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MATHEMATICAL THEORY FOR ELECTROMAGNETIC
SCATTERING RESONANCES AND FIELD ENHANCEMENT IN A

SUBWAVELENGTH ANNULAR GAP*

JUNSHAN LIN\dagger , WANGTAO LU\ddagger , AND HAI ZHANG\S 

Abstract. This work presents a mathematical theory for electromagnetic scattering resonances
in a subwavelength annular hole embedded in a metallic slab, with the annulus width h \ll 1. The
model is representative among many 3D subwavelength hole structures, which are able to induce
resonant scattering of electromagnetic wave and the so-called extraordinary optical transmission.
We develop a multiscale framework for the underlying scattering problem based upon a combination
of the integral equation in the exterior domain and the waveguide mode expansion inside the tiny hole.
The matching of the electromagnetic field over the hole aperture leads to a sequence of decoupled
infinite systems, which are used to set up the resonance conditions for the scattering problem. By
performing rigorous analysis for the infinite systems and the resonance conditions, we characterize
all the resonances in a bounded domain over the complex plane. It is shown that the resonances
are associated with the transverse electric (TE) and transverse electromagnetic (TEM) waveguide
modes in the annular hole, and they are close to the real axis with the imaginary parts of order
\scrO (h). We also investigate resonant scattering when an incident wave is present. It is proved that the
electromagnetic field is amplified with order \scrO (1/h) at the resonant frequencies that are associated
with the TE modes in the annular hole. On the other hand, one particular resonance associated
with the TEM mode cannot be excited by a plane wave but can be excited with a near-field electric
dipole source, leading to field enhancement of order \scrO (1/h).

Key words. electromagnetic scattering problem, resonance, subwavelength structure
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1. Introduction. Resonances play a significant role in wave interactions with
subwavelength structures, due to their ability to generate unusual physical phenomena
that open up broad possibilities in modern science and technology. One representative
type of resonant subwavelength structure is nano-holes perforated in noble metals,
such as gold or silver. A device of this sort was first introduced in the seminal
work [15], which sparked tremendous subsequent research in pursuit of more efficient
resonant nano-hole devices (cf. [17, 39] and references therein). The most remarkable
phenomenon occurs in these subwavelength devices when an electromagnetic wave is
illuminated at the resonant frequencies. The corresponding transmission through the
tiny holes exhibits extraordinary large values that cannot be explained by the classical
diffraction theory developed by Bethe and is called extraordinary optical transmission
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EM RESONANCES IN AN ANNULAR GAP 1013

(EOT) [15]. In addition, EOT is accompanied by strong localized electromagnetic field
enhancement inside the subwavelength holes and in the vicinity of hole apertures [17].
The capability to trigger EOT and to confine light in deep subwavelength apertures
leads to many important applications in biological and chemical sensing, optical lenses,
and the design of novel optical devices, etc. [8, 10, 22, 28, 39].

The main mechanisms for EOT and field amplification in the subwavelength hole
devices are due to resonances. These include scattering resonances induced by the
tiny holes and surface plasmonic resonances generated from the metallic materials
[17]. Significant progress has been made in the mathematical study of resonances
for two-dimensional subwavelength slit structures in the past few years. In a se-
ries of studies, we have established rigorous mathematical theories for a variety of
resonances and the induced EOT via the layer potential technique and asymptotic
analysis [30, 31, 32, 33, 34]. The layer potential approach with the operator-based
Gohberg--Sigal theory was previously used to investigate the resonances in a closely
related subwavelength cavity problem [5, 9]. More recently, other mathematical meth-
ods have been developed to derive the resonances for the two-dimensional slit struc-
tures. These include the matched asymptotic method and the Fourier mode matching
method [20, 42]. The matched asymptotic expansion techniques have also been ap-
plied to construct the solution of the slit scattering problem in [23, 24, 25]. The
generalization of the above techniques to the studies of the acoustic wave resonances
in three-dimensional subwavelength holes can be found in [16, 29, 35]. We would also
like to refer readers to [1, 2, 3, 4] and references therein for mathematical studies of
other types of subwavelength resonances, such as Helmholtz resonators and nanopar-
ticles, etc.

In previous studies of 2D subwavelength hole resonances or 3D acoustic wave
resonances, the governing equations are scalar wave equations. The mathematical
study of electromagnetic resonances for 3D subwavelength holes remains completely
open. In this paper, we aim to advance the work in this direction by investigating
electromagnetic scattering resonances for the full vector Maxwell's equations. More
specifically, we consider electromagnetic wave scattering by an annular gap, wherein
the gap width is much smaller than the incident wavelength. Figure 1 depicts the
top view and side view of the structure, in which a coaxial waveguide is perforated
through a metal slab of thickness l, forming an annular gap on the x1x2 plane. The
annular hole occupies the domain Gh =Rh \times ( - l/2, l/2), where

(1) Rh := \{ (x1, x2)\in \BbbR 2 : x1 = r cos\theta ,x2 = r sin\theta , r \in (a, a(1 + h)), \theta \in [0,2\pi ]\} 

denotes the cross-sectional annulus on the x1x2 plane. In the above, a and a(1 + h)
are the inner and outer radii of the annulus. In the subsequent analysis, for clarity
of presentation we shall scale the geometry of the problem such that a = 1. The
resonances when a \not = 1 are scaled accordingly by replacing the wavenumber k by ka
and the thickness l by l/a. It is assumed that the gap width is small with h\ll 1. The
metal region is denoted by

\Omega M :=
\bigl\{ 
(x1, x2, x3)\in \BbbR 3 : (x1, x2)\in \BbbR 2\setminus Rh, x3 \in ( - l/2, l/2)

\bigr\} 
.

In this work, we focus on the resonances induced by the tiny hole and consider the
configuration when the metal is a perfect electric conductor. Studies of plasmonic
resonances for real metals and their interactions with the hole resonances are avenues
of future research.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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EM RESONANCES IN AN ANNULAR GAP 1015

represent the resonant frequencies and the reciprocal of the resonant magnitude, re-
spectively. The corresponding nontrivial solutions are called quasi-normal modes [14].
Equivalently, we consider the homogeneous problem (3)--(6) when the incident field
Einc = Hinc = 0. The quasi-normal modes satisfy the radiation condition (6), but
they grow at infinity. We then study the resonant scattering when the incoming wave
attains the resonant frequencies. The main contributions of this paper are as follows:

(i) We prove the existence of electromagnetic scattering resonances for the prob-
lem (3)--(6) and present quantitative analysis for the resonances. The struc-
ture of resonances is much richer than the resonances for a 2D hole analyzed
in [20, 31, 42]. In more detail, it is shown that the resonances are a sequence
of complex numbers that are associated with the transverse electric (TE)
and transverse electromagnetic (TEM) waveguide modes in the annular hole.
We derive the asymptotic expansion of these resonances. Furthermore, it
is demonstrated that the imaginary parts of the resonances attain the order
\scrO (h). The quantitative analysis of resonances is summarized in Theorems 4.1
and 4.2.

(ii) We also analyze the electromagnetic field governed by (3)--(6) when an in-
cident plane wave is present. We prove that the electromagnetic field is
amplified by order \scrO (1/h) at the resonant frequencies that are associated
with the TE modes in the annular hole. A particular resonance associated
with the TEM mode cannot be excited by a plane wave. We prove that a
near-field electric monopole can be used to excite this resonance to achieve
field enhancement of order \scrO (1/h). The analysis is provided in section 5, and
it explains the observed resonant phenomena through the tiny annular hole
reported in [6, 7, 21, 41].

There are several main challenges in analysis of resonances, due to the multiscale
nature of the problem and the vector form of the mathematical model. In addition,
as elaborated in section 3, the solution inside the tiny hole consists of several types of
waveguide modes (TE, TM, and TEM modes), which are responsible for the richness
of resonances for the scattering problem. Our multiscale analysis is based upon a
combination of the integral equation formulation with the mode matching method.
More precisely, the electromagnetic field outside the annular hole (large-scale domain)
is represented by the vector layer potentials, and the wave field in the hole (small-scale
domain) is expressed as a sum of coaxial waveguide modes, which form a complete
basis for the solution space. The matching of the two wave fields for each mode
over the annular aperture leads to an infinite system for the expansion coefficients.
The main advantage of the mode matching method lies in the natural decoupling of
the original system into subsystems with distinct angular momentum in the annulus.
Moreover, each individual subsystem can be further reduced into a single nonlinear
characteristic equation (resonance condition) by projecting the solution in an infinite-
dimensional space onto the dominant resonant modes, and the resonances are the
roots of the characteristic equation that can be analyzed by the complex analysis
tools. This is achieved by the estimation of the contribution from the modes that
are orthogonal to the resonant modes in each subsystem and is accomplished by the
asymptotic analysis with respect to the small parameter h. The main technical parts
are presented in section 4.

The rest of the paper is organized as follows. In section 2, we introduce necessary
function spaces and notation to be used throughout the analysis and decompose the
whole scattering problem (3)--(6) into two subproblems. The boundary value problems
outside and inside the tiny hole are studied in detail in section 3. In particular, we
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1016 JUNSHAN LIN, WANGTAO LU, AND HAI ZHANG

express their solutions via integral equations and the mode expansion, respectively.
These serve as the starting point for the mode matching framework. Section 4 is
devoted to the analysis of scattering resonances. The details of the mode matching
formulation, the reduction to the resonance condition in the form of nonlinear char-
acteristic equations, and the analysis of their roots for the complex-valued resonances
will be given. Finally, we study the electromagnetic field enhancement at the resonant
frequencies in section 5 and conclude the paper with some discussions in section 6.

2. Preliminaries.

2.1. Function spaces and notation. We introduce several Sobolev spaces for
scalar- and vector-valued functions that will be used throughout the paper and refer
the readers to [36, 11, 26] for more details. Let \Omega \subset \BbbR 3 be a bounded Lipschitz
domain with the boundary \Gamma := \partial \Omega , and let \bfitnu (x) be the unit outward normal on
\Gamma . H0(\Omega ) := L2(\Omega ) denotes the set of all square-integrable functions on \Omega . Let
H1(\Omega ) = \{ f \in L2(\Omega ) :\nabla f \in [L2(\Omega )]3\} and H - 1(\Omega ) be its dual space. Hs(\Omega ) denotes
the fractional Sobolev space for  - 1 < s < 1. Given \Gamma 1 \subset \Gamma , we define Hs(\Gamma 1) by
Hs(\Gamma 1) = \{ f | \Gamma 1

: f \in Hs(\Gamma )\} and its dual space by

[Hs(\Gamma 1)]
\prime = \widetilde H - s(\Gamma 1) := \{ f \in H - s(\Gamma ) : suppf \subset \Gamma 1\} .

Here Hs(\Gamma ) is the Sobolev space over the boundary \Gamma .
For a vector-valued function F(\bfitx ) = [F1(\bfitx ), F2(\bfitx ), F3(\bfitx )]

T with components Fj \in 
\BbbC , j = 1,2,3, curlF=\nabla \times F and divF=\nabla \cdot F denote the curl and the divergence of
F, respectively. Let

H(curl,\Omega ) := \{ F\in [L2(\Omega )]3 : curlF\in [L2(\Omega )]3\} .
We also define

Hs
t (\Gamma ) = \{ F\in [Hs(\Gamma )]3 : \bfitnu \cdot F= 0\} for - 1/2\leq s\leq 1/2,

and L2
t (\Gamma ) =H0

t (\Gamma ). Let Curl F and Div F be the surface divergence and the surface
curl of F on \Gamma , respectively (cf. (6.37) and (6.41) in [11]). For the planar surfaces
Rh \times \{ x3 =\pm l/2\} considered in this paper, we have

Div =\nabla 2\cdot = [\partial x1 , \partial x2 ]
T \cdot , Curl = curl2 = [\partial x2 , - \partial x1 ]

T \cdot .
Define

H - 1/2(Div,\Gamma ) = \{ F\in H - 1/2
t (\Gamma ) : DivF\in H - 1/2(\Gamma )\} 

and

H - 1/2(Curl,\Gamma ) = \{ F\in H - 1/2
t (\Gamma ) : CurlF\in H - 1/2(\Gamma )\} .

By [26, Thm. 5.26], H - 1/2(Curl,\Gamma ) = [H - 1/2(Div,\Gamma )]\prime , where the duality is defined
by

(7) F(G) =

\int 

\Gamma 

F \cdot Gds(\Gamma )

for any F \in H - 1/2(Curl,\Gamma ) and G \in H - 1/2(Div,\Gamma ). From the trace theorem [26,
Thm. 5.24], the trace operators

\gamma t :H(curl,\Omega )\rightarrow H - 1/2(Div,\Gamma ),F \mapsto \rightarrow \bfitnu \times F| \Gamma 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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EM RESONANCES IN AN ANNULAR GAP 1017

and

\gamma T :H(curl,\Omega )\rightarrow H - 1/2(Curl,\Gamma ),F \mapsto \rightarrow (\bfitnu \times F| \Gamma )\times \bfitnu 

are bounded. Given an open domain \Gamma 1 \subset \Gamma , we define

H - 1/2(Curl,\Gamma 1) = \{ F| \Gamma 1 :F\in H - 1/2(Curl,\Gamma )\} 

and its dual space

\~H - 1/2(Div,\Gamma 1) = \{ F\in H - 1/2(Div,\Gamma ) : suppF\subset \Gamma 1\} .

Finally, for an unbounded Lipschitz domain \Omega , we let

Hloc(curl,\Omega ) := \{ F :F| \Omega \cap B(0,r) \in H(curl,\Omega \cap B(0, r)) for any r > 0\} 

wherein B(0, r) := \{ \bfitx : | \bfitx | < r\} .
We also introduce the following notation for the problem geometry to be used in

the rest of the paper:
(1) \Omega \pm = \{ \bfitx \in \BbbR 3\setminus \Omega M : \pm x3 > 0\} : the upper and lower half domain exterior to

the metal;
(2) \BbbR 3

+ = \{ \bfitx \in \BbbR 3 : x3 > l/2\} : the half space above the metal;
(3) Gh

+ = \{ \bfitx \in Gh : x3 > 0\} : the upper half of the annular hole Gh;
(4) Ah = \{ \bfitx : (x1, x2)\in Rh, x3 = l/2\} : the upper annular aperture of Gh

+;
(5) \Gamma b = \{ \bfitx : (x1, x2)\in Rh, x3 = 0\} : the annulus on the x1x2 plane or the base of

Gh
+;

(6) \Gamma h
+: the side boundary of Gh

+.
In addition, the following sets will be used:

(1) \scrB := \{ z \in \BbbC : | z| <C0\} , where C0 is a fixed positive constant;
(2) \BbbN \ast := \{ 1,2,3, \cdot \cdot \cdot .\} ;
(3) (\BbbZ \times \BbbN )\ast := (\BbbZ \times \BbbN )\setminus \{ (0,0)\} .
Finally, A\eqsim B implies c1B \leq A\leq c2B for some positive constants c1, c2 that are

independent of A and B.

2.2. Decomposition of the scattering problem. Due to the symmetry of
the structure with respect to the x1x2 plane, the scattering problem (3)--(6) can be
decomposed as the two subproblems as follows.

(E). Given the incident field [Einc,Hinc]/2, solve for [Ee,He] that satisfies

curlEe = ikHe in \Omega +,(8)

curlHe =  - ikEe in \Omega +,(9)

\bfitnu \times Ee = 0 on \partial \Omega +\setminus \Gamma b,(10)

\bfitnu \times He = 0 on \Gamma b,(11)

and the radiation condition (6) for x3 \geq l/2 with [Esc,Hsc] = [Ee,He]  - 
[Einc,Hinc]/2 - [Eref,Href ]/2.

(O). Given the incident field [Einc,Hinc]/2, solve for [Eo,Ho] that satisfies

curlEo = ikHo in \Omega +,(12)

curlHo =  - ikEo in \Omega +,(13)

\bfitnu \times Eo = 0 on \partial \Omega +,(14)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1018 JUNSHAN LIN, WANGTAO LU, AND HAI ZHANG

and the radiation condition (6) for x3 \geq l/2 with [Esc,Hsc] = [Eo,Ho]  - 
[Einc,Hinc]/2 - [Eref,Href]/2.

It is clear that the solution of the scattering problem (3)--(6) can be written as

E(\bfitx ) =

\biggl\{ 
Ee(\bfitx ) +Eo(\bfitx ), x3 \geq 0,
Ee,*(\bfitx \ast ) - Eo,*(\bfitx \ast ), x3 < 0,

H(\bfitx ) = (ik) - 1curlE.(15)

In the above, \ast denotes the reflection vector with respect to the x1x2 plane. On the
other hand, there holds

Ee(\bfitx ) =
E(\bfitx ) +E\ast (\bfitx \ast )

2
, Eo(\bfitx ) =

E(\bfitx ) - E\ast (\bfitx \ast )

2
, x3 > 0,(16)

Hj(\bfitx ) = (ik) - 1curlEj, j\in \{ e,o\} .(17)

In the rest of the paper, for clarity we shall present the detailed analysis for the
resonances for problem (E) only. Problem (O) can be analyzed similarly; thus we will
point out the main difference in the analysis and present the main results directly. To
simplify the notation, we shall overload E and H for Ee and He, respectively.

3. Two auxiliary boundary value problems. In this section, we study the
exterior boundary value problem above the metal and the interior boundary value
problem in the annular hole. They will serve as the foundation for the mode matching
framework and for establishing the resonance condition for the scattering problem (E).
The notation introduced in section 2.1 for the problem geometry is used.

