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SCATTERING RESONANCES AND FIELD ENHANCEMENT IN A
SUBWAVELENGTH ANNULAR GAP”

JUNSHAN LINT, WANGTAO LU%¥, AND HAI ZHANGS

Abstract. This work presents a mathematical theory for electromagnetic scattering resonances
in a subwavelength annular hole embedded in a metallic slab, with the annulus width h < 1. The
model is representative among many 3D subwavelength hole structures, which are able to induce
resonant scattering of electromagnetic wave and the so-called extraordinary optical transmission.
We develop a multiscale framework for the underlying scattering problem based upon a combination
of the integral equation in the exterior domain and the waveguide mode expansion inside the tiny hole.
The matching of the electromagnetic field over the hole aperture leads to a sequence of decoupled
infinite systems, which are used to set up the resonance conditions for the scattering problem. By
performing rigorous analysis for the infinite systems and the resonance conditions, we characterize
all the resonances in a bounded domain over the complex plane. It is shown that the resonances
are associated with the transverse electric (TE) and transverse electromagnetic (TEM) waveguide
modes in the annular hole, and they are close to the real axis with the imaginary parts of order
O(h). We also investigate resonant scattering when an incident wave is present. It is proved that the
electromagnetic field is amplified with order O(1/h) at the resonant frequencies that are associated
with the TE modes in the annular hole. On the other hand, one particular resonance associated
with the TEM mode cannot be excited by a plane wave but can be excited with a near-field electric
dipole source, leading to field enhancement of order O(1/h).
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1. Introduction. Resonances play a significant role in wave interactions with
subwavelength structures, due to their ability to generate unusual physical phenomena
that open up broad possibilities in modern science and technology. One representative
type of resonant subwavelength structure is nano-holes perforated in noble metals,
such as gold or silver. A device of this sort was first introduced in the seminal
work [15], which sparked tremendous subsequent research in pursuit of more efficient
resonant nano-hole devices (cf. [17, 39] and references therein). The most remarkable
phenomenon occurs in these subwavelength devices when an electromagnetic wave is
illuminated at the resonant frequencies. The corresponding transmission through the
tiny holes exhibits extraordinary large values that cannot be explained by the classical
diffraction theory developed by Bethe and is called extraordinary optical transmission
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(EOT) [15]. In addition, EOT is accompanied by strong localized electromagnetic field
enhancement inside the subwavelength holes and in the vicinity of hole apertures [17].
The capability to trigger EOT and to confine light in deep subwavelength apertures
leads to many important applications in biological and chemical sensing, optical lenses,
and the design of novel optical devices, etc. [8, 10, 22, 28, 39].

The main mechanisms for EOT and field amplification in the subwavelength hole
devices are due to resonances. These include scattering resonances induced by the
tiny holes and surface plasmonic resonances generated from the metallic materials
[17]. Significant progress has been made in the mathematical study of resonances
for two-dimensional subwavelength slit structures in the past few years. In a se-
ries of studies, we have established rigorous mathematical theories for a variety of
resonances and the induced EOT via the layer potential technique and asymptotic
analysis [30, 31, 32, 33, 34]. The layer potential approach with the operator-based
Gohberg—Sigal theory was previously used to investigate the resonances in a closely
related subwavelength cavity problem [5, 9]. More recently, other mathematical meth-
ods have been developed to derive the resonances for the two-dimensional slit struc-
tures. These include the matched asymptotic method and the Fourier mode matching
method [20, 42]. The matched asymptotic expansion techniques have also been ap-
plied to construct the solution of the slit scattering problem in [23, 24, 25]. The
generalization of the above techniques to the studies of the acoustic wave resonances
in three-dimensional subwavelength holes can be found in [16, 29, 35]. We would also
like to refer readers to [1, 2, 3, 4] and references therein for mathematical studies of
other types of subwavelength resonances, such as Helmholtz resonators and nanopar-
ticles, etc.

In previous studies of 2D subwavelength hole resonances or 3D acoustic wave
resonances, the governing equations are scalar wave equations. The mathematical
study of electromagnetic resonances for 3D subwavelength holes remains completely
open. In this paper, we aim to advance the work in this direction by investigating
electromagnetic scattering resonances for the full vector Maxwell’s equations. More
specifically, we consider electromagnetic wave scattering by an annular gap, wherein
the gap width is much smaller than the incident wavelength. Figure 1 depicts the
top view and side view of the structure, in which a coaxial waveguide is perforated
through a metal slab of thickness [/, forming an annular gap on the xyxo plane. The
annular hole occupies the domain G"* = R" x (—1/2,1/2), where

(1)  RM:={(x1,22) €R?: 2 =rcosh,zo =7rsinb,r € (a,a(l+ h)),0 € [0,27]}

denotes the cross-sectional annulus on the x;25 plane. In the above, a and a(1+ h)
are the inner and outer radii of the annulus. In the subsequent analysis, for clarity
of presentation we shall scale the geometry of the problem such that a = 1. The
resonances when a # 1 are scaled accordingly by replacing the wavenumber k by ka
and the thickness [ by [/a. It is assumed that the gap width is small with h < 1. The
metal region is denoted by

Qum = {(l‘1,1‘2,$3) eR3: (l‘1,.732) GRZ\ﬁ,JJ?, S (—Z/Q,Z/Q)}
In this work, we focus on the resonances induced by the tiny hole and consider the
configuration when the metal is a perfect electric conductor. Studies of plasmonic

resonances for real metals and their interactions with the hole resonances are avenues
of future research.
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FiG. 1. Top view (left) and side view (Tight) of the subwavelength structure. The cylindrical
hole G" is perforated through the metallic slab with a thickness of , and it forms an annular aperture
R on the x1xo plane with the inner and outer radius a and a(l+ h), respectively.

Let {E™ H™} be the incoming time-harmonic electromagnetic plane wave
given by

(2) Einc _ EOeikm-d’ Hinc _ HO‘Bik::I:-d7

wherein @ = (71,22, 73), k is the wavenumber, d € R? is the propagation direction, and
the electric and magnetic polarization vectors satisfy EC | d and H° = d x E°. The
total electromagnetic field after the scattering is governed by the following Maxwell’s
equations:

(3) curl E=ikH inR3\Qyy,
(4) curl H= —ikE  inR3\Qy,
(5) vxE=0 ondQy,

where v denotes the outward unit normal pointing to the exterior of €y;. Let
{Erf H**!} be the reflected field above the metal in the absence of the annular hole
and h = 0. The perturbed field generated by the hole G} when h > 0 is called the
scattered field, denoted by E*¢ :=E — Ei*¢ — Er*f and H* := H — H™ — H"f. They
satisfy the Silver—Miiller radiation condition (SMC) at infinity above and below the
metal (cf. [26]):

(6) lim (H* x x — |z|E*) =0.
lzs|>1/2
|| — o0

The resonant phenomena for the scattering problem (3)—(6) were reported and
studied experimentally and numerically in [6, 7, 21, 38, 41]. In this paper, we aim
to establish the rigorous mathematical theory for the underlying resonant scattering.
The goal is to quantitatively characterize the resonances and study the field enhance-
ment at various resonant frequencies. The mathematical theory presented for this
representative structure also seeks to lay the foundational framework in establishing
electromagnetic resonant scattering theory for many other 3D subwavelength hole de-
vices to be explored in the future. To this end, we first study the scattering resonances,
which lie on the lower complex plane and are the poles the resolvent associated with
the scattering problem. The real and imaginary parts of the scattering resonances
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represent the resonant frequencies and the reciprocal of the resonant magnitude, re-
spectively. The corresponding nontrivial solutions are called quasi-normal modes [14].
Equivalently, we consider the homogeneous problem (3)—(6) when the incident field
E"¢ = H™® = 0. The quasi-normal modes satisfy the radiation condition (6), but
they grow at infinity. We then study the resonant scattering when the incoming wave
attains the resonant frequencies. The main contributions of this paper are as follows:

(i) We prove the existence of electromagnetic scattering resonances for the prob-
lem (3)—(6) and present quantitative analysis for the resonances. The struc-
ture of resonances is much richer than the resonances for a 2D hole analyzed
in [20, 31, 42]. In more detail, it is shown that the resonances are a sequence
of complex numbers that are associated with the transverse electric (TE)
and transverse electromagnetic (TEM) waveguide modes in the annular hole.
We derive the asymptotic expansion of these resonances. Furthermore, it
is demonstrated that the imaginary parts of the resonances attain the order
O(h). The quantitative analysis of resonances is summarized in Theorems 4.1
and 4.2.

(ii) We also analyze the electromagnetic field governed by (3)—(6) when an in-
cident plane wave is present. We prove that the electromagnetic field is
amplified by order O(1/h) at the resonant frequencies that are associated
with the TE modes in the annular hole. A particular resonance associated
with the TEM mode cannot be excited by a plane wave. We prove that a
near-field electric monopole can be used to excite this resonance to achieve
field enhancement of order O(1/h). The analysis is provided in section 5, and
it explains the observed resonant phenomena through the tiny annular hole
reported in [6, 7, 21, 41].

There are several main challenges in analysis of resonances, due to the multiscale
nature of the problem and the vector form of the mathematical model. In addition,
as elaborated in section 3, the solution inside the tiny hole consists of several types of
waveguide modes (TE, TM, and TEM modes), which are responsible for the richness
of resonances for the scattering problem. Our multiscale analysis is based upon a
combination of the integral equation formulation with the mode matching method.
More precisely, the electromagnetic field outside the annular hole (large-scale domain)
is represented by the vector layer potentials, and the wave field in the hole (small-scale
domain) is expressed as a sum of coaxial waveguide modes, which form a complete
basis for the solution space. The matching of the two wave fields for each mode
over the annular aperture leads to an infinite system for the expansion coefficients.
The main advantage of the mode matching method lies in the natural decoupling of
the original system into subsystems with distinct angular momentum in the annulus.
Moreover, each individual subsystem can be further reduced into a single nonlinear
characteristic equation (resonance condition) by projecting the solution in an infinite-
dimensional space onto the dominant resonant modes, and the resonances are the
roots of the characteristic equation that can be analyzed by the complex analysis
tools. This is achieved by the estimation of the contribution from the modes that
are orthogonal to the resonant modes in each subsystem and is accomplished by the
asymptotic analysis with respect to the small parameter h. The main technical parts
are presented in section 4.

The rest of the paper is organized as follows. In section 2, we introduce necessary
function spaces and notation to be used throughout the analysis and decompose the
whole scattering problem (3)—(6) into two subproblems. The boundary value problems
outside and inside the tiny hole are studied in detail in section 3. In particular, we
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express their solutions via integral equations and the mode expansion, respectively.
These serve as the starting point for the mode matching framework. Section 4 is
devoted to the analysis of scattering resonances. The details of the mode matching
formulation, the reduction to the resonance condition in the form of nonlinear char-
acteristic equations, and the analysis of their roots for the complex-valued resonances
will be given. Finally, we study the electromagnetic field enhancement at the resonant
frequencies in section 5 and conclude the paper with some discussions in section 6.

2. Preliminaries.

2.1. Function spaces and notation. We introduce several Sobolev spaces for
scalar- and vector-valued functions that will be used throughout the paper and refer
the readers to [36, 11, 26] for more details. Let Q@ C R® be a bounded Lipschitz
domain with the boundary T' := 99, and let v(x) be the unit outward normal on
. HOQ) := L*(Q) denotes the set of all square-integrable functions on €. Let
HY Q) ={fe L*(Q):Vfe[L*(Q)]?} and H~(Q) be its dual space. H*(2) denotes
the fractional Sobolev space for —1 < s < 1. Given I'y C T', we define H*(I'y) by
H*(Ty)={flr, : f € H*(T")} and its dual space by

[H*(Ty)]' =H~#(T'1):={f € H*(T) :suppf C T, }.

Here H*(T") is the Sobolev space over the boundary T'.

