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1. Introduction

Photonic crystals (PCs) are periodic structures with dielectric or metallic
materials. They possess band gaps so that the propagation of light through
the crystal is prohibited at specific frequencies. This property allows for
designs of many optical devices with a wide range of applications, such as
filters, optical communications, lasers and microwaves [18]. By the Floquet-
Bloch theory [22], the spectral problem related to band structures can be
formulated as an eigenvalue problem of the Maxwell’s equation with periodic
boundary conditions in the fundamental cell.

For non-dispersive media where the permittivity and permeability are
independent of the frequency, the eigenvalue problems are linear. Many
successful numerical approaches have been proposed, including the plane
wave method, the finite-difference time-domain method, the finite element
method, the order- N method, the transfer-matrix method, etc [1, 8,9, 14, 26,
27, 34]. In contrast, dispersive media (with frequency dependent permittivity
or permeability) lead to nonlinear eigenvalue problems in general. As such
the computation of the band structure is much more challenging. Existing
numerical methods for nonlinear eigenvalue problems are mostly based on the
Newton’s iteration [28], linearization [24] or extensions of the techniques for
linear problems [29, 32]. These numerical approaches often require accurate
initial guesses of the eigenvalues and eigenvectors, which are not available
in general. Furthermore, the convergence analysis of the algorithms is very
challenging due to the nonlinearity of the problem. We also refer the readers
to [23], which formulates a new stabilized quadratic eigenvalue problem to
compute a particular selection of the electromagnetic Bloch variety. The
discretization for the 3D Maxwell’s equation brings additional difficulty to
the eigenvalue computation due to the large degree of freedom (typically in
the order of million). Few numerical results exist for the band structure of
the dispersive photonic crystals in 3D.

In this paper, we propose a finite element method for band structure
calculations of photonic crystals in 3D. Following the idea in [33, 34], we
transform the problem into the eigenvalue problem of a holomorphic op-
erator function, whose values are solution operators of the parameterized
Maxwell’s equations. A mixed formulation for the Maxwell’s equations is
used to enforce the divergence-free condition and discretized by the Nédélec
edge elements. Based on the well-posedness of a related source problem [5],
we show that the operator function is of Fredholm type with index zero.



Employing the abstract approximation theory for holomorphic Fredholm op-
erator functions [19, 20] and the finite element theory for Maxwell’s equa-
tions, we prove the convergence of discrete eigenvalues of the holomorphic
operator function. Finally, the spectral indicator method (SIM) is applied to
practically calculate the eigenvalues. The SIM extends the ideas in [15, 16]
for the generalized eigenvalues of non-Hermitian matrices and is particularly
effective for computing eigenvalues of a holomorphic operator function.

The current paper is a non-trivial continuation of [34] in several aspects.
First, [34] only deals with the 2D case - a nonlinear eigenvalue problem of
the Helmholtz equation, while the current paper deals with the 3D case - a
nonlinear eigenvalue problem of the Maxwell’s equations. Second, only the
TE case is analyzed in [34]. In this paper, a different technique is used and
the convergence is proved directly for Maxwell’s equations. Third, the 3D
numerical examples are way more complicated and there exist only a few ex-
amples in literature including the engineering journals. We note that, in the
context of finite elements, the above approach has been applied successfully
to solve several nonlinear eigenvalue problems of partial differential equations
(12, 33].

The current study leads to a convergent finite element approximation for
the band structure calculation of 3D dispersive photonic crystals with gen-
eral frequency-dependent permittivities. This numerical approach is different
from the classical finite element theory for linear eigenvalue problems (see,
e.g., [2, 4, 30]). The effectiveness of the proposed method is validated by
the 3D numerical examples, which are among the very few existing results
in literature. The rest of the paper is arranged as follows. In Section 2,
we formulate the underlying eigenvalue problem of the Maxwell’s systems in
mixed form over appropriate functional spaces and write the primal problem
as the eigenvalue problem of a holomorphic Fredholm operator function of
index zero. Some related theoretical results and the discrete finite element
spaces in [5, 11] are recalled in Section 3. The approximation results for the
nonlinear operator and the convergence of eigenvalues are proved using the
abstract approximation theory of [19, 20]. In Section 4, we write the dis-
crete problem in matrix form and present the SIM-B algorithm to compute
the eigenvalues. Finally, numerical examples are presented in Section 5 to
illustrate the efficacy of the proposed method. The paper is concluded with
some discussions in Section 6.