3.1. Scattering problem above the metal. For a given vector-valued func-
tion F on Ah, let

\~\scrL k[F](\bfitx ) = curl curl

\int 

Ah

\Phi k(\bfitx ;\bfity )F(y)ds(y),(18)

\~\scrM k[F](\bfitx ) = curl

\int 

Ah

\Phi k(\bfitx ;\bfity )F(y)ds(y)(19)

be the vector layer potentials for \bfitx \in \BbbR 3
+, where \Phi k(\bfitx ;\bfity ) = e\bfi k| \bfitx  - \bfity | 

4\pi | \bfitx  - \bfity | for \bfitx \not = \bfity .
Consider the following half-space problem above the metal:

(HSP) :

\left\{ 
   
   

curlE= ikH, in \BbbR 3
+,

curlH= - ikE, in \BbbR 3
+,

\bfitnu \times E= 0, on \{ \bfitx \in \BbbR 3 : x3 = l/2\} \setminus Ah,
\bfitnu \times E=F, on Ah,

with the radiation condition (6) in x3 > l/2. The following theorem states the well-
posedness of the problem.

Theorem 3.1. For any k > 0 and any F\in \~H - 1/2(Div,Ah), the two functions

E= - 2 \~\scrM k[F], H= - 2

ik
\~\scrL k[F](20)

in Hloc(curl,\BbbR 
3
+) constitute the unique solution to problem (HSP).

Proof. For F\equiv 0, one follows Lemma 5.30 in [26] to extend [E,H] to be a function
in [Hloc(curl,\BbbR 

3)]2, which satisfies the radiation condition (6) in all directions \bfitx /| \bfitx | .
Thus, E \equiv H \equiv 0 so that (HSP) has at most one solution for F \not = 0. One directly
verifies that [E,H] in (20) is the unique solution of (HSP) in [Hloc(curl,\BbbR 

3
+)]

2.
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EM RESONANCES IN AN ANNULAR GAP 1019

Let \scrL k[F] be the trace of \~\scrL k[F] on A
h. By Theorem 3.1 and the open mapping

theorem,

\bfitnu \times H| Ah =
 - 2

ik
\scrL k[\bfitnu \times E| Ah ]\in H - 1/2(Div,Ah),(21)

and \scrL k is bounded from \~H - 1/2(Div,Ah) to H - 1/2(Div,Ah). Clearly, \scrL k maps the
tangential component of E to that of H so that we shall call it the tangential-to-
tangential (T2T) map in what follows. As we shall see in section 4, the T2T map \scrL k

plays a central role in formulating the resonance eigenvalue problem.

3.2. Boundary value problem in the annular hole. Recall that Ah denotes
the planar annular aperture. In this section, we first construct a countable basis for
the function space \widetilde H - 1/2(Div,Ah) and then express the solution of the boundary
value problem in the annular hole Gh

+ using the basis.

3.2.1. A complete basis for \widetilde \bfitH  - 1/2(Div,\bfitA \bfith ). As [L2(Ah)]2\cap \widetilde H - 1/2(Div,Ah)
is dense in \widetilde H - 1/2(Div,Ah), we only need to construct a dense and countable basis of
[L2(Ah)]2. From (1.42) and (1.55) in Chapter IX of [13], the Helmholtz decomposition
of [L2(Ah)]2 is given below.

Lemma 3.1. Let \Delta 2 =\nabla 2 \cdot \nabla 2, and let

curl2 H
1(Ah) : = \{ curl2f : f \in H1(Ah)\} ,

(22)

\nabla 2H
1
0 (A

h) : = \{ \nabla 2f : f \in H1
0 (A

h)\} ,
(23)

\BbbH 2(A
h) : = \{ \nabla 2f : f \in H1(Ah),\Delta 2f = 0, f | r=a =C1, f | r=a(1+h) =C2;C1,C2 \in \BbbR \} 

(24)

be three closed subspaces of [L2(Ah)]2 that are orthogonal to each other in the sense
of the L2-inner product. Then, [L2(Ah)]2 can be decomposed into the direct sum of
the above three subspaces, i.e.,

(25) [L2(Ah)]2 = curl2 H
1(Ah)\oplus \nabla 2H

1
0 (A

h)\oplus \BbbH 2(A
h).

Now we find a countable basis for each of the three subspaces. It is not hard to
see that one-dimensional \BbbH 2(A

h) is given by

(26) \BbbH 2(A
h) = span

\bigl\{ 
\nabla 2 log(r)

\bigr\} 
.

To characterize \nabla 2H
1
0 (A

h), we consider the following Dirichlet eigenvalue problem:

(DEP):

\biggl\{ 
 - \Delta 2\psi = \lambda \psi inRh,
\psi = 0 on \partial Rh.

The countable normalized eigenfunctions are (cf. [27])

\psi D
ij (r, \theta ;h) : =

\bigl[ 
CD

ij

\bigr]  - 1
\Bigl[ 
Y| i| 
\Bigl( 
\beta D
| i| j

\Bigr) 
J| i| 
\Bigl( 
\beta D
| i| jr
\Bigr) 
 - J| i| 

\Bigl( 
\beta D
| i| j

\Bigr) 
Y| i| 
\Bigl( 
\beta D
| i| jr
\Bigr) \Bigr] 
eii\theta (27)

for (i, j)\in \BbbZ \times \BbbN \ast . The associated eigenvalues are

(28) \lambda Dij =
\Bigl( 
\beta D
| i| j

\Bigr) 2
> 0.
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1020 JUNSHAN LIN, WANGTAO LU, AND HAI ZHANG

In the above, Ji and Yi are the first and second kind Bessel functions of order i, \beta D
| i| j

is the jth positive root (in ascending order) of the equation

(29) FD
| i| (\beta ;h) := Y| i| (\beta )J| i| (\beta (1 + h)) - J| i| (\beta )Y| i| (\beta (1 + h)) = 0,

and CD
ij > 0 is chosen such that | | \psi D

ij | | L2(Rh) = 1.
For 0 < h\ll 1, the asymptotic analysis of \lambda Dij and \psi D

ij is carried out in detail in
Appendix A. It is shown in (121) and (122) that

\lambda Dij \sim 
\biggl( 
j\pi 

h

\biggr) 2

and \psi D
ij \sim 

eim\theta 

\surd 
\pi rh

sin
\Bigl( n\pi 
h

(1 - r)
\Bigr) 

for h \ll 1. It follows from [36, Thm. 4.12] that \{ \psi D
ij (\cdot ;h)\} (i,j)\in \BbbZ \times \BbbN \ast constitutes a

complete orthonormal basis of L2(Rh) vanishing on the boundary \partial Rh, and it forms
a dense and countable basis for H1

0 (R
h). Therefore,

(30) \nabla 2H
1
0 (R

h) = span\{ \nabla \psi D
ij (\cdot ;h)\} (i,j)\in \BbbZ \times \BbbN \ast ,

where the overline denotes the closure.
As for the subspace curl2 H

1(Ah), we consider the following Neumann eigenvalue
problem:

(NEP):

\biggl\{ 
 - \Delta 2\psi = \lambda \psi in Rh,
\partial \bfitnu \psi = 0 on \partial Rh.

As shown in [27], the countable eigenvalues are \lambda N00 := 0 and

(31) \lambda Nmn =
\Bigl( 
\beta N
| m| n

\Bigr) 2
, (m,n)\in (\BbbZ \times \BbbN )\ast ,

where \beta N
| m| n is the nth nonnegative root (in ascending order starting from n = 0) of

the equation

(32) FN
| m| (\beta ;h) := Y \prime 

| m| (\beta )J
\prime 
| m| (\beta (1 + h)) - J \prime 

| m| (\beta )Y
\prime 
| m| (\beta (1 + h)) = 0.

The associated normalized eigenfunctions are \psi N
00 :=

1\surd 
\pi h(2+h)

and

\psi N
mn(r, \theta ;h) : =

\bigl[ 
CN

mn

\bigr]  - 1
\Bigl[ 
Y \prime 
| m| 

\Bigl( 
\beta N
| m| n

\Bigr) 
J| m| 

\Bigl( 
\beta N
| m| nr

\Bigr) 
 - J \prime 

| m| 

\Bigl( 
\beta N
| m| n

\Bigr) 
Y| m| 

\Bigl( 
\beta N
| m| nr

\Bigr) \Bigr] 
eim\theta ,

(33)

in which CN
mn > 0 is chosen such that | | \psi N

mn| | L2(Rh) = 1.
The asymptotic formulas of \lambda Nmn and \psi N

mn are provided in (123)--(126). It is
important to note that when h\ll 1,

\lambda Nm0 \sim m2 while \lambda Nmn \sim 
\Bigl( n\pi 
h

\Bigr) 2
for n\geq 1.

The eigenfunctions

\psi N
m0 \sim 

eim\theta 

\sqrt{} 
\pi h(h+ 2)

and \psi N
mn \sim eim\theta 

\surd 
\pi rh

cos
\Bigl[ n\pi 
h

(r - 1)
\Bigr] 

for n\geq 1.

\{ \psi N
mn\} m\in \BbbZ ,n\geq 0 constitutes a complete orthonormal basis of L2(Rh) (cf. [36, Thm.

4.12]), and is a dense and countable basis of H1(Ah). Therefore,

(34) curl2 H
1(Ah) = span\{ curl2 \psi N

mn(\cdot ;h)\} (m,n)\in (\BbbZ \times \BbbN )\ast .
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EM RESONANCES IN AN ANNULAR GAP 1021

where we have excluded the constant eigenfunction \psi N
00.

To simplify the notation in the subsequent analysis, we introduce the rotation
operator \scrR :

(35) \scrR : f = [f1, f2] \mapsto \rightarrow [f2, - f1] \forall f \in [L2(Ah)]2.

It is clear that \scrR [L2(Ah)]2 = [L2(Ah)]2. Consequently, by virtue of (26), (30), and
(34), we have

\widetilde H - 1/2(Div,Ah) =\scrR [L2(Ah)]2 \cap \widetilde H - 1/2(Div,Ah)

= span\{ \scrR curl2 \psi N
mn,\scrR \nabla \psi D

ij ,\scrR \nabla log r\} (m,n,i,j)\in (\BbbZ \times \BbbN )\ast \times \BbbZ \times \BbbN \ast ,(36)

where the norm of \widetilde H - 1/2(Div,Ah) is used for the completion. In the next subsection,
we construct the solution in Gh

+ for \bfitnu \times E| Ah being one of the basis functions.

3.2.2. Field representation in the annular hole. Given F\in \widetilde H - 1/2(Div,Ah),
let us consider the boundary value problem

(AHP) :

\left\{ 
     
     

curlE= ikH inGh
+,

curlH= - ikE inGh
+,

\bfitnu \times E| \Gamma h
+
= 0,

\bfitnu \times H| \Gamma b
= 0,

\bfitnu \times E| Ah =F.

The well-posedness of problem (AHP) is given in the following theorem.

Theorem 3.2. Assume that k is real and positive and k /\in 
\{ 
\sqrt{} 
\lambda Nmn + (2i+ 1)2\pi 2/l2 : (m, i,n) \in \BbbZ 2 \times \BbbN \} . For 0 < h \ll 1, the boundary

value problem (AHP) attains a unique solution [E,H] \in H(curl,Gh
+) that depends

continuously on the boundary data F\in \widetilde H - 1/2(Div,Ah).

Proof. We first address the uniqueness. Let F\equiv 0. It follows from Lemma 5.30(b)
of [26] that an even reflection of E extends E and H into Gh such that

curlE= ikH inGh,

curlH= - ikE inGh,

\bfitnu \times E= 0 on \partial Gh.

An odd reflection of E w.r.t. x3 = \pm l/2 extends both E,H to a larger domain \Omega 
with Gh \subset \Omega and [E,H] \in [H(curl,\Omega )]2 with \bfitnu \times E= 0 on \partial \Omega . It can be shown that
E,H \in [H1(Gh)]3; see, for instance, [13, Chapter IX, section 1]. Thus E3 \in H1(Gh)
satisfies

 - \Delta E3 = k2E3 inGh,

E3 = 0 on \Gamma h,

\partial \bfitnu E3 = 0 onAh \cup Ah
 - ,

where Ah
 - := \{ \bfitx : (x1, x2) \in Rh, x3 =  - l/2\} is the bottom aperture of Gh and \Gamma h is

the side boundary of Gh. In light of (121), we choose sufficiently small h such that
k2 is not an eigenvalue of the above problem. Consequently, E3 \equiv 0 in Gh.
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1022 JUNSHAN LIN, WANGTAO LU, AND HAI ZHANG

Next, H3 \in H1(Gh) satisfies

 - \Delta H3 = k2H3 inGh,

\partial \bfitnu H3 = 0 on \Gamma h,

H3 = 0 onAh \cup Ah
 - .

The boundary value problem attains trivial solution when k /\in 
\{ 
\sqrt{} 
\lambda Nmn + (2i+ 1)2\pi 2/l2 : (m, i,n) \in \BbbZ 2 \times \BbbN \} . Therefore, E1 and E2 can be

expressed in the form of
\biggl[ 
E1(\bfitx )
E2(\bfitx )

\biggr] 
=

\biggl[ 
f1(x1, x2)
f2(x1, x2)

\biggr] 
eikx3 +

\biggl[ 
g1(x1, x2)
g2(x1, x2)

\biggr] 
e - ikx3 ,

where fj and gj (j = 1,2) are harmonic functions, and

Div

\biggl[ 
f1(x1, x2)
f2(x1, x2)

\biggr] 
=Div

\biggl[ 
g1(x1, x2)
g2(x1, x2)

\biggr] 
=Curl

\biggl[ 
f1(x1, x2)
f2(x1, x2)

\biggr] 
=Curl

\biggl[ 
g1(x1, x2)
g2(x1, x2)

\biggr] 
= 0.

By Lemma 3.1, it can be verified that [f1, f2]
T , [g1, g2]

T \in \BbbH 2. Consequently,

E1 =
x1

x21 + x22
(c1e

ikx3 + c2e
 - ikx3), E2 =

x2
x21 + x22

(c1e
ikx3 + c2e

 - ikx3),

H1 =
 - x2

x21 + x22
(c1e

ikx3  - c2e
 - ikx3), H2 =

x1
x21 + x22

(c1e
ikx3  - c2e

 - ikx3)

for some constants c1 and c2. The boundary condition E1 = E2 = 0 on Ah \cup Ah
 - 

implies

c1e
ikl/2 + c2e

 - ikl/2 = 0, c1 = c2.

Thus a nonzero solution [E,H] exists if and only if eikl/2 + e - ikl/2 = 2cos(kl/2) = 0,
which is excluded by our assumption. Now the well-posedness follows thanks to
Theorem 5.60 in [26].

We now construct special solutions to the problem (AHP), which are called wave-
guide modes in the annular hole Gh

+. Denote

(37) sNmn =
\sqrt{} 
k2  - \lambda Nmn, sDij =

\sqrt{} 
k2  - \lambda Dij .

Assume that k /\in \{ 
\sqrt{} 
\lambda Nmn + (2i+ 1)2\pi 2/l2.

1. Transverse electric (TE) modes. For each (m,n)\in (\BbbZ \times \BbbN )\ast , define

ETE
mn =

\left[ 
 

(eis
N
mnx3 + e - isNmnx3)\partial x2

\psi N
mn

 - (eis
N
mnx3 + e - isNmnx3)\partial x1\psi 

N
mn

0

\right] 
 ,(38)

HTE
mn =

1

k

\left[ 
  
sNmn(e

isNmnx3  - e - isNmnx3)\partial x1
\psi N
mn

sNmn(e
isNmnx3  - e - isNmnx3)\partial x2

\psi N
mn

 - i\lambda Nmn(e
isNmnx3 + e - isNmnx3)\psi N

mn.

\right] 
  .(39)

Then \{ [ETE
mn,H

TE
mn]\} (m,n)\in (\BbbZ \times \BbbN )\ast is the unique solution of (AHP) with F =

[F1, F2,0]
T = [2cos(sNmnl/2)\scrR curl2 \psi 

N
mn,0]

T . These solutions are called trans-
verse electric (TE) modes.
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EM RESONANCES IN AN ANNULAR GAP 1023

2. Transverse magnetic (TM) modes. For each (i, j)\in \BbbZ \times \BbbN \ast , define

ETM
ij =

\left[ 
  

(eis
D
ijx3 + e - isDijx3)\partial x1

\psi D
ij

(eis
D
ijx3 + e - isDijx3)\partial x2

\psi D
ij

\lambda Dij/(is
D
ij)(e

isDijx3  - e - isDijx3)\psi D
ij

\right] 
  ,(40)

HTM
ij =

k(eis
D
ijx3  - e - isDijx3)

sDij

\left[ 
 

 - \partial x2
\psi D
ij

\partial x1
\psi D
ij

0

\right] 
 .(41)

Then \{ [ETM
ij ,HTM

ij ]\} (i,j)\in \BbbZ \times \BbbN \ast is the unique solution of (AHP) with F =
[2cos(sDij l/2)\scrR \nabla 2\psi 

D
ij ,0]

T . These solutions are called transverse magnetic
(TM) modes.