For a vector-valued function F(z) = [F (), F»(z), F3(x)]” with components F} €
C,j=1,2,3, curlF =V x F and div F =V - F denote the curl and the divergence of
F, respectively. Let

H(curl, Q) := {F € [L*(Q)]* : curl F € [L*(Q)]?}.
We also define

H(T)={Fe[H*D)]*:v-F=0} for—1/2<s<1/2,

and L?(T') = HY(T'). Let Curl F and Div F be the surface divergence and the surface
curl of F on T, respectively (cf. (6.37) and (6.41) in [11]). For the planar surfaces
R x {x3 ==+1/2} considered in this paper, we have

Div=Vy- = [04,,0.,]" -, Curl=curly =[0,,,—0,,]" - .
Define

H '2(Div,T) = {F € H; Y*(I'): DivF € H~/*(T")}

and

H2(Cwl,T) = {F € H, "/*T): Cwrl F € H~/2(T")}.

By [26, Thm. 5.26), H'/?(Curl,T") = [H~'/?(Div,T)]’, where the duality is defined
by

(7) F(G) :/FF - Gds(T)

for any F € H-Y/?(Cur,T) and G € H~'/?(Div,T"). From the trace theorem [26,
Thm. 5.24], the trace operators

¢+ H(curl, Q) — HY/?(Div,T"),F — v x Fp

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/17/23 to 131.204.254.113 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

EM RESONANCES IN AN ANNULAR GAP 1017

and

yp: H(curl, Q) — H™Y2(Curl,T),F — (v x F|p) x v
are bounded. Given an open domain I'y C T, we define
H~Y%(Curl,Ty) = {F|p, : F € H/?(Curl,T)}
and its dual space
H~'2(Div,I'))={F e H'/2(Div,T") :suppF c T }.
Finally, for an unbounded Lipschitz domain €2, we let
Hyoe(curl, Q) :={F : Flonp(o,r) € H(curl, 2N B(0,r)) for any >0}

wherein B(0,r) :={x:|z| <r}.
We also introduce the following notation for the problem geometry to be used in
the rest of the paper:
(1) Q1 = {x € R3\Qy : 23 > 0}: the upper and lower half domain exterior to
the metal;
(2) R3 ={x €R?:25>1/2}: the half space above the metal;
(3) G ={@ € G), : 23> 0}: the upper half of the annular hole Gj,;
(4) A" ={x: (x1,22) € R" 3 =1/2}: the upper annular aperture of G";
(5) Ty ={x: (v1,72) € R", 23 =0}: the annulus on the 125 plane or the base of
Gh :
(6) Ff;_r: the side boundary of G".
In addition, the following sets will be used:
(1) B:={z€C:|z| <Cyh}, where Cy is a fixed positive constant;
(2) N*:={1,2,3,--- .};
(3) (ZxN)*:=(Z x N)\{(0,0)}.
Finally, A=< B implies ¢; B < A < ¢ B for some positive constants c1,co that are
independent of A and B.

2.2. Decomposition of the scattering problem. Due to the symmetry of
the structure with respect to the xjx2 plane, the scattering problem (3)—(6) can be
decomposed as the two subproblems as follows.

(E). Given the incident field [E™¢, H"¢] /2, solve for [E®, H®] that satisfies

8 curl E® = ikH® in Q.
9 curl H® = —ikE® inQy,
10) vxE*=0 ondQ\TI'y,
11) vxH®=0 only,

AAA,_\
—

and the radiation condition (6) for z3 > /2 with [E*°, H*] = [E°,H°| —
[E]inc7 Hinc]/2 . [Eref, Href]/2'
(O). Given the incident field [E¢, H"¢]/2, solve for [E°, H°] that satisfies

(12) curl E° = ikH® inQ,,
(13) curl H° = —ikE°® in (),
(14) vxE°=0 ondQ;,

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/17/23 to 131.204.254.113 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1018 JUNSHAN LIN, WANGTAO LU, AND HAI ZHANG

and the radiation condition (6) for xz > [/2 with [E*, H*] = [E°,H°] —
[E]inc7 Hinc]/2 _ [:Eref7 Href]/Z.
It is clear that the solution of the scattering problem (3)—(6) can be written as

E°(x) + E°(2), 3 >0,

(15) E(z) = {E ) B (ar), moo  HE@)=(8)TcwlE

In the above, % denotes the reflection vector with respect to the ;x5 plane. On the
other hand, there holds

(16) Ee(:,z)zw7 EO(@:M’ x3 >0,

(17) Hi(x) = (ik) 'cwrl B!, j€ {e,o}.

In the rest of the paper, for clarity we shall present the detailed analysis for the
resonances for problem (E) only. Problem (O) can be analyzed similarly; thus we will
point out the main difference in the analysis and present the main results directly. To
simplify the notation, we shall overload E and H for E® and H®, respectively.

3. Two auxiliary boundary value problems. In this section, we study the
exterior boundary value problem above the metal and the interior boundary value
problem in the annular hole. They will serve as the foundation for the mode matching
framework and for establishing the resonance condition for the scattering problem (E).
The notation introduced in section 2.1 for the problem geometry is used.

3.1. Scattering problem above the metal. For a given vector-valued func-
tion F on A", let

(18) Li[F](x) = curl curl /Ah O (x;y)F(y)ds(y),

(19) N [F)@) = curl | (i) P)ds(y)

eiklz—yl

be the vector layer potentials for £ € R3, where ®(z;y) = eyl for ¢ # y.
Consider the following half-space problem above the metal:

curl E=1ikH, in Ri’_,
curl H=—ikE, in Ri,
vxE=0, on {zxeR3:z3=1/2}\A",
vxE=F, on Ah,

(HSP) :

with the radiation condition (6) in x3 > [/2. The following theorem states the well-
posedness of the problem.

THEOREM 3.1. For any k>0 and any F € f{_l/Q(Div,Ah), the two functions
- 2 .
(20) E = —2M[F], H:—Eﬁk[F]
in Hige(curl,RY) constitute the unique solution to problem (HSP).

Proof. For F =0, one follows Lemma 5.30 in [26] to extend [E, H] to be a function
in [Hoc(curl, R3)]?, which satisfies the radiation condition (6) in all directions z/|z|.
Thus, E = H = 0 so that (HSP) has at most one solution for F # 0. One directly
verifies that [E, H] in (20) is the unique solution of (HSP) in [Hy,c(curl,R3)]2. 0
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Let L[F] be the trace of £;[F] on A". By Theorem 3.1 and the open mapping
theorem,

-2
(21) v x Hlgn = —=Li[v x Elan] € H~Y?(Div, A"),
1

and L}, is bounded from H~/2(Div, A") to H~'/?(Div, A"). Clearly, £; maps the
tangential component of E to that of H so that we shall call it the tangential-to-
tangential (T2T) map in what follows. As we shall see in section 4, the T2T map Ly,
plays a central role in formulating the resonance eigenvalue problem.

3.2. Boundary value problem in the annular hole. Recall that A, denotes
the planar annular aperture. In this section, we first construct a countable basis for
the function space H 1/ 2(Div, A") and then express the solution of the boundary
value problem in the annular hole Gi using the basis.

3.2.1. A complete basis for H~1/2(Div, AM). As [L2(AM)]2NH~/?(Div, A")
is dense in H~'/?(Div, A"), we only need to construct a dense and countable basis of
[L2(AM)]2. From (1.42) and (1.55) in Chapter IX of [13], the Helmholtz decomposition
of [L?(A™)]? is given below.

LEMMA 3.1. Let Ay =Vs5-Vs, and let

(22)
curly HY(AM): = {curlyf : f € H'(AM)},
(23)

VaHy(A"):={Vaf : f € Hy(A")},
(24)

Ho(A"): ={Vaf: f€ H'(A"),Asf =0, flr—a = C1, flr=a14+n) = C2;C1,C> € R}

be three closed subspaces of [L?(A™)]? that are orthogonal to each other in the sense
of the L?-inner product. Then, [L?>(A™)]? can be decomposed into the direct sum of
the above three subspaces, i.e.,

(25) [L2(A™M)? = curly H'(AM) @ VoHY (A™) @ Hy(AM).

Now we find a countable basis for each of the three subspaces. It is not hard to
see that one-dimensional Hy(A") is given by

(26) Hy(AM) = span{V;log(r)}.
To characterize Vo H} (AM), we consider the following Dirichlet eigenvalue problem:

_ —Aotp =Xy inR",
(DEP): {w =0 on OR".

The countable normalized eigenfunctions are (cf. [27])
-1 i
27)  ¢P(r,0;h): = [CP] {YM (ﬂﬁj) Jli (5\?\%) = Jji (Bﬁ?lj) Yii (ﬂ\[i)lir) ]e '

for (i,7) € Z x N*. The associated eigenvalues are

(28) A= (ﬁﬁj)z >0,
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In the above, J; and Y; are the first and second kind Bessel functions of order 7, Bﬁj
is the jth positive root (in ascending order) of the equation

(29) FR(B;h) ==Y} (8) 1) (B(L+ 1)) — Jjay (B)Y]e) (B(1+ R)) =0,

and C’g >0 is chosen such that ||1/)7];:;||L2(Rh) =1

For 0 < h <« 1, the asymptotic analysis of )\5 and 1/)5 is carried out in detail in
Appendix A. Tt is shown in (121) and (122) that
imo

msin (n%(l - r))

N
Jm
AL~ <h) and ) ~
for h <« 1. It follows from [36, Thm. 4.12] that {wg('Eh)}(i,j)erN* constitutes a
complete orthonormal basis of L?(R") vanishing on the boundary dR", and it forms
a dense and countable basis for H(R"). Therefore,

(30) VoH) (R") = span{ V2 (1) } i j)ezxne

where the overline denotes the closure.
As for the subspace curly H!'(A"), we consider the following Neumann eigenvalue
problem:

. “Ayb=Xp in RE,
(NEP): {aqu:o on OR".

As shown in [27], the countable eigenvalues are A}, := 0 and

2
(31) Nia=(By) s (mon)e @ x W),
where ﬂ‘];; In is the nth nonnegative root (in ascending order starting from n = 0) of
the equation

(32) Fion (Bs 1) := Y[ (B) ]y (BOL+R)) = Ty (B)Y]1) (B(L+ ) =00

The associated normalized eigenfunctions are ¥}, := ———— and
00 "™ /xh(2+h)

(33)
(7012 = [CR] ™ (Yo (Bin) Tt (Bt = T (Biin) Yims (B ) [,

in which CY,, > 0 is chosen such that |[¢),,[|z2(rn) = 1.
The asymptotic formulas of A\Y —and .Y~ are provided in (123)-(126). It is

mn
important to note that when h <1,
AN

m0

2
~m? while AN ~ (%) forn > 1.

The eigenfunctions
imé im6
N e N e {mr }
~————  and ~ cos|—(r—1 forn>1.
¢m(] ﬂ_h(h+2) 1pmn th h ( ) =

{yN Ymez.n>o0 constitutes a complete orthonormal basis of L2(R") (cf. [36, Thm.
4.12]), and is a dense and countable basis of H!(A"). Therefore,

(34) curly Hl(Ah) = span{curly YN, (-3 1)} m,n)e@xn=-
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where we have excluded the constant eigenfunction ).
To simplify the notation in the subsequent analysis, we introduce the rotation
operator R:

(35) Ref =[fifol= [fo —=fi] Vfe[L*(AM)

It is clear that R[L?(A"))? = [L?(A")]2. Consequently, by virtue of (26), (30), and
(34), we have

H~'Y?(Div, A") = R[L2(AM)]2 N H-1/2(Div, A")
(36) =span{Rcurly PN, , RV, RVI0Z1} (. n.i.j)e@xN)* xZxN*»

where the norm of H~1/ 2(Div, A") is used for the completion. In the next subsection,
we construct the solution in Gi for v x E|4» being one of the basis functions.

—_~—

3.2.2. Field representation in the annular hole. Given F € H~1/2(Div, A"),
let us consider the boundary value problem

curl E=ikH in Gi,
curl H=—ikE in GQL_,

(AHP) VXEF:L_:O,
I/XH|Fb:0,
I/XE|Ah =F.

