we first consider the trajectory-averaged
magnitude, |ωt|. Figure 18 shows joint PDFs (JPDFs) of |ωt| and the angular excursion
Δpy. Similarly to the histograms ofΔpy in figure 7, the 1 and 3 mm disks exhibit a bimodal
behaviour: the tumbling disks (Δpy > 1.5) have angular velocities around 200 rad s−1,
while rotation rates are an order of magnitude smaller for non-tumbling ones. Although a
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Figure 14. Red, black and blue stars represent the 1, 2 and 3 mm disks, respectively, in each of the following:
(a) Reynolds number versus Galileo number with the solid black line of Re = Ga implying CD = 1. Empirical
relation from Brown & Lawler (2003) (and reformulated by Cabrera 2021) shown in the black dashed line.
(b) Westbrook & Sephton (2017) plot of Reynolds number versus Best number, including data from Roscoe
(1949), Willmarth et al. (1964), Jayaweera (1965) and Kajikawa (1971). (c) McCorquodale & Westbrook
(2021a) plot of drag coefficient versus Reynolds number, including data from Willmarth et al. (1964),
Jayaweera (1965) and Jayaweera & Cottis (1969). (d) Bagheri & Bonadonna (2016) plot of corrected drag
coefficient versus corrected Reynolds number, accounting for shape factors of particles such as elongation and
flatness as well as density ratio between the particle and fluid. Data from other publications digitized using
WebPlotDigitizer (Rohatgi 2021).
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Figure 15. Instantaneous vertical velocity distributions normalized by terminal velocity. Separated by falling
style, with non-tumbling shown in solid lines and tumbling shown with dashed lines for the (a) 1 mm, (b) 2 mm
and (c) 3 mm disks. Negative values indicate downward velocities.
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Figure 16. Acceleration component distributions shown with respective Gaussian distributions (dashed lines)
with the same mean and standard deviation as experimental curves. (a) Horizontal and (b) vertical, both
normalized by gravity (negative values indicate downward accelerations).

formal distinction between the stable and fluttering mode is not attempted here, the JPDFs
suggest that the latter is only statistically significant for the 3 mm disks.
The example in figure 5 suggests that the tumbling occurs with an approximately

constant rotation rate. This is confirmed in figure 19, in which various metrics to describe
the rotational frequency are considered for the 2 mm case (representative of all tumbling
disks in this study). Figure 19(a) shows PDFs of ft = ωt/(2π) for all instantaneous
realizations, as well as the trajectory averaged f t = |ωt|/(2π). The distribution of
fθ = 1/(2tθ=0) is also plotted, where tθ=0 is the time elapsed between successive changes
of sign of θ along each trajectory. The three distributions are sharply peaked around 36 Hz.
This is consistent with the behaviour of the Lagrangian temporal autocorrelation of px,

RL
px(τ ) = 〈p′

x(t + τ)p′
x(t)〉

σ 2
px(τ )

, (3.4)
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Figure 17. Instantaneous vertical acceleration distributions of tumbling disks normalized by standard deviation
of the entire dataset for each respective disk size. Curves separated by ranges of |py| going from edge-on
orientation (|py| = 0), shown in solid dark blue, to flat falling orientation (|py| = 1), shown in dotted dark
green. Results are shown for the (a) 1 mm, (b) 2 mm and (c) 3 mm disks. Negative values indicate downward
accelerations.
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Figure 18. The JPDF of Δpy values versus trajectory-averaged angular velocity for long trajectories of
(a) 1 mm, (b) 2 mm and (c) 3 mm disks.

and of py,

RL
py(τ ) = 〈p′

y(t + τ)p′
y(t)〉

σ 2
py(τ )

, (3.5)

where p′
x and p′

y are the fluctuating p-component values calculated as p′
i = pi − pi, σ

2
pi is

the variance, τ is the temporal abscissa and t is its generic origin (Mordant, Lévêque &
Pinton 2004b; Guala et al. 2007). The mean and variance are both taken as the respective
quantity of each individual trajectory. Only trajectories 150 frames and longer are used
and all trajectories longer than that are trimmed to 150 frames. Both autocorrelations are
plotted in figure 19(b), implying an oscillatory behaviour with a characteristic time scale
∼27 ms, in close agreement with the inverse of the dominant frequency in figure 19(a).
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Figure 19. All curves plotted for the 2 mm disks only. (a) Tumbling frequency comparison between
distributions of instantaneous angular velocity, trajectory-averaged angular velocity and frequency of θ sign
changes along a trajectory. (b) Lagrangian temporal autocorrelation of px and py. Secondary peak occurs at
0.027 s, corresponding to 36.4 Hz.
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Figure 20. (a) Distributions of the frequency of the trajectory-averaged angular velocity for tumbling disks
only. (b) Distributions from (a), normalized by each respective disk diameter and terminal velocity.