2. Mathematical Model

We start with the spectral problem for the Maxwell’s equations for disper-
sive photonic crystals in R®. For simplicity, the medium is assumed to have
unit periodicity on a cubic lattice. Let Z = {0,+1,42,---} and A = Z3.
We define the periodic domain as the quotient space D := R3/A and let
Dy = (0,1) be the reference cell.

Let 2 be a compact set over the complex plane C. For w € (), we consider
the nonlinear Maxwell’s eigenvalue problem

Vx( L V><H>:w2H in D,
e(z,w) (1)
V-H=0 in D,

where H is the magnetic field and e(z, w) is the electric permittivity. €(x,w)
depends on the frequency w and is a periodic function such that

e(z +n,w) =e(r,w), Vo € R3 n € A.

We assume that €(z,w) is holomorphic in w and its real part Re > 0. Further-
more, for a fixed w € Q, €,(x) := €(z,w) is piecewise constant and uniformly
bounded away from zero (see Section 2 of [5]). If there exist some w and
nontrivial H satisfying (1), (w, H) is called an eigenpair of (1).

Due to the Bloch theory, one seeks for the solutions (w, H) of (1) such
that H is quasi-periodic, i.e.,

H(z) = e"*"u(x) (2)

for some periodic function w in z. Let a = (ay, as, a3)’ € R? be a vector in
the first Brillouin zone K = [—7, 71]® (see Fig. 1). We introduce the following
shifted differential operator:

Vo=V +1i1al,

where [ is the identity operator. For a given a € K, it follows from (1) and
(2) that

1
Va X (—Va X u) =w?u in Dy,

€(r,w) (3)

Va-u:() iIlD().
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Figure 1: Brillouin zone K.

Now we define several Sobolev spaces of periodic functions. Let L*(Dy) =
L2(D0)3 and

H ,(curl; Do) = {g € L*(Dy) : V x g € L*(Dy) and g periodic in x},
H ,(div; Do) := {g € L*(Dy) : V - g € L*(Dy) and g periodic in x},
H) (Do) :={f € L*(D,) : Vf € L*(Dy) and f periodic in z}.

We use following mixed formulation for (3): find (w, uw,p) € QxH ,(curl; Dy) %
H}(Dy) such that

a(u,v) + b(p,v) = w?(u,v), Vv € H,(curl;Dy),

o 1 ()
(Qa U’) - 07 vq € Hp(D0)7
where
a(u,v) = /D ﬁ(va X u) - (Vo X v)dz, (5)
b(p,v) = ; Vap - vdz, (6)
(u,v) :/D u - vdz. (7)



Correspondingly, the source problem associated with (4) for a given f €
L*(Dy) is to find (u,p) € Hy(curl; Dg) x H!(Dy) such that

(8)

a(u,v) +b(p,v) = (f,v), Yv e Hp(curl; Dy),
b(q,u) =0, Vg€ Hy(Dy).

To analyze (8), we introduce the space
K :={v € H,(curl; Dy) : b(q,v) =0 Vq € H;(DO)}.

We denote by || - || the L*(Dy) (or L?*(Dy)) norm. For a Sobolev space H,
we denote its norm by || - % and its semi-norm by |- |3. Let C' > 0 be a
generic constant. The well-posedness of (8) was analyzed in [5, 11]. The
following lemma is from [11] (Theorem 3.1 therein). Note that the case of
a # (0,0,0)T with standard boundary conditions was studied in [21].

Lemma 1. Let a € K with a # (0,0,0)T. Given w € L*(Dy), there exist
unique functions w € (H)(Dy))* and ¢ € H)(Dy) satisfying

Uu=VqXw+Vap with Vg, -w=0,
[wlly + o[l < Cllull.