3. Transverse electromagnetic (TEM) mode. Define

ETEM
E = (eikx3 + e - ikx3)

\left[ 
 
\partial x1

log r
\partial x2

log r
0

\right] 
 ,(42)

HTEM
E = (eikx3  - e - ikx3)

\left[ 
 

 - \partial x2 log r
\partial x1 log r
0

\right] 
 .(43)

Then \{ [ETEM
E ,HTEM

E ]\} is the unique solution of (AHP) with F =
[2cos(kl/2)\scrR \nabla 2 log r,0]

T . This solution is called the transverse electromag-
netic (TEM) mode.

Remark 3.1. For k \in \{ 
\sqrt{} 
\lambda Nmn + (2i+ 1)2\pi 2/l2 : (m, i,n) \in \BbbZ 2 \times \BbbN \} , we use

\bfitnu \times H| Ah = FH = [FH
1 , F

H
2 ,0] as the boundary condition instead, where we choose

[FH
1 , F

H
2 ] from
\Biggl\{ 
2isNmn

k
sin(sNmnl/2)curl2\psi 

N
mn,

2ki sin(sDij l/2)

sDij
\nabla 2\psi 

D
ij ,2i sin(kl/2)\nabla 2 log r

\Biggr\} 

for (m,n) \in (\BbbZ \times \BbbN )\ast and (i, j) \in \BbbZ \times \BbbN \ast . The above TE, TM, and TEM modes can
be reproduced as well.

Finally, we use the above waveguide modes to construct solutions to the problem

(AHP). Let F\in \widetilde H - 1/2(Div,Ah); we expand it as

F=
\sum 

(m,n)\in (\BbbZ \times \BbbN )\ast 

dTE
mn(\bfitnu \times ETE

mn| Ah) +
\sum 

(i,j)\in \BbbZ \times \BbbN \ast 

dTM
ij (\bfitnu \times ETM

ij | Ah)

+ dTEM (\bfitnu \times ETEM
E | Ah)\in \widetilde H - 1/2(Div,Ah),(44)

with the Fourier coefficients \{ dTE
mn, d

TM
ij , dTEM\} . Then it follows from Theorem 3.2

that the unique solution of the boundary value problem is

E=
\sum 

(m,n)\in (\BbbZ \times \BbbN )\ast 

dTE
mnE

TE
mn +

\sum 

(i,j)\in \BbbZ \times \BbbN \ast 

dTM
ij ETM

ij + dTEMETEM
E \in [L2(Gh)]3,(45)

H=
\sum 

(m,n)\in (\BbbZ \times \BbbN )\ast 

dTE
mnH

TE
mn +

\sum 

(i,j)\in \BbbZ \times \BbbN \ast 

dTM
ij HTM

ij + dTEMHTEM
E \in [L2(Gh)]3,(46)
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1024 JUNSHAN LIN, WANGTAO LU, AND HAI ZHANG

where the modes ETE
mn, H

TE
mn, E

TM
ij , HTM

ij , ETEM
E , ETEM

H are defined in (38)--(43).
We have

| | E| | 2[L2(Gh)]3 =
\sum 

(m,n)\in (\BbbZ \times \BbbN )\ast 

| dTE
mn| 2| | ETE

mn| | 2[L2(Gh)]3 +
\sum 

(i,j)\in \BbbZ \times \BbbN \ast 

| dTM
ij | 2| | ETM

ij | | 2[L2(Gh)]3

+ | dTEM | 2| | ETEM
E | | 2[L2(Gh)]3

=
\sum 

(m,n)\in (\BbbZ \times \BbbN )\ast 

| dTE
mn| 2

\lambda Nmn

| sNmn| 
| sNmnl+ sin(sNmnl)| 

+
\sum 

(i,j)\in \BbbZ \times \BbbN \ast 

| dTM
ij | 2

\lambda Dij
| sDij | 

| sDij l+ sin(sDij l)| 

+
\sum 

(i,j)\in \BbbZ \times \BbbN \ast 

| dTM
ij | 2

[\lambda Dij ]
2

| sDij | 3
| sDij l - sin(sDij l)| 

+ | dTEM | 2| k|  - 12\pi log(1 + h)| kl+ sin(kl)| <\infty ,

and

| | H| | 2[L2(Gh)]3 =
\sum 

(m,n)\in (\BbbZ \times \BbbN )\ast 

| dTE
mn| 2| | HTE

mn| | 2[L2(Gh)]3 +
\sum 

(i,j)\in \BbbZ \times \BbbN \ast 

| dTM
ij | 2| | HTM

ij | | 2[L2(Gh)]3

+ | dTEM | 2| | HTEM
E | | 2[L2(Gh)]3

=
\sum 

(m,n)\in (\BbbZ \times \BbbN )\ast 

| dTE
mn| 2

| sNmn| 2\lambda Nmn

k2| sNmn| 
| sNmnl - sin(sNmnl)| 

+
\sum 

(m,n)\in (\BbbZ \times \BbbN )\ast 

| dTE
mn| 2

| \lambda Nmn| 2
k2| sNmn| 

| sNmnl+ sin(sNmnl)| 

+
\sum 

(i,j)\in \BbbZ \times \BbbN \ast 

| dTM
ij | 2

k2\lambda Dij
| sDij | 3

| sDij l - sin(sDij l)| 

+ | dTEM | 2| k|  - 12\pi log(1 + h)| kl - sin(kl)| <+\infty .

By Lemmas A.1 and B.1, \lambda Nmn, \lambda 
D
mn \rightarrow +\infty as m2 + n2 \rightarrow \infty , so there holds

| somn| \eqsim 
\sqrt{} 
\lambda omn, | somnl\pm sin(somnl)| \eqsim | 2\pm sin(somnl)| for o=N,D,

where 2 is introduced to ensure that | 2\pm sin(somn)l)| \geq 1. In summary, we have the
following proposition.

Proposition 3.1. Let E,H be defined as in (45)--(46). Then | | E| | 2[L2(Gh)]3 <\infty 
and | | H| | 2[L2(Gh)]3 <\infty if and only if

(47)

\left\{ 
 
 

\{ cTE
mn := dTE

mn(\lambda 
N
mn)

3/4| 2 + sin(sNmnl)| 1/2\} (m,n)\in (\BbbZ \times \BbbN )\ast \in \ell 2,
\{ cTM

ij := dTM
ij (\lambda Dij)

1/4| 2 + sin(sDij l)| 1/2\} (i,j)\in \BbbZ \times \BbbN \ast \in \ell 2,
| dTEM | <\infty ,

where \ell 2 denotes the space of square-summable sequences. On the other hand, (45)
and (46) provide the unique solution to (AHP) in H(curl,Gh

+) with \bfitnu \times E| Ah \in 
\widetilde H - 1/2(Div,Ah) for any Fourier coefficients \{ dTE

mn, d
TM
ij , dTEM\} satisfying (47).

Remark 3.2. Unless otherwise stated, here and thereafter, the \ell 2 sequence with
two indices is arranged in the usual dictionary order.
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EM RESONANCES IN AN ANNULAR GAP 1025

Remark 3.3. Transforming the sequence \{ dTE
mn, d

TM
ij \} to an \ell 2 sequence \{ cTE

mn,
cTM
ij \} balances the magnitudes of the TE, TM, and TEM modes in the hole, which is
essential in solving the eigenvalue problem formulated as an infinite-dimensional (INF)
linear system by the mode matching method in the next section. As we shall see below,
such a transformation eases the analysis of the mapping property of the related INF
coefficient matrix and the reduction of the INF system into finite-dimensional ones.

4. Quantitative analysis of scattering resonances. In this section, we quan-
titatively characterize the resonances for the scattering problem (E) in a bounded
domain over the complex plane. These resonances are complex values of k such that
the homogeneous problem (8)--(11) with Einc =Hinc = 0 attains nontrivial solutions.

4.1. A vectorial mode matching formulation. We first develop a vectorial
analogy of the mode matching method originally proposed in [42, 35] to reformulate
the scattering problem (E) with trivial incident field. Before proceeding, we introduce
the following bilinear form over H - 1/2(Div,Ah)\times \widetilde H - 1/2(Div,Ah) (see [26, p. 306]):

\langle F,G\rangle =: \langle F,\bfitnu \times G\rangle Ah ,

where \bfitnu \times G =  - (G\times \bfitnu ) \in \widetilde H - 1/2(Curl,Ah), and \langle \cdot , \cdot \rangle Ah represents the duality pair

between H - 1/2(Div,Ah) and \widetilde H - 1/2(Curl,Ah). Let \scrS k be the following single-layer
operator:

(48) \scrS k[\phi ](\bfitx ) =

\int 

Ah

\Phi k(\bfitx ;\bfity )\phi (y)dS(y), \bfitx \in Ah.

Then \scrS k is bounded from \widetilde H - 1/2(Ah) to H1/2(Ah). The following holds for the T2T
map \scrL k.

Lemma 4.1 ([26, Lemma 5.61]). For any F,G\in \widetilde H - 1/2(Div,Ah),

\langle \scrL k[F],G\rangle = \langle \scrL k[G],F\rangle ,(49)

\langle \scrL k[F],G\rangle = - \langle DivG,\scrS k[DivF]\rangle Ah + k2\langle G,\scrS k[F]\rangle Ah ,(50)

where \scrS k[F] is taken componentwisely, and it belongs to H - 1/2(Curl,Ah).

Now, from the integral equation formulation (20) and the tangential traces of
E and H in (45)--(46) over the annular aperture Ah, when Einc = Hinc = 0, the
homogeneous problem (8)--(11) can be formulated as the following system over the
aperture Ah:

\bfitnu \times H| Ah =
 - 2

ik
\scrL k[\bfitnu \times E| Ah ],(51)

\bfitnu \times E| Ah =
\sum 

(m,n)\in (\BbbZ \times \BbbN )\ast 

cTE
mn \cdot 2cos(sNmnl/2)

(\lambda Nmn)
3/4| 2 + sin(sNmnl)| 1/2

\scrR curl2 \psi 
N
mn

+
\sum 

(i,j)\in \BbbZ \times \BbbN \ast 

cTM
ij \cdot 2cos(sDij l/2)

(\lambda Dij)
1/4| 2 + sin(sDij l)| 1/2

\scrR \nabla 2\psi 
D
ij

+ dTEM \cdot 2cos(kl/2)\scrR \nabla 2 log r,(52)

\bfitnu \times H| Ah =
\sum 

(m,n)\in (\BbbZ \times \BbbN )\ast 

cTE
mn \cdot 2isNmn sin(s

N
mnl/2)

k(\lambda Nmn)
3/4| 2 + sin(sNmnl)| 1/2

curl2 \psi 
N
mn
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1026 JUNSHAN LIN, WANGTAO LU, AND HAI ZHANG

+
\sum 

(i,j)\in \BbbZ \times \BbbN \ast 

cTM
ij \cdot 2ik sin(sDij l/2)

sDij(\lambda 
D
ij)

1/4| 2 + sin(sDij l)| 1/2
\nabla 2\psi 

D
ij

+ dTEM \cdot 2i sin(kl/2)\nabla 2 log r.(53)

At a resonance k, there exist nontrivial solutions \{ cTE
mn, c

TM
mn , d

TEM\} for the above
system.

Using the completeness of the basis given in (36), the integral equation (51) is
equivalent to the following system:

\Bigl\langle 
\bfitnu \times H| Ah ,\scrR curl2\psi N

m\prime n\prime 

\Bigr\rangle 
=

 - 2

ik

\Bigl\langle 
\scrL k[\bfitnu \times E| Ah ],\scrR curl2\psi N

m\prime n\prime 

\Bigr\rangle 
, (m\prime , n\prime )\in (\BbbZ \times \BbbN )\ast ,

(54)

\Bigl\langle 
\bfitnu \times H| Ah ,\scrR \nabla 2\psi D

i\prime j\prime 

\Bigr\rangle 
=

 - 2

ik

\Bigl\langle 
\scrL k[\bfitnu \times E| Ah ],\scrR \nabla 2\psi D

i\prime j\prime 

\Bigr\rangle 
, (i\prime , j\prime )\in \BbbZ \times \BbbN \ast ,

(55)

\langle \bfitnu \times H| Ah ,\scrR \nabla 2 log r\rangle =
 - 2

ik
\langle \scrL k[\bfitnu \times E| Ah ],\scrR \nabla 2 log r\rangle ,

(56)

where the overline represents the complex conjugate. Using the expansions (52), (53),
and the identities

\Bigl\langle 
curl2\psi 

N
mn,\scrR curl2\psi N

m\prime n\prime 

\Bigr\rangle 
= - \lambda Nmn\delta mm\prime \delta nn\prime ,(57)

\Bigl\langle 
\nabla 2\psi 

D
ij ,\scrR \nabla 2\psi D

i\prime j\prime 

\Bigr\rangle 
= - \lambda Dij\delta ii\prime \delta jj\prime ,(58)

\langle \nabla 2 log r,\scrR \nabla 2 log r\rangle = - 2\pi log(1 + h),(59)

where \delta m0 is the Kronecker delta function, the system (54)--(56) can be rewritten as
an equation of INF matrices and INF vectors:

\left[ 
 

STEDTE

DTM

DTEM

\right] 
 
\left[ 
 

cTE

cTM

dTEM

\right] 
 

=

\left[ 
 

ATE,TE ATE,TM CTE,TEM

ATM,TE ATM,TM CTM,TEM

RTEM,TE RTEM,TM ATEM,TEM

\right] 
 
\left[ 
 

cTE

cTM

dTEM

\right] 
 .(60)

In the above, the unknown coefficients are given by the two INF column vectors cTE =
[cTE

m\prime n\prime ](m\prime ,n\prime )\in (\BbbZ \times \BbbN )\ast and cTM = [cTM
i\prime j\prime ](i\prime ,j\prime )\in \BbbZ \times \BbbN \ast , and a complex number dTEM . They

represent the Fourier coefficients of the TE, TM, and TEM modes, respectively, in
(52) and (53).

On the left side of the system, DTEM = sin(kl/2), and the three INF diagonal
matrices are given by

STE =Diag\{ sNmn\} ,
DTE =Diag \{ sin(sNmnl/2)| 2 + sin(sNmnl)|  - 1/2\} ,
DTM =Diag \{ sin(sDij l/2)| 2 + sin(sDij l)|  - 1/2\} .

The elements in the matrices are obtained from the field representation (53) and the
identities (57)--(59). We use the superscripts to denote the contribution of each type
of mode to the matrices. On the right side of the system, the four INF matrices are
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EM RESONANCES IN AN ANNULAR GAP 1027

ATE,TE =

\biggl[  - 2cos(sNmnl/2)| 2 + sin(sNmnl)|  - 1/2

(\lambda Nm\prime n\prime )1/4(\lambda Nmn)
3/4

\langle \scrL k\scrR curl2\psi 
N
mn,\scrR curl2\psi N

m\prime n\prime \rangle 
\biggr] 
,

ATE,TM =

\Biggl[ 
 - 2cos(sDij l/2)| 2 + sin(sDij l)|  - 1/2

(\lambda Nm\prime n\prime )1/4(\lambda Dij)
1/4

\langle \scrL k\scrR \nabla 2\psi 
D
ij ,\scrR curl2\psi N

m\prime n\prime \rangle 
\Biggr] 
,

ATM,TE =

\Biggl[ 
 - 2sDi\prime j\prime cos(s

N
mnl/2)| 2 + sin(sNmnl)|  - 1/2

k2(\lambda Di\prime j\prime )
3/4(\lambda Nmn)

3/4
\langle \scrL k\scrR curl2\psi 

N
mn,\scrR \nabla 2\psi D

i\prime j\prime \rangle 
\Biggr] 
,

ATM,TM =

\Biggl[ 
 - 2sDi\prime j\prime cos(s

D
ij l/2)| 2 + sin(sDij l)|  - 1/2

k2(\lambda Di\prime j\prime )
3/4(\lambda Dij)

1/4
\langle \scrL k\scrR \nabla 2\psi 

D
ij ,\scrR \nabla 2\psi D

i\prime j\prime \rangle 
\Biggr] 
.

The two INF column vectors CTE,TEM and CTM,TEM and the two INF row vectors
RTEM,TE and RTEM,TM are

CTE,TEM =

\biggl[  - 2cos(kl/2)

(\lambda Nm\prime n\prime )1/4
\langle \scrL k\scrR \nabla 2 log r,\scrR curl2\psi N

m\prime n\prime \rangle 
\biggr] 
,

CTM,TEM =

\Biggl[ 
 - 2sDi\prime j\prime cos(kl/2)

k2(\lambda Di\prime j\prime )
3/4

\langle \scrL k\scrR \nabla 2 log r,\scrR \nabla 2\psi D
i\prime j\prime \rangle 
\Biggr] 
,

RTEM,TE =

\biggl[  - cos(sNmnl/2)| 2 + sin(sNmnl)|  - 1/2

(\lambda Nmn)
3/4\pi k log(1 + h)

\langle \scrL k\scrR curl2\psi 
N
mn,\scrR \nabla 2 log r\rangle 

\biggr] 
,

RTEM,TM =

\Biggl[ 
 - cos(sDij l/2)| 2 + sin(sDij l)|  - 1/2

(\lambda Dij)
1/4\pi k log(1 + h)

\langle \scrL k\scrR \nabla 2\psi 
D
ij ,\scrR \nabla 2 log r\rangle 

\Biggr] 
,

and the scalar

ATEM,TEM =
 - cos(kl/2)

\pi k log(1 + h)
\langle \scrL k\scrR \nabla 2 log r,\scrR \nabla 2 log r\rangle .