The well-posedness of problem (AHP) is given in the following theorem.

THEOREM 3.2. Assume that k is real and positive and k ¢
(VAN + (20 +1)272/12 @ (m,i,n) € Z* x N}. For 0 < h < 1, the boundary
value problem (AHP) attains a unique solution [E,H] € H(curl,G") that depends

continuously on the boundary data F € H~1/2(Div, A").

Proof. We first address the uniqueness. Let F = 0. Tt follows from Lemma 5.30(b)
of [26] that an even reflection of E extends E and H into G" such that

curlE=ikH inG",
curlH=—ikE inG",
vxE=0 ondG".

An odd reflection of E w.r.t. x3 = £1/2 extends both E,H to a larger domain 2
with G* € Q and [E,H] € [H(curl, 2)]? with v x E=0 on 9. It can be shown that
E,H € [HY(G")]?; see, for instance, [13, Chapter IX, section 1]. Thus E3 € H'(G")
satisfies

—AFE3=k?E; inG",
FE3=0 onI",
OyE;=0 onAlu A",
where A" = {x : (z1,22) € R" 23 = —1/2} is the bottom aperture of G" and T is

the side boundary of G*. In light of (121), we choose sufficiently small h such that
k? is not an eigenvalue of the above problem. Consequently, E3 =0 in G".
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Next, Hs € H'(G") satisfies
—AH;=k*H; inG"
O,H;=0 onI",
Hy=0 onAhuAr.
The Dboundary value problem attains trivial solution when k& ¢

{VAN, + (20 +1)272/12 : (m,i,n) € Z? x N}. Therefore, E; and F» can be
expressed in the form of

B0 LA [ [ e

where f; and g; (j =1,2) are harmonic functions, and

iv | fe022) | —piv | #0022 | cun | 100002 | cun | 9102 |

fa(z1,22) (z1,72) fa(z1,22)

By Lemma 3.1, it can be verified that [f1, f2]7, [g1,92]7 € Ha. Consequently,

X1 B s X9
El =— Q(Clelkzg + o€ 1kz3)7 Eg (Clelk‘ibg —l—Cge 1kz3),
x] + x5 —|—
—I9 ik ik X1 ik ik
H1 =— 2(0161]”3 — o€ 1k13)’ H2 =— 2(ClelkL3 — o€ 1Im3)
1 + T3 T1 + X3

for some constants ¢; and ¢o. The boundary condition E; = Es = 0 on A" U A"
implies

ikl/2

cre —&—CQeﬂkl/Z:O, c1 = co.

Thus a nonzero solution [E, H] exists if and only if ei*!/2 4 ¢=k1/2 = 2 cos(k1/2) = 0,
which is excluded by our assumption. Now the well-posedness follows thanks to
Theorem 5.60 in [26]. 0

We now construct special solutions to the problem (AHP), which are called wave-
guide modes in the annular hole Gi. Denote

(37) sN = \[k2 =N sgz,/ktAg.

Assume that k & {/AN + (2 + 1)272/I2.
1. Transverse electrlc (TE) modes. For each (m,n) € (Z x N)*, define

N s N
(elsmnms + G_ISmnz:s)aicz T]Xn

(38) Enn=| —(e#m®s +eiomnme)g, v, |,
0

pp 1| Smnle T e U,

(39) H = S%n(ewmws _ e—ismaTs )am(pgxn

_i)‘%n(eis%nm3 + e—ls%nxg) %n

Then {[E;";%HTE]}(m nye@xn)y+ is the unique solution of (AHP) with F =
[F1, F2,0]T = [2cos(s,,1/2)Reurly Y . These solutions are called trans-

verse electric (TE) modes.

mn? ]
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2. Transverse magnetic (TM) modes. For each (4,7) € Z x N*, define

(eisf;zg 4 e*isgfa )811'@[]5

(40) B = | (57 4 o700, 0 :
AD/(isD)(et*5m — ey D
.D_ _..D. — 0y, P
k(els”xs —e 1sij:c3) T2 ¥ij
(41) HM = o On, 037
ij 0

Then {[Eg;M,Hg;M]}(i’jEZXN* is the unique solution of (AHP) with F =
[2cos(s1/2)RV2y ], 0]".  These solutions are called transverse magnetic
(TM) modes.

3. Transverse electromagnetic (TEM) mode. Define

) ) [ 0., logr
(42) ELPM — (plhes 4 o=ikes) | 9 Jogr |,
| 0
) ) [ 0., logr
(43) HIFM — (gikrs _ o=ikeay | 9 logr
0

Then {[ELEM HZIEM]} is the unique solution of (AHP) with F =
[2cos(kl/2)RV2logr,0]T. This solution is called the transverse electromag-
netic (TEM) mode.

Remark 3.1. For k € {\/A\N, +(2i+1)272/12 : (m,i,n) € Z* x N}, we use
v x Hyn = F7 = [Ff,FF 0] as the boundary condition instead, where we choose
[FH, Ff] from

2isN 2kisin(s21/2) o
{k sin(sly, 1/2)curlyypl | T_ngwg, 2isin(kl/2)Valogr
ij
for (m,n) € (Z x N)* and (¢,5) € Z x N*. The above TE, TM, and TEM modes can

be reproduced as well.

Finally, we use the above waveguide modes to construct solutions to the problem
(AHP). Let F € H-1/2(Div, A"); we expand it as

Fo Y dEexEIEw+ Y M ER )
(m,n)e(ZxN)* (4,5) €EZXN*
(44) +dTPM (y x ELFM| ,)) € H-1/2(Div, A"),
with the Fourier coefficients {dﬁg,dZ;M ,dTEM} Then it follows from Theorem 3.2
that the unique solution of the boundary value problem is
@) B= Y dEEIEC S dLVELY+dTVELPY e LG,
(m,n)€(ZxN)* (4,§) EZXN*
) M= Y GEMIEe Y dHEY R € G
(m,n)€(ZxN)* (4,7) EZXN*
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where the modes ETE HTE EIM, HIM, EFFM, ELFM are defined in (38)-(43).

We have
1By = Y, AP Fragnys + Y, G PIEGM (B2 gy
(m,n)e(ZxN)* (4,5)ELXN*
+ |dTEM|2||EgEM||[2L2(Gh)]3
= > |d££2 n N 1+ sin(sN 1)
(m,n)€(ZxN)* | mmn
)\D
+ > dEMP S sBl+ sin(sh))|
- T Isl
(i,7) EZxN* ij
TM2[/\D}2 D D
+ Z di;™ | |3 |si;1 — sin(s;;1)]
(i,§)EZXN*
+ |dTEM 2| k|~ 21 log (1 + h) |kl + sin(kl)| < oo,
and
H [Pz nys = > ldrEPIELTE Z2amp T > 1M PIEDM (L2(ah))?

(m,n)e(ZxN)* (4,§) EZXN*
WP

= Z |dTE|2W\5N I —sin(s),.0)]
(m,n)€(ZxN)*

D DR R
(m,n)€(ZxN)* | |

A b D
+ Z [ B DP\S L —sin(s;; 1)
(4,§) ELXN*

+ |dTEM 2|k 27 log(1 + h) |kl — sin(kl)| < +oo0.

By Lemmas A.1 and B.1, AV AP — 400 as m? +n? — 0o, so there holds

mn’’i'mn
[0l =~ /A2, [sonl £sin(sh, )| =~ |2 £ sin(s?,,[)] for o=N,D,
where 2 is introduced to ensure that |2 & sin(s2,,)!)| > 1. In summary, we have the
following proposition.
PROPOSITION 3.1. Let E,H be defined as in (45)—(46). Then ||E||[2L2(Gh)]3 < oo
and ||H||[2L2(Gh)]3 < oo if and only if

{chm = dpm (A7,)Y*[2 + sin(s ﬁnl)lll/ Fommye( zm)*éﬁ
M

(47) {CTM =dM )\D)l/4|2 +sin(sHD1Y2} i jyezxne € 62,
‘dT]EM‘ < 00

where (2 denotes the space of square-summable sequences. On the other hand, (45)

and (46) provide the unique solution to (AHP) in H(curl,G") with v x E| n €
H~1/2(Div, A") for any Fourier coefficients {dLE dFM dTEMY satisfying (47).

mn? Vi

Remark 3.2. Unless otherwise stated, here and thereafter, the ¢2 sequence with
two indices is arranged in the usual dictionary order.
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Remark 3.3. Transforming the sequence {d,.5,d]M} to an £% sequence {c[,

cg;M } balances the magnitudes of the TE, TM, and TEM modes in the hole, which is
essential in solving the eigenvalue problem formulated as an infinite-dimensional (INF)
linear system by the mode matching method in the next section. As we shall see below,
such a transformation eases the analysis of the mapping property of the related INF
coefficient matrix and the reduction of the INF system into finite-dimensional ones.

4. Quantitative analysis of scattering resonances. In this section, we quan-
titatively characterize the resonances for the scattering problem (E) in a bounded
domain over the complex plane. These resonances are complex values of k£ such that
the homogeneous problem (8)—(11) with E¢ = H"® = ( attains nontrivial solutions.

4.1. A vectorial mode matching formulation. We first develop a vectorial
analogy of the mode matching method originally proposed in [42, 35] to reformulate
the scattering problem (E) with trivial incident field. Before proceeding, we introduce
the following bilinear form over H~'/?(Div, A") x H=Y/?(Div, A") (see [26, p. 306]):

(F,G)=:(F,v x G) 4,
where v x G = —(G x v) € H-1/2(Curl, A"), and (,-) 4» represents the duality pair

between H~'/2(Div, A") and H~1/2(Curl, A"). Let Sy be the following single-layer
operator:

(45) Sel6)() = /A B y)oly)dS(y), we Al

Then Sy, is bounded from H~-1/2(A") to H'/2(A"). The following holds for the T2T
map Ly.

LEMMA 4.1 ([26, Lemma 5.61]). For any F,G € H~1/2(Div, A"),

(49) <£k [FL G> = <£k[G]a F>7
(50) (Ly[F],G) = —(Div G, S,[Div F]) on + k*(G, S.[F]) an,

where Si[F) is taken componentwisely, and it belongs to H—'/?(Curl, A").

Now, from the integral equation formulation (20) and the tangential traces of
E and H in (45)-(46) over the annular aperture A" when E™¢ = H"® = 0, the
homogeneous problem (8)—(11) can be formulated as the following system over the
aperture A™:

—2
(51) VXHlAhzﬁﬁk[l/XE|Ah],

TE 9 cos(sN 1/2
Z Cmn COb(Smnl/ ) RCUI‘IQ w%n

E h —
v x Bl (NN, 312 1 sin(sN )12

(m,n)€(ZxN)*
T™ D
cij -2cos(sijl/2)

> . RV 30
(i,§)EZXN* ()\5)1/4|2+sm(351)|1/2 7
(52) +dTEM .2 cos(kl/2)RV 2 logr,
TE . 20 N . N l 2
vV X H|Ah = E Conn * 418 mn Sln(smn / ) culy wyjym

N \3/4 3 N 1/2
(m,n)e(ZxN)* k(/\mn) |2 + sm(smnl)|
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cfM - 2iksin(s1/2)

+ ;
o OB s BT

(53) +d"PM . 2isin(kl/2) V4 logr.

D
Vot

At a resonance k, there exist nontrivial solutions {c1E c¢I'M qTEMY for the above
System.