Let u and p be the solutions of (8). Then it can be shown that

[l + [l < ClIFI- (9)

Furthermore, for a fixed w € 2, there exists a linear operator 7}, such that,
for f S LQ(D()),
wa =1u,

where u is the first component of the solution of (8). The readers are
referred to [5, 11] for the detailed proof. Note that T, is a compact op-
erator since the embedding of Hp(curl; Do) N Hy(div; Dy) C H,(Dy)? is
compact (Lemma 2 in [5]). Consequently, we obtain an operator function
T(w) : Q — L(L*(Dy), L*(Dy)) such that T(w) := T,

From the above discussions, we see that (4) is equivalent to the eigenvalue
problem of the operator function 7T

Tw)(wu)=u we.



Define a nonlinear operator function F : Q — L(L*(Dy), L*(Dy)) by
1
Flw)=T(w) — EI we . (10)

It is clear that w is an eigenvalue of (4) if and only if w is an eigenvalue of the
operator function F', i.e., there exists u such that F'(w)u = 0. The following
lemma shows that F'is a holomorphic operator function.

Lemma 2. The operator function T : Q — L(L*(Dy), L*(Dy)) is holomor-
phic.

Proof. For simplicity, we omit the = and write €¢(w) for e(x,w). Let w € Q
and dw be small enough such that w + dw € €. Since ¢(w) is holomorphic in
(), one has that

e(w+ dw) — e(w) = € (w)(0w) + o |dw]). (11)
For a f € L*(Dy), let u := T(w)f, i.e., u € K is such that
/ LVoc Xu- Vo Xvde =(f,v), VvekK
D, €(W)
Let w :=T(w+ dw) f, i.e., w € K is such that

1 -
I - - K.
/ e(w—i—éw)vaxw Va Xvdr = (f,v) Vv €

Then

1 1 -
/;0 (@VQXU—mVQXW)'VQXUd(E—O.

Due to (11), we have that, for all v € K,

/ ! X (u—w) V4 X vdr

@)

_ / €(w ”“ Il COR SN e
D, €(w)e(w + dw)

/ E(w 5w )+ 00w G T de,
D, E(w)e(w + dw)




Thus T'(w) is continuous in 2. Let ¢ € K be the solution of

/ Lvaxqs.vaxvdx:—/ W) G xu Vo X vds Yo €K (12)
D

o €(w) D, €(w)

Since €(w) is bounded, straightforward calculations show that

Hu—'w

ow

Hence T'(w)f is holomorphic on Q2. By Theorem 1.7.1 of [13], T'(w) is holo-
morphic .

—q’)H%O as ow — 0.

]

By virtue of (10), F'is a holomorphic Fredholm operator function of index
zero on (2 if Q C C\ {0} is compact [13, 19].

3. FEM Discretization and Convergence

In this section, using the modified edge elements for (8), we propose a
discretization F} for F' and prove the convergence of the operator Fj as
h — 0. Then we show that the eigenvalues of F}, converges to those of F
employing the abstract convergence theory.

Let 75, be a tetrahedra mesh for D, with mesh size h. We shall use
the modified approximation spaces for H, (Do), H,(curl; Do), H,(div; Dy),
L?(Dy) with respect to Ty, which are generated by multiplying a-phase func-
tion with usual basis functions [5, 10, 11]. For simplicity, we employ the
lowest order edge element of the first family and linear Lagrange element to
discretize (8) [25, 7]. The results can be extended to higher order or second
family edge elements.

Let V';, C H,(curl; Dy) be the edge element space and Wh Cc H! » (Do) be

the Lagrange element space. The basis functions for V), and Wh are denoted
by {¥;}ic1... v, and {¢;}j—1....n,, respectively. We define the a-modified
finite element spaces:

o =span{e ¥} Ly,
W = span{e @ Wg .y .