The elements in the matrices and vectors are obtained from using the expansion (52)
for the systems (54)--(56) and the identities (57)--(59). Each pair of superscripts for
the matrix/vector denotes the interaction of two modes after applying the operator
\scrL k to one mode. We set the following rules for the indices of the elements of the INF
matrices/vectors:

(1). (m,n) and (m\prime , n\prime ) range over (\BbbZ \times \BbbN )\ast .
(2). (i, j) and (i\prime , j\prime ) range over \BbbZ \times \BbbN \ast .
(3). The index (m,n) or (i, j) is the column index of the matrix, while the prime

index (m\prime , n\prime ) or (i\prime , j\prime ) is the row index of the matrix.
(4). The columns (and rows) of each INF matrix are arranged in the dictionary

order.
The product of the block INF matrix and the block INF vector in (60) is well defined
by the usual matrix-vector product.

4.2. Resonances for problem (E). We are ready to analyze the resonances
for the scattering problem (E), which are the characteristic values of the system (60).
We shall follow the avenues described below to derive their asymptotic expansions:

(1). First, we decompose the whole system (60) into a sequence of subsystems
(62) with different angular momentum m\in \BbbZ .

(2). We further reduce each subsystem (62) to a nonlinear characteristic equation
(86) by projecting the solution onto the dominant resonant mode. Such a
characteristic equation is called a resonance condition. To this end, we es-
timate the contribution from the modes that are orthogonal to the resonant
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1028 JUNSHAN LIN, WANGTAO LU, AND HAI ZHANG

modes in each subsystem, which is accomplished by the asymptotic analysis
of each matrix element with respect to the parameter h, and the key estimates
are provided in Lemma 4.3.

(3). Finally, we investigate the resonance condition (86) and analyze its roots to
obtain the asymptotic expansions of resonances. The main results for the
resonances are summarized in Theorems 4.1 and 4.2.

4.2.1. Subsystem for each angular momentum. For a function depending
on the angle \theta , we use \Theta (f) to denote its angular momentum so that the \theta -dependence
of the function is given by ei\Theta (f)\theta . For example, for \psi D

ij and \psi N
mn defined (27) and

(33), there holds \Theta (\psi N
mn) = m and \Theta (\psi D

ij ) = i. On the other hand, \Theta (log r) = 0.
We have the following orthogonality relation for two basis functions with different
momenta.

Lemma 4.2. For any f, g \in \{ \psi N
mn, \psi 

D
ij , log r\} (m,n,i,j)\in (\BbbZ \times \BbbN )\ast \times \BbbZ \times \BbbN \ast with \Theta (f) \not =

\Theta (g), there holds

\langle \scrL k\scrR Op1[f ],\scrR Op2[g]\rangle = 0,(61)

where Opj represents one of the two operators \{ curl2,\nabla 2\} for j = 1,2.

Proof. We only show the proof when Op1 = curl2, Op2 = \nabla 2, f = \psi N
mn, and

g = \psi D
ij with m \not = i. For simplicity, let f(r, \theta ) = fn(r)e

im\theta and g(r\prime , \theta \prime ) = gj(r
\prime )eii\theta 

\prime 

,
where both fn and gj are real. A direction calculation gives

\nabla 2f \cdot curl\prime 2\=g= (f \prime n(r)e
im\theta \^r+ imfn(r)e

im\theta \^\theta ) \cdot ( - g\prime j(r\prime )e - ii\theta \prime \^\theta \prime + iifn(r)e
 - ii\theta \prime 

\^r\prime )

= [h1nj(r, r
\prime ) cos(\theta  - \theta \prime ) + h2nj(r, r

\prime ) sin(\theta  - \theta \prime )]eim\theta  - ii\theta \prime 

,

where \^\theta and \^r are the polar unit vectors, and honj , o = 1,2, are uniquely determined
from fn, gj , and their first-order derivatives. Thus by (50),

\langle \scrL k\scrR curl2[f ],\scrR \nabla \prime 
2[g]\rangle 

= - k2\langle \nabla 2[f ],\scrS k[curl
\prime 
2g]\rangle Ah

= - k2
\int 2\pi 

0

e\bfi (m - i)\theta \prime d\theta \prime 
\int 2\pi 

0

d\theta 

\int 

[a,a(1+h)2]

e\bfi k
\surd 

r2+r\prime 2 - 2rr\prime \mathrm{c}\mathrm{o}\mathrm{s} \theta [h1
nj cos\theta + h2

nj sin\theta ]

4\pi | r2 + r\prime 2  - 2rr\prime cos\theta | e\bfi m\theta drdr\prime 

= 0.

The proofs for the other cases are similar.

Using the above lemma, the full system (60) can be decoupled into a sequence of sub-
problems, where the elements in each subsystem attain the same angular dependence
eim\theta . More specifically, for each m\in \BbbZ , we have

\left[ 
 
Dm

I
I

\right] 
 
\left[ 
 
dm
cTE
m

cTM
m

\right] 
 =

\left[ 
 
Amm RTE

m RTM
m

CTE
m BTE,TE

m BTE,TM
m

CTM
m BTM,TE

m BTM,TM
m

\right] 
 
\left[ 
 
dm
cTE
m

cTM
m

\right] 
 .(62)

In the above, the unknown coefficients for each m are

dm =

\biggl\{ 
dTEM , m= 0;
dTE
m0 , m \not = 0,

cTE
m = [DTE

mn\prime cTE
mn\prime ]n\prime \in \BbbN \ast , cTM

m = [DTM
mj\prime c

TM
mj\prime ]j\prime \in \BbbN \ast .

I denotes the INF identity matrix on \ell 2 such that Icjm = cjm, j \in \{ TE,TM\} . The
scalars D0 = sin(kl/2) and Dm = sNm0 sin(s

N
m0l/2) for m \not = 0. The 3\times 3 block matrices,
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EM RESONANCES IN AN ANNULAR GAP 1029

relating to the 3 \times 3 block matrices on the right-hand side in (60) for each m, are
given as follows:

Amm :=

\biggl\{ 
ATEM,TEM , m= 0;

| 2 + sin(sNm0l)| 1/2ATE,TE
m0,m0 , m \not = 0,

RTE
m := [RTE

n;m]n\in \BbbN \ast =

\left\{ 
  
  

\bigl[ 
RTEM,TE

mn (DTE
mn)

 - 1
\bigr] 
n\in \BbbN \ast , m= 0;

\Bigl[ 
(\lambda Nm0)

 - 3/4ATE,TE
m0,mn (D

TE
mn)

 - 1
\Bigr] 
n\in \BbbN \ast 

, m \not = 0,

RTM
m :=

\bigl[ 
RTM

j;m

\bigr] 
j\in \BbbN \ast =

\left\{ 
   
   

\Bigl[ 
RTEM,TM

mj (DTM
mj ) - 1

\Bigr] 
j\in \BbbN \ast 

, m= 0;

\Bigl[ 
(\lambda Nm0)

 - 3/4ATE,TM
m0,mj (DTM

mj ) - 1
\Bigr] 
j\in \BbbN \ast 

, m \not = 0,

CTE
m :=

\bigl[ 
CTE

n\prime ;m

\bigr] 
n\prime \in \BbbN \ast 

=

\left\{ 
   
   

\Bigl[ 
(sNmn\prime ) - 1CTE,TEM

mn\prime 

\Bigr] 
n\prime \in \BbbN \ast 

, m= 0;

\Bigl[ 
(sNmn\prime ) - 1ATE,TE

mn\prime ,m0(\lambda 
N
m0)

3/4| 2 + sin(sNm0l)| 1/2
\Bigr] 
n\prime \in \BbbN \ast 

, m \not = 0,

CTM
m :=

\bigl[ 
CTM

j\prime ;m

\bigr] 
j\prime \in \BbbN \ast =

\left\{ 
   
   

\Bigl[ 
CTM,TEM

mj\prime 

\Bigr] 
j\prime \in \BbbN \ast 

, m= 0;

\Bigl[ 
ATM,TE

mj\prime ,m0 (\lambda 
N
m0)

3/4| 2 + sin(sNm0l)| 1/2
\Bigr] 
j\prime \in \BbbN \ast 

, m \not = 0,

BTE,TE
m :=

\Bigl[ 
BTE,TE

n\prime n;m = (sNmn\prime ) - 1ATE,TE
mn\prime ,mn(D

TE
mn)

 - 1
\Bigr] 
n\prime ,n\in \BbbN \ast 

,

BTM,TE
m :=

\Bigl[ 
BTM,TE

j\prime n;m =ATM,TE
mj\prime ,mn(D

TE
mn)

 - 1
\Bigr] 
j\prime ,n\in \BbbN \ast 

,

BTE,TM
m :=

\Bigl[ 
BTE,TM

n\prime j;m = (sNmn\prime ) - 1ATE,TM
mn\prime ,mj (D

TM
mj ) - 1

\Bigr] 
n\prime ,j\in \BbbN \ast 

,

BTM,TM
m :=

\Bigl[ 
BTM,TM

j\prime j;m =ATM,TM
mj\prime ,mj (DTM

mj ) - 1
\Bigr] 
j\prime ,j\in \BbbN \ast 

.

In the above, DTE
mn\prime denotes the mn\prime th diagonal element of DTE in (60), and ATE,TE

mn\prime ,mn

denotes the mn\prime th row, mnth column element of ATE,TE in (60), etc. The square
bracket [\cdot ] represents an INF matrix, an INF row vector, or an INF column vector,
with the subscript given by the following:

1. The subscript n \in \BbbN \ast (or j \in \BbbN \ast ) represents the column index n (or j) in a
row vector.

2. The subscript n\prime \in \BbbN \ast or j\prime \in \BbbN \ast with a prime represents row index n\prime (or j\prime )
a column vector.
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1030 JUNSHAN LIN, WANGTAO LU, AND HAI ZHANG

3. The subscript n\prime , n \in \BbbN \ast represents the column index n\prime and row index n for
a matrix.

Consequently, solving for (60) is equivalent to solving for k \in \scrB such that, for each m,
the system (62) attains nonzero \ell 2-sequences \{ dm, cTE

m , cTM
m \} .

4.2.2. Characteristic equation and resonance condition. To proceed, we
transform each system (62) into an equivalent characteristic equation. To this end, we
first analyze the matrix elements in (62) for h\ll 1. Let \scrS 0 be a single-layer potential
over the interval (0,1) given by

(\scrS 0[\phi ])(r) := 2

\int 1

0

1

2\pi 
log

1

| r - r\prime | \phi (r
\prime )ds(r\prime ),(63)

wherein the kernel function is the fundamental solution of the 2D Laplacian. It

is known that \scrS 0 is bounded from \widetilde H - 1/2(0,1) to H1/2(0,1) = (\widetilde H - 1/2(0,1))\prime [35,
Lem. 2.1.2]. Let

(64) \phi n(r) =

\Biggl\{ 
1\surd 
2
cos(n\pi r), n\in \BbbN \ast ,

1, n= 0.

Then, \{ \phi n\} n\in \BbbN forms an orthonormal basis of the space L2(0,1). We equip H1/2(0,1)
with the norm

| | f | | 2H1/2(0,1) :=
\infty \sum 

n=0

(1 + n2)1/2| (f,\phi n)L2(0,1)| 2

and \widetilde H - 1/2(0,1) with the norm

| | f | | 2
\widetilde H - 1/2(0,1)

:=

\infty \sum 

n=0

(1 + n2) - 1/2| \langle f,\phi n\rangle (0,1)| 2,

where \langle \cdot , \cdot \rangle (0,1) indicates the duality pair between \widetilde H - 1/2(0,1) and H1/2(0,1). The
estimations of the matrix elements in (62) are given in the following lemma.

Lemma 4.3. Let h\ll 1 and k \in \scrB . For each m\in \BbbZ , the following hold:
(i). The element BTE,TE

n\prime n;m in the matrix BTE,TE
m attains the following asymptotic

expansions:

BTE,TE
n\prime n;m = - 4(\scrS 0[(n

\prime \pi )1/2\phi n\prime ], (n\pi )1/2\phi n)L2(0,1) +\scrO (h)\epsilon TE,TE
n\prime n;m ,(65)

where the INF matrix \{ \epsilon TE,TE
n\prime n;m \} \infty n,n\prime =1 : \ell 2 \rightarrow \ell 2 is uniformly bounded for

h\ll 1.
(ii). The element BTE,TM

n\prime j;m in the INF matrix BTE,TM
m attains the following as-

ymptotic expansions:

BTE,TM
n\prime j;m = (1 - \delta m0)\scrO (h)\epsilon TE,TM

n\prime j;m ,(66)

where the INF matrix \{ \epsilon TE,TM
n\prime n;m \} \infty n,n\prime =1 : \ell 2 \rightarrow \ell 2 is uniformly bounded for

h\ll 1.
(iii). The element BTM,TE

j\prime n;m in the INF matrix BTM,TE
m attains the following as-

ymptotic expansions:

BTM,TE
j\prime n;m = (1 - \delta m0)\scrO (h)\epsilon TM,TE

j\prime n;m ,(67)
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EM RESONANCES IN AN ANNULAR GAP 1031

where the INF matrix \{ \epsilon TM,TE
j\prime n;m \} \infty n,n\prime =1 : \ell 2 \rightarrow \ell 2 is uniformly bounded for

h\ll 1.
(iv). The element BTM,TM

j\prime j;m in the INF matrix BTE,TE
m attains the following as-

ymptotic expansions:

BTM,TM
j\prime j;m = - 4(\scrS 0[(j

\prime \pi )1/2\phi j\prime ], (j\pi )
1/2\phi j)L2(0,1) +\scrO (h)\epsilon TM,TM

j\prime j;m ,(68)

where the INF matrix \{ \epsilon TE,TE
n\prime n;m \} \infty n,n\prime =1 : \ell 2 \rightarrow \ell 2 is uniformly bounded for

h\ll 1.
(v). The two INF column vectors CTE

m and CTM
m are uniformly bounded in \ell 2 as

h\rightarrow 0+. For m \not = 0,

CTE
n\prime ;m = - 2i\lambda m0 cos(s

N
m0l/2)h

1/2
\Bigl[ 
(\scrS 0[(n

\prime \pi )1/2\phi n\prime ], \phi 0)L2(0,1)

(69)

+\scrO (h logh)\epsilon CTE
n\prime ;m

\bigr] 
,

CTM
j\prime ;m = - 2m cos(sNm0l/2)h

1/2
\Bigl[ 
(\scrS 0[\phi 0], (j

\prime \pi )1/2\phi j\prime )L2(0,1) +\scrO (h logh)\epsilon CTM
j\prime ;m

\Bigr] 
,

(70)

and for m= 0,

CTE
n\prime ;m = 0,

(71)

CTM
j\prime ;m = - 2

\surd 
2\pi i cos(kl/2)h

\Bigl[ 
(\scrS 0[\phi 0], (j

\prime \pi )1/2\phi j\prime )L2(0,1) +\scrO (h logh)\epsilon CTM
j\prime ;m

\Bigr] 
,

(72)

where the two INF column vectors \{ \epsilon CTE
n\prime ;m \} and \{ \epsilon CTM

j\prime ;m \} are uniformly bounded
in \ell 2 for h\ll 1.

(vi). The two INF row vectors RTE
m and RTM

m are uniformly bounded in \ell 2 as
h\rightarrow 0+. For m \not = 0,

RTE
n;m = - 2ih1/2(\scrS 0[\phi 0], (n\pi )

1/2\phi n)L2(0,1) +\scrO (h3/2 logh)\{ \epsilon RTE
n;m \} ,(73)

RTM
j;m =

 - 2m

\lambda m0
k2h1/2

\Bigl[ 
(\scrS 0[\phi 0], (j\pi )

1/2\phi j)L2(0,1) +\scrO (h logh)\{ \epsilon RTM
j;m \} 

\Bigr] 
,(74)

and for m= 0,

RTE
n;m = 0,(75)

RTM
j;m =

 - 
\surd 
2ik\surd 
\pi 

\Bigl[ 
(\scrS 0[(j\pi )

1/2\phi j ], \phi 0)L2(0,1) +\scrO (h logh)\{ \epsilon RTM
j;m \} 

\Bigr] 
,(76)

where the two INF row vectors \{ \epsilon RTE
n;m \} and \{ \epsilon RTM

j;m \} in \ell 2 are uniformly
bounded for h\ll 1.

(vii). As h\rightarrow 0+, for m \not = 0,

Amm = 4cos(sNm0l/2)\lambda 
N
m0

\biggl[ 
 - h logh

4\pi 
+ \alpha m(k)h+ i\beta m(k)h

\biggr] 

 - 4k2m2 cos(sNm0l/2)

\lambda m0

\biggl[ 
 - h logh

4\pi 
+ \~\alpha m(k)h+ i\~\beta m(k)h

\biggr] 

+ cos(sNm0l/2)\scrO (h2 logh),(77)
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1032 JUNSHAN LIN, WANGTAO LU, AND HAI ZHANG

and for m= 0,

Amm = - 4cos(kl/2)k

\biggl[ 
 - h logh

4\pi 
+ \alpha 1(k)h+ i\beta 1(k)h+\scrO (h2 logh)

\biggr] 
,(78)

where for m\in \BbbZ ,

\alpha m(k) =
3

8\pi 
+

1

4\pi 

\int \pi /2

0

(cos(2k sin(\theta )) - 1) cos(2m\theta )

sin(\theta )
d\theta 

+
1

4\pi 
[log 2 - \gamma  - \psi (| m| + 1/2)],(79)

\beta m(k) =
1

4\pi 

\int \pi /2

0

sin(2k sin(\theta )) cos(2m\theta )

sin(\theta )
d\theta =

1

8

\int 2k

0

J2m(t)dt,(80)

\~\alpha m(k) =
\alpha m+1(k) + \alpha m - 1(k)

2
,(81)

\~\beta m(k) =
\beta m+1(k) + \beta m - 1(k)

2
,(82)

\gamma is Euler's constant, and \psi denotes the logarithmic derivative of gamma
function (cf. [37, section 5.2(i)]).