The distributions of f t for the tumbling disks are compared in figure 20(a), displaying
remarkably similar values of the dominant tumbling frequency irrespective of disk size.
A common non-dimensionalization of the rotation rate is in the form of a Strouhal number
St = ftD/Vt (Ern et al. 2012); see figure 20(b). Numerical studies of falling disks and
oblate spheroids in the tumbling regime found St to increase with Re (or Ga) (Fernandes
et al. 2007; Chrust et al. 2013), consistent with the present observation. However, those
simulations reported significantly larger values (St = 0.1–0.4) compared with what is
observed here (St = 0.03–0.06). This suggests that, in the present range of parameters,
the tumbling rate is not set by the wake shedding frequency (which for blunt bodies is
expected to yield St = O(10−1)).
An alternative, a priori scaling for the tumbling period can be derived from the

dynamic equilibrium between drag and gravity. Within numerical prefactors of order unity
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(including the drag coefficient) and considering that ρd 
 ρf , the force balance reads

ρf U2A ∼ ρdAhg, (3.6)

which defines the settling velocity scale U = √
ρ̃hg (as in Belmonte et al. (1998) and

Mahadevan et al. (1999), and analogous to Ug within a factor
√
2). In writing (3.6), we

have assumed Newtonian drag scaling (i.e.CD independent ofU and of order unity), which
is supported by the results in § 3.2. Then, a characteristic time scale of the motion is given
by τt = U/g = √

ρ̃h/g. In our experiments, τt = 76 ms independent of the disk diameter.
This formulation is similar to the classic relation for the response time of spherical
particles falling in a quiescent fluid, τt = Vt/g. While such a scaling is derived for the
linear motion, the translational and rotational dynamics are intimately related and are
expected to be governed by similar time scales (Voth & Soldati 2017). The observation
that ftτt = O(1) for all considered disks lends support to the argument that τt is the time
scale that determines the rotational frequency of tumbling disks in free fall, at least in
the considered portion of the parameter space. We note that Mahadevan et al. (1999)
used a similar argument based on the gravity-drag balance to estimate the rotation rate
of falling plates. However, their experiments (conducted at much higher Re and smaller
I∗) supported the kinematic relation U ∼ ωtD, i.e. ωt ∼ √

ρ̃hg/D, which does not reflect
our observations.
The common scaling for the tumbling frequency of falling bodies, St ∼ const. =

O(10−1), is associated with a strong coupling between the particle kinematics and the
vortex shedding in its wake (Ern et al. 2012; Mathai et al. 2020). This, however, is mostly
based on observations at low ρ̃, where the fluid momentum is comparable to or higher than
the particle momentum. In the present range of Re, the wake is expected to shed vortices at
a non-dimensional frequency comparable to those studies; but the fluid linear and angular
momentum is not sufficient to drive the particle rotation, as signalled by the relatively
high ρ̃ and I∗. Rather, the tumbling frequency appears set by the dominant particle inertia
and the resulting drag-gravity balance. Nevertheless, oscillations in the wake may still
provide the initial seed to trigger tumbling; thus, future work should focus on similar ρ̃ and
lower Re, and explore the stable-to-tumbling transition. This is experimentally challenging,
as it requires capturing the orientation and rotation of sub-millimetre disks falling
in air.
The fact that the 2 mm disks are the most prone to tumbling may indicate that Re

and I∗ have competing effects in this regard. Indeed, in the present range of parameters,
the respective influence of fluid inertia and particle inertia in triggering, sustaining or
resisting tumbling is not trivial. It is likely that a threshold Re must be exceeded to incept
rotation; but the increase of complexity and loss of coherence in the wake at higher Remay
stabilize the motion. Likewise, while fluid forces cannot impose tumbling to particles with
asymptotically large I∗, a minimum rotational inertia of the object appears necessary to
maintain autorotation. These considerations shall be tested with a comprehensive scanning
of the parameter space.

4. Conclusions

We have reported on an experimental study of thin, millimetre-sized disks falling
in quiescent air. The considered range of non-dimensional parameters, χ = 25−60,
Re = O(102) and I∗ = O(1), is relevant to the settling of snow plate crystals in the
atmosphere and to several other natural and industrial processes; still, to our knowledge, it
was not systematically investigated before in laboratory experiments. We did not attempt
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to scan the parameter space, but rather expanded the number of realizations for each
considered case in order to achieve a statistical description of the process.
The falling style emerges as a non-trivial outcome of the input parameters. The

1 and 3 mm disks exhibit bimodal behaviour: either falling approximately stably and
flat or tumbling with a fairly invariant rotation rate. Virtually all 2 mm disks tumble.
The tendency to tumble is not monotonic with any of the non-dimensional parameters
explored, signalling the complexity of the phase diagram. The bimodal behaviour, recently
highlighted in numerical studies of both spherical and non-spherical settling particles,
underscores the importance of obtaining a large number of realizations to statistically
describe the process. The lateral drift during tumbling is stronger for the larger disks.
This is explained by the fact that smaller disks have smaller χ and, thus, larger I∗,
implying a lesser impact of the aerodynamic torque. Rotational lift is much smaller than
drag for all cases, as indicated by the angle of descent being typically smaller than
20◦. The relatively weak lateral motion prevents the clear identification of the fluttering
mode.
We remark that, in the atmospheric science literature, Re ≈ 100 is often quoted as a