Here z; is the center of the jth edge and y; is the vertex corresponding to
the nodal basis function ¢;. The degrees of freedom for the spaces W;* are
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again the nodal values. The space V' inherits the degrees of freedom from
Vh, i.e.,

1 .
(V) = — @)y . o ds, VeV,
lejl Je, ’ "

J

where e; is an edge and 7; is the unit tangent vector along e;. Given a
sufficiently smooth vector function g, we define the interpolation operator

g = Z v§ (g)e‘io"(x_xj)lllj.
J

The spaces V'} and W are the modified approximation spaces for H ,(curl; Dy)
and H; (Dy), respectively. The modified approximation spaces for H,(div; D)
and L?(Dy) can be defined analogously [10, 11, 5]. They satisfy the commut-
ing diagram property with respect to the differential operators V,, V4 x, V-
(see Theorem 4.1 of [11]).
The discrete problem for (8) is to find (wup, ps) € Vi x W such that

a(wp,vp) + b(pr,vi) = (f,vn), VYo, € Vy,

oo . (13)
b(qh, uh) = 0, th c Wh .

The corresponding discrete space of K is
K, = {’U,h € V% : b(qh,uh) =0, Vg, € W}?}

The well-posedness of the discrete problem (13) can be established by ver-
ifying the discrete coercivity of a(v,,vy) on K, and the discrete inf-sup
condition b(gp,vy) on Wi x V.

Following [5, 11], we assume that the solution w of (8) satisfies

1
u € H*(Dy)?, for some s > 3 (14)

V xu € H(Dy)?,  for some r > 0.

We have the following convergence result.

Lemma 3. Let (w,p) € Hy(curl; Dy) x H) (Do) be solution of (8), and
(up,pr) € Vi xW be solution of (13). Assume that uw satisfies the reqularity
assumption (14) and p € H*(Dy). Then

|w —up|| < Ch(Juls + ||V x ul|,), where t = min{s,r}. (15)
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Proof. Under the conditions of lemma, there is an element u! € K, satisfying
(see Lemma 9 of [5])

Hu - uIchrl < Cht(|u|s + HV X u“?")' (16>

For the mixed formulations (8) and (13), we have the following error estima-
tions [6, Theorem 5.2.5],

o= sl < € (inf = vl + inf 1~ anl ).

By (16) and the standard interpolation error bounds for Lagrange elements
[7], we have

lu —upllcurs < C (ht(|u|s +IV xu,) + h||pH2) < Ch'.

Hence,
lu = wpll < [lu — uplleur < CR.

]

Using the convergence of the mixed finite element method (13) for the
source problem (8), we are now ready to define the discrete operator function
Fj(w) and prove the convergence of the eigenvalues of Fj,(w) to those of F/(w).

Define the L2-projection P, : L*(Dy) — V¢ such that

(f,vn) = (Puf,vn), Yo, € V. (17)

For a fixed w € €, let u; be the solution of (13). The well-posedness of
(13) implies ||ug|| < ||Prfll. The discrete solution operator Tj(w) for (13)
is such that Tj,(w)Prf = up,. Now we define the discrete operator function
Fr:Q— LV, V) as

1
1

Fh(w) = Th((.U) — E , WE Q. (18)

For simplicity, in the rest of paper, we denote Py, f by f; and V;, by V.
The error estimate (15) and the well-posedness of (8) imply that

[ = unll < CR(Juls + [V x ull,) < CBY| ] (19)

Consequently,
IT(w) = Tu(w)Pl| < CR.

10



Due to the fact that
| F(w)vp—Fp(w)vp| = || T(w)vn=Th(w)vs|| < [|T(w)=Th(w)Prllllvall, You € Vi,

we obtain that
|F(w)|v, — Fa(w)|| < Ch'. (20)

The following lemma is obvious for the L2-projection Pj.
Lemma 4. For all f € L*(Dy), | f — Puf] — 0 as h — 0.