In the above, the prefactors in the \scrO -notation depend only on \scrB and m.

Proof. Details of the proof are presented in Appendix C.

Now, we define three INF matrices

Bm :=

\biggl[ 
BTE,TE

m BTE,TM
m

BTM,TE
m BTM,TM

m

\biggr] 
, P := [pn\prime n]n\prime ,n\in \BbbN \ast , P2 :=

\biggl[ 
P

P

\biggr] 
,

which are uniformly bounded from \ell 2 to \ell 2 for h \ll 1, and four INF column/row
vectors

cm :=

\biggl[ 
cTE
m

cTM
m

\biggr] 
, Rm :=

\bigl[ 
RTE

m RTM
m

\bigr] 
, Cm :=

\biggl[ 
CTE

m

CTM
m

\biggr] 
, p := [pn\prime 0]n\prime \in \BbbN \ast ,

uniformly bounded in \ell 2. In the above, the element

pn\prime n =

\Biggl\{ 
(\scrS 0[(n

\prime \pi )1/2\phi n\prime ], (n\pi )1/2\phi n)L2(0,1), n\in \BbbN \ast ,

(\scrS 0[(n
\prime \pi )1/2\phi n\prime ], \phi 0)L2(0,1), n= 0,

for n\in \BbbN , where \phi n is as defined in (64). Then, (62) becomes
\biggl[ 
Dm  - Amm  - Rm

 - Cm I - Bm

\biggr] \biggl[ 
dm
cm

\biggr] 
= 0, m\in \BbbZ .(83)

We have the following lemma.

Lemma 4.4. For 0 < h\ll 1 and k \in \scrB , Bm is uniformly bounded from \ell 2 to \ell 2

with

| | Bm + 2P2| | =\scrO (h) as h\rightarrow 0+.(84)

Moreover, I - Bm and I+2P2 attain uniformly bounded inverses for h\ll 1, and there
holds

| | (I - Bm) - 1  - (I+ 2P2)
 - 1| | =\scrO (h) as h\rightarrow 0+.(85)

In the above, the prefactors in the \scrO -notation depend only on m and \scrB .
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EM RESONANCES IN AN ANNULAR GAP 1033

Proof. The estimation (84) follows from Lemma 4.3 (i)--(iv). Using the Neumann
series, we see that (85) holds if I+2P2 is invertible, which is true since \scrS 0 is positive
and bounded below [36, Cor. 8.13].

From the invertbility of the operator I - Bm in the above lemma, for each m\in \BbbZ 

the system (83) can be further reduced to the following single nonlinear equation:

(86)
\bigl[ 
Dm(k) - Amm(k) - Rm(k)(I - Bm(k)) - 1Cm(k)

\bigr] 
dm = 0,

where we make the argument k explicit to emphasize the dependence of the equation
on k. We call (86) the characteristic equation, which is the resonance condition for
the scattering problem (8)--(11).

4.2.3. Asymptotic analysis of resonances. We are ready to state and prove
our first main result for the resonances.

Theorem 4.1. Assume that h\ll 1, and the resonances for the scattering problem
(8)--(11) in the bounded region \scrB are given as follows:

(i) For each given integer m \not = 0, there exist a finite sequence of resonance in \scrB 

k\ast m,2m\prime = km,2m\prime  - m2h

2km,2m\prime 

 - 2\Pi m(km,2m\prime , h)

km,2m\prime l
+\scrO (h2 log2 h),(87)

m\prime \in \BbbN \ast is bounded,

and a near-| m| resonance

k\ast m = | m|  - | m| h
2

 - 4| m| h
l

\Bigl[ 
(\~\alpha m(| m| ) - \alpha m(| m| )) + i( \~\beta m(| m| ) - \beta m(| m| ))

\Bigr] 
(88)

+\scrO (h2 logh),

where km,2m\prime =
\sqrt{} 
m2 + (2m\prime )2\pi 2

l2 ,

\Pi m(k,h) =
(m2  - k2)

\pi 
h logh+ 4k2h(\~\alpha m(k) + i\~\beta m(k))(89)

 - 4m2h(\alpha m(k) + i\beta m(k)) + 4(m2  - k2)h(pT (I+ 4P) - 1p),

and \alpha m, \beta m, \~\alpha m, and \~\beta m are defined as in (79)--(82).
(ii) m= 0: there exist a finite sequence of resonances in \scrB 

(90) k\ast 0,2m\prime = k0,2m\prime  - 2k0,2m\prime \Pi 0(k0,2m\prime , h) +\scrO (h2 log2 h),

where

\Pi 0(k,h) = - h
logh

\pi 
+ 4\alpha 1(k)h+ 4i\beta 1(k)h - 4hpT (I+ 4P) - 1p.(91)

Moreover, each resonance in (87)--(90) obtains an imaginary part of order \scrO (h).

Proof. We obtain the resonances for the scattering problem by solving for the
characteristic values satisfying

(92) Dm(k) =Amm(k) +Rm(k)(I - Bm(k)) - 1Cm(k)

for each m \not = 0, which reads
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1034 JUNSHAN LIN, WANGTAO LU, AND HAI ZHANG

(93) sNm0(e
isNm0l/2  - e - isNm0l/2) = - i(eis

N
m0l/2 + e - isNm0l/2)

\bigl[ 
\Pi m(k,h) +\scrO (h2 logh)

\bigr] 
.

Recall that sNm0 is defined by (37) with \lambda Nm0 = (\beta N
m0)

2 given in (31). Note that \beta N
m0

attains asymptotic expansion (124) as h\rightarrow 0. We first find the resonances that are
away from the integer numberm as h\rightarrow 0. More precisely, at such resonances, we have

lim inf
h\rightarrow 0

| sNm0| > 0.

To proceed, note that eis
N
m0l/2  - e - isNm0l/2 =\scrO (h logh) for h\ll 1, since the right-hand

side of (93) is \scrO (h logh). Therefore, we have for some m\prime \in \BbbN \ast that

\epsilon mm\prime := sNm0l - 2m\prime \pi = o(1), as h\rightarrow 0+,

and (93) leads to

1 - ei\epsilon mm\prime =
2i\Pi m(k,h)

sNm0 + i\Pi m(k,h)
+\scrO (h2 logh).

By Taylor's expansion of log(1 - 2x/(sNm0+x)) at x= 0 and by \Pi m(k,h) =\scrO (h logh),

\epsilon mm\prime = - i log

\biggl[ 
1 - 2i\Pi m(k,h)

sNm0 + i\Pi m(k,h)
 - \scrO (h2 logh)

\biggr] 
=

 - 2\Pi m(k,h)

sNm0

+\scrO (h2 log2 h).

Therefore, \epsilon m,2m\prime =\scrO (h logh) so that sNm0l= 2m\prime \pi +\scrO (h logh). But by (124),

k=
\sqrt{} 
(\lambda Nm0)

2 + (sNm0)
2 =
\sqrt{} 
m2  - m2h+ s2m0 +\scrO (h2).

We thus have

k= km,2m\prime +\scrO (h logh).

Now, according to the definition of \Pi m in (89), we have

\Pi m(k,h) =\Pi m(km,2m\prime , h) +\scrO (h2 log2 h),

so that

\epsilon mm\prime = - 2l\Pi m(km,2m\prime , h)

(2m\prime )\pi 
+\scrO (h2 log2 h).

Hence

sNm0 =
(2m\prime )\pi 

l
 - 2\Pi m(km,2m\prime , h)

(2m\prime )\pi 
+\scrO (h2 log2 h),

and one obtains the expansion (87). Therefore, resonances k satisfying (92) attain
the asymptotic expansion (94) for h\ll 1 for some m\prime \in \BbbN \ast .

As for the existence of resonances, one notices that when k lies in the region
Dh = \{ k \in \BbbC : Re(k) > 0, | sNm0(k)l  - (2m\prime )\pi | \leq h1/2\} \subset \scrB , the following holds on the
boundary of this disk:
\bigm| \bigm| \bigm| \bigm| \bigm| 
\Bigl[ 
(eis

N
m0l + 1) - (isNm0)

 - 1(eis
N
m0l  - 1)

\bigl[ 
\Pi m(k,h) +\scrO (h2 logh)

\bigr] \Bigr] 
 - 
\bigl[ 
i(sNm0l - (2m\prime )\pi )

\bigr] 
\bigm| \bigm| \bigm| \bigm| \bigm| 

=\scrO (h)\leq 
\surd 
h= | i(sNm0l - (2m\prime )\pi )| .
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EM RESONANCES IN AN ANNULAR GAP 1035

Rouch\'e's theorem states that there exists a unique root for (92) in Dh. Similarly one
can verify the expansion (90) for m= 0.

Finally, we solve for resonances that are asymptotically close to the integer m
when h \rightarrow 0. To do so, assume that sNm0 = o(1), as h \rightarrow 0+. Since (eis

N
m0l/2 +

e - isNm0l/2) = 1+\scrO ([sNm0]
2), we have

i[sNm0]
2l= sNm0(e

isNm0l/2  - e - isNm0l/2) +\scrO ([sNm0]
4)

= - i
\bigl[ 
\Pi m(k,h) +\scrO (h2 logh)

\bigr] 
+\scrO ([sNm0]

2h logh) +\scrO ([sNm0]
4)

= - i\Pi m(m,h) +\scrO (h2 logh) +\scrO ([sNm0]
2h logh) +\scrO ([sNm0]

4)

= - 2m2hi
\Bigl[ 
(\~\alpha m(m) + i\~\beta m(m)) - (\alpha m(m) + i\beta m(m))

\Bigr] 

+\scrO (h2 logh) +\scrO ([sNm0]
2h logh) +\scrO ([sNm0]

4).

Thus, [sNm0]
2 =\scrO (h) and

[sNm0]
2 = - 2m2hl - 1

\Bigl[ 
(\~\alpha m(m) + i\~\beta m(m)) - (\alpha m(m) + i\beta m(m))

\Bigr] 
+\scrO (h2 logh),

which implies (88).

Remark 4.1. The resonances attain the imaginary parts of order \scrO (h); thus they
are very close to the real axis when h\ll 1. We point out that k\ast m,2m\prime and k\ast m given
in (87) and (88) are resonances associated with the TE modes in the annular hole.
Note that the leading-order of resonances k\ast m,2m\prime depends on the metal thickness l,
while the leading-order of resonances k\ast m is independent of l. The independence on
the metal thickness for the latter is also called epsilon-near-zero phenomenon [41]. On
the other hand, k\ast 0,2m\prime given in (90) are resonances associated with the TEM mode
in the annular hole. As discussed in section 5, the excitations of these two types of
resonances are very different.

Remark 4.2. First, it can be shown directly from the asymptotic formula in The-
orem 4.1 that Im(k\ast 0,2m\prime ) = - k0,2m\prime h

\int 2k0,2m\prime 

0
J2(t)dt+\scrO (h2 log2 h)< 0 by using (1.1)

in [18]. Using [37, (10.22.9)] and [40, p. 253], we have Im(k\ast m) =  - | m| h
l J \prime 

2| m| (| m| ) +
\scrO (h2 logh) < 0. It is not obvious to deduce from the asymptotic formula in The-
orem 4.1 that Im(k\ast m,2m\prime ) < 0 for m \not = 0. A direct calculation of the sign of the
imaginary part of resonances is very technical. However, from the scattering theory,
the resonances, which are the poles of the resolvent for the Maxwell's operator, lie
below the real axis.

4.3. Resonances for problem (O). In this section, we characterize the reso-
nances for scattering problem (O). Due to the similarity between the even problem
(8)--(11) and the odd problem (12)--(14), we shall directly state the difference and the
final results. By the same vectorial mode matching procedure, we can still obtain the
linear system (60) but with the following replacements: on the left-hand side,

sin(kl/2)\rightarrow cos(kl/2), sin(sNmnl/2)\rightarrow cos(sNmnl/2), sin(sDij l/2)\rightarrow cos(sDij l/2);

on the right-hand side,

cos(kl/2)\rightarrow  - sin(kl/2), cos(sNmnl/2)\rightarrow  - sin(sNmnl/2),

cos(sDij l/2)\rightarrow  - sin(sDij l/2),

and the auxiliary coefficients | 2 + sin(sNmnl/2)| and | 2 + sin(sDij l/2)| on both sides
remain unchanged. With the above minor changes, we obtain the eigenvalue problem
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1036 JUNSHAN LIN, WANGTAO LU, AND HAI ZHANG

(83) and the characteristic equation (92) with Dm, Amm, Rm, Bm, and Cm changed
accordingly. From now on, we shall add the superscript o (or e) to all the elements
in (83) to indicate that they are for problem (O) (or (E)).

The asymptotic analysis of the resonances is stated in the following theorem.

Theorem 4.2. Assume that h\ll 1, and there exist a finite sequence of resonances
for problem (O) in \scrB for each given integer m \not = 0,

(94) k\ast m,2m\prime +1 = km,2m\prime +1 - 
m2h

2km,2m\prime +1
 - 2\Pi m(km,2m\prime +1, h)

km,2m\prime +1l
+\scrO (h2 log2 h), m\prime \in \BbbN ,

and a finite sequence of resonances when m= 0,

(95) k\ast 0,2m\prime +1 = k0,2m\prime +1  - 2k0,2m\prime +1\Pi 0(k0,2m\prime +1, h) +\scrO (h2 log2 h), m\prime \in \BbbN ,

where km,2m\prime +1 =
\sqrt{} 
m2 + (2m\prime +1)2\pi 2

l2 .

Proof. For the scattering problem (O), the characteristic equation (92) becomes

isNm0(e
isNm0l + 1) = (eis

N
m0l  - 1)

\bigl[ 
\Pi m(k,h) +\scrO (h2 logh)

\bigr] 
.(96)

In the following, we claim the trivial solution k=
\sqrt{} 
\lambda Nm0 is not a resonance. According

to Lemmas 4.3(v) and 4.4, Co
m \equiv 0 so that com \equiv 0. But (52) and (53) imply \bfitnu \times Eo =

\bfitnu \times Ho = 0 on Ah so that Eo =Ho \equiv 0 in the whole space \BbbR 3\setminus \Omega M. Moreover,

lim
h\rightarrow 0

2

l
= lim

h\rightarrow 0
lim

k\rightarrow 
\surd 

\lambda N
m0

isNm0(e
isNm0l + 1)

(eis
N
m0l  - 1)

= lim
h\rightarrow 0

lim
k\rightarrow 

\surd 
\lambda N
m0

\bigl[ 
\Pi m(k,h) +\scrO (h2 logh)

\bigr] 
= 0,

which is impossible. Thus, there is no resonance near sm0 for problem (O), which is
the main difference compared with problem (E). The proofs of the expansions (94)
and (95) for the resonances follow the same lines as Theorem 4.1.

5. Electromagnetic field enhancement at resonant frequencies. In this
section, we solve the scattering problem (3)--(6) when the incident wave \{ Einc,Hinc\} 
is present and study the electromagnetic field enhancement.

5.1. Field enhancement due to the excitation of a TE mode in the an-
nular hole. Let us first consider the scattering problem when the incident frequency
coincides with the real part of the resonance k\ast 1,m\prime (m\prime \in \BbbN \ast ) in (87) or (94), or the
resonance k\ast 1 in (88). For conciseness of the presentation, we only show the calcula-
tions for the normal incidence such that the polarization vectors in (2) are given by
E0 = (0,1,0)T and H0 = (1,0,0)T .

Theorem 5.1. For a normal incident wave with the polarization vectors E0 =
(0,1,0)T and H0 = (1,0,0)T , the magnitude of electromagnetic field E and H in the
hole Gh attains the order \scrO (h - 1) at resonant frequencies Re(k\ast 1,m\prime ) for each m\prime \in \BbbN \ast 

or Re(k\ast 1). Specifically,
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EM RESONANCES IN AN ANNULAR GAP 1037

(1). If k =Re(k\ast 1,m\prime ) for an even integer m\prime , the following expansions hold inside

the hole Gh
+:

H3(\bfitx ) = - h - 1( - 1)m
\prime /2 cos(m\prime \pi /lx3)x1e

 - ik1,m\prime l/2i

4[k21,m\prime 
\~\beta 1(k1,m\prime ) - \beta 1(k1,m\prime )]

+\scrO (logh),(97)

E1(\bfitx ) = h - 1( - 1)m
\prime /2 k1,m\prime e - ik1,m\prime l/2 cos(m\prime \pi /lx3)x21i

4[k21,m\prime 
\~\beta 1(k1,m\prime ) - \beta 1(k1,m\prime )]

+\scrO (logh),(98)

E2(\bfitx ) = h - 1( - 1)m
\prime /2 k1,m\prime e - ik1,m\prime l/2 cos(m\prime \pi /lx3)x1x2i

4[k21,m\prime 
\~\beta 1(k1,m\prime ) - \beta 1(k1,m\prime )]

+\scrO (logh).(99)

(2). If k=Re(k\ast 1,m\prime ) for an odd integer m\prime , then in the hole Gh
+, we have

H3(\bfitx ) = h - 1( - 1)(m
\prime  - 1)/2 sin(m\prime \pi /lx3)x1e

 - ik1,m\prime l/2i

4[k21,m\prime 
\~\beta 1(k1,m\prime ) - \beta 1(k1,m\prime )]

+\scrO (logh),

(100)

E1(\bfitx ) = - h - 1( - 1)(m
\prime  - 1)/2 k1,m\prime e - ik1,m\prime l/2 sin(m\prime \pi /lx3)x21i

4[k21,m\prime 
\~\beta 1(k1,m\prime ) - \beta 1(k1,m\prime )]

+\scrO (logh),

(101)

E2(\bfitx ) = - h - 1( - 1)(m
\prime  - 1)/2 k1,m\prime eik1,m\prime l/2 sin(m\prime \pi /lx3)x1x2i

4[k21,m\prime 
\~\beta 1(k1,m\prime ) - \beta 1(k1,m\prime )]

+\scrO (logh).

(102)

(3). If k=Re(k\ast 1), then

H3(\bfitx ) = - ih - 1e - il/2x1

4( \~\beta 1(1) - \beta 1(1))
+\scrO (logh),(103)

E1(\bfitx ) =
ih - 1e - il/2x21

4( \~\beta 1(1) - \beta 1(1))
+\scrO (logh),(104)

E2(\bfitx ) =
ih - 1e - il/2x1x2

4( \~\beta 1(1) - \beta 1(1))
+\scrO (logh).(105)

Proof. For the normal incidence, the reflected field is

Eref = - E0eik(x3 - l),Href =H0eik(x3 - l) for x3 > l/2.

The total field can be decomposed as

E(\bfitx ) =

\biggl\{ 
Ee(\bfitx ) +Eo(\bfitx ), x3 \geq 0,
Ee,*(\bfitx \ast ) - Eo,*(\bfitx \ast ), x3 < 0,

H(\bfitx ) = (ik) - 1curlE,

wherein \{ Ee,He\} and \{ Eo,Ho\} satisfy (8)--(11) and (12)--(14), respectively. On the
annular aperture Ah, using the integral equation (21), it follows that

\bfitnu \times Hj | Ah +
2

ik
\scrL k[\bfitnu \times Ej | Ah ] = \bfitnu \times Hinc +Href

2
| Ah =

\left[ 
 

0
 - e - ikl/2

0

\right] 
 

=

\biggl[ 
 - e - ikl/2\nabla 2(r sin\theta )

0

\biggr] 
, j = e, o.
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1038 JUNSHAN LIN, WANGTAO LU, AND HAI ZHANG

Then, using sin\theta = (2i) - 1(ei\theta  - e - i\theta ) and Lemma 4.2, the mode-matching procedure
in section 4.1 gives rise to only two inhomogeneous INF linear systems as shown below:

\biggl[ 
Dj

m  - Aj
mm  - Rj

m

 - Cj
m I - Bj

m

\biggr] \biggl[ 
djm
cjm

\biggr] 
= cj

\biggl[ 
am
bm

\biggr] 
, j = e, o;m=\pm 1.(106)

In the above, ce = 1, co = i, am = ke - \bfi kl/2

2i(\lambda N
m0)

1/4 \langle \nabla 2r sin\theta ,\scrR curl2\psi N
m0\rangle , and

bm =

\left[ 
  

\Bigl\{ 
ke\bfi kl/2

2isN
mn\prime (\lambda 

N
mn\prime )

1/4 \langle \nabla 2r sin\theta ,\scrR curl2\psi N
mn\prime \rangle 

\Bigr\} 
n\prime \in \BbbN \ast \biggl\{ 

e\bfi kl/2sD
mj\prime 

2ik(\lambda D
mj\prime 

)3/4
\langle \nabla 2r sin\theta ,\scrR \nabla 2\psi D

mj\prime \rangle 
\biggr\} 

j\prime \in \BbbN \ast 

\right] 
  

=

\Biggl[ \Bigl\{ 
ke\bfi kl/2(\lambda N

mn\prime )
3/4

2isN
mn\prime 

\langle r sin\theta ,\psi N
mn\prime \rangle 

\Bigr\} 
n\prime \in \BbbN \ast 

\{ 0\} j\prime \in \BbbN \ast 

\Biggr] 
,(107)

where the last equality holds due to Green's identities. We study the enhancement of
the electromagnetic field \{ Ee,He\} in the hole Gh

+ first.
By Lemma B.2, integrating by parts gives

am =
 - ke - ikl/2

\bigl( 
\lambda Nm0

\bigr) 3/4

2i
\langle r cos\theta ,\psi N

m0\rangle Ah = - ke
 - ikl/2

\bigl( 
\lambda Nm0

\bigr) 3/4

2i

\Biggl[ \sqrt{} 
\pi h

2
+\scrO (h3/2)

\Biggr] 

and

\langle r cos\theta ,\psi N
mn\prime \rangle Ah =\scrO [(n\prime ) - 2h3/2],

so that | | bm| | \ell 2 = \scrO (h). Using Lemmas 4.4 and 4.3(vi), the system (106) can be
reduced to the following inhomogeneous equation:

\bigl[ 
De

m(k) - Ae
mm(k) - Re

m(k)(I - Be
m(k)) - 1Ce

m(k)
\bigr] 
dem

= am +Re
m(I - Be

m) - 1bm

=
 - ke - ikl/2

\surd 
2\pi h

\bigl( 
\lambda Nm0

\bigr) 3/4

4i
+\scrO (h3/2)

for m=\pm 1.
(1). Let k = Re(k\ast 1,m\prime ) for an even integer m\prime \in \BbbN \ast , in which k\ast 1,m\prime is given by (87).
Since k - k\ast 1,m\prime = - Im(k\ast 1,m\prime )i=\scrO (h), we obtain

De
m(k) - De

m(k\ast 1,m\prime ) = - [De
m]\prime (k1,m\prime )Im(k\ast 1,m\prime )i+\scrO (h2 logh)

= 4h( - 1)m
\prime /2
\Bigl[ 
k21,m\prime 

\~\beta 1(k1,m\prime ) - \beta 1(k1,m\prime )
\Bigr] 
i+\scrO (h2 logh),

Ae
mm(k) - Ae

mm(k\ast m,m\prime ) =\scrO (h2 logh),

Re
m(k)(I - Be

m(k)) - 1Ce
m(k) =Re

m(k\ast 1,m\prime )(I - Be
m(k\ast 1,m\prime )) - 1Ce

m(k\ast 1,m\prime ) +\scrO (h2 logh).

Therefore,

dem =
k1,m\prime ( - 1)m

\prime 

e - ik1,m\prime l/2
\surd 
2\pi h+\scrO (h3/2)

16h[k21,m\prime 
\~\beta 1(k1,m\prime ) - \beta 1(k1,m\prime )] +\scrO (h2 logh)

= - h - 1/2k1,m\prime ( - 1)m
\prime /2e - ik1,m\prime l/2

\surd 
2\pi 

16[k21,m\prime 
\~\beta 1(k1,m\prime ) - \beta 1(k1,m\prime )]

(1 +\scrO (h logh))
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EM RESONANCES IN AN ANNULAR GAP 1039

and

| | cem| | \ell 2 = | | (I - Be
m) - 1(bm +Ce

md
e
m)| | \ell 2 =\scrO (1)

for m=\pm 1. Hence, using the field representation (46), inside the hole Gh
+, there holds

He
3(\bfitx ) =

\sum 

m\in \{  - 1,1\} 

\infty \sum 

n=1

[dTE
mn]

e - 2i\lambda Nmn cos(s
N
mnx3)

k
\psi N
mn(r, \theta )

+
\sum 

m\in \{  - 1,1\} 
[dTE

m0 ]
e - 2i\lambda Nm0 cos(s

N
m0x3)

k
\psi N
m0(r, \theta )

=
\sum 

m\in \{  - 1,1\} 

\infty \sum 

n=1

[cTE
m;n]

e - 2i[\lambda Nmn]
1/4 cos(sNmnx3)

k sin(sNmnl/2)
\psi N
mn(r, \theta )

+
\sum 

m\in \{  - 1,1\} 
dem

 - 2i\lambda Nm0 cos(s
N
m0x3)

k
\psi N
m0(r, \theta )

= - h - 1( - 1)m
\prime /2 cos(m

\prime \pi /lx3) cos(\theta )e
ik1,m\prime l/2i

4[k21,m\prime 
\~\beta 1(k1,m\prime ) - \beta 1(k1,m\prime )]

+\scrO (logh).

Similarly, an application of (45) yields the asymptotic for Ee
1(\bfitx ) and E

e
2(\bfitx ).

(2). The case when m\prime is odd can be derived similarly as above.
(3). Let k=Re(k\ast 1). Again, k - k\ast 1 = - Im(k\ast 1)i=\scrO (h) so that

De
m(k) - De

m(k\ast 1) = - [De
m]\prime (k\ast 1)Im(k\ast 1)i+\scrO (h2)

= 4h( \~\beta 1(1) - \beta 1(1))i+\scrO (h2),

Ae
mm(k) - Ae

mm(k\ast 1) =\scrO (h2 logh),

Re
m(k)(I - Be

m(k)) - 1Ce
m(k) =Re

m(k\ast 1)(I - Be
m(k\ast 1))

 - 1Ce
m(k\ast 1) +\scrO (h2 logh).

Thus,

dem =
h - 1/2e - il/2

\surd 
2\pi 

16(( \~\beta 1(1) - \beta 1(1))
(1 +\scrO (h logh)),

and | | cem| | \ell 2 =\scrO (1). Inside the hole Gh
+,

He
3(\bfitx ) =

\sum 

m\in \{  - 1,1\} 

\infty \sum 

n=1

[cTE
m;n]

e - 2i[\lambda Nmn]
1/4 cos(sNmnx3)

k sin(sNmnl/2)
\psi N
mn(r, \theta )

+
\sum 

m\in \{  - 1,1\} 
dem

 - 2i\lambda Nm0 cos(s
N
m0x3)

k
\psi N
m0(r, \theta )

=
 - ih - 1e - il/2 cos\theta 

4( \~\beta 1(1) - \beta 1(1))
+\scrO (logh),

and similarly, the asymptotic expansions for Ee
1(\bfitx ) and E

e
2(\bfitx ) can be derived.

From (106), we see that a normal incident plane wave can only excite the TEmn

modes in the annular hole with m=\pm 1. To excite higher-order modes with | m| \geq 2,
an oblique incident wave needs to be applied. Without loss of generality, we assume
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1040 JUNSHAN LIN, WANGTAO LU, AND HAI ZHANG

that the incident direction d= (d1,0, - d3)T and the electric polarization vector E0 =
(0,1,0)T . Then repeating the above procedure gives

(108) \bfitnu \times Hinc +Href

2
| Ah =

\left[ 
 

0
 - d3e - ikd3l/2+ikd1x1

0

\right] 
 =

\Biggl[ 
d3e

 - ikd3l/2curl2
e\bfi kd1r \mathrm{c}\mathrm{o}\mathrm{s} \theta  - 1

ikd1

0

\Biggr] 
.

From the Jacobi--Anger expansion [11, eq. (3.89)],

eikd1r cos \theta  - 1

ikd1
= (ikd1)

 - 1
\infty \sum 

m= - \infty 
[imJm(kd1r) - \delta m0]e

im\theta ,(109)

the expansion contains terms with higher-order angular momentum. Therefore, the
enhancement of the electromagnetic field \{ E,H\} can be obtained at the resonant
frequencies k=Re(k\ast m,m\prime ) with | m| \geq 2. We omit the detailed calculations here.

5.2. Field enhancement due to excitation of the TEM mode in the an-
nular hole. In this section, we consider field enhancement at the resonant frequencies
k=Re(k\ast 0,2m\prime ) in (90), which are associated with the TEM mode in the annular hole.
When a plane wave impinges on the subwavelength structure, the source term in (108)
is orthogonal to the resonant mode in the sense that

\biggl\langle 
curl2

eikd1r cos\theta  - 1

ikd1
,\scrR \nabla 2 log r

\biggr\rangle 
= - 

\biggl\langle 
curl2

eikd1r cos \theta  - 1

ikd1
,\nabla 2 log r

\biggr\rangle 

Ah

= 0.

This follows from the orthogonality relation curl2H
1(Ah) \bot \BbbH 2(A

h) in Lemma 3.1.
Thus the mode matching formulation leads to a homogeneous system for m = 0,
which only attains trivial solution for k \in \BbbR . This implies that no field amplification
could be obtained at the resonant frequencies k = Re(k\ast 0,m\prime ). In other words, TEM
modes cannot be excited by using the plane wave incidence.

To excite a TEM mode, we consider a spherical incident wave produced by an
electric monopole located at (0,0, y3)

T with y3 > 0, and it points toward the x3-
direction. Namely, Einc satisfies

curl curlEinc  - k2Einc = - \^x3\delta (0,0, x3  - y3),

where \^x3 = (0,0,1)T is the unit vector in the x3-direction. Indeed, it is known that

(110) Einc =
\bigl[ 
\^x3 + k - 2\partial x3

\nabla 
\bigr] 
\Biggl( 

eik
\surd 

r2+(x3 - y3)2

4\pi 
\sqrt{} 
r2 + (x3  - y3)2

\Biggr) 
.

The reflected electric field produced by the perfect conducting metallic slab is given
by

Eref =
\bigl[ 
\^x3 + k - 2\partial x3

\nabla 
\bigr] 
\Biggl( 

eik
\surd 

r2+(x3+y3)2

4\pi 
\sqrt{} 
r2 + (x3 + y3)2

\Biggr) 
.

We have the following result for the field amplification.

Theorem 5.2. Let the incident electric field be of the form (110). The magnitude
of the total electromagnetic field E and H attains the order \scrO (h - 1) at frequencies
k=Re(k\ast 0,m\prime ) for m\prime \in \BbbN \ast . Specifically,
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EM RESONANCES IN AN ANNULAR GAP 1041

(1). If k=Re(k\ast 0,m\prime ) for an even integer m\prime , the following hold in the annular gap

Gh
+:

E1 =
2( - 1)m

\prime /2c(k0,m\prime , y3)

h
x1 cos(k0,m\prime x3) +\scrO (logh),(111)

E2 =
2( - 1)m

\prime /2c(k0,m\prime , y3)

h
x2 cos(k0,m\prime x3) +\scrO (logh),(112)

H1 = - 2( - 1)m
\prime /2ic(k0,m\prime , y3)

h
x2 sin(k0,m\prime x3) +\scrO (logh),(113)

H2 =
2( - 1)m

\prime /2ic(k0,m\prime , y3)

h
x1 sin(k0,m\prime x3) +\scrO (logh),(114)

where c(k, y) = - e\bfi k
\surd 

1+y2
(k
\surd 

1+y2+i)

32\pi k2\beta 1(k)(1+y2)3/2
.

(2). If k=Re(k\ast 0,m\prime ) for an odd integer m\prime , then in the annular gap Gh
+,

E1 =
2( - 1)(m

\prime  - 1)/2c(k0,m\prime , y3)

h
x1 sin(k0,m\prime x3) +\scrO (logh),(115)

E2 =
2( - 1)(m

\prime  - 1)/2c(k0,m\prime , y3)

h
x2 sin(k0,m\prime x3) +\scrO (logh),(116)

H1 = - 2( - 1)(m
\prime  - 1)/2ic(k0,m\prime , y3)

h
x2 cos(k0,m\prime x3) +\scrO (logh),(117)

H2 =
2( - 1)(m

\prime  - 1)/2ic(k0,m\prime , y3)

h
x1 cos(k0,m\prime x3) +\scrO (logh).(118)

Proof. We have on the annular aperture Ah

\bfitnu \times Hinc +Href

2
| Ah = F (r, y3)

\biggl[ 
\nabla 2 log r

0

\biggr] 
,

where

F (r, y3) =
(k
\sqrt{} 
r2 + y23 + i)r2

4\pi k(r2 + y23)
3/2

eik
\surd 

r2+y2
3 .

Following our mode matching procedure, we obtain the systems below, which are
analogous to (106):

\biggl[ 
Dj

m  - Aj
mm  - Rj

m

 - Cj
m I - Bj

m

\biggr] \biggl[ 
djm
cjm

\biggr] 
= cj

\biggl[ 
am
bm

\biggr] 
, j = e, o, m\in \BbbZ .(119)

In the above, the source term

(120) am =

\Biggl\{ 
i

4\pi log(1+h) \langle F (r, y3)\nabla 2 log r,\scrR \nabla 2 log r\rangle , m= 0;
i

2\lambda N
m0

\langle F (r, y3)\nabla 2 log r,\scrR curl\psi N
m0\rangle , m \not = 0,

and

bm =

\left[ 
   

\Bigl\{ 
ki

2sN
mn\prime (\lambda 

N
mn\prime )

1/4 \langle F (r, y3)\nabla 2 log r,\scrR curl2\psi N
mn\prime \rangle 

\Bigr\} 
n\prime \in \BbbN \ast \biggl\{ 

isD
mj\prime 

2k(\lambda D
mj\prime 

)3/4
\langle F (r, y3)\nabla 2 log r,\scrR \nabla 2\psi D

mj\prime \rangle 
\biggr\} 

j\prime \in \BbbN \ast 

\right] 
   .
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1042 JUNSHAN LIN, WANGTAO LU, AND HAI ZHANG

We can derive from Lemma 4.2 that am = 0 and bm = 0 for m \not = 0. As such we need
only focus on the case m= 0. We further restrict to the case j = e as the case j = o
can be dealt with in a similar manner.