threshold below which plate crystals fall steadily. This is, however, usually assumed when
(or deduced by) observing frozen cloud properties via remote sensing (Bréon & Dubrulle
2004; Noel & Chepfer 2004). The present study does not conform to this view, in that
the 1 mm disks (Re = 96) have a much stronger tendency to tumble than the 3 mm disks
(Re = 360). Clearly, both Re and I∗ play important roles in determining the predominant
falling style. The fact that all 2 mm disks tumble, while most of the 3 mm disks do not,
suggest sharp transitions in the considered region of the phase diagram. This is to be
investigated by a refined exploration of the parameter space that is outside the scope of
this work.
We observe larger fall speeds than what is predicted by existing correlations based on

experiments in liquids. Those are limited to much smaller I∗ compared with the present
study, and their results have been typically parameterized based on Re (or Ga) alone.
Our measurements instead stress how the density ratio is consequential not only for the
rotational dynamics but also for settling, especially in the considered regime in which
fluid inertia is relatively large. Indeed, the departure of our observations from those
correlations increases with Re. For the disks exhibiting bimodal behaviour, tumbling
and non-tumbling instances show different settling velocities. Surprisingly, the trend is
different for the 1 and 3 mm disks, the former falling faster when tumbling and the
latter falling slower. This may be due to qualitative differences in the wake behaviour
at the different Re, yielding different coupling with the disk motion. This remains
speculative without direct observation of the wake dynamics, whose details are below the
achievable spatial resolution. Fully resolved simulations are warranted to elucidate this
point.
Tumbling disks experience intense instantaneous accelerations during the phase of

motion in which they fall edge-on. Still, the classic definition of drag coefficient, based on
the steady-state force balance of flat falling disks, provide a fair statistical estimate for the
instantaneous behaviour. Assuming similar time scales for the rotational and translational
motion, we then deduce a scaling of the tumbling period ∼ √

ρ̃h/g. This approximately
agrees with the observed rotation rate and its independence with disk diameter, and shall
be tested in future studies varying density ratio and disk thickness.
The regime we have considered is challenging to capture numerically, and some of the

important dynamics may not be represented by previous experiments in liquids. Therefore,
besides providing direct insight on the fundamental particle–fluid interaction, we believe
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the data represent a useful test case for validation. Further studies shall address open
questions concerning the influence of different physical parameters. In particular, three
directions appear especially interesting and potentially fruitful. First, the diameter range
can be expanded, towards both smaller and larger sizes. Recent numerical studies have
focused on sub-millimetre objects (e.g. Jucha et al. 2018), and a direct comparison may
shed light on dynamics that can hardly be resolved in experiments such as those presented
here. This would also allow probing deeper below the threshold Re = 100, whose strict
validity has been questioned here. On the other hand, considering larger disks would
allow testing the high-Ga end of the parameter space in figure 1, and verify whether an
asymptotic behaviour is reached or whether different dynamics arise. Second, in order to
more efficiently probe the parameter space, one may vary the disk material and geometry
independently. This would enable the independent variation of I∗ and Ga, while both
have been varied simultaneously in the present study. Third and finally, it would be
desirable to use lightweight materials that more closely replicate the bulk density of
frozen hydrometeors, which for complex shapes is far below the one of ice (Pruppacher &
Klett 2010). This would allow focusing on regimes most relevant for atmospheric science,
especially if such materials were used in additive manufacturing, so as to replicate complex
shapes found in frozen precipitation.
The effect of plate shape on the falling style has been highlighted by recent experiments

at low ρ̃ (Esteban et al. 2018; Vincent, Liu & Kanso 2020) and deserves to be explored
at high ρ̃, especially in the context of the settling of frozen hydrometeors. The latter is
expected to be crucially influenced by atmospheric turbulence, as recently documented by
the numerical studies of Jucha et al. (2018), Gustavsson et al. (2021) and Sheikh et al.
(2022) for sub-millimetre plate crystals. The effect of air turbulence on millimetre-sized
disks similar to those investigated here will be the subject of a future study.
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Appendix

The quantities presented in § 3, obtained at volume fractions ΦV = O(10−5), are not
significantly different when measured at ΦV = O(10−6). For brevity, this is shown
for exemplary quantities for the 2 mm disks and, in particular, the histogram of Δpy
(figure 21a,b), the PDF ay (figure 21c) and the PDF of |ωt| (figure 21d). The fact that
virtually all 2 mm disks tumble, irrespective of the volume fraction, indicates this is not
the effect of air disturbance due to the wakes of other falling disks. This supports the claim
that the objects are dilute enough to exert negligible mutual interaction.
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Figure 21. Statistical comparison between two experiments performed using the 2 mm diameter disks
dispersed at different volume fractions. (a) Histogram of py range for ΦV = 1.8 × 10−5 (as in figure 7b),
compared with (b) for ΦV = 2.4 × 10−6. In (c) and (d) the solid lines indicate the volume fraction that is
presented in the results of this paper, while dashed lines indicate a more dilute volume fraction tested, showing
(c) the instantaneous vertical acceleration distribution and (d) the instantaneous angular velocity distribution.
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