Using the completeness of the basis given in (36), the integral equation (51) is
equivalent to the following system:

(54)

N\ 2 N o .
<u x H|Ah,Rcur12wm,n/> == <£k[u x E|Ah],Rcur121/1m,n,> . (m,n') e (Zx N)¥,
(55)

< H| 4, RV = 22/ Lo X Bun]. R0 ' i') € Z x N*
V X |Ah 2wz’j’>_ﬁ< k[VX |Ah], 2¢i’j’>7 (’L,])E X s
(56)
)
(v xH|gn,RV2logr) = % (Lr[v x E|[4n],RValogr),

where the overline represents the complex conjugate. Using the expansions (52), (53),
and the identities

(57) <cur12wmn, Rcurlgw%,n,> = AN S O,
(58) (V208 RV20D, ) = ~ADbiudis,
(59) (Valogr,RValogr) = —2mlog(l+ h),

where §,,0 is the Kronecker delta function, the system (54)—(56) can be rewritten as
an equation of INF matrices and INF vectors:

STEDTE cTE
DM cI™M
DTEM JTEM
ATE.TE ATETM CTETEM cTE
(60) — | ATMTE  ATMTM CTM,TEM ™
RITEMTE RTEMTM ATEM,TEM JTEM
In the above, the unknown coefﬁcients are given by the two INF column vectors ¢7¥ =
[ Y m? mrye@xn~ and €T [Czjjw](i’,j’)erN*a and a complex number d” M | They

represent the Fourier coefficients of the TE, TM, and TEM modes, respectively, in
(52) and (53).
On the left side of the system, DT¥M = sin(ki/2), and the three INF diagonal

matrices are given by

S™F = Diag{s,},

D”F = Diag {sin(s,,1/2)|2 +sin(s, 1) 71/?},

DM = Diag {sin(s]1/2)[2+ sin(s]1)|~/?}.
The elements in the matrices are obtained from the field representation (53) and the

identities (57)—(59). We use the superscripts to denote the contribution of each type
of mode to the matrices. On the right side of the system, the four INF matrices are
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ares [ 2R S g, T
ATETM _ -QCOS((S)Z?]'\?/%))LQ/;;;/?)?;ED'1/2 (LkRV 1] ,Rcur12%>] ;
s [ o 7|
s [ " |

CTETEM CTM,TEM

The two INF column vectors and and the two INF row vectors

RTEMTE 514 RTEM,TM 10

CTETEM _ :mevz log 7, Reurly gy, n»} :
CQTM.TEM _ -W<ﬁkRV2 logr, RVQ%)] )
RIEMTE _ [— COS(<5mnl)/32/)4|i];§;§5§2l))|1/2 (LrReurlyy RV, log r)} ,
RTEMTM _ | — COb(()\D;{ fjfklbgl?l(ﬁlgrlp <£kRV2¢u ,RValogr >] ,
i ij

and the scalar

ATEMTEM _ M (LARVslogr, RV logr).
The elements in the matrices and vectors are obtained from using the expansion (52)
for the systems (54)—(56) and the identities (57)—(59). Each pair of superscripts for
the matrix/vector denotes the interaction of two modes after applying the operator
L to one mode. We set the following rules for the indices of the elements of the INF
matrices/vectors:
(1). (m,n) and (m/,n') range over (Z x N)*.
(2). (1, j) and (¢, ") range over Z x N*.
(3). The index (m,n) or (i,7) is the column index of the matrix, while the prime
index (m/,n’) or (¢/,5’) is the row index of the matrix.
(4). The columns (and rows) of each INF matrix are arranged in the dictionary
order.
The product of the block INF matrix and the block INF vector in (60) is well defined
by the usual matrix-vector product.

4.2. Resonances for problem (E). We are ready to analyze the resonances
for the scattering problem (E), which are the characteristic values of the system (60).
We shall follow the avenues described below to derive their asymptotic expansions:

(1). First, we decompose the whole system (60) into a sequence of subsystems
(62) with different angular momentum m € Z.

(2). We further reduce each subsystem (62) to a nonlinear characteristic equation
(86) by projecting the solution onto the dominant resonant mode. Such a
characteristic equation is called a resonance condition. To this end, we es-
timate the contribution from the modes that are orthogonal to the resonant
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modes in each subsystem, which is accomplished by the asymptotic analysis
of each matrix element with respect to the parameter &, and the key estimates
are provided in Lemma 4.3.

(3). Finally, we investigate the resonance condition (86) and analyze its roots to
obtain the asymptotic expansions of resonances. The main results for the
resonances are summarized in Theorems 4.1 and 4.2.

4.2.1. Subsystem for each angular momentum. For a function depending
on the angle 8, we use ©(f) to denote its angular momentum so that the -dependence
of the function is given by el®()?  For example for z/JD and Y defined (27) and
(33), there holds O(¢,y,,) = m and ©(y7) =i. On the other hand, O(logr) = 0.
We have the following orthogonality relation for two basis functions with different
momenta.

LEMMA 4.2, For any f7g € {wmnv zgvlogr}(mnl,J)E(ZXN)*XZXN* with @(f) 7&
©(g), there holds

(61) (L ROp; [f], ROp,g]) =0,

where Op; represents one of the two operators {curly, Vao} for j=1,2.

Proof. We only show the proof when Op; = curly, Opy, = Vy, f = ¢ and
g = with m # i. For simplicity, let f(r,0) = fu(r)e'™? and g(r',0") = g;(r")e"?,
where both f,, and g; are real. A direction calculation gives

ng . curlég — (f/ ( )eime,,g + imfn( ) imeé) . (_g; (’I“/) —iw/é/ + iifn(r)e_iw/f’)
= [hy,;(r,7") cos(8 — 6') + h2;(r,r") sin(6 — g')]eimo—i0"
where § and 7 are the polar unit vectors, and hy;,0= 1,2, are uniquely determined
from f,, g;, and their first-order derivatives. Thus by (50),

(LrReurla[f], RVa4[g])
= —k*(V2[f], Sk[curlyg]) 4n

T T 24 pl2 _2pp! 07,1
_ e /2 ei(m_i)g,del /2 ” iky/7r24 2 cos/2 [h i cos O + hn] sin 0] A g
[@,a(1+h)2] 4m|r2 + 12 — 2rr’ cos 6|
The proofs for the other cases are similar. ]

Using the above lemma, the full system (60) can be decoupled into a sequence of sub-
problems, where the elements in each subsystem attain the same angular dependence
ei™? More specifically, for each m € Z, we have

Dy, dm A RTE RTM d,,
(62) I cIe | = | CIE BTE TE BTE ™ oTE
I c%M CTM B?M TE BTM ™ c%w

In the above, the unknown coefficients for each m are

dTEM o —(; B
A = {dTE m#0, €

m0

DTE/ c TE

m [ mn mn]n'GN*7 M [DTM

Co T jrene.

I denotes the INF identity matrix on ¢? such that Ic/, = cJ,,j € {TE,TM}. The
scalars Do = sin(kl/2) and D,, = s\ sin(s,1/2) for m # 0. The 3 x 3 block matrices,
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relating to the 3 x 3 block matrices on the right-hand side in (60) for each m, are
given as follows:

L ATEM.TEM m=0:
T 2 4 sin(sN D) [V2ATETE oy 20,

m0,m0

[REEMTE(DIE ], . m=0,
R, = [Rymlnen =
(N ATE LI DRE Y] L mAo,
TEM, TM TM\—1 —0-
|:ij (Dm] ) i|j€N* ) m—07

TM ,__ T M
Rm T [Rj;m]jeN* -
mO0,mj mj

[(O0) ARG (DI m#,

TE ._ [~TE
Cm T [Cn/?m}n’EN*
[(STNnn’)ich;f”TEM] N } m = 0,
n/e *
[(s20) LA )Y 2 4 sin(sNoD) V2] Lm0,
’ n’/EN*
{CTTH?/II,TE‘M] o m=0;
cTM . [CTM] . J'eN
m T j'm jreN* T
{Aijgv{rig ()‘go)3/4‘2 + Sin(S%ol)ll/ﬂ N m#0,
? j'E *

BTETE ._ [BTE,TE — (N )1ATETE (DTE)—I}

n’n;ym mn’,mn

n’ ,neN* ’
TM,TE ._ TM,TE _ ,TM,TE/ nTE\—1
Bm T |:Bj’n;m - Amj’,mn(Dmn) :| . )
7’ ,meN*
TE,TM ,__ TETM _ (N \—1 ATE,TM  nTMy\—1
Bm T {Bn’j;m - (Smn’) Amn’,mj (ij ) ] . ’
n/,jeEN*
TM,TM .__ TM,TM _ ,TM,TM /~TM\—1
B, = {Bj'j;m = Apjimg (Dmj L.,jeN*'

In the above, DT'E, denotes the mn’th diagonal element of D” in (60), and Agﬁ}?;fn
denotes the mn’th row, mnth column element of ATE:TE in (60), etc. The square
bracket [-] represents an INF matrix, an INF row vector, or an INF column vector,
with the subscript given by the following:
1. The subscript n € N* (or j € N*) represents the column index n (or j) in a
row vector.
2. The subscript n’ € N* or j' € N* with a prime represents row index n’ (or j')

a column vector.
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3. The subscript n’,n € N* represents the column index n’ and row index n for
a matrix.
Consequently, solving for (60) is equivalent to solving for k € B such that, for each m,

the system (62) attains nonzero ¢2-sequences {d,,,clF cIM}.

4.2.2. Characteristic equation and resonance condition. To proceed, we
transform each system (62) into an equivalent characteristic equation. To this end, we
first analyze the matrix elements in (62) for h < 1. Let Sy be a single-layer potential
over the interval (0,1) given by

(63) (Slo)(r):=2 [ g lom 7 0(1")ds(r),

wherein the kernel function is the fundamental solution of the 2D Laplacian. It
is known that Sy is bounded from H-1/2(0,1) to H'/2(0,1) = (H-1/2(0,1))" [35,
Lem. 2.1.2]. Let

1 *
_ ﬁcos(mrr), n € N*¥,
(64) on(r) {1, "

Then, {¢, }nen forms an orthonormal basis of the space L2(0,1). We equip H/2(0,1)
with the norm

1B aon = S (4 Y21 )0
n=0
and H~1/2(0,1) with the norm
o0
2 2\-1/2 2
1y = 204107

where (,-)(0,1) indicates the duality pair between H~1/2(0,1) and H/2(0,1). The
estimations of the matrix elements in (62) are given in the following lemma.

LEMMA 4.3. Let h<< 1 and k € B. For each m € Z, the following hold:

(i). The element BTETE 40 the matriz BIETE qttains the following asymptotic

expansions: ,
(65)  Bpmm =—ASo[(n'm) P pu], (1) 2 bn) 12(0,1) + O(h)epvin

TE,TE\ oo
n'nym Jnn/=1

where the INF matriz {e
h<1.

(ii). The element Bz,]fg;M in the INF matrizr BTETM qttains the following as-
ymptotic expansions:

: 02 — 02 is uniformly bounded for

TE,TM TE,TM
(66) B iom =1 =0m0)O(h)eyin
where the INF matriz {EZ/%;Z;M =1 " 02 — 2 is uniformly bounded for
h<1.
(iii). The element B]TnMJE in the INF matriv BIMTE gttains the following as-
ymptotic expansions:
(67) Bjimin " = (1= 0m0)O()ejninn ™.
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where the INF matriz {e?fﬁE};’f}n,:l 2 02 — 02 is uniformly bounded for
h<1.

(iv). The element BjT,?jIT;lTM in the INF matriz BLETE qttains the following as-
ymptotic expansions:

(68)  Bjjm " =—ASol('m)205], (17)'265)1200) + Oh)es 5o ™

Jam ]J?m

where the INF matrix {65’2’.2’3}2?”,:1 : 02 — (% is uniformly bounded for
h<1. ’

(v). The two INF column vectors CLE and CTM are uniformly bounded in €% as
h— 0+. For m#0,

(69)
Coiton = = 2iAno cos (sl /2)h'/? [(So[m’w)%n/], $0)12(0,1)
+O(hlogh)eSTE]
(70)
I, = —2mcos(sNol/2)h"/2 [ (Solool, (') 25) p2(0,1) + Olhlog h)eSEM |

and for m=0,
(71)
crE —
(72)
Cl il = —2V2micos(kl/2)h [(so [60], (5'm) 2 b5) 12(0,1) + O(hlog h)eﬁ?;,ff] ,

where the two INF column vectors {eCTE} and {eCTM} are uniformly bounded
in 02 for h< 1.