A direct calculation shows that

a0 = - i

8\pi k log(1 + h)

\int 1+h

1

\Bigl( 
k
\sqrt{} 
r2 + y23 + i

\Bigr) 

(r2 + y23)
3/2

eik
\surd 

r2+y2
3dr

= - i

8\pi k

\Bigl( 
k
\sqrt{} 

1 + y23 + i
\Bigr) 

(1 + y23)
3/2

eik
\surd 

1+y2
3 +\scrO (kh),

| | b0| | \ell 2 =\scrO (h),

Re
0(I - Be

0)
 - 1b0 =\scrO (h).

At k = Re(k\ast 0,m\prime ) for an even integer m\prime \in \BbbN \ast , noting that k  - k\ast 0,2m\prime =
 - Im(k\ast 0,2m\prime )i=\scrO (h), we have

De
0(k) - De

0(k
\ast 
0,m\prime ) = - l/2cos(k\ast 0,m\prime l/2)Im(k\ast 0,m\prime )i+\scrO (h2)

= ( - 1)m
\prime /24k\beta 1(k0,m\prime )hi+\scrO (h2 logh),

Ae
00(k) - Ae

00(k
\ast 
0,m\prime ) =\scrO (h2 logh),

Re
0(k)(I - Be

0(k))
 - 1Ce

0(k) =Re
0(k

\ast 
0,m\prime )(I - Be

0(k
\ast 
0,m\prime )) - 1Ce

0(k
\ast 
0,m\prime ) +\scrO (h2 logh).

Hence, from the equation

\bigl[ 
De

0(k) - Ae
00(k) - Re

0(k)(I - Be
0(k))

 - 1Ce
0(k)

\bigr] 
de0 = a0 +Re

0(I - Be
0)

 - 1b0,

we can derive that

de0 = - ( - 1)m
\prime /2h - 1 e

ik0,m\prime 

\surd 
1+y2

3 (k0,m\prime 

\sqrt{} 
1 + y23 + i)

32\pi k20,m\prime \beta 1(k0,m\prime )(1 + y23)
3/2

(1 +\scrO (h logh)),

and by Lemma 4.3(v), there holds

| | ce0| | \ell 2 = | | (I - Be
0)

 - 1(b0 +Ce
0d

e
0)| | \ell 2 =\scrO (1).

Therefore, using the field representations in (45) and (46), we obtain the desired
asymptotic for the electromagnetic fields in the annular gap Gh.

Remark 5.1. We note that the electromagnetic field in the annular hole is ampli-
fied with the order \scrO (h - 1) at the resonant frequency k=Re(k\ast 0,m\prime ) for some m\prime \in \BbbN \ast .
Moreover, the wave oscillates along the x3 direction, but it varies linearly in the
narrow annular cross section.

6. Discussion and conclusion. In this section, we discuss how the problem
geometry and the topology of the subwavelength hole may affect the resonances and
field enhancement for the scattering problem (3)--(6).

First, as pointed out at the beginning, for clarity the analysis is only presented
for the inner radius of the annulus a= 1. If a \not = 1, by the change of the scale, the roots
k of the characteristic equation (92) and the thickness l are replaced by ka and l/a,
respectively. Thus the value of a could significantly affect the resonant frequencies
given in (87), (88), (90), (94), and (95). In practice, one can tune this parameter for
applications in different frequency regimes. Moreover, we note that h is the relative
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EM RESONANCES IN AN ANNULAR GAP 1043

width of the gap Gh. Thus one can increase the inner radius a while keeping the
absolute gap width d = ah invariant. This will further increase the electromagnetic
enhancement to the order \scrO (h - 1) = d - 1\scrO (a).

Note that we have assumed that the metal thickness l = \scrO (1) throughout the
paper, and the prefactors in the error terms of the resonance formulae (87), (88), (90),
(94), and (95) depend on l. One natural question is how large l is allowed to be so that
our analysis still holds true. Compare the expressions in Theorems 5.1 and 5.2. The
leading terms of the fields due to TE modes do not change significantly as l decreases
or increases; however, the leading terms of the fields due to the TEM mode change
significantly in terms of order l3\scrO (h - 1) as l increases, since \beta 1(k

\ast 
0,m\prime ) = \scrO (l - 3) as

l \rightarrow \infty . We can carry out more delicate analysis to quantify the dependence of the
resonances on l more precisely and for l not necessarily small. In fact, to ensure the
existence of finite resonances for m \not = 0, it is sufficient to assume that lh logh \ll 1.
Let us revisit the characteristic equation (93):

sNm0(e
isNm0l/2  - e - isNm0l/2) = - i(eis

N
m0l/2 + e - isNm0l/2)

\bigl[ 
\Pi m(k,h) +\scrO (h2 logh)

\bigr] 
.

If lh logh\ll 1, there holds

sNm0l tan(s
N
m0l/2) = - l[\Pi m(k,h) +\scrO (h2 logh)] =\scrO (hl logh)\ll 1.

Thus sNm0l \ll 1 or sNm0l/2  - m\prime \pi \ll 1 for m\prime \in \BbbN \ast . Then following lines parallel to
those of the proof of Theorem 4.1, it can be shown that

Im(k\ast m,m\prime ) =\scrO (l - 1h logh), m\prime \in \BbbN \ast ,

where the prefactors no longer depend on l. However, the configuration when l=\infty is
more subtle, since the problem is not posed in an open medium anymore. One needs
to define the corresponding scattering problem properly and impose the radiation
conditions carefully. The other extreme case is when the metal is infinitely thin with
l= 0. In such a scenario, the hole no longer supports waveguide modes, and a totally
different approach needs to be adopted for analyzing the scattering problem. This is
beyond the scope of this paper and will be investigated in a separate work.

We would also like to point out there are no resonances in the region \scrB when the
narrow annular hole is replaced by a tiny hole with a simply connected cross section,
such as a tiny hollow hole with circular cross section. Assume that the radius of
the circle is given by h \ll 1. We can still apply the multiscale analysis framework
in this paper for analyzing the resonances. However, the two eigenvalue problems
(DEP) and (NEP) attain the eigenvalues of order \scrO (1/h), though the corresponding
eigenfunctions can still be used to construct the two function spaces curl2H

1(Ah) and
\nabla 2H

1
0 (A

h). In addition, the finite-dimensional space \BbbH 2(A
h) becomes \{ 0\} . Therefore,

the mode matching procedure leads to a system analogous to (83), with its first row
and first column removed. This new system possesses only the zero solution for k \in \scrB 
by Lemma 4.4. In other words, there are no resonances in \scrB .

Finally, we point out several directions along this line of research. In this work,
we focus on the resonances induced by the subwavelength annulus gap. Another
type of resonance is related to surface plasmon, and the quantification of its effect
on the overall resonant behavior of the structure is still open [17]. There are some
preliminary studies of the plasmonic effect on the resonances in [19] for the annular
hole, but the understanding of the interactions between two types of resonances is far
from complete. Another direction is to investigate the resonant scattering in more
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1044 JUNSHAN LIN, WANGTAO LU, AND HAI ZHANG

sophisticated structures, such as an array of annular holes, or the bull's eye structure,
etc. [17, 41]. The resonant phenomena become richer in those structures. In terms of
applications, there are also several topics that need to be explored. For instance, the
annular hole structures have been applied for detecting biomolecular events in a label-
free and highly sensitive manner from the shifts of resonant transmission peaks [38].
One fundamental question in such applications is the sensitivity analysis of resonance
frequencies, where the goal is to quantify how the transmission peaks shift with respect
to the refractive index change or the profile change of the biochemical samples.

Appendix A. Dirichlet eigenvalues and eigenfunctions. In this section,
we characterize the asymptotic behavior of the eigenpair \{ \lambda Dmn, \psi 

D
mn\} m\in \BbbZ ,n\in \BbbN \ast of the

Dirichlet eigenvalue problem (DEP) for 0<h\ll 1.

Lemma A.1. For h\ll 1 and m\in \BbbN , the nonzero roots of (29) admit the expansion

(121) \beta D
mn(h) =

n\pi 

h
+

(4m2  - 1)h

8n\pi 
+ n - 3\scrO (h2), m= 0,1,2, \cdot \cdot \cdot , n= 1,2, \cdot \cdot \cdot ,

where the prefactor in the \scrO -notation depends on m only.

Proof. Let C > 0 be a sufficiently large constant that is independent of h. Since
\beta and \beta (1 + h) are of the same order of magnitude when | \beta | \geq C, we apply the
formulas in [37, sec. 10.21(x)] to obtain the asymptotic formula (121) in the region
( - \infty , - C]\cup [C,\infty ). The rest is to show that there are no roots in ( - C,C)/\{ 0\} .

We distinguish two cases: 0< | \beta | \leq c0 or | \beta | \in (c0,C) for some sufficiently small
constant c0 \geq 0. If 0 < \beta \leq c0, then by the asymptotic behaviors of Jm and Ym of
small arguments [37, 10.7.3 and 10.7.4], we obtain for any fixed h> 0

Fm(\beta ,h)\eqsim (\beta /2)m/(\Gamma (m+ 1))( - \pi  - 1)\Gamma (m)(\beta (1 + h)/2) - | m| 

 - (\beta (1 + h)/2)m/(\Gamma (m+ 1))( - \pi  - 1)\Gamma (m)(\beta /2) - | m| 

= ( - (m\pi ) - 1)
\bigl[ 
(1 + h) - m  - (1 + h)m

\bigr] 
> 0, \beta \ll 1.

Now, suppose | \beta | \in (c0,C) so that F becomes analytic at h = 0. Taylor's expansion
directly gives rise to

Fm(\beta ,h) = (Ym(\beta )J \prime 
m(\beta ) - Jm(\beta )Y \prime 

m(\beta ))\beta h

+ (Ym(\beta )J \prime \prime 
m(\beta + \xi hh) - Jm(\beta )Y \prime \prime 

m(\beta + \xi hh))(\beta h)
2/2

for some \xi h \in (0,1) depending on h. Since Ym(\beta ) and Jm(\beta ) are linearly independent
over the interval [c0,C], the first term is in fact strictly nonzero, so that for h\ll 1,
F (h;\beta ,m) \not = 0 for any | \beta | \in (c0,C), which concludes the proof.

The following lemma characterizes the asymptotic behavior of \psi D
mn(r, \theta ;h) for

h\ll 1.

Lemma A.2. For h\ll 1, r \in [1,1 + h], (i, j)\in \BbbZ \times \BbbN \ast , we have

\psi D
mn(r, \theta ;h) =

eim\theta 

\surd 
\pi rh

\Biggl\{ 
sin
\Bigl[ n\pi 
h

(1 - r)
\Bigr] 
 - \gamma Dm(r)h

n\pi 
cos
\Bigl[ n\pi 
h

(r - 1)
\Bigr] 
+ n - 2\scrO (h2)

\Biggr\} 
,

(122)

where the function \gamma Dm : [1,1 + h]\rightarrow \BbbR is given by

\gamma Dm(r) =
(4m2  - 1)

8r
(r - 1),

and the prefactors in the \scrO -notation depend on m only.
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EM RESONANCES IN AN ANNULAR GAP 1045

Proof. For h\ll 1, Lemma A.1 implies that \beta D
| m| n \gg 1; thus by [37, 10.17.3 and

10.17.4], we have

Y| m| (\beta 
D
| m| n)J| m| (\beta 

D
| m| nr) - J| m| (\beta 

D
| m| n)Y| m| (\beta 

D
| m| nr)

=
2

\pi \beta D
| m| n

\surd 
r

\Biggl\{ 

sin(
n\pi 

h
(1 - r))(1 +\scrO (n - 2h2)) +

\gamma D
m(r)h

n\pi 
cos(

n\pi 

h
(1 - r))(1 +\scrO (n - 2h2))

\Biggr\} 

,

where the prefactor in the \scrO -notation depends only onm. Therefore, it can be verified
that

CD
mn =

2h1/2

\beta D
| m| n\pi 

1/2

\bigl[ 
1 + n - 2\scrO (h2)

\bigr] 
,

and hence (122) follows.

Appendix B. Neumann eigenvalues and eigenfunctions. In this section,
we derive the asymptotic expansion of the eigenpair \{ \lambda Nmn, \psi 

N
mn\} m\in \BbbZ ,n\in \BbbN for the Neu-

mann eigenvalue problem (NEP) when 0<h\ll 1.

Lemma B.1. For h\ll 1, the nonzero roots to (32) with sufficiently large magnitude
attain the expansion

(123) \beta N
mn =

n\pi 

h
+

(4m2 + 3)h

8n\pi (1 + h)
+ n - 3\scrO (h3), m= 0,1,2, \cdot \cdot \cdot , n= 1,2, \cdot \cdot \cdot ,

where the prefactor in the \scrO -notation depends on m. On the other hand, when m \not = 0,
there exists a unique root close to m satisfying

(124) \beta N
m0 =m - mh

2
+\scrO (h2), m= 1,2, \cdot \cdot \cdot .

Proof. When m= 0,

FN
0 (\beta ;h) = Y1(\beta )J1 (\beta (1 + h)) - J1(\beta )Y1 (\beta (1 + h)) = FD

1 (\beta ,h),

so that Lemma A.1 applies. In the following, we assume m \not = 0.
Let C > 0 be a sufficiently large constant that is independent of h. Since \beta and

\beta (1 + h) are of the same order of magnitude when \beta \geq C, the asymptotic formula
(121) in the region [C,\infty ) can be derived using the formulas in [37, sec. 10.21(x)]. We
only need to show that there is only one root in (0,C), and it is near m.

We distinguish two cases: 0 < \beta \leq c0 or \beta \in (c0,C) for some sufficiently small
constant c0 \geq 0 independent of h. If \beta \leq c0, by the power series representation of Jm
and Ym with small arguments [37, 10.2.2 and 10.8.1], we obtain for any fixed h> 0

FN
m (\beta ;h)\eqsim 

m!2m

\pi \beta m+1

(\beta (1 + h))
m - 1

2m(m - 1)!
 - m!2m

\pi \beta m+1(1 + h)m+1

(\beta )
m - 1

2m(m - 1)!

\eqsim 
m

\pi \beta 2

\bigl[ 
(1 + h)m - 1  - (1 + h) - m - 1

\bigr] 
> 0, \beta \ll 1.

Now if \beta \in (c0,C) so that FN
m is analytic at h= 0, then Taylor's expansion of FN

m at
h= 0 and Bessel's differential equation directly give rise to

FN
m (\beta ;h) = (Y \prime 

m(\beta )Jm
\prime \prime (\beta ) - J \prime 

m(\beta )Ym
\prime \prime (\beta ))\beta h+\scrO (h2)

= - (1 - m2\beta  - 2) [Y \prime 
m(\beta )Jm(\beta ) - J \prime 

m(\beta )Ym(\beta )]\beta h+\scrO (h2).
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1046 JUNSHAN LIN, WANGTAO LU, AND HAI ZHANG

Since Ym(\beta ) and Jm(\beta ) are linearly independent over the interval [c0,C], the first
term is in fact strictly nonzero and is far greater than the second term if (\beta  - m)\gg h
for h \ll 1. But the intermediate value theorem implies that there exists a root
in (m  - c0,m + c0) satisfying \beta  - m = \scrO (h). By a similar asymptotic analysis of
FN
m (\beta ;h) at \beta =m, the expansion (124) follows.

The following lemma characterizes the asymptotic behavior of \psi N
mn(r, \theta ;h) for

h\ll 1.

Lemma B.2. Let h\ll 1, r \in [1,1 + h], m\in \BbbZ , and n\in \BbbN . If n\geq 1, then

\psi N
mn(r, \theta ;h) =

eim\theta 

\surd 
\pi rh

\Biggl\{ 
cos
\Bigl[ n\pi 
h

(r - 1)
\Bigr] 
+
\gamma Nm(r)h

n\pi 
sin
\Bigl[ n\pi 
h

(r - 1)
\Bigr] 
+\scrO (n - 2h2)

\Biggr\} 
,

(125)

where the function \gamma Nm : [1,1 + h]\rightarrow \BbbR is given by

\gamma Nm(r) =
(4m2 + 3)h

8(1 + h)
 - (4m2  - 1)

8r
.

If n= 0,

(126) \psi N
m0(r, \theta ;h) =

eim\theta 

\sqrt{} 
\pi h(h+ 2)

+\scrO (h3/2).

In the above, the prefactors in the \scrO -notation depend on m only.

Proof. For n \geq 1, it follows from Lemma B.1 that \beta N
| m| n \gg 1. Thus by [37,

10.17:3,4,9,10], we obtain

Y \prime 
| m| (\beta 

N
| m| n)J| m| (\beta 

N
| m| nr) - J \prime 

| m| (\beta 
N
| m| n)Y| m| (\beta 

N
| m| nr)

=
2

\pi \beta N
| m| n

\sqrt{} 

1

r

\biggl\{ 

cos
\Bigl[ n\pi 

h
(r - 1)

\Bigr] 

(1 +\scrO (n - 2h2)) +
\gamma m(r;h)h

n\pi 
sin

\Bigl[ n\pi 

h
(r - 1)

\Bigr] 

(1 +\scrO (n - 2h2))

\biggr\} 

,

where the prefactor in the \scrO -notation depends only on m. It can be verified that the
normalization constant

CN
mn =

2
\surd 
\pi h

\pi \beta N
| m| n

(1 +\scrO (n - 2h2)),

so that (125) follows. If n= 0, we have

Y \prime 
| m| (\beta 

N
| m| 0)J| m| (\beta 

N
| m| 0r) - J \prime 

| m| (\beta 
N
| m| 0)Y| m| (\beta 

N
| m| 0r)

=
\Bigl[ 
Y \prime 
| m| (\beta 

N
| m| 0)J| m| (\beta 

N
| m| 0) - J \prime 

| m| (\beta 
N
| m| 0)Y| m| (\beta 

N
| m| 0)

\Bigr] \bigl[ 
1 +\scrO (h2)

\bigr] 
.

Then

CN
m0 =

\sqrt{} 
\pi h(h+ 2)

\Bigl[ 
Y \prime 
| m| (\beta 

N
| m| 0)J| m| (\beta 

N
| m| 0) - J \prime 

| m| (\beta 
N
| m| 0)Y| m| (\beta 

N
| m| 0)

\Bigr] \bigl[ 
1 +\scrO (h2)

\bigr] 
,

and hence (126) follows.

Appendix C. Asymptotic analysis of matrix elements in (83). To prove
Lemma 4.3, we need the following two lemmas.
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EM RESONANCES IN AN ANNULAR GAP 1047

Lemma C.1. For any two functions f, g \in C\infty 
comp(\BbbR ) with

max\{ | | f | | W 1
\infty (\BbbR ), | | g| | W 1

\infty (\BbbR )\} \leq M,

for some constant M > 0, the three INF matrices

\{ (\scrS 0[(n
\prime ) - 1/2f(\cdot ) sin(n\prime \pi \cdot )], n - 1/2g(\cdot ) sin(n\pi \cdot ))L2(0,1)\} \infty n,n\prime =1,

\{ (\scrS 0[(n
\prime )1/2f(\cdot ) cos(n\prime \pi \cdot )], n - 1/2g(\cdot ) sin(n\pi \cdot ))L2(0,1)\} \infty n,n\prime =1,

\{ (\scrS 0[(n
\prime )1/2f(\cdot ) cos(n\prime \pi \cdot )], n1/2g(\cdot ) cos(n\pi \cdot ))L2(0,1)\} \infty n,n\prime =1

are bounded operators mapping from \ell 2 to \ell 2, with norms depending only on M but
not on functions f and g.

Proof. We only give the proof for the first matrix. For any n\in \BbbN ,

((n\prime ) - 1/2 sin(n\prime \pi \cdot ), \phi n)L2(0,1) =

\left\{ 
     
     

1\surd 
n\prime 

1 - ( - 1)n
\prime 

n\prime \pi , n= 0,

1
2
\surd 
2n\prime 

\biggl[ 
1 - ( - 1)(n

\prime +n)

(n\prime +n)\pi + 1 - ( - 1)(n
\prime  - n)

(n\prime  - n)\pi 

\biggr] 
, n \not = n\prime ,

1
2
\surd 
2n\prime 

1 - ( - 1)(n
\prime +n)

2n\prime \pi , n= n\prime .

Thus for any \{ an\prime \} \infty n\prime =1 \in \ell 2 and any N,N \prime \in \BbbN \ast , we have
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

N \prime \sum 

n\prime =1

an\prime ((n\prime ) - 1/2 sin(n\prime \pi \cdot ), \phi n)L2(0,1)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\leq 
\Biggl( \infty \sum 

n\prime =1

| an\prime | 2
\Biggr) 1/2\Biggl( \infty \sum 

n\prime =1

| ((n\prime ) - 1/2 sin(n\prime \pi \cdot ), \phi n)L2(0,1)| 2
\Biggr) 1/2

<\infty 

for n\leq N . We obtain

N\sum 

n=0

(1 + n2) - 1/2

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

N \prime \sum 

n\prime =1

(an\prime (n\prime ) - 1/2 sin(n\prime \pi \cdot ), \phi n)L2(0,1)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

2

\leq 
\Biggl( \infty \sum 

n\prime =1

| an\prime | 2
\Biggr) 

N\sum 

n=0

N \prime \sum 

n\prime =1

(1 + n2) - 1/2
\bigm| \bigm| \bigm| ((n\prime ) - 1/2 sin(n\prime \pi \cdot ), \phi n)L2(0,1)

\bigm| \bigm| \bigm| 
2

\leq 
\Biggl( \infty \sum 

n\prime =1

| an\prime | 2
\Biggr) \Biggl[ \infty \sum 

n=0

(1 + n2) - 1/2 C

n3
+

\sum 

0\leq n\leq N,1\leq \delta n\prime \leq N \prime 

(1 + n2) - 1/2 C

\delta n\prime 2(\delta n\prime + n)

+
\sum 

1\leq \delta n\leq M \prime ,1\leq n\prime \leq N \prime 

(1 + (\delta n+ n\prime )2) - 1/2 C

\delta n2n\prime 

\Biggr] 
\leq C| | \{ an\prime \} | | 2\ell 2 ,

where C > 0 denotes a generic and sufficiently large constant. The above implies that

\phi (r\prime ) :=
\infty \sum 

n\prime =1

an\prime (n\prime ) - 1/2 sin(n\prime \pi r\prime )\in \widetilde H - 1/2(0,1),

with | | \phi | | \widetilde H - 1/2(0,1)
\leq C| | \{ an\} | | \ell 2 . Similarly, for any \{ bn\} \infty n=1 \in \ell 2,

\psi (r\prime ) :=
\infty \sum 

n=1

bn(n)
 - 1/2 sin(n\pi r)\in \widetilde H - 1/2(0,1),
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1048 JUNSHAN LIN, WANGTAO LU, AND HAI ZHANG

with | | \psi | | \widetilde H - 1/2(0,1)
\leq C| | \{ bn\} | | \ell 2 . Therefore,

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\infty 
\sum 

n=1

\infty 
\sum 

n\prime =1

an\prime (\scrS 0[(n
\prime ) - 1/2f(\cdot ) sin(n\prime \pi \cdot )], n - 1/2g(\cdot ) sin(n\pi \cdot ))L2(0,1)bn

\bigm| 

\bigm| 

\bigm| 

\bigm| 

= | \langle \scrS 0f\phi , g\psi \rangle (0,1)| \leq C| | f\phi | | \widetilde H - 1/2(0,1)| | g\psi | | \widetilde H - 1/2(0,1) \leq C(M)| | \{ an\prime \} \infty n\prime =1| | \ell 2 | | \{ bn\} \infty n=1| | \ell 2 ,

where C(M) denotes the dependence of the constant C onM [36, Thm. 3.20], implying
the boundedness of the first matrix mapping from \ell 2 to \ell 2.

Define

Fm(r, r\prime ) :=
1

2\pi 

\int 2\pi 

0

eik
\surd 
r2+r\prime 2 - 2rr\prime cos \theta 

\surd 
r2 + r\prime 2  - 2rr\prime cos\theta 

eim\theta d\theta .(127)

Lemma C.2. For k \in \scrB and r \not = r\prime \in (1,1 + h), we have

Fm(r, r\prime ) =
1\surd 
rr\prime 

\Biggl[ 
log(1 - w - 2)

\biggl[  - 1

2\pi 
+ (1 - w - 2)fm(1 - w - 2, \lambda 2)

\biggr] 

+ gm(1 - w - 2, \lambda 2)

\Biggr] 
,(128)

where w= (r2+ r\prime 2)/(2rr\prime ), \lambda = k
\surd 
2rr\prime , and fm(t1, t2) and gm(t1, t2) are analytic for

t1 \in ( - 1,1) and | t2| <C for some sufficiently large constant C.

Proof. By (45)--(48) in [12], we have

Fm(r, r\prime ) =
\Bigl[ 
\^\Lambda m
+ (rr\prime , \lambda ,w) + \^\Lambda m

 - (rr\prime , \lambda ,w)
\Bigr] 
,

where

\^\Lambda m
+ (rr\prime , \lambda ,w) =

( - 1)m\surd 
rr\prime 

\infty \sum 

p=0

\Biggl( 
\lambda 2

\surd 
w2  - 1

4

\Biggr) p
Qp

m - 1/2(w)

p!\Gamma (p - m+ 1/2)\Gamma (p+m+ 1/2)
,

\^\Lambda m
 - (rr\prime , \lambda ,w) =

( - 1)m\surd 
rr\prime 

\infty \sum 

p=0

\Biggl( 
\lambda 2

\surd 
w2  - 1

4

\Biggr) p+m+1/2
Q

p+m+1/2
m - 1/2 (w)

p!\Gamma (p+m+ 3/2)\Gamma (p+ 2m+ 1)
,

and Q\mu 
v denotes the associated Legendre function [37, section 14.1]. By (14.3.7),

(15.8.10), and (15.8.12) in [37], we obtain

\^\Lambda m
+ (rr\prime , \lambda ,w) =

( - 1)m\surd 
rr\prime 

\infty 
\sum 

p=0

\biggl( 

\lambda 2(w2  - 1)

4

\biggr) p \surd 
\pi e\bfi p\pi 2F1(

m+p+1/2
2

, m+p+3/2
2

;m+ 1;w - 2)

2m+1/2p!wm+p+1/2\Gamma (p - m+ 1/2)

=
( - 1)m\surd 
rr\prime 

\infty 
\sum 

p=0

\biggl( 

\lambda 2

4w2

\biggr) p \surd 
\pi e\bfi p\pi 2F1(

m - p+1/2
2

, m - p+3/2
2

;m+ 1;w - 2)

2m+1/2p!wm+p+1/2\Gamma (p - m+ 1/2)

=
1\surd 
rr\prime 

\biggl[ 

log(1 - w - 2)
 - 1

2\pi 
+ log(1 - w - 2)(1 - w - 2)f1

m(1 - w - 2, \lambda 2) + g1m(1 - w - 2, \lambda 2)

\biggr] 

for some analytic functions f1m(t1, t2) and g
1
m(t1, t2), where 2F1 denotes the hypergeo-

metric function [37, section 15.1]. Let z = 1
2

\Bigl( 
1 - 1

1 - w - 2

\Bigr) 
. By (14.3.7), (15.8.19), and

(15.8.8) in [37], we have
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\^\Lambda m
 - (rr\prime , \lambda ,w)

=
1\surd 
rr\prime 

\infty \sum 

p=0

\biggl( 
\lambda 2(w2  - 1)

4

\biggr) p+m+1/2 \surd 
\pi ei(p+1/2)\pi 

2F1(
p+2m+1

2 , p+2m+2
2 ;m+ 1;w - 2)

p!wp+2m+1\Gamma (p+m+ 3/2)

=
1\surd 
rr\prime 

\infty \sum 

p=0

\biggl( 
\lambda 2(w2  - 1)

4

\biggr) p+m+1/2

(1 - 2z)p+2m+1(1 - z) - m
\surd 
\pi ei(p+1/2)\pi 

2F1( - p - m,p+m+ 1;m+ 1; z)

p!wp+2m+1\Gamma (p+m+ 3/2)
,

=
1\surd 
rr\prime 

\infty \sum 

p=0

\biggl( 
\lambda 2

4

\biggr) p+m+1/2

(1 - z) - m
\surd 
\pi ei(p+1/2)\pi 2F1( - p - m,p+m+ 1;m+ 1; z)

p!(4z(z  - 1))p/2\Gamma (p+m+ 3/2)

=
1\surd 
rr\prime 

\bigl[ 
log(1 - w - 2)(1 - w - 2)f2m(w - 2  - 1, \lambda 2) + g2m(w - 2  - 1, \lambda 2)

\bigr] 

for some analytic functions f2m(t1, t2) and g
2
m(t1, t2). The proof is complete by taking

fm = f1m + f2m and gm = g1m + g2m.

Proof of Lemma 4.3. (i). It follows from (50) that

BTE,TE
n\prime n;m = 2

(1 +\scrO [(\lambda Nmn\prime ) - 1])

(\lambda Nmn\prime \lambda Nmn)
3/4

\bigl[ 
k2\langle \scrS k\nabla 2\psi 

N
mn,\nabla 2

\=\psi N
mn\rangle Ah  - \lambda Nmn\lambda 

N
mn\prime \langle \scrS k\psi 

N
mn,

\=\psi N
mn\rangle Ah

\bigr] 
.

By Lemmas B.2 and C.2, we obtain

[\lambda Nmn\lambda 
N
mn\prime ]1/4\langle \scrS k\psi 

N
mn,

\=\psi N
mn\rangle Ah

= (nn\prime )1/2\pi (1 +\scrO (h2))

\int 1

0

dr

\int 1

0

Fm(1 + hr,1 + hr\prime )
\surd 
1 + hr

\surd 
1 + hr\prime 

\biggl[ 
cos(n\prime \pi r\prime ) +

\gamma m(1 + hr\prime ;h)h

n\prime \pi 
sin(n\prime \pi r\prime ) +\scrO ((n\prime ) - 2h2)

\biggr] 

\biggl[ 
cos(n\pi r) +

\gamma m(1 + hr;h)h

n\pi 
sin(n\pi r) +\scrO (n - 2h2)

\biggr] 
dr\prime ,

where the prefactors in the \scrO -notationsdo not depend on n,n\prime . Using Lemma C.2, it
follows that

Fm(1 + hr,1 + hr\prime ) = - log[h| r - r\prime | ]
2\pi 
\sqrt{} 

(1 + hr)(1 + hr\prime )
+ 2h2 log[h| r - r\prime | ] \~fm(1 + hr,1 + hr\prime )

+ \~gm(1 + hr,1 + hr\prime )

for some analytic functions \~fm and \~gm. It is straightforward to verify using Lemma C.1
that

[\lambda Nmn\lambda 
N
mn\prime ]1/4\langle \scrS k\psi 

N
mn,

\=\psi N
mn\rangle Ah = (\scrS 0[(n

\prime \pi )1/2\phi n\prime ], (n\pi )1/2\phi n)L2(0,1) +\scrO (h)\epsilon TE,TE;1
n\prime n;m ,

where the INF matrix [\epsilon TE,TE;1
n\prime n;m ] is uniformly bounded for h \ll 1. One similarly

verifies that

[\lambda Nmn\lambda 
N
mn\prime ] - 3/4k2\langle \scrS k\nabla 2\psi 

N
mn,\nabla 2

\=\psi N
mn\rangle Ah =\scrO (h)\epsilon TE,TE;2

n\prime n;m ,

where the INF matrix [\epsilon TE,TE;2
n\prime n;m ] is uniformly bounded h\ll 1, and (65) follows imme-

diately.
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(ii)--(vi). The proof follows from arguments similar to those in (i). We omit the details
here.
(vii). According to (50),

Amm = 2cos(sNm0l/2)\lambda 
N
m0\langle Sk\psi 

N
m0, \psi 

N
m0\rangle Ah  - 2k2 cos(sNm0l/2)

\lambda m0
\langle Sk\nabla 2\psi 

N
m0,\nabla 2\psi N

m0\rangle Ah .

Similar to the derivations in (i), Lemma C.2 implies that

\langle Sk\psi 
N
m0, \psi 

N
m0\rangle Ah = h

\int 1

0

\int 1

0

Fm(1 + hr,1 + hr\prime )
(1 + hr)(1 + hr\prime )

2 + h
(1 +\scrO (h2))drdr\prime 

= - h logh
4\pi 

+ \alpha m(k)h+ i\beta m(k)h+\scrO (h2 logh)(129)

for some constants \alpha m(k) and \beta m(k), both of which are analytic in \scrB . By (50) in [12]
and (14.8.9) in [37],

Fm(1 + hr,1 + hr\prime ) =
1

\pi 

\int \pi 

0

\Bigl( 
eik

\surd 
h2(r - r\prime )2+4(1+hr)(1+hr\prime ) sin2(\theta /2)  - 1

\Bigr) 
cos(m\theta )

\sqrt{} 
h2(r - r\prime )2 + 4(1 + hr)(1 + hr\prime ) sin2(\theta /2)

d\theta 

+
Qm - 1/2

\bigl[ 
[(1 + hr)2 + (1+ hr\prime )2]/(2(1 + hr)(1 + hr\prime ))

\bigr] 

\pi 
\sqrt{} 

(1 + hr)(1 + hr\prime )

=
1

\pi 

\int \pi 

0

(e2ik sin(\theta /2)  - 1) cos(m\theta )

2 sin(\theta /2)
d\theta  - 1

\pi 
log[h| r - r\prime | ]

+
1

\pi 
[log 2 - \gamma  - \psi (m+ 1/2)] + o(1).

Plugging the above into (129) and comparing both sides lead to (79) and (80); the
second equality in (80) follows from [37, eq. (10.9.2)]. Similarly one can show that

\langle Sk\nabla 2\psi 
N
m0,\nabla 2\psi N

m0\rangle Ah =m2

\biggl[ 
 - h logh

4\pi 
+ \~\alpha m(k)h+ i\~\beta m(k)h

\biggr] 
+\scrO (h2 logh).

Equation (78) for m= 0 can be verified similarly.
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