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DIRAC POINTS FOR THE HONEYCOMB LATTICE WITH
IMPENETRABLE OBSTACLES”
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Abstract. This work is concerned with the Dirac points for the honeycomb lattice with impene-
trable obstacles arranged periodically in a homogeneous medium. We consider both the Dirichlet and
Neumann eigenvalue problems and prove the existence of Dirac points for both eigenvalue problems
at crossing of the lower band surfaces as well as higher band surfaces. Furthermore, we perform
quantitative analyses for the eigenvalues and the slopes of two conical dispersion surfaces near each
Dirac point based on a combination of the layer potential technique and asymptotic analysis. It is
shown that the eigenvalues are in the neighborhood of the singular frequencies associated with the
Green’s function for the honeycomb lattice, and the slopes of the dispersion surfaces are reciprocal
to the eigenvalues.
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1. Introduction. Inspired from the discovery of the quantum Hall effects and
topological insulators in condensed matter, there has been increasing interest in the
exploration of topological photonic/phononic materials recently to manipulate pho-
tons/phonons the same way as solids modulating electrons [11, 13, 19, 23, 24, 25, 31].
These topological materials allow for the propagation of robust waveguide modes (or
so-called edge modes) along the material interfaces without backscattering and even
at the presence of large disorder, which could provide revolutionary applications for
the design of novel optical /acoustic devices.

Typically the topological photonic/phononic materials are periodic band-gap me-
dia with the topological phases associated with the band structures of the underlying
differential operators. The band gap is opened at certain special conical vertex of the
band structure by breaking the time-reversal symmetry or the space-inversion symme-
try of the periodic media [7, 9, 17, 18, 20, 21, 29, 30]. Such vertices in the dispersion
relation are called Dirac points, which emerge from the touching of two bands of the
spectrum in a linear conical fashion, and their investigations play an important role
in the design of novel topological materials.

The mathematical analysis of Dirac points dates back to the study of the tight-
binding approximation model for graphene in [28] by Wallace and [26] by Slonczewski
and Weiss, and more recently for a more generalized quantum graph model with
potential on the edges of the honeycomb lattice in [15] by Kuchment and Post. Dirac
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points for the Schrodinger equation model of graphene were considered in [10] by
Grushin over the honeycomb lattice with a weak potential and later thoroughly studied
in [6] by Fefferman and Weinstein for potentials that are not necessarily weak; see
also [4] for an alternative proof of the existence and stability of Dirac points for the
Schrodinger operator. These results are then generalized to a broad class of elliptic
operators defined over the honeycomb lattice, including the configurations with point
scatterers, high-contrast medium, resonant bubbles, etc., [2, 5, 8, 16, 17]. We also
refer the readers to [22, 27, 29] for the numerical and experimental investigation of
Dirac points in other acoustic and electromagnetic media.

In this paper we study the Dirac points for the honeycomb lattice with impene-
trable obstacles embedded in a homogeneous medium. The setup arises naturally in
photonic/phononic materials when the inhomogeneities are sound soft/hard in acous-
tic media or perfect electric/magnetic conducting in electromagnetic media. More
precisely, we consider the honeycomb lattice in R? given by

AN:=Ze, ®Zey:= {6161 + loeq 251,62 c Z},

where the lattice vectors e; = a(?, %)T, ey = a(?, —%)T, and the lattice constant
is a. Let Y := {t1e; + taey |0 < t1,t2 < 1} be the fundamental cell of the lattice,
which contains a circular shaped impenetrable obstacle D, with radius € centered
at z. = (e + e2) (see Figure 1, left). Y. := Y\D. denotes the domain exterior to
the obstacle in the fundamental cell. The reciprocal lattice vectors k; and ko are
(2T s

K1 = and Ko = < T7,1)T, which satisty e; - k; = 2md;; for i,j = 1,2.

The reciprocal lattice is given by
N =7k, ® LKy := {élh‘,l 4+ lokg b1, € Z} .

The hexagon shape of the fundamental cell in A*, or the Brillouin zone, is denoted
by B and shown in Figure 1 (right).

For each Bloch wave vector k € B, we consider the following eigenvalue problem
with the frequency w € R:

(1.1) AY(x) +0p(x) =0,  x €Y. +A,

Y(x+e) = e e (x) fore € A.
A K:l
K
i, M 5
K/
K2

Fic. 1. Left: Honeycomb lattice with impenetrable obstacles located in the cell centers. The

lattice vectors e = a(@7 %)T and ez = a(é, f%)T, The lattice constant is a and the size of each
obstacle is €. Right: Brillouin zone generated by the reciprocal lattice vectors k1 = 2%(?, l)T and

Ko = 2{(?,—1)? The high symmetry vertices K = %(%, %)T and K' = —K, and the vertices
I'=(0,0", M =21 (7,07
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Along the boundary of the obstacles, we impose the Dirichlet boundary condition
(1.2) P(x)=0, x€0D.+A,

or the Neumann boundary condition

(1.3) OY(x)=0, x€0D.+A.