(vi). The two INF row vectors RTF and RIM are uniformly bounded in ¢* as
h—0+. For m#0,

(73) Rflfn— 21h1/2(80[q$0] (nﬂ)1/2¢n)L2(01 + O 2 logh) S{UE ’
(74) R?% k2h1/2 [(5‘0[(;50] (j7) /2¢J)L2 0.1) + O(hlog h){e& RTM }7

and for m =0,

(75)  RIZ =0,
r_ 3k

Rj; -

[(SolGm)20,1. 60) 2(0.1) + O(hlog W){efEM ]

where the two INF row vectors {efLF} and {XTMY in €2 are uniformly
bounded for h < 1.
(vii). As h— 07T, form+#0,

1
A = 4cos(sN 1/2)AN, [ hzgh

o >h+i@m(k>h]

 4k*m? cos(spmol/2) _hlogh
Amo 4m
(77) + cos(sN,1/2)O(h? logh),

+ G () + iﬁm(k)h}
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and for m=0,

log h

(78)  Apm =—4cos(kl/2)k [—h 1 +ai(k)h+ip1(k)h + O(h*logh)| ,

7

where for m € Z,

3 1 [™2 (cos(2ksin(f)) — 1) cos(2mb)

w5 T, sin(0) do
(79) + g llog2 —y — g(lml +1/2)],
(81)  am(k)= 1 (k) ; ozm_l(k)’
(82)  Bl) = Pt BN E Fnoa )

v is Buler’s constant, and v denotes the logarithmic derivative of gamma
function (cf. [37, section 5.2(i)]).
In the above, the prefactors in the O-notation depend only on B and m.

Proof. Details of the proof are presented in Appendix C. O

Now, we define three INF matrices
BTE,TE BTE,T]M P
B, = { BIMTE BIMTM | P = [ppn]n men+, Pa = p |

which are uniformly bounded from ¢? to ¢? for h < 1, and four INF column/row
vectors

cTE TE M CTE
Cm = |: C?M :| ;o Rmi= [ Rm Rm ] y Cmi= |: C?M :| y Pi= [pn/U]n’GN*»

uniformly bounded in ¢2. In the above, the element
D = (Sol(n'm)2pur], ()2 dn) 12(0,1)s nENT,
n’'n (SO[(HIW)1/2¢W/L¢0)L2(071)’ n=20,
for n € N, where ¢,, is as defined in (64). Then, (62) becomes

[ Dm _Amm _Rm :| [ dm

(83) *Cm I - Bm Cm

}:0, meZ.

We have the following lemma.

LEMMA 4.4. For 0 < h < 1 and k € B, B,, is uniformly bounded from % to ¢?
with

(84) ||B, +2P5||=0O(h) ash—07.

Moreover, I —B,,, and 14+ 2P5 attain uniformly bounded inverses for h < 1, and there
holds

(85) |I-B,,) ' —(I+2Py) Y| |=0(h)  ash—0".

In the above, the prefactors in the O-notation depend only on m and B.
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Proof. The estimation (84) follows from Lemma 4.3 (i)—(iv). Using the Neumann
series, we see that (85) holds if I+ 2P is invertible, which is true since Sy is positive
and bounded below [36, Cor. 8.13]. d

From the invertbility of the operator I — B,,, in the above lemma, for each m € Z
the system (83) can be further reduced to the following single nonlinear equation:

(86) [Din (k) = Ay (k) — Ry (k) (T = By (k)™ Cr (k)] di =0,

where we make the argument k explicit to emphasize the dependence of the equation
on k. We call (86) the characteristic equation, which is the resonance condition for
the scattering problem (8)—(11).

4.2.3. Asymptotic analysis of resonances. We are ready to state and prove
our first main result for the resonances.

THEOREM 4.1. Assume that h < 1, and the resonances for the scattering problem
(8)—(11) in the bounded region B are given as follows:
(i) For each given integer m # 0, there exist a finite sequence of resonance in B

m2h _ 2Hm(/{/’m’2m/,h>

87 ko = km2m — + O(h*1og? h),

( ) 2 2 2km,2m’ km,2m’l ( s )
m’ € N* is bounded,

and a near-|m| resonance
(88)

. |m|h  4lm|h T, . s

b = | = 20 (G ) = v (D) +Bo(ml) = ()

+ O(h*logh),
where K, om =1/m? + (2"7#,
(m? — i)

(89) M, (k,h)= hlogh + 4k*h (G (k) + iBm (K))

— AN (k) + 1B (k) + 4(m2 — k*)h(pT (I + 4P)'p),

and &, B, Gom, and By, are defined as in (79)—(82).
(ii) m= 0: there exist a finite sequence of resonances in B

(90) kg ams = Ko.2m — 2k 2m/ Mo (Ko 2m, h) + O(h*log? h),

where

logh

(91)  Mo(k,h)=—h + 4oy (k)h +4iB1 (k)h — 4hp™ (I +4P) " 'p.

7r
Moreover, each resonance in (87)—(90) obtains an imaginary part of order O(h).

Proof. We obtain the resonances for the scattering problem by solving for the
characteristic values satisfying

(92) D (k) = Amm (k) + Ron (k) (T — Bm(k))_lcm(k)

for each m # 0, which reads
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(93) sy (elomol/2 — emismol/2) = _j(elomol/2 4 e~i5mol/2) [T, (k, h) + O(hlog h)] .

Recall that s% is defined by (37) with A\, = (8Y,)? given in (31). Note that 3,

m
attains asymptotic expansion (124) as h — 0. We first find the resonances that are

away from the integer number m as h — 0. More precisely, at such resonances, we have
liminf |s2o| > 0.
h—0
To proceed, note that elsmol/2 _ e=isnol/2 = O(hlogh) for h < 1, since the right-hand
side of (93) is O(hlogh). Therefore, we have for some m’ € N* that
€mms =8Nl —2m'm =0(1), as h— 0T,
and (93) leads to

. 2AIT,, (k, h) )
1 —efmm/ = _ """V 7 O(h*1 h).
¢ SN, (k) T O 1N

By Taylor’s expansion of log(1—2z/(s)+z)) at =0 and by IL,,(k,h) = O(hlogh),

ZiHm(k, h) _ _2Hm (ka h)
sN o +ill,, (k, h) B N

mO0
Therefore, €., 2m' = O(hlogh) so that s 1 =2m/m + O(hlogh). But by (124),

+ O(h%log?h).
S

Emm: = —ilog [1 - — O(h?log h)}

b= SN2 + (50)2 = \fm2 —m2h + 52,0 + O(1?).
We thus have
k= kmygm/ + O(hlog h)

Now, according to the definition of II,, in (89), we have

IL,,, (k, h) = I, (K 2m, h) + O(h? log? h),

so that
Qle(km 2m/ h) 2 2
oy = ——————22 7 7+ O(h”log” h).
€ (2m/)m +O(h"log™h)
Hence
N @em)r 2, (km.2m . h) 27 2
= - h*log“h
Smo I 2m T +O(hlog™h),

and one obtains the expansion (87). Therefore, resonances k satisfying (92) attain
the asymptotic expansion (94) for h < 1 for some m' € N*.

As for the existence of resonances, one notices that when k lies in the region
Dy, = {k € C:Re(k) > 0,|sN,(k)l — (2m/)r| < h'/?} C B, the following holds on the
boundary of this disk:

| (€150l 1) = (i) 7! (€0l — 1) [T (k, 1) + O(h21ogh)] | = [i(siol — (2m))]

=0(h) < Vh=li(siel — (2m")m)].
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Rouché’s theorem states that there exists a unique root for (92) in Dj,. Similarly one
can verify the expansion (90) for m =0.

Finally, we solve for resonances that are asymptotically close to the int}gger m
when h — 0. To do so, assume that sN, = o(1), as h — 0. Since (eimol/2 4
e~ismol/2) =1 4 O([sN,]2), we have

i[s o]l = spig('*m!/? — e7Eomo!/2) - O (s}, )
= — 1[I (k. h) + O(h*log h)] + O([spol*hlog h) + O([spo]*)
= —ilL,,(m, h) + O(h*log h) + O([s}o]*hlog h) + O([sho]*)
— —9m2hi [(@m<m) + 1B (m)) — (m (M) + 1B (m))}
+O(h?log h) + O([spol*hlog h) + O([spo]*).

Thus, [s),]? = O(h) and

m0
(sl = =2mhl " (@ (m) + B () = (@ (m) + i85 (m))] + Ok log ),

which implies (88). O

Remark 4.1. The resonances attain the imaginary parts of order O(h); thus they
are very close to the real axis when h <'1. We point out that ky, 5., and k7, given
in (87) and (88) are resonances associated with the TE modes in the annular hole.
Note that the leading-order of resonances k, ,,., depends on the metal thickness [,
while the leading-order of resonances £, is independent of . The independence on
the metal thickness for the latter is also called epsilon-near-zero phenomenon [41]. On
the other hand, kg ,,,, given in (90) are resonances associated with the TEM mode
in the annular hole. As discussed in section 5, the excitations of these two types of
resonances are very different.

Remark 4.2. First, it can be shown directly from the asymptotic formula in The-
orem 4.1 that Tm(kg 5,,/) = —ko’zm/hf()Qko’le Jo(t)dt + O(h?log® h) < 0 by using (1.1)
n [18]. Using [37, (10.22.9)] and [40, p. 253], we have Im(k},) = —@ o (IM1) +
O(h%logh) < 0. It is not obvious to deduce from the asymptotic formula in The-
orem 4.1 that Im(k;, 5,,,) < 0 for m # 0. A direct calculation of the sign of the
imaginary part of resonances is very technical. However, from the scattering theory,
the resonances, which are the poles of the resolvent for the Maxwell’s operator, lie

below the real axis.

4.3. Resonances for problem (O). In this section, we characterize the reso-
nances for scattering problem (O). Due to the similarity between the even problem
(8)—(11) and the odd problem (12)—(14), we shall directly state the difference and the
final results. By the same vectorial mode matching procedure, we can still obtain the
linear system (60) but with the following replacements: on the left-hand side,

sin(kl/2) — cos(kl/2), sin(s) 1/2) = cos(sY, 1/2), sin(s%l/?) — cos(sgl/Q);
on the right-hand side,

cos(kl/2) — —sin(kl/2), cos(s), 1/2) — —sin(sY 1/2),
cos(sgl/Q) — —sin(sﬁl/?),

and the auxiliary coefficients |2 + sin(s)y,,1/2)| and |2 4 sin(s/}1/2)| on both sides
remain unchanged. With the above minor changes, we obtain the eigenvalue problem
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(83) and the characteristic equation (92) with Dy, Amm, R, Bm, and C,, changed
accordingly. From now on, we shall add the superscript o (or e) to all the elements
in (83) to indicate that they are for problem (O) (or (E)).

The asymptotic analysis of the resonances is stated in the following theorem.

THEOREM 4.2. Assume that h < 1, and there exist a finite sequence of resonances
for problem (0O) in B for each given integer m # 0,

m2h B 2Hm(km72m/+1,h)

+O(h%log?h), m' €N,
2km,2m’+1 km,?m’+1l ( & )

(94) k:n,,Qm/—',-l = km,Qm’+1 -

and a finite sequence of resonances when m =0,
(95) kb2t = ko2mr1 — 20 2m 11110 (Ko, 2mr 11, h) + O(h*log? h),  m' €N,

2m’+1 2.2
where kp om/+1 =1/ m? + W

Proof. For the scattering problem (O), the characteristic equation (92) becomes

(96) isNO(eiSﬁol +1)= (eisfw\iol — 1) [l (k, k) + O(h*log h)] .

m

In the following, we claim the trivial solution k = y/AY is not a resonance. According
to Lemmas 4.3(v) and 4.4, C;, =0 so that ¢j, =0. But (52) and (53) imply v x E? =
v x H° =0 on A" so that E°=H° =0 in the whole space R3\Qy;. Moreover,

ish, (eis%ol +1)

2
lim -~ = lim lim S =lim lim [IL,(k,h) + O(h*logh)] =0,
h—0 [ h—0p._, /)‘ﬁo (e‘smol — 1) h—0p._, /)\z\rno

which is impossible. Thus, there is no resonance near s,,g for problem (O), which is
the main difference compared with problem (E). The proofs of the expansions (94)
and (95) for the resonances follow the same lines as Theorem 4.1. |

5. Electromagnetic field enhancement at resonant frequencies. In this
section, we solve the scattering problem (3)—(6) when the incident wave {En¢ Hn¢}
is present and study the electromagnetic field enhancement.