Lemma 5. Assume that Q C C\{0} is compact. There exists hy > 0 small
enough such that

sup sup || Fp(w)]| < 0. (21)
h<ho weQ

Proof. Assume f; € V. Then

1 1
1ER (@) Full = [ Th(@) i = =5 Full < llunll + [ Fll < CllFA-

The last inequality is due to the well-posedness of the discrete problem (13)
and the fact that Q C C\{0} is compact. O

Lemma 6. Assume f € L*(Dy), then }lliIT[l) | Fr(w)Prf — PrF(w)f]| = 0.
—

Proof. Using the definitions of F' and Fj and Lemmas 4 and 3, we obtain
that

| Fr(w)Prf — PrF(w)f|l = ‘ Th(W)Prf — éphf —PuT(w)f + Ph(%f)H
= [|[Th(wW)Prf — PuT(w) £l

= ||lup — u+ u — Prul|
< flu =l + [[u — Prul
< Ch'. (22)

The proof is complete by taking h — 0. O]

Now we are ready to present the convergence theorem for the eigenvalues
of Fy,. Tts proof is to verify the conditions (b1)-(b4) and then employ Theorem
2 in Appendix.
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Theorem 1. Let wy € o(F). Assume that h is small enough. Then there
exists {wy, € o(Fy)} such that w, — wy as h — 0 and the following estimate
holds )

lwp, — wo| < Chx, (23)
where K is the mazimum rank of the eigenvectors associated with wy (see

Definition 4 in Appendiz).

Proof. Let {h,} be a sequence of sufficiently small positive numbers with
hp, — 0 as n — oo and F,,(w) := F, (w), V., :=V,,, and p, := Py,

Due to Lemma 4, (b1) holds with X =Y = L*(Dy), X, =Y, = V,,, and
qn = Pn- (b2) and (b3) hold due to Lemma 5 and Lemma 6.

Next we verify (b4). Assume that v, € V,,, n € N C N with ||lv,| <1
and

Tim ||, (w)o, — oyl =0, (24)

for some y € L*(Dy). Let p(F) and o(F) be resolvent set p(F) and the
spectrum of F', respectively (see (A.2)). In the following, we consider w €
p(F) and w € o(F') separately.

Let w € p(F). Then F(w)™! exists and is bounded. Let v = F(w) 'y.
We have

vy — P = F(W) T ((F(w) = Fu(w))(vn — pav)
+ F(w)v, — poF(w)v + ppoF(w)v — Fn(w)pnv).

Recalling that ||F(w)|v, — Fn(w)|| < ChL from (20), it holds that

[vn — pav]| < C(hszvn — pa||
+ || Fo(w)vn — ppF ()| + [|pnF (w)v — Fy(w)pav|). (25)

Using (24) and Lemma 6 we have that
|lv, — ppo|| = 0 asn — oo.

Let w € o(F'). Denote by E(w) the finite dimensional eigenspace of w [19]
and by Pp(, the projection from L*(D) to E(w). Let F(w)~! be the inverse
of F(w)|r2(py/E(w) from R(F(w)) to L*(D)/E(w). Due to (24), we have that

[EW)vn =y < [F(w)vn = Fu(w)onl| + | Fo(w)vn = poyll + [lpny — yll = 0,

as n — 00. Since R(F(w)) is closed, y € R(F(w)).

12



Let v' := F(w) 'y and v}, := (I —p, Pp(w))V,. Similar to (25), we deduce
that

(AR |
< (1= Chy) ' C (Il Fa(w)vy, = paF (w)V'[| + [Ipn F(w)v" = Fo(w)pav'[l) — 0.

On the other hand, since F(w) is finite dimensional, there is a subsequence
N"and v" € E(w) such that || Pg,)v, —v"|| = 0 as N” 3 n — oco. Therefore
we have that

v, — puvl| < |V, — Pu¥'|| + [[PnPE@)n — pp0"|] = 0, as N’ 3n — oo,

where v := v’ + v”. We have verified (b1)-(b4) and (23) follows Theorem 2.
The proof is complete. O

Corollary 1. If wg is a simple eigenvalue, i.e., kK = 1, one has that

lw — wy| < ChH. (26)

4. Spectrum Indicator Method

The discrete form of (4) is to find w € Q and (up,pr) € V5, x W such
that

a('u,h, ’Uh) + b(ph, ’Uh) = wz(uh, ’Uh), Vv, € V%,

oo : (27)
b(qh,uh) = 0, VQ}L < Wh .