Here v denotes the unit normal direction pointing to the exterior of the obstacle.
We call (1.1), (1.2) and (1.1), (1.3) the Dirichlet and Neumann eigenvalue problems,
respectively. The eigenfunction v is called the Bloch mode, which can be written as
P(x) = e *y(x), wherein u is a periodic function satisfying u(x + e) = u(x) for all
ecA.

Let K = %nl + %K‘,Q = 27” %,%)T € B and K’ = —K be two vertices of the
Brillouin zone shown in Figure 1 (right). The matrix

()

is a rotation matrix such that Rx rotates the vector x by 27/3 clockwise on the plane.
Then all vertices of the Brillouin zone B are given by {K, RK, R*°K,K', RK' , R*K'}.
In addition, the following relations hold for the reciprocal lattice vectors:

Rky =Ky, Rry=—(k1+K2), R(Kki+kK2)=—Ki.

In the following, we set the Bloch wave vector k* = K and investigate Dirac points
at k*. Dirac points located at other Bloch wave vectors are reported in section 5,
but their mathematical studies will be our future endeavors. Figure 2 shows the
occurrence of the Dirac points formed by the first and second, and the fourth and
fifth band surfaces, respectively, for the Dirichlet eigenvalue problem. Note that due
to the symmetry of the honeycomb structure, the same Dirac points also appear at
other vertices of the Brillouin zone B. In this paper we prove the existence of Dirac
points (k*,w*) for both the Dirichlet and Neumann eigenvalue problems and show
that Dirac points appear at the crossing of lower band surfaces as well as higher band
surfaces. In addition, we carry out quantitative analysis for the eigenvalues and the
slopes of the conical dispersion surfaces near each Dirac point. It is shown that each
eigenvalue w* is near a singular frequency associated with the Green’s function for the
honeycomb lattice. These singular frequencies also correspond to the eigenvalues of
the homogeneous medium over the honeycomb lattice when the obstacles are absent.
In addition, the slopes of the dispersion surfaces are reciprocal to the eigenvalue w*.
We apply the layer potential technique to formulate the eigenvalue problem and reduce
the integral equation to a set of characteristic equations at x* from the symmetry of
the integral kernel and by the asymptotic analysis for the integral operator. The
eigenvalues are roots of the nonlinear characteristic equations and we derive their
asymptotic expansions with respect to the size of the obstacles €.

We would like to point out that our work is closely related to [2, 5] in the sense that
the limit of the high-contrast elliptic operators considered in [2, 5] are related to the
Neumann problem investigated in section 6, although the arrangements of inclusions
considered here are different. The structure considered here consists of one inclusion
in each period, while the configurations in [2, 5] consist of two inclusions in each
period. In addition, compared to the previous work, there are several new ingredients
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Dirac point

Dirac point

0.5

F1G. 2. Left: The dispersion curves along the segments M — I" - K — M owver the Brillouin
zone for the Dirichlet eigenvalue problem. The lattice constant a = 1 and the obstacle size is
e =0.05; Right: The first two dispersion surfaces for the honeycomb lattice, which shows the conical
singularity at the crossing of the first two band surfaces at the high symmetry vertices of the Brillouin
zome. For both the Dirichlet and Neumann eigenvalue problems, Dirac points can be formed by the
crossing of the first two band surfaces or other higher band surfaces as shown on the left panel and
in section 5.

for the results obtained in this paper: (i) We derive the asymptotic expansion of
Dirac points at both lower and higher frequency bands; (ii) The explicit expressions
for the slopes of the dispersion surfaces near the Dirac points can be obtained for
the considered structures. Although the layer potential technique and the asymptotic
analysis are used both in [2] and this work, we avoid the use of the operator version of
the residue theorem and Gohberg—Sigal theory by reducing the eigenvalue problems
to the analysis of ordinary analytic functions. Furthermore, the small parameter in
the asymptotics analysis in [2] is the contrast between the two media, while the small
parameter here is the size of the obstacles.

The rest of the paper is organized as follows. Sections 2-5 are devoted to the
study of Dirac points for the Dirichlet eigenvalue problem and section 6 discusses
the Neumann eigenvalue problem. In section 2 we formulate the eigenvalue problem
by using the layer potential and set up an infinite linear system for the expansion
coefficients of the density function over the obstacle boundary. Sections 3 and 4 are
devoted to the existence and quantitative analysis of Dirac point at low frequency
bands. In particular, in section 3 we prove the existence of one degenerate eigenvalue
at low frequency bands and derive the asymptotic expansion of the eigenvalue. We
establish the conical singularity of a dispersion surface in section 4 by quantitative
analysis of the slopes of the dispersion surfaces near the degenerate eigenvalue. Finally,
the Dirac points located at higher frequency bands are investigated in section 5.

2. An infinite linear system for the Dirichlet eigenvalue problem. In this
section, we formulate the Dirichlet eigenvalue problem by an integral equation over the
obstacle boundary and set up an infinite linear system for the expansion coefficients
of the density function. The Dirichlet eigenvalues reduce to the characteristic values
of the infinite linear system.