5.1. Field enhancement due to the excitation of a TE mode in the an-
nular hole. Let us first consider the scattering problem when the incident frequency
coincides with the real part of the resonance k7 ,,,, (m’ € N*) in (87) or (94), or the
resonance ki in (88). For conciseness of the presentation, we only show the calcula-
tions for the normal incidence such that the polarization vectors in (2) are given by

E°=(0,1,0)T and H® = (1,0,0)7.

THEOREM 5.1. For a normal incident wave with the polarization vectors E® =
(0,1,0)T and H® = (1,0,0)”, the magnitude of electromagnetic field E and H in the
hole G attains the order O(h™"') at resonant frequencies Re(k; ) for each m' € N*
or Re(ky). Specifically,
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(1). If k = Re(k?

1,m/’

the hole GQ‘_ :

) for an even integer m’, the following expansions hold inside

’ ! —ikl,m/l/Q-
(07) Hy(a) = — = (-2 ST 2T o o),
A[kT 0 B1 (k1) — Ba(Ka,mr)]
, , 7ik:11m/l/2 / 2.
(98) El(m) _ hil(fl)m /2 kl,mze _ COS(m W/lxg)xll " O(log h),
4[k1,7n’ﬁl (klm’b') - ﬂl(kl,m’)]
, , _ik1,1n’l/2 i .
(99)  By(z)=h"1(—1)"/2 kymre cos(m'm [lag)rixd + O(logh).

ALKS B (k1) = B (k)]

(2). If k=Re(k] /) for an odd integer m’, then in the hole G", we have
(100)

(m/—1)/2 sin(m'n/lzs)x e Fm /2

AK3 s B (Rt ) = B (et )]

Hs(x)=h""(-1) + O(logh),

(101)
, k m —ik 7m/l/2 : I l Qe
Ei(z) = — b~ (—1)m'-D/25 26 ! sin(m'n/ mg)x11+0(logh)’
4[k1,m’61(k1,m') - 51(k1,m/)]
(102)
iky /2 .
Eg(zc):—h*l(_1)(m’71)/2k1,m'6 * /Sln(m’ﬂ/lxz):lflle+O(1ogh).

4[[€im/51 (kl,m’) - 61(k17’rﬂ'”
(3). If k=Re(ky), then

ih_le_”/2x1

_ ih_le_il/Qx% o
1oy BO=Gm my) TONE

(105) Es(z) = e ey O(logh)
TG - 81 '

Proof. For the normal incidence, the reflected field is
Eref _ _EOeik:(wg—l),Href _ Hoeik:(wg—l) for T3> l/2

The total field can be decomposed as

E¢(z) + E°(x), x3 >0,

E(z) = {Ee,*(w*) DB (at), g0 H(z) = (ik) 'curl E,

wherein {E°, H®} and {E°, H°} satisfy (8)—(11) and (12)—(14), respectively. On the
annular aperture A", using the integral equation (21), it follows that

i 0
i 2 . Hne Href )
VXHJ|A}L+.i£k;[VXE]|A}L]:VX#lAh: _e—ikl/2
ik 2 0
o —ikl/2 .
_|—e Va(rsinf) i=eo.

0 9
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Then, using sin = (2i)~!(el? — e71?) and Lemma 4.2, the mode-matching procedure
in section 4.1 gives rise to only two inhomogeneous INF linear systems as shown below:

Di — Al _Ri }[dﬂ'} [a } .
106 m. mm m. mo| = m |, j=eo0;m==xl.
(106) [ ¢, " 1-By, || o b
In the above, c® =1, ¢ =i, a,, = %(Vgr sin@, ReurloyX ), and
(Ao
- ikl/2 . e v
{M*NW<V2TSIHH,RCHI"IQ fxn/>}
mn’ N mn’ n’/eN*
b,, = eikl/24D ) 5
{W<VQT SIHG,RVmej/>
L mj jEN*
[ kelkl/2(AN ,)3/4 . -~
s — (rsind, 07, }
(107) _ { 2N, (rsin®,,),..) ”/GN*l ’
I {0}jren

where the last equality holds due to Green’s identities. We study the enhancement of
the electromagnetic field {E¢, H®} in the hole G" first.
By Lemma B.2, integrating by parts gives

_ke—ikl/2 (\N 3/4 ke—ikl/2 (\N 3/4 ‘
Oy = c (o) (reos, YNy gn = — ¢ (o) 7%hnLO(h"/Q)

21 2i
and
(rcos@, N ) an = O[(n’)_2h3/2],

so that ||by|l;z = O(h). Using Lemmas 4.4 and 4.3(vi), the system (106) can be
reduced to the following inhomogeneous equation:

(D5, (k) = A, (k) — RS, (k) (I - B, (k) Cy, (k)] dy,
=a, +RE(I-BE) b,
_ke—ikl/2\/ﬂ(/\%0)3/4

_ h3/2
5 o)
for m = £1.
(1). Let k= Re(kj /) for an even integer m’ € N*, in which k7 ., is given by (87).
Since k — ki ,,,, = —Im(k{ ,,,)i= O(h), we obtain

DS (k) — Dy (k) = — (D5 (Y in(kS )i + O(h o h)
= AR(=1)"™ 2 K3 B () = B ()] £+ O(R log ),
Afnm(k) - Afnm( :1,m’) = O<h2 IOg h)a

Ry, (k) (I =B, (k)" Cy, (k) = R5, (k] ) (1= By, (K] )~ CF, (K ) + O(h? log h).

Therefore,

& - ket s (—1)™ e HR0m /23 2h 4+ O(h3/?)
" 16h[k2 B (K1 mr) — Bi(k1me)] + O(h2log h)
—-1/2 (—1YM 2=k i l/2, /o
__h ";“”E D™ e 2T (1 + O(hlog h))
16[k1,m//81(k1,m/) - /81 (kl,m’)]
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and
lles,lle = [[(T=Bs,) " (b + Cidy, )2 = O(1)

for m = £1. Hence, using the field representation (46), inside the hole G’}r, there holds

el — TE)e mn COS(Sma3) |
H3 (m) Z Z d k mn(rv 0)

me{—1,1} n=1

—2iAN cos(sNyz3)
Y 0 O 5) 1, )
me{— 11}
_2 N 11/4 (N
_ Z Z i[A] COb(Sm"x?’)wan(rG)
ksin(sl,.1/2)

me{—1,1} n=1

o =2\ cos(sN z3)
+ Z d, : A g o (750)
me{—1,1}

'y cos(m'm/lx3) cos(e)eikl,mrlﬂi

=—h"'(-)™ .
1) ALk Br (K1) — B (k1 me )]

+ O(logh).

Similarly, an application of (45) yields the asymptotic for Ef(x) and E§(x).
(2). The case when m’ is odd can be derived similarly as above.
(3). Let k=Re(k}). Again, k — ki = —Im(k})i= O(h) so that

Ds, (k) — Dy, (k}) = — [D5,] (k{)Im(k} )i + O(h?)
=4h(B1(1) - B1(1))i+ O(h?),
AC (k) — AS, (kD) = O(h%log h),
() (1= B, (1)) 15, (k) = R, () (T — BS, (k7)) 5, (k) + O(h2 log h).

Re

m

Thus,

o h—1/2e—i1/2\/%
™16((B1(1) — Bi (1))

and ||cg, ||z = O(1). Inside the hole G,

(14 O(hlogh)),

= —2i[AN 1Y% cos(sN x3)  n
H3(x) = [emin]© T U (1,6)
3 me{Zl,l}T; : ksin(sN, 1/2)
—2iAN cos(sNyx3)
YD e (1 0)
me{-1,1} k
—1h le=i/2 cos

= O(logh),
1B =y TOlEN

and similarly, the asymptotic expansions for Ef(x) and E§(x) can be derived. |

From (106), we see that a normal incident plane wave can only excite the TE,,,
modes in the annular hole with m = £1. To excite higher-order modes with |m| > 2,
an oblique incident wave needs to be applied. Without loss of generality, we assume
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that the incident direction d = (d;,0, —d3)? and the electric polarization vector Eg =
(0,1,0)T. Then repeating the above procedure gives

0

inc ref _i eikdircosd
(108) v x B EE | e ikast/z ik | | dze MR Rowrly g
2 0 0
From the Jacobi-Anger expansion [11, eq. (3.89)],
eikdlrcose -1 e -
(109) e = (ikd)™" > [ Tm(kdir) = Smole™,

the expansion contains terms with higher-order angular momentum. Therefore, the
enhancement of the electromagnetic field {E,H} can be obtained at the resonant
frequencies k =Re(k*, ) with |m| > 2. We omit the detailed calculations here.

m,m’

5.2. Field enhancement due to excitation of the TEM mode in the an-
nular hole. In this section, we consider field enhancement at the resonant frequencies
k =Re(kg 5,,/) in (90), which are associated with the TEM mode in the annular hole.
When a plane wave impinges on the subwavelength structure, the source term in (108)
is orthogonal to the resonant mode in the sense that

eikdlrcose -1 eikdlr cosf __ 1
<cur12ikdl,’RV2 10gr> =— <Cur12ikd17 Va 10g7“>Ah =0.

This follows from the orthogonality relation curlo H'(A") L Hy(A") in Lemma 3.1.
Thus the mode matching formulation leads to a homogeneous system for m = 0,
which only attains trivial solution for k£ € R. This implies that no field amplification
could be obtained at the resonant frequencies k = Re(kg /). In other words, TEM
modes cannot be excited by using the plane wave incidence.

To excite a TEM mode, we consider a spherical incident wave produced by an
electric monopole located at (0,0,y3)”7 with y3 > 0, and it points toward the z3-
direction. Namely, E"° satisfies

curl curl E¢ — g2EnC = —230(0,0,23 — y3),

where 23 = (0,0,1)7 is the unit vector in the xs-direction. Indeed, it is known that

47’('\/7'2 + (1'3 — y3)2

The reflected electric field produced by the perfect conducting metallic slab is given
by

_ eik/r?+(z3—ys3)?
(110) E" =[5+ k™20, V] .

ik\/r24(z3+ys3)?
Eref[i3+k28$3V]< ‘ )

4dm\/1r? 4+ (23 + y3)?
We have the following result for the field amplification.

THEOREM 5.2. Let the incident electric field be of the form (110). The magnitude
of the total electromagnetic field E and H attains the order O(h™!) at frequencies
k=Re(k; /) for m" € N*. Specifically,
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(1). If k=Re(k} /) for an even integer m', the following hold in the annular gap

b 0,m’

G :
2(—1)" (ko m, y3)

(111) E| = h 222 2y cos(ko e ws) + O(log ),
2(—1)™"2c(ko

(112) E,= (=1 ;( 0.m'»93) x2 cos(ko.mx3) + O(logh),

2(—1)™ 2ic(kq

(113) Hy=— (=1) lhc( 0.m'Y3) g sin (ko x3) + O(logh),
2(—1)™/2ic(ko

(114) Hy= (=1 1hc( 0.m'Y3) x1 sin(ko,mxs) + O(logh),

VI (kT2 4
where (b, ) = ~ iyt iy -

(2). If k=Re(kg ) for an odd integer m’, then in the annular gap G",

2(—1)""=D2¢(kg 3

(115) E, = 3 x1 sin(komxs) + O(logh),
(116) Ey, = 2(_1)(7”/_1)}/126(]{0’7”/’%) x2 sin(kom xs) + O(logh),
(117) Hy=- 2(_1)(ml1);2ic(k0’m/’y3) 22 cos(kom x3) + O(logh),
(118)  Hy= 2(1)("1/1)?0(1“0””3”3) 1 co8(ko mrzs) + O(logh).

Proof. We have on the annular aperture A"

Hinc 4 Href v2 logr

VX2Ah':F(T7y3)|: 0 :|7

where

. _(ky/r? +y3 4+ i)r? iky/rP g2
(T7y3)_ 47T'k‘(7“2+y32,)3/2 € ’

Following our mode matching procedure, we obtain the systems below, which are
analogous to (106):

J _ AJ _RJ j .
(119) {l_jgj At Ii{]“_;,j Hdm]cﬂ{am ] j=e0, meL.

In the above, the source term

(120) — m(F(r, y3)Valogr,RValogr), m=0;
" ﬁ <F(T7 yS)V2 ].Og T, RCUI‘I'(/J%()), m # 07

and
{ 251\7/(’;7;\,/)1/4 (F(r,y3)Valogr, ReurloypN ) }

b n’eN*
m= isi,_, N
{W(F(ﬁ y3)Valogr, RVW%,)}

j/EN*

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/17/23 to 131.204.254.113 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1042 JUNSHAN LIN, WANGTAO LU, AND HAI ZHANG

We can derive from Lemma 4.2 that a,, =0 and b,, =0 for m #0. As such we need
only focus on the case m = 0. We further restrict to the case j = e as the case j =0
can be dealt with in a similar manner.

A direct calculation shows that

. 14h (k r2 4 y2 + i)
ag = : / - RV gy
(L+h) Jy (

~ 8rklog 2+ y3)3/2

i (BV1+y2+i
_ L—( ) VIR 4 O(kh),
8rk (14 y3)3/2
[[bole2 = O(h),

RS(I—BE) by = O(h).

At k = Re(kg,, ) for an even integer m’ € N*, noting that k — kg, =

—Im(kf 5,/ )i= O(h), we have

D§(k) — D (ks ) = —1/2 cos(kfy i 1/2)Im (kG .0 )i+ O(R)

= (=1)™ 24k By (ko m: )i + O(h* log h),
AGo (k) — Afo (K5 1) = O(h* log h),
RG (k) (I - B (k)™ C§ (k) = R (kg 1 ) (L= BG (kG 1))~ CG (kg ) + O(h log h).
Hence, from the equation
[D§ (k) — Afo(k) — R§ (k) (I - B§(k)) " C§(k)] dg = ao + RG(I —B) ™ "bo,

we can derive that

L eifo.m’ v 1+y3 (ko,m /14 y3 +1)

ds = — (—1)™'/2h~
0=—(=1) 827K 1 B1 (Ko, ) (1 +1/3)%/2

(1+ O(hlogh)),

and by Lemma 4.3(v), there holds
llGllez = [I(T—BE) ™" (bo + C{df)[|e= = O(1).

Therefore, using the field representations in (45) and (46), we obtain the desired
asymptotic for the electromagnetic fields in the annular gap G*. O

Remark 5.1. We note that the electromagnetic field in the annular hole is ampli-
fied with the order O(h™") at the resonant frequency k = Re(kg /) for some m’ € N*.
Moreover, the wave oscillates along the x3 direction, but it varies linearly in the
narrow annular cross section.

6. Discussion and conclusion. In this section, we discuss how the problem
geometry and the topology of the subwavelength hole may affect the resonances and
field enhancement for the scattering problem (3)—(6).

First, as pointed out at the beginning, for clarity the analysis is only presented
for the inner radius of the annulus a = 1. If a # 1, by the change of the scale, the roots
k of the characteristic equation (92) and the thickness | are replaced by ka and l/a,
respectively. Thus the value of a could significantly affect the resonant frequencies
given in (87), (88), (90), (94), and (95). In practice, one can tune this parameter for
applications in different frequency regimes. Moreover, we note that h is the relative
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width of the gap G". Thus one can increase the inner radius a while keeping the
absolute gap width d = ah invariant. This will further increase the electromagnetic
enhancement to the order O(h™!) =d=1O(a).

Note that we have assumed that the metal thickness [ = O(1) throughout the
paper, and the prefactors in the error terms of the resonance formulae (87), (88), (90),
(94), and (95) depend on I. One natural question is how large [ is allowed to be so that
our analysis still holds true. Compare the expressions in Theorems 5.1 and 5.2. The
leading terms of the fields due to TE modes do not change significantly as [ decreases
or increases; however, the leading terms of the fields due to the TEM mode change
significantly in terms of order I30O(h™') as [ increases, since S (kj,,.) = O(I7?) as
I — co. We can carry out more delicate analysis to quantify the dependence of the
resonances on | more precisely and for [ not necessarily small. In fact, to ensure the
existence of finite resonances for m # 0, it is sufficient to assume that (hlogh < 1.
Let us revisit the characteristic equation (93):

N

Sgo(eisaol/2 _ e—ismol/Q) — _i(eisf\]nol/Q + e—isfvnol/Q) [Hm(k,h) + O(h2 logh)] )
If lhlog h < 1, there holds

sNoltan(sNo1/2) = —1[,, (k, h) + O(h?log h)] = O(hllogh) < 1.
Thus sYol < 1 or s¥1/2 —m/m < 1 for m’ € N*. Then following lines parallel to
those of the proof of Theorem 4.1, it can be shown that
Im(k}, ,./)=O( thlogh), m' €N*

m,m’

where the prefactors no longer depend on I. However, the configuration when | = oo is
more subtle, since the problem is not posed in an open medium anymore. One needs
to define the corresponding scattering problem properly and impose the radiation
conditions carefully. The other extreme case is when the metal is infinitely thin with
I =0. In such a scenario, the hole no longer supports waveguide modes, and a totally
different approach needs to be adopted for analyzing the scattering problem. This is
beyond the scope of this paper and will be investigated in a separate work.

We would also like to point out there are no resonances in the region B when the
narrow annular hole is replaced by a tiny hole with a simply connected cross section,
such as a tiny hollow hole with circular cross section. Assume that the radius of
the circle is given by h < 1. We can still apply the multiscale analysis framework
in this paper for analyzing the resonances. However, the two eigenvalue problems
(DEP) and (NEP) attain the eigenvalues of order O(1/h), though the corresponding
eigenfunctions can still be used to construct the two function spaces curly H'(A") and
VoHg (A"). In addition, the finite-dimensional space Hy(A") becomes {0}. Therefore,
the mode matching procedure leads to a system analogous to (83), with its first row
and first column removed. This new system possesses only the zero solution for k € B
by Lemma 4.4. In other words, there are no resonances in B.

Finally, we point out several directions along this line of research. In this work,
we focus on the resonances induced by the subwavelength annulus gap. Another
type of resonance is related to surface plasmon, and the quantification of its effect
on the overall resonant behavior of the structure is still open [17]. There are some
preliminary studies of the plasmonic effect on the resonances in [19] for the annular
hole, but the understanding of the interactions between two types of resonances is far
from complete. Another direction is to investigate the resonant scattering in more
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sophisticated structures, such as an array of annular holes, or the bull’s eye structure,
etc. [17, 41]. The resonant phenomena become richer in those structures. In terms of
applications, there are also several topics that need to be explored. For instance, the
annular hole structures have been applied for detecting biomolecular events in a label-
free and highly sensitive manner from the shifts of resonant transmission peaks [38].
One fundamental question in such applications is the sensitivity analysis of resonance
frequencies, where the goal is to quantify how the transmission peaks shift with respect
to the refractive index change or the profile change of the biochemical samples.

Appendix A. Dirichlet eigenvalues and eigenfunctions. In this section,
we characterize the asymptotic behavior of the eigenpair {)\ﬁnﬂ/ﬁn}meZ,neN* of the
Dirichlet eigenvalue problem (DEP) for 0 < h < 1.

LEMMA A.1. For h< 1 and m € N, the nonzero roots of (29) admit the expansion

_nm (4m® —1)h
(121)  BR ()= + =g —

-3 2
mn +n O(h )7 m=0,1,2,---, n=12,---,
where the prefactor in the O-notation depends on m only.

Proof. Let C > 0 be a sufficiently large constant that is independent of h. Since
B and S(1 4 h) are of the same order of magnitude when |3| > C, we apply the
formulas in [37, sec. 10.21(x)] to obtain the asymptotic formula (121) in the region
(=00, —C|U[C,00). The rest is to show that there are no roots in (—C,C)/{0}.

We distinguish two cases: 0 < |5]| < ¢g or |5] € (co,C) for some sufficiently small
constant ¢y > 0. If 0 < 8 < ¢y, then by the asymptotic behaviors of J,, and Y, of
small arguments [37, 10.7.3 and 10.7.4], we obtain for any fixed h > 0

Fy(B,h) = (8/2)™/(D(m + 1)) (=7~ ")T(m)(B(1 + h) /2) 7™
— (B4 )2 /(D4 1)~ )T (5/2) ™
=(=(mm)™ ) [(1+h) ™" =(1+m)"] >0, B<L
Now, suppose |3] € (¢g,C) so that F' becomes analytic at h = 0. Taylor’s expansion
directly gives rise to

F(B,1) = (Y (B) T, (B) = T (B)Y,,,(8)) Bh
+ (Yo (B) I (B + Enh) = T (B)Y i (B + Enh)) (BR)? /2

for some &, € (0,1) depending on h. Since Y,,,(8) and J,,(8) are linearly independent
over the interval [cg,C], the first term is in fact strictly nonzero, so that for h < 1,
F(h;8,m) #0 for any |B] € (cg,C), which concludes the proof. d

The following lemma characterizes the asymptotic behavior of 2 (r,0;h) for
h<1.

LEMMA A.2. For h< 1, re[l,1+h], (i,j) € Z x N*, we have
(122)

s )

where the function Y2 :[1,1+ h] = R is given by

=1 )

and the prefactors in the O-notation depend on m only.
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Proof. For h < 1, Lemma A.1 implies that B\?nln > 1; thus by [37, 10.17.3 and
10.17.4], we have

i (Bfonin) it (BiominT) = Ty (Biongn) Yim) (BfonjnT)

_ 2 M —2;2 Ym(r)h nmo.._ —2;2

= Wﬂﬁnn\/;{sm( 5 1=r)A+0Mn "h))+ = cos( W 1=r)(1+0(n °h%)),,
where the prefactor in the O-notation depends only on m. Therefore, it can be verified
that

2h1/2

D 1/2
|m|n

ch = [1+n20(h%)],

and hence (122) follows. 0

Appendix B. Neumann eigenvalues and eigenfunctions. In this section,
we derive the asymptotic expansion of the eigenpair {\Y X },.cz nen for the Neu-
mann eigenvalue problem (NEP) when 0 < h < 1.

LEMMA B.1. For h < 1, the nonzero roots to (32) with sufficiently large magnitude
attain the expansion

N _ T (4m? + 3)h

(123) ™ b 8nm(14h)

+n30(%), m=0,1,2,---, n=1,2---,
where the prefactor in the O-notation depends on m. On the other hand, when m #0,
there exists a unique root close to m satisfying

(124) No=m— " L OM), m=172, -

Proof. When m =0,

Fo¥(B;h) =Y1(B)J1 (B(1+ h)) — Ji(B)Y1 (B(1+ h)) = F (B, h),

so that Lemma A.1 applies. In the following, we assume m # 0.

Let C > 0 be a sufficiently large constant that is independent of h. Since 8 and
B(1 + h) are of the same order of magnitude when 8 > C, the asymptotic formula
(121) in the region [C,00) can be derived using the formulas in [37, sec. 10.21(x)]. We
only need to show that there is only one root in (0,C), and it is near m.

We distinguish two cases: 0 < 8 < ¢ or 8 € (cg,C) for some sufficiently small
constant ¢y > 0 independent of h. If 8 < ¢y, by the power series representation of J,,
and Y;, with small arguments [37, 10.2.2 and 10.8.1], we obtain for any fixed h >0

ml2m™ (B(1+h))™ " ml2m (8"
TBmHL 2m(m — 1)l wBmHI(1 4 h)m+l 2m(m —1)!