Given av € K, (27) can be written as the following matrix eigenvalue problem

Aw) BE ) [ul] L[ M 0][u
[B oHp]_“’ 0 0]|p] (28)
where A(w) is the matrix associated to the sesquilinear form a(-,-) defined

in (5), B is the matrix associated to b(,-) defined in (6) and M is the mass
matrix. Consequently, the eigenvalues of Fj(w) are the eigenvalues of Fp,(w)

given by ) { Alw) BY } L { M 0 } . (29)
B0 0 0

To compute the eigenvalues of Fj,, which are complex in general, we design
a new version of the spectral indicator method (SIM) proposed in [15, 16,

13



17]. Without loss of generality, let 2 C C be a square and © be the circle
circumscribing 2. Assume that © C p(F,) such that Fj,(w)™! exists and is
bounded for w € ©. Define an operator

G = i/@lﬁ‘h(w)—ldw, (30)

- 2mi

where i = v/—1. Let g5 be a random vector. If Fj, has no eigenvalues inside
O, then Ggy, = 0. If F, has at least one eigenvalue inside ©, then Gg;, # 0
almost surely. Thus |Ggy| can be used as an indicator for the location of
eigenvalues. If © contains eigenvalues inside, €2 is subdivided into smaller
squares, and the procedure continues until the eigenvalues are identified in a
small enough square.

In practice, one does not invert Fj,(w) but solves f,(w) for Fp(w) fr = g.
Using the trapezoidal rule for the integral (30), we define an indicator I, for

Q as
> wifu(w))
j=1

where L is the length of ©, w;’s and w;’s are the quadrature points and
weights, respectively. The indicator I is used to decide if €2 contains eigen-
values or not. If Ig > §g for some threshold d, > 0, there exists at least one
eigenvalue in . In such a case, € is called admissible and uniformly divided
into smaller squares. The indicators of these small squares are computed
and the admissible squares are subdivided. The procedure continues until
the size of the squares is smaller than a specified precision €, e.g., g = 1075.
The centers of the squares are the approximated eigenvalues

The following algorithm SIM-B computes all the eigenvalues of Fj in €.

1
_[Q = Z s (31)

SIM-B:
- Civen a series of congruent squares {Q°}°  covering Q.
- Choose the precision ¢, and the indicator threshold dy.
1. Generate a tetrahedral mesh for D.
2. Let fj, be a normalized random vector and set level ¢ = 0.

3. At level 1, if the size of the squares at level 7 is larger than ¢, do

14



— For each square Q,n = 1,..., N; at the current level, evaluate
I using (31).

— If |Igi| > 0o, uniformly divide €, into small squares and leave
them to the next level.

—i+1—=1
4. Output eigenvalues.

The reason for taking €2 to be a square is that a compact region can be
covered by squares and it is easily to divide a square into smaller squares.
The use of O is due to the exponential convergence of the trapezoidal rule.
There are some gaps between © and 2. But they are smaller than the
specified precision at the end of the procedure and can be ignored. We refer
the readers to [12, 15, 16, 33, 34| for more discussions and applications of
SIMs.

5. Numerical Examples

In the section, we present several numerical examples and show the dis-
persion relations w(a) with a moving along I' - X — M — R in the
Brillouin zone (Fig. 1). The fundamental cell is the unit cube Dy = [0, 1]3.
The photonic crystal consists of two components, the air and a dielectric
material, i.e., e = ¢ in D1 C Dy and € = ¢, = 1 in Dy \ D;. The lowest order
edge element of the first family and the linear Lagrange element are used on
a tetrahedral mesh of Dy. All calculations were performed on a tetrahedral
mesh with A ~ 1/16. We take Q = [0.2,6.2] x [—3,3], Ny = 1,79 = 16 in our
examples.

Example 1. For validation of the proposed method, we first consider a
non-dispersive electric permittivity such that (1) becomes a linear eigenvalue
problem. The holomorphic operator function is simply Fj(w) = T} — é[ :
The structure consists of a silicon frame (D;) embedded in air shown in Fig. 2
(left). The colored part represents silicon and the blank part represents air.
The frame thickness is 0.125 in the unit cube with ¢, = 13 for silicon. This
model is called the scaffold structure. The dispersion diagram is shown in
Fig. 2 (right), in which a spectral gap appears in the band structure. The
numerical result is consistent with Fig. 2 of [10]. Note that in order to
compare with the Fig. 2 of [10], we set the value of y-axis to w/(27) in Fig.
2.

15



Figure 2: Example 1. Left: Scaffold structure in unit cell. Right: The dispersion diagram
with a band gap (the yellow part).

Example 2. We consider a dispersive photonic crystal in this example.
The frequency-dependent electric permittivity function is given by

w? —w?
w? — (1 + yi)w?’
where €., is the optical frequency dielectric constant, w; and wp are the
frequencies of the longitudinal optical and transverse optical vibration modes
of infinite wavelength, respectively, 7 is a constant. In the computation, e, =
20,wyr = 8.12THz, wy, = 8.75THz, v = 0.02. Note that the eigenvalues are
complex with small imaginary parts. We use the real parts of the eigenvalues
for the dispersion diagrams shown in Fig. 3. It is seen that the photonic
structure attains a spectral gap between two bands.

Example 3. The structure of the photonic crystal is shown Fig. 4 (left).
The frequency-dependent electric permittivity is

w? — 1.20w?% — 2w3 + 3.64w!

w2 —2.6w—1.2w2 — w3 ’
We set €., = 18.6, wr = 9.89THz, w;, = 10.45THz. The computational band
structure is demonstrated in Fig. 4 (right), where a band gap is also obtained.

ep(w) = €xo (32)

ep(w) = 5.8+ €x (33)

6. Conclusions

We propose a novel numerical method for the band structure calculations
of 3D dispersive photonic crystals. The nonlinear Maxwell’s eigenvalue prob-
lem is first reformulated as the eigenvalue problem of a holomorphic operator
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Figure 3: Example 2. Left: Unit cell. Right: The dispersion diagram with a band gap
(the yellow part), ¢ is the speed of light.

Figure 4: Example 3. Left: The structure of the photonic crystal. Right: The dispersion
diagram with a band gap (the yellow part), c is the speed of light.

function. Using the well-posedness results of the related source problem, we
show that the operator function is Fredholm. A mixed finite element method
is then employed to discretize the operator. The convergence of the eigenval-
ues are proved by combining the convergence of the finite element method
for the source problem and the abstract approximation theory for holomor-
phic Fredholm operator functions. Finally the spectrum indicator method is
applied to practically compute eigenvalues, which require no a priori informa-
tion on the spectral distribution. The effectiveness of the proposed approach
is demonstrated by several numerical examples in 3D, which are among the
very few in literature.
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Efficient computation of 3D band structures is challenging due to the
large number of degrees of freedom of the discrete system. The evaluation
of the indicators (31) needs to solve many linear systems. Fortunately, the
SIM is highly scalable. Currently, combining with domain decompositions,
we are working on a parallel version of SIM to treat 3D photonic crystals on
finer meshes.

Appendix A. Holomorphic Fredholm Operator Function and Its
Abstract Approximation Theory

We present some preliminaries on holomorphic Fredholm operator func-
tions and the abstract approximation theory of the associated eigenvalue
problems [13, 19, 20, 3]. Let X, Y be complex Banach spaces and we denote
by L£(X,Y) as the space of bounded linear operators from X to Y. Q C C is
a compact and simply connected set.

Definition 1. Let B be a Banach space and 2 C C be an open set. A
function f : Q — B is called holomorphic if, for each w € €,

) it £ = 1)

Zz—w Z — W

exists.
Definition 2. An operator A € L(X,Y) is said to be Fredholm if
1. the range of A, denoted by R(A), is closed in Y,

2. the null space of A, denoted by N'(A), and the quotient space Y/R(A)
are finite-dimensional.

The index of A is the integer defined by
ind(A) = dim N (A) — dim(Y/R(A)).

Let F': Q — L(X,Y) be a holomorphic operator function on €. Denote
by ®0(2, L(X,Y)) the set of holomorphic Fredholm operator functions of
index zero [13]. We assume that F' € &q(Q, L(X,Y)), ie., for each w €
Q, Flw) € L(X,Y) is a Fredholm operator of index zero. The operator
eigenvalue problem is to find (w,u) € Q x X, u # 0, such that

F(w)u=0. (A.1)
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The resolvent set p(F') and the spectrum o(F') of F' with respect to 2 are
respectively defined as

p(F)={weQ:Fw) " eL(Y,X)} and o(F)=Q\p(F). (A.2)

Furthermore, we assume that p(F) # (). Then the spectrum o(F) has no
cluster points in Q and every w € o(F) is an eigenvalue [19].

The dimension of N (F(w)), the null space of F(w) for an eigenvalue w,
is called the geometric multiplicity.

Definition 3. An ordered sequence of elements xg,x1, ...,z in X is called
a Jordan chain of F at an eigenvalue w if
1 1
F(CL)).%]' + iF(l)@d)x]’,l 4+ ...+ —‘F(l)(w)xo = O, ] = 07 1, e ,k,
! g!

where FU) denotes the jth derivative.

The length of any Jordan chain for an eigenvalue is finite. Denote by
m(F,w, xo) the maximal length of a Jordan chain formed by an eigenfunction
xo. The maximal length of Jordan chains for an eigenvalue w is denoted by
k(F,w). Elements of any Jordan chain are called generalized eigenfunctions
of w.

Definition 4. The closed linear hull of all generalized eigenfunctions of an
eigenvalue w, denoted by G(w), is called the generalized eigenspace.

A basis @}, ..., 2] of the eigenspace N'(F(w)) is called canonical if
(i) m(F,w,z}) = k(F,w),

(ii) $6 is an eigenfunction of the maximal possible order belonging to some
direct complement M; in N'(F(w)) to the linear hull span{z}, ..., 7'},
ie.,

m(F,w,x})) = maxm(F,w,z) forj=2,...,J
IEMj
The numbers m;(F,w) := m(F,w,xé), j = 2,...,J, are called the partial
multiplicities of w. The number

m(w) == Z m;(F,w)

j=1
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is called the algebraic multiplicity of w and coincides with the dimension of
the generalized eigenspace G(w).
To approximate the eigenvalues of F', consider operator functions

F, € ®4(Q,L(X,,Y,)), neN,
such that the following properties hold [19, 3].

(b1) There exist Banach spaces X,,,Y,,, n € N, and linear bounded mappings
pn € L(X, X)), ¢ € L(Y,Y,,) such that

lim [|p,ofx, = llvllx, ve X, lm |lgolly, = [vlly, v €Y.
n—00 n—00

(b2) The sequence {F,(-)}nen satisfies

|Fo(w)]] < oo forallweQ,neN.

(b3) {F.(-)}nen approximates F(w) for every w € Q, i.e.,
lim ||F,(w)ppx — ¢ F(w)x|ly, =0 for all z € X.
n—oo

(b4) For any subsequence z, € X,,n € N C N with ||z,|x,,n € N’
bounded and

lim | P ()20 — uylly, = 0

N’'3n—o00

for some y € Y, there exists a subsequence N” C N’ and a x € X such
that

N”laigoo |2 — pn| x, = 0.

If the above conditions are satisfied, one has the following abstract ap-
proximation result (see Section 2 of [20] or Theorem 2.10 of [3]).

Theorem 2. Assume that (b1)-(b4) hold. For any w € o(F) there exists
ng € N and a sequence w,, € o(F,),n > ng, such that w, — w as n — 0.
For any sequence w,, € o(F,) with this convergence property, one has that

|wn — w| < CeYR,

where

€, = max max |[|F}, WU — g F'(m)vlly. ,
Joax max [|Fa(m)pnv — e F ()]l

for sufficiently small 6 > 0. Here G(w) is generalized eigenspace of corre-
sponding eigenvalue w and k is the maximum rank of eigenvectors associated
to w.
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