2.1. Integral equation formulation for the eigenvalue problem. For a
given Bloch wave vector k € B and frequency w € R, we use G(k,w;x) to denote the
corresponding quasi-periodic Green’s function that satisfies

(2.1) (A+w2)G(n,w;x):Ze“"ed(xfe) for x € R?.
ecA
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It can be shown that

(2.2) G(k,w;x) Zem *H{M (wlx —el),
eeA

where H[()l) is the zeroth-order Hankel function of the first kind. Alternatively,
G(k,w;x) adopts the following spectral representation (cf. [1, 3])

1 (k+q)-x

P

(2.3) G(k,w;x)

Note the Green’s function is not well defined when the frequency satisfies |w| = |k +q|
for some q € A*. We call such a frequency a singular frequency and denote the set of
singular frequencies by

Qging (k) :=={w: |w| = |k + g for someq € A*}.

In the above, the set Qing(k) only lists the distinct frequencies. For each k € B, we
arrange all the singular frequencies in Qgne (%) in ascending order and denote them as

(k) <@a(k) < <wp(K) <pt1(k) <---
First, the following lemma is straightforward from the expansion (2.3).
LEMMA 2.1. The Green’s function G(k,w;X) satisfies
(2.4) G(k,w;x) =G (k,w;—x) forx€R?\{0}.
LEMMA 2.2. Let k = Kk*, then the Green’s function G(k,w;X) salisfies
(2.5) G(k,w;x) = G(k,w; Rx) forx € R*\{0}.

Proof. For a Bloch wave vector q = #1k1 + {3k2, using the relations Rk, = Ko,
Rky = —(k1 + K2), and RK* = k* — k1, it follows that R(k* +q) = &* — (1 + l2)K1 +
(b1 — la)ka = K* + q, where q := (1 + l2)k1 + ({1 — l2)k2 € A*. Note that the map
from q to q is a bijective map on A*. Therefore,

et(r™+aq)x etR(k"+q) Rx
G(K",w;x) =
- 2 F e rE e 2 IR T 9P
z(n +q)-Rx
=G(Kk",w; Rx).
\Y| ; w?—|k*+q? d

We now introduce the following single-layer potential
26) S0 [ Glrwxoy)ek)ds, xeYirA
y€oD,

where ¢ is a density function on 0D.. Let H?(0D.) be the standard Sobolev space
of order s over the boundary of D.. It is well known that S*“ is bounded from
H~Y2(dD.) to H'/?(0D.) [1, 3]. We represent the Bloch mode 1 for the eigenvalue
problem (1.1)—(1.2) using the above defined layer potential. Using the Green’s iden-
tity, it is easy to check that (w, ) is an eigenpair for the Dirichlet problem (1.1)—(1.2)
if and only if there exists a density function ¢ € H~/2(dD,) such that

(2.7) [S®“¢](x)=0 forxe€ dD..
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To facilitate the asymptotic analysis, we apply the change of variables to rewrite the
above integral equation as

(2.8) [SEYp)(x)=0 forxedDs,

where the integral operator S takes the form

(2.9) (S5 ] (x) = / | Glkelx—y)ply)dy. xE0D:

We look for eigenpairs (w, ) such that (2.8) attains nontrivial solutions.

2.2. Eigenvalues as the characteristic values of an infinite linear system.
Let the boundary of Dy be parameterized by r(t) = (r1(t),72(t)), where r1(-) and r5()
are two smooth periodic functions with period 27. Then the linear operator Sf“
induces a bounded operator from H~'/2([0,2x]) to H'?([0,2n]) in the parameter
space, which we still denote as S for ease of notation. In what follows, we shall
work exclusively when D; is a unit disk and its parametric equation is given by
r(t) = (cost,sint).

We now solve the integral equation (2.8) with the above parameterization. Define

1
V2T

Then {¢,}nez forms a complete orthogonal basis for H~1/2([0,27]). We expand
e H Y2([0,2n]) as o = .00 ___ Cpthn, where {c }nez € H™'/2. Here and thereafter,

(2.10) bn(t) = e tel0,2n], nez.

the space H*® :={{c, }nez: Eio;ioo(l +n2)%|e,|? < 0o}. Then (2.8) reads
D en (SE¥¢n) =0.

Define the infinite matrix A = [am n]m,nez, Where

27

(2.11) A (K, W) = (P, SEX Py, 1= | G (t) [SEY ] (1) dt.

We see that (2.8) holds if and only if there exists nonzero ¢ = {¢, }nez € H™/2 such
that the following infinite linear system holds:

(2.12) A(k,w)c=0.

Such w are called the characteristic values of the system. To study the eigenvalues w
of the Dirichlet problem (1.1)—(1.2), we investigate the characteristic values of (2.12)
in the rest of this paper. The matrix A inherits the symmetries of the Green’s function
and the problem geometry as discussed below.