= 77%2 [(T+m)"™ ' —(1+n)" >0, s<1.

EN(Bh) =

Now if B € (co,C) so that FY is analytic at h =0, then Taylor’s expansion of FN at
h =0 and Bessel’s differential equation directly give rise to

F (Bih) = (Y, (8)Jm" (B) = T (B)Ym" (8)) B+ O(h?)
=~ (1 =m?S7*) [V}, (8)Jm(B) = I, (B)Ym (B)] Bh + O(h?).

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/17/23 to 131.204.254.113 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1046 JUNSHAN LIN, WANGTAO LU, AND HAI ZHANG

Since Y,,(8) and J,,(B) are linearly independent over the interval [cg,C], the first
term is in fact strictly nonzero and is far greater than the second term if (8 —m) > h
for h < 1. But the intermediate value theorem implies that there exists a root
in (m — co,m + co) satisfying 8 —m = O(h). By a similar asymptotic analysis of
FN(B;h) at B=m, the expansion (124) follows. |

The following lemma characterizes the asymptotic behavior of 2%, (r,0;h) for
h<1.

LEMMA B.2. Let h< 1, r€[l,1+h], m€Z, and neN. If n>1, then

(125)
Yo (1,03 h) = \/:ITQ}L{ cos [%(r - 1)} + %]’\‘[n(:;)h sin {%(r _ 1)} n (’)(n‘th)},

where the function v : [1,1+ h] — R is given by
(4m?+3)h  (4m? —1)

N — —
Y (1) =305 ) s
If n=0,
imé
(126) WNo(r,051h) = m +O(h/?).

In the above, the prefactors in the O-notation depend on m only.

Proof. For n > 1, it follows from Lemma B.1 that 5{1\77’7,|n > 1. Thus by [37,
10.17:3,4,9,10], we obtain
it (Bimtn) Jjml (BhmiT) = Jimt (Bimin) Yiem (Bhniar)

; \/E{COS (SR =]+ 0mn%) + LLAGLOL [ZEe-v]a+ O(n—%z))},

Wﬁf:;‘n nm

where the prefactor in the O-notation depends only on m. It can be verified that the
normalization constant

oV _ 2vrh

mn N
™Bimin

(1+0O(n"2h?)),

so that (125) follows. If n. = 0, we have
Yo (Bimago) il (Bimio™) = o) (Bljo) Yiem! (Blmjor)
= {Yﬁn\ (Bimio)Jiml (Bimgo) = i) (Bimi0) Yiml (»3%0)} [1+0(h%)].
Then
Cilo = /TR0 +2) [V (80%10) it (B10) = T (B0 Yien (Blpo) | [1+ O(2)]

and hence (126) follows. d

Appendix C. Asymptotic analysis of matrix elements in (83). To prove
Lemma 4.3, we need the following two lemmas.
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LemMA C.1. For any two functions f,g € C,,,(R) with

max{|| f[lwy ), [l9]lwi ®)} < M,
for some constant M > 0, the three INF matrices
{(Sol(n) "2 () sin(n'm)),n ™ 2g(-) sin(nm)) 12(0,1) b1
{(Sol(n")"/? £ () cos(n'm)],n ™ 2g() sin(n)) 12(0,1) Yoowr—1»
{(Sol(n")"/2 f(-) cos(n'm-)],n' /g () cos(nm)) L2(0,1) Y1

are bounded operators mapping from €2 to £2, with norms depending only on M but
not on functions f and g.

Proof. We only give the proof for the first matrix. For any n € N,

1 1-(=p” _
T n=0,
—1/2 T e D I e D )
((n,) / Sln(n/ﬂ-')agbn)L%O,l) = o2n' ((’I'Llin)ﬁ + ((n’jn)w , n 7& 'fL/,
1 1_(_1)("’4’") oy
SN T T n=mn.
Thus for any {a, }%_; € ¢* and any N, N’ € N*, we have
N/
Z an ((n')~Y?sin(n'n), ®n)r20,1)
=1
~ /2 ;o 1/2
< (Z lan/|2> (Z ()12 sin(n'w»,m)m(o,lﬂ?) <o
n’=1 n’=1
for n < N. We obtain
, 2
N N
S+ (ane ()2 sin(n'm), én) £2(0,1)
n=0 n’=1
00 N N’ 2
< () 30 3 0 ) it
n’'=1 n=0n’=1
2 n-1/2 Y 2\—-1/2 R
<[t ) [SaentnGe S el
n'=1 n=0 0<n<N,1<6n/ <N’
c
2y—1/2 2
Y At < Cllan)
1<6n< M’ 1<n/ <N

where C' > 0 denotes a generic and sufficiently large constant. The above implies that

o0
o(r') = Z anr (n') " 2 sin(n'mr') € H=1/2(0,1),
=1
with [16] < O {an} . Similarly, for any {b, )32, € £2

H-1/2(0,1) =

P(r') = Z bp(n)~Y 2 sin(nar) € fm(& 1),
n=1
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with ||¢]| < C||{bn}||¢2- Therefore,

H=1/2(0,1) —

YD aw(Sol(n) () sin(n’w )], n g () sin(nm)) 12(0,1)bn

n=1n’/=1

= (S0 ¢, 9% 0.0 SCIFBll 17200199 5-1/2(0,1) S C(M)|[{ans }rr=alle2[{bn }n=1]le2,

where C'(M) denotes the dependence of the constant C on M [36, Thm. 3.20], implying
the boundedness of the first matrix mapping from ¢2 to £2. ]

Define
1 2 eik\/T2+7‘/2—27"7‘/ cos 0

— eimﬁda.
2r Jo  rZ 412 =21’ cosh

(127) Fo(r,r'):

LEMMA C.2. For ke B andr#1' € (1,1+h), we have

Fo(r, ) = \/% [log(l —w?) {; (L= w2 (1 — w2, \2)

(128) + gm (1 —w—Q,AQ)],

where w= (r®+1"2)/(2rr"), A\=kvV2rr', and f,,(t1,t2) and gm(t1,t2) are analytic for
t1 € (—1,1) and |ta| < C for some sufficiently large constant C'.

Proof. By (45)—(48) in [12], we have

F(r,r') = {Af(rr’, A, w) + AT(TT', Aw)|,

Am 1 _(_1)771 - )‘QVU)2_]— : an—l/Q(w)
ARE A w)= Z( 4 ) PT(p—m+1/2T(p+m+1/2)

00 p+m+1/2 +m+1/2
- (-1)m Z A2Vw? —1 an—l/Q/ (w)
e 4 plT(p+m+3/2)T(p+2m+1)’

and Q" denotes the associated Legendre function [37, section 14.1]. By (14.3.7),
(15.8.10), and (15.8.12) in [37], we obtain

AT (', A w) =

D" 5 (AQ(“’Z - 1))” VAEPT I (2 S 4 1w ?)

= AN 212 plum 9 H 12 (p — m + 1/2)

- (_1)m i A ﬁeiPWQFl(m_p;l/Qv m—p2+3/2 ym + 1;“’_2)
= \/77 4w? 27rL+1/2p!wm+p+1/2F(p_ m 4+ 1/2)
1

_o,—1 _ _ _ _
:7 {log(l—w 2)ﬁ+log(1—w 2)(1—w 2)frln(l—w 2,)\2)+g;1(1—w 2,)\2)

p=0

for some analytic functions f} (t1,t2) and g} (¢1,t2), where o F7 denotes the hypergeo-
metric function [37, section 15.1]. Let z = 1 (1 - 1_}”_2). By (14.3.7), (15.8.19), and
(15.8.8) in [37], we have
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A\ w)
I =2 (w
s

1 & 22 — 1)\ PTH1/2 .
: Z (/\ (w4 )) (1 _ 2z)p+2m+1(1 _ Z)—mﬁel(p+1/2)ﬂ
”
p=0

oF i (—p—m,p+m+1;m+1;2)
plwpt2mH1T (p+m+3/2)
p+m+1/2

A2 m i 2Fi(—p—m,p+m+1m+1;2
) e |
p=0

2 1) p+m+1/2 ﬁei(p+l/2)7r2F1(P+2;n+1’ p+2;n+2;m + l;wfz)
plwpt2m 1T (p+m 4+ 3/2)

pl(4z(z — 1))P/2T(p+m + 3/2)

= \/% log(1—w )1 —w ) f2(w = 1,A%) + g2 (w> — 1,A?)]

for some analytic functions f2 (t1,t2) and g2,(t1,t2). The proof is complete by taking
fin = fon + 7 and gim = gy, + 97, u
Proof of Lemma 4.3. (i). It follows from (50) that

1+ 0[N, ) X
BZE ZmE - 2( ()\N [()\ :)2,/4 ]) [k2<8kv2’(/}mn7 v2wmn>Ah - )‘mn/\r]y;n <Skwrjxn7w7]xn>Ah] .

mn’ mn)

By Lemmas B.2 and C.2, we obtain
[)\N Amn’]1/4<8 /(/) nawmn Ah
= (nn") 2 (1 + O(h?)) / dr/ (1+ b1+ he' )W T BV T h?

Ym (1 4+ hr'sh)h
n'm

Ym (14 hr;h)h

nmw

[Cos(n o) + sin(n'mr’) + O((n’)_2h2)}

[COS(mTr) + sin(nzr) + O(n 2 h?)] dr’

where the prefactors in the O-notationsdo not depend on n,n’. Using Lemma C.2, it
follows that

log[h|r —r'|]
2my/(1+ hr) (1 + h)
+ Gm (1 +hr, 1+ hr')

Fp(1+hr,14+hr')=— + 2h2log[h|r — r'[) fmn (1 + hr, 1 + hr)

for some analytic functions fy, and §y,. It is straightforward to verify using Lemma C.1
that

N AN SR, 0N, ) an = (Sol(n'm) 2 hr], (n7) /2 6) 12(0,1) + O(R)er P E,

TE,TE;1
n’n;m

where the INF matrix [e
verifies that

] is uniformly bounded for h < 1. One similarly

AN AN 3 AR (SE Vot Vool ) an = O(h)el 2 B2,

mn”‘mn’ n’n;m

TE,TE;2
n;m

where the INF matrix [,
diately.

] is uniformly bounded h <1, and (65) follows imme-
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(ii)—(vi). The proof follows from arguments similar to those in (i). We omit the details
here.
(vii). According to (50),

B 2k? cos(sN1/2)

o (SkVablo, VQW%)A»L

Amm = 2 COS(SQOZ/Q))‘r]Xowkw%Ov w%o)ﬁl

Similar to the derivations in (i), Lemma C.2 implies that

(SN Y an = h/ / (14 1+ hr) SRR o2y gy

2+ h
(129) = 1Ogh+am( k)b + 1By (k)h + O(h2 log )

for some constants a., (k) and S5, (k), both of which are analytic in B. By (50) in [12]
and (14.8.9) in [37],

Lo (eik\/fﬂ(rfr’)2+4(1+hr)(1+hr’)sin2(6/2) - 1) cos(m0)
Fm(l—i—hr,l—i—hr'):f‘/ df
To 2 (e )2 41+ hr) (Lt ) sin(6/2)

mel/Q [[(1 + hr)Q + 1+ h?“/)z]/(Q(l +hr)(1+ h?“/))]

+
7/ (L + hr) (1 + hr')
1 /7 (eZiksin(G/Q) _ 1)COS(m9) 1 !
= ;/0 25in(0/2) @8 = 7 loglhlr =l

+ ~llog2 7y~ Y(m +1/2)] +o(1).

Plugging the above into (129) and comparing both sides lead to (79) and (80); the
second equality in (80) follows from [37, eq. (10.9.2)]. Similarly one can show that

logh

T am(k )i+ 1Bm (k)R | + O(h2logh).

(Sk Vo, Vo) an =m? [ h
Equation (78) for m =0 can be verified similarly.
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