LEMMA 2.3. The following relations hold for the elements of the matriz A:
(1) Am,n = Qpm;
(ii) amn=(=1)"""—n,—m = (=1)"""a 0 —n;
(iii) if Kk = K*, then am, ., # 0 only if mod(m —n,3) = 0. Here and henceforth,
mod (-,3) denotes the modulo operation with the divisor equal to 3.
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Proof.
(i). A straightforward calculation yields

G = On e o) = [ [ Gl G =) o () b0

:/_” _’f G(k,w;e(r(T) — () p(t) dt G (T) dT = .-

(ii). Letting t=t' — 7 and 7 =7’ — 7, it follows that

n:/_ﬂ _Tf G(k,w;e(r(t) — (7)) ¢n(T) dT P (t) dt
:/ ﬂ/ ﬁG n,w;e(r(t'_ﬂ)_r(T/_ﬂ))) ¢"(T/_7T>d7'/mdt’
_ez(m ’I’L)TI'/ 7r‘/ ™ R w; g ) (t’))) mdtl(bn(Tl) dr!

= ( a—n, —m-

(iii). For k = k*, using Lemma 2.2, the integral

ux) = SE o= [ Gl wielx—y) oly) dsy
0D,
= G(k*,wie(Rx—§)) ¢ (R"y) dsy,
0D,
where y = Ry. Setting ng ¢r, and denoting the corresponding function by u = u,,
and using ¢, (R y) =" “ ¢, (¥) with the abuse of notation for the function ¢,,, we
obtain

s

(2.13) up(x) =8 “¢, =3

G(K",w;e(Rx—¥)) ¢n (¥) dsy = eﬂ‘%un(Rx).
aD;

On the other hand, wu,, attains the following expansion in the parameter space:

(2.14) un(t)= 3 (¢m,sg~*vw¢n) b= > amndm(t).

m=—0o0 m=—0o0

Substituting into (2.13) yields

L) LS
1(mt—2nm/3 mm(t—2m/3
§ Am,n€ ( /3) = § Am,n€ ( / )

Thus am,,, # 0 only if mt — 2nw/3 = m(t — 27/3) + 2m/w for some m’ € Z or
m—n=3m. |

By virtue of Lemma 2.3, when k = k*, the linear system (2.12) decouples into
three subsystems as follows:

(2.15) D aman(K W) esn =0, m=0,£1,42,--;
(2.16) D smirsn1(K5w) Cang1 =0, m=0,%£1,42,---;
(2.17) D asmorn-1(K5w) 31 =0, m=0,£1,42, ..
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Correspondingly, we decompose the space H® into the direct sum H* = H,, (@ Hy, ;&
M. 1, in which

Hy, ;= {{Cn}nez €H*:¢, =0if mod (n—j3)+# 0}, j=0,1,-1.
Each subsystem above corresponds to restricting the full system (2.12) to the space
H;i/ *. In connection with the eigenvalue problem (2.8), we decompose the function
space H*([0,2x]) into H*([0,27]) = H, ([0,27]) ® H, ,([0,27]) & H, _1([0,27]).
Alternatively, the function space Hy. ;([0,27]) can be characterized by

H:*,jqo,?ﬂ):{¢<t>eHs<[o,2ﬂ>:¢<t+2;):eif%(t)}, i=0,1,-1.

If {c3n+) fnez € H™1/2 is an eigenvector for the corresponding system in (2.15)—(2.17),

then the eigenfunction ¢(t) => 0" ¢3ntjPant;(t) for the eigenvalue problem (2.8)
belongs to H,:*lf([o, 27]).

In the following, we investigate the characteristic values w for each of (2.15)—(2.17)
such that the system attains nontrivial solutions {cs,+;}nez for j =0,1 or —1. As

shown below, the systems (2.16) and (2.17) attain the same characteristic values.

PROPOSITION 2.4. w is a characteristic value of (2.16) with the corresponding
solution {csnt1}tnez if and only if w is a characteristic value of (2.17) with the solution
{csn—1}nez satisfying cspn—1 = (—1)"*"C_gny1 for each n.

Proof. Let w be a characteristic value of (2.16) and {csp41}tnez be the corre-
sponding solution such that

oo

Z a3m+1,3n+1(K*, W) c3ny1 =0, m=0,£1,%£2,---.

n—=—oo

Choose c3,_1 = (—1)73"¢_3,51 for n € Z. Then by Lemma 2.3(ii), for each m € Z,
we have

oo (oo}

Z azm—1,3n—1(K", W) C3n—1 = Z a3m—1,-3n-1(K",w) c_3n—1
n=-—oo n=—oo
o0
= Y DT () - (1) T
n=—oo
= O’
and the system (2.17) holds. The converse can be shown similarly. |

3. Dirichlet eigenvalue at k = k* for the low frequency bands. In this
section, we focus on the lowest eigenvalue to the eigenvalue problem (1.1)—(1.2) when
K = Kk*. Based on the decomposition of the quasi-periodic Green’s function G(k,w,x)
and the integral operator S“, we decompose the matrix A into A =D+ &, wherein
D is a diagonal matrix. Such decomposition allows for reducing the subsystems (2.15)—
(2.17) to three scalar nonlinear equations (characteristic equations). The eigenval-
ues are the roots of the characteristic equations and can be obtained by asymptotic
analysis.

3.1. Decomposition of the Green’s function and the single-layer opera-
tor SF“. As we shall see, the lowest Dirichlet eigenvalue at k£ = k* lies in the vicinity
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of the singular frequency @w; (k*) := |k*|. To this end, we consider the following region
in the vicinity of @ (k*):

2
1 2T 81
Nl Q. = RT: — [ == 2<0w? - *2<7 .
3-1) (") {“’E |Y|<a) & s IR TS g

Let U, :={x:|x| <r} be a disk centered at the origin with radius r.

Remark 3.1. The orders 1/|lng| and €2 in (3.1) are chosen such that the de-

nominator in the Green’s function (3.4) has controlled lower and upper bounds. The
constant coefficients of these two orders, ‘71| (%")2 and |87”‘, are chosen to include the
eigenvalues under consideration in the region Q.(k*). The choice of the particular
constants will be clear when performing the expansions of the eigenvalue in section 3.4

(especially Theorem 3.15).

We denote

(3:2) Aj(@r) :={q €A™ : k" +q|=|r"[}.
It can be solved that Aj(w1) = {qi,q92,q3}, where q1 = (0,0)7, qz = 2TTF(f%,O)T,
and q3 = %’T(—%, —1)T. The set of vectors k* + Ajj(w;) are plotted in Figure 3. We
decompose the Green’s function into the three parts as follows:
(3.3) Ho(w;x) := —H{Y (wlx]),  x#0,

1 ei(n+q)»x
3.4 Gre (Ko X) = e
( ) AO(F%CU X) ‘Y‘ 2*27 w2—|m—|—q|2

quo(Wl)
(35) é(n,w;x) = G(Iﬁ‘/7w;X) _HO(UJ;X) _GAS(K/7W;X)7 X#Oa
G(k,w;0) := lim G(k,w;X).
x—0

Remark 3.2. Hy(w;x) is the free-space Green’s function that satisfies (A +
w?)Hy(x) = 6(x). Its asymptotic behavior for 0 < |x| < 1 is well known and is
given in the next lemma. In particular, Ho(w;x) &~ 5 In |x| as [x| — 0.

Remark 3.3. Given nonsingular frequency w ¢ Qging(), both Gz (k,w;x) and
G(k,w;x) are smooth functions in the neighborhood of x = 0. However, their asymp-

totic behaviors are very different as w approaches the singular frequency @, (k*) = |K*|.
More precisely, in this region, the finite sum Ga; (k*,w;x) attains the order m

K* 4+ qz K+ q1

v

{ K +as

F1G. 3. The set of the vectors in K* 4+ Af(w1).
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and its value blows up as w — @ (k*), while G(k*,w;x) remains order O(1) in the
neighborhood of x =0 as w — @;. In the decomposition, we introduce G to extract
the singular behavior of the Green’s function when w is close to the singular frequency.

LEMMA 3.4 ([12, section 2.1.1]). If 0 < |x| < 1, then

1
Ho(w;) = 5= [I0x] +Ineo 90 + In(eofx)) 3 by (wlx)? + 3 byl |

p>1 p>1

where b, 1 = %, bp2= (10— 0_12)bp1, o=FEo—In2—Z, and Ey =limy_

(Z;V:l 1% —InN) is the Euler constant.

From the Taylor expansion of the finite sum Gx(x), we also have the following
lemma.

LEMMA 3.5. For each w € Q.(k*), Gax(K*,w;X) is analytic for x € Us. with
e <1 and it possesses the Taylor expansion

[Yw? =2 " 3

1 1 1 (2m\?
(3.6) Gy (K wiX) = o ——— <3 = <;r) x|2> + G (K7 wix),

where GR (K", w;x) = ﬁm 2 lal>3 Calw)zit 25, a = (a1,a2) and [cal < Clel
for a certain constant C' independent of w, €, and «.

LEMMA 3.6. For each w € Q.(k*), G(K*,w;x) is smooth for x € Uy, with € < 1.
In addition,

(3.7) sup 05! 6§;é(n*7w; 0)|<C, 0<ag+as<2,
wEN: (Kk*)

wherein the constant C' is independent of w, €.

Proof. For fixed k*, from the spectral representation of the Green’s function
(2.3), we see that G(Kk*,w;+) — Gag (K", w;+) is a family of distributions that depends
on w analytically for w € Q.(k*). So is the distribution G(k*,w,-) = G(k*,w,-) —
Gz (K*,w,+) — Ho(:). On the other hand, in view of (2.1) and the explicit expression
(3.4) for Gy, a direct calculation yields

(Aw?)é(mw,x)=—<A+w2>GA;<n*7w,x>=—ﬁ >,
qeAG (@)

for x € Us. and w € Q.(k*). From the regularity theory for the solutions to the
Helmholtz equation, we deduce that the distribution é(&*,w;x) is smooth in the
domain Us.. Hence G(k*,w;x) can be viewed as a family of smooth functions for
x € Us. that depends on the parameter w analytically. This completes the proof of
the lemma. ]

DEFINITION 3.7 (decomposition of the single-layer operator S¥). Let Sy, .,
Shze> and Se be the integral operators with the kernel Hy, Gz, and G given in (3.3)-
(3.5):
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[SHO,‘S()D](X) :_/eaD HO(W;e(X_y))‘P(y)dSy, xE(?Dh

[Saz.0](x) ::/ Gaz(k,wie(x—y))p(y)dsy, x€0dDy,
y€edD,

Segl(x) = / L Glre(x—y)ply) dsy. x€0D.

3.2. Decomposition of the matrix A. Recalling that am, ., = (¢m,SE“dn),
using the decomposition of the integral operator S, we express a,, , as the sum of
the following three terms:

(SH()yE)m,n = (¢m’SHo,s¢n) )
(38) <8A87€)m,n = (¢maSA3,5¢n) )

(Ss)m,n = <¢’ma'~§e¢n) .

In what follows, we obtain the asymptotic expansion of (Swy.c)m.n, (SAz.c)m.n, and

(Sg)myn to obtain a decomposition of the matrix A.
Define

1
(3.9 Sop(x) := %/ Injx —y|le(y)dsy, x€0D;.
y€dD,

LEMMA 3.8. The operator Sy is bounded from H~'/2([0,2x]) to H'/?([0,2x]), and
attains the eigenvalues {n, }5_ and the eigenfunctions {¢, }°° _ . given by

— 00

0 n=>0 1 .
n = 1 ’ and  ¢p = ——e'™.
! {_2|1n7 n70, =

Proof. On the unit circle, there holds |r(t) — r(7)|* = 2—2 cos(t—7) = 4sin’ (557).
As such

Sl == [ (107 (157) ) ontr) e =m0,

where we have used Lemma 8.23 in [14]. O

LEMMA 3.9. For e <1, there holds

1
2—(ln5+1nw—|—70)+0(521n5), m=n=0,
Y3
1
(310) (SHO,E)mm = _m (1 + 0(52 1116)) , m=n 7& 07

0, m# n.

Proof. Using the expansion in Lemma 3.4, we have

1
Hy(w,e(x—y))= Py (Ine+lnw+vy +In|x—y|) + H*(w;e(x —y)),

wherein

1
Hg(wie(x —y)) = o | In(welx —y]) D bpa(welx =y + Y bpa(welx —y])*

p>1 p>1
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Note that |r(t) — r(7)|> = 4sin® (£57), we obtain (Sgy,e)m,n =0 for m #n.
To estimate (Swy.e)n,n, from Lemma 3.8 it is straightforward that

2 2
1 ™ ™

(3.11) On(t) I [r(t) — v (7)|dn (T)dTdt = 1.

2770 0

Now consider the following two integrals for p > 1:

Lipn ::/” ﬁ¢n(t)|r(t)—r(T)Izpln\r(t)—F(T)I%(T)det
027r 10

o dt
(3.12) :/ ~(2—2cost)’In (2 — 2cost) ™ —|
0o 2 2m

2w p27 2m o dt
Bpni= [ [ G0~ r(Pron(ridrdi= [ (2= 2cost)’ e L
0 0 0

s
When n =0, there holds

4P

qr 27 dt
|11,p,0|S5/0 |1ﬂ(2—2008t)|§=(115’ [I2,p0l <4P.

Here Cy := 0% |In (2 —2cost)) |4 is a finite constant. When n # 0, integrating by
parts yields

e - 1y g A
ILWL:—%/O [2psint (2 — 2cost)P ™ In (2 — 2cost) + 2sint (2 — 2cost)? 1]6””5%,

1 [ 1o dt
Inpp=—— 2psint (2 — 2cost)? ™ ™ .
2.p, in/o psint ( cost)’ e 5
It follows that
Tipn] € ——(2C1p+ 2471, Iy < a7
Pyl — 2|7’L| ? byl — 2|7’L| .

Thus there exists a constant Cy > 0 such that for all 0 <e <1 and all w € Q. (k*),
(3.13)

- 1 1 Y1
|(¢’n7HO ¢n)| = % Z(gw)Qpbl,pII,p,n“‘ % Z [hl(fw) + Yo — Z 8] (€w)2pb1,p12,p7n

p=1 p>1 s=1
{0262 Ine, n=20,
= | g Cec’Ine,  |n|#£0.
The proof is complete by combining (3.11) and (3.13). O

LEMMA 3.10. Let k =kK*. For e <1 and w € Q. (k*), there holds

1 1 Are? (27\° 5
iz (25 () +0E). mense
2
3.14 S . o = 1 1 27‘(’62 2 3 o
(3.14)  (Saz.e)m, V]a? P 5\ +0(%) ], m=n==l,
1
7] 57 O i) otheruse.
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Proof. Using the expansion (3.6), there holds

\ 1 1 e2 (2m\’ ) -
Gz (K", wie(x—y)) = mm (3 3 (a> Ix—yl +GA;("‘~ wie(x—y)).
Then (3.14) follows from Lemma 3.5, the relation |r(t) —r(7)|> =2 —2cos(t — 7), and
the fact that

2m 27
/ Om (7)(sint —sinT)* (cost — cosT)*? ¢y, (t)det‘
o Jo

<0 Im| > |af or |n| > |al,
= | 27 -4lel, otherwise. o

LEMMA 3.11. Let k =k*. Fore <1 and w € Q(K*), (Sc)m,n can be expressed as

Q é * ;0 -a =n=0
(3.15) (8)mm = (':ﬂ ,w;0)+€-ago, m n. ,
€ am,n, otherwise,

where the operator A := [am, ] is bounded from H=Y/? to HY2, and the operator

norm ||A|| < C with C independent of & and w.

_ Proof. From the analyticity of G(Kk*,w;x), for each w € Q.(k*), we can write
G(k*,wie(x—y)) as

G(K* wie(x —y)) =G(K*,w;0) + € - Goo(K*,w;e(x — y))

for a function Goo(K*,w;e(x —y)) that is smooth for x,y € dD;. In addition, from

(3.7), Goo (K*,w;e(x —y)) together with its first order partial derivatives with respect
to x, y are all uniformly bounded for w € .(k*). Therefore the following operator

Sg,ooga(x) ::/ éoo(h:,w;a(x—y))go(y) dsy, x€0Dy,
y€OD,

is bounded from H~'/2(dD;) to H/?(dD;). Let Qpmn = (qﬁm,gem(bn) with S‘Em

being the operator above in the parameter space. Then A= [@m ] is bounded from
H~1/2 to H/2. This completes the proof of the lemma. 0

Note that for w € Q. (k*),

1 1

Ci|lne| < Car—.
w 5

2 k2 =
Therefore, by virtue of Lemmas 3.9-3.11, we obtain the following decomposition for
the matrix A.

PROPOSITION 3.12 (decomposition of A). Let k = k*. There exists a constant
c > 0 such that for e € (0,c) and w € Q. (k*), the matriz A can be decomposed as
A=D+¢c&, where D :=diag(d,,)nez with

d, =

1 1 1 dme? (272 -

—( ] L S W L L) G(K*.w:0 -0
27r(ns—i— nw+%))+|Y|w2|n*|2< 3 (a)>+ (k*,w;0), n=0,

11 1 ore? 21\ 2

1 _cmem (AT —+1

2 V][ 3 (> neEh

1

- 2[n]’
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and € = [em.n]. In addition, & is bounded from H~1/2 to HY/? with the norm ||E|| < C
for a constant C' independent of € and w.

3.3. Characteristic equations. We reduce the subsystems (2.15)—(2.17) to the
nonlinear characteristic equations for w by using the decomposition of the matrix A
in Proposition 3.12. To this end, we denote Z* = Z\{0} and define the vectors

(3-16) ap:= {a3m O}mEZ* aj ‘= {a3m+1 1}m€Z* —1:= {asm 1 —1}mEZ*

(3-17) o= {C3m}m€Z*7 ¢y = {CSerl}meZ*a C_q:= {CBmfl}mEZ*z

and matrices

(318) AO = [a3m,3n}m€Z*,n€Z*a Al = [a3m+1,3n+1]m€Z*,nEZ*vand

A_q = [asm—13n—-1]mez* nez~-

Then using Lemma 2.3(i), each system in (2.15)—(2.17) can be split into the following
two equations:

(319) aj,j Cj+<éj,éj> :0, Ajéj—FCjéj:O, j:(),l,—l,

where the equation for m =0 and m € Z* are treated separately. Here and thereafter,
the inner product (a,b):= ano:_oo by, for the vectors a := {a;, tmez and b :
{bm}m€Z~

~ THEOREM 3.13. For k = K", w € Q.(K"), and sufficiently small €, the operator
A,; (H-Y2 5 HY2 s invertible.

Proof. For each w € Q.(k*), let A be decomposed as A = D + & as in
Proposition 3.12. Similarly, we decompose .A as .A = D + 65], in which D
diag(dsn+j)no is a diagonal matrix and the matrix 5 = [€3m+j’3n+j] is bounded
from H~1/2 to H/2.

Using the explicit expression of ds,4; in Proposition 3.12, it is obvious that ﬁj
is bounded from H~'/2 to H'/2. In addition, the inverse of f)j exists and 75;1 =
diag(1/dsn+;)n0 is bounded from H'/2 to H-'/2, with the operator norm bounded
by 4. Let us express A as .A D I+ s’D 1€ ;). For sufficiently small e, 525715' is
bounded on H~'/2 with the operator norm bounded by 1/2. Hence I+ED 15 is an
invertible operator on H~'/2 with the norm bounded below by 1/2. We conclude that
Aj attains the inverse .A ! (I+6D 1€)~ 1D ! with HA Y <8 forweQ.(k*). O

Now by Theorem 3.13, we can express ¢; as
(3.20) &5 =—c;(A7'a;), j=0,1,-1.

Substituting into the equation for m = 0 in (3.19), we obtain the following three
equations for c;:

(3.21) a; (K" w)ej — <Agléj(n*,w),éj(m*,w)> ¢;=0, j=0,1,-1

To obtain the eigenvalues for kK = k*, we solve for w such that (3.21) attains nontrivial
solutions or, equivalently, we find w that is a root of one of the characteristic equations:

(3.22) a; (K", w) — <A;15j(n*,w),aj(m,w)> ~0, j=0,1,-1

In summary, we have the following proposition for the characteristic values of
(2.15)—(2.17).
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PROPOSITION 3.14. w is a characteristic value of the system (3.19) if and only
if w is a root of the characteristic equation (3.22). In addition, the dimension of the
solution space for each system in (3.19) is 1.

3.4. Asymptotic expansion of the eigenvalues and eigenfunctions for
k =k"*. In view of Propositions 2.4 and 3.14, let us solve the characteristic equation
(3.22) in Q.(k*) for j=0,1 to obtain the eigenvalues. When j =0, (3.22) reads

(323) a()’(](l"\',*,w) — <Aaléo(ﬂ*,w),é@(l‘i*7w)> = 0

From Proposition 3.12, we have

1 1 4re? (272 1
ag.0(K*,w) = (3— e (;) >+ﬂ1+27rlns+0(e),

Y w? - kP 3

a3m,0 = €€3m,0, Mm#0.

1 .
= 2—(1nw +90) + G(k*,w;0). Hence (3.23) attains the expansion
m

1 1 dme? (2m\? 1
Y2 — |52 (3_ 3 (a)) ﬂl—&-%lna—i—O(E)—O?

which can be written as

2 2 —1
o2 ot (545 () ) (hmes mro)

Similarly, when j =1, it follows from Proposition 3.12 that

Here (;(w):

1 ag?
ar1(k,w) = ~3 + D +0(e), asms11=0(e)form#0.
Here o := % (27”)2 Therefore, the characteristic equation

a1 (K", w) — <.flflél(n*,w),él(n*7w)> =0
attains the expansion f% + #ﬁi*lz + O(g) =0 or, equivalently,

2 %2 1 2
(3.25) w” —|K"| —1+O(€)-2a~5.
It follows from Proposition 2.4 that w satisfying (3.25) is also a characteristic value
of (3.22) for j =—1.
Note that the w values satisfying (3.24) and (3.25) lie in the region 2. (k*). We
arrive at the following theorem for the eigenvalues in Q.(k*) and the corresponding
eigenfunctions for k = k™.

THEOREM 3.15. If k = k*, the Dirichlet problem (1.1)~(1.2) attains two eigen-
values in Q. (K*) for e < 1:

(67

wi = |k*|+ 240 (),

L

w**_m*‘_i L+O L
b Y[|s*| Ine In’e/’
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TABLE 1
The accuracy of the asymptotic formula for wi for various obstacle sizes. w] is obtained
numerically, and “’fo =¥+ ﬁ - €2 represents the leading orders of the asymptotic expansion.
The lattice constant is set as a=1.
€ 1/40 1/20 1/10 1/5

I 0.66896 0.67559 0.70172 0.81715

wio: e 0.66893 0.67573 0.70294 0.81177

Error 3e-5 1.4e-4 1.2e-3 5.4e-3

The corresponding eigenspaces are given by
V*i=span{SE¥ 1,85 p_1} and V™ :=span{SZ“ ¢},

where S is the single-layer potential, and ¢; € H,:*17§2([0,27r]) with @;(t) = et +
O(g) in the parameter space for j =0,+1.

Proof. Observe that both (3.24) and (3.25) are high-order perturbations of qua-
dratic equations in terms of the variable w. Therefore, the root wi* and wj for (3.24)
and (3.25), respectively, can be obtained from the quadratic root formula and its as-
ymptotic expansions, wherein the leading orders of wi* and w} are given by the roots
of the leading quadratic equations. The expansions of the eigenfunctions ¢g, @41
for the integral equation (2.8) in the parameter space are obtained by (3.20)—(3.21),
where we use Theorem 3.13. Hence we obtain the eigenvalues and eigenspaces for the
Dirichlet problem (1.1)—(1.2). d

Remark 3.16. wj is an eigenvalue of multiplicity two. The accuracy of its as-
ymptotic formula is demonstrated in Table 1. As is to be shown in the next section,
the dispersion surfaces (k,w) near (k*,w]) possess conical singularity. Thus the pair
(k*,w?) is a Dirac point, which is formed by the crossing of the first two band surfaces.
wi* is an eigenvalue of multiplicity one that is located on the third band.

4. The conical singularity for the dispersion surface near the Dirac
point. We consider the dispersion relations (k,w) near (k*,wj) for the eigenvalue
problem (1.1)—(1.2). In view of (2.12), (k,w) is a pair such that the system A(k,w)c =
0 attains a nontrivial solution ¢ € H=/2. Let ¢* € H'/2 be a solution to the system
A(k*,wi)c* = 0. From the discussions in section 3, it is known that ¢* € H, /2 =
span{ci,c_1}, where ¢; = {¢c,}nez € H;l/f In fact, due to the smoothness of the
obstacle boundary, c*,c1,c_1 € H° = [? [32]. We normalize the vectors such that
lexllie = lle—allz = 1.

Let Sk =k — K", dw =w — w7}, dc=c —c*, and dA(k,w) = A(k,w) — A(K*,w]).
Then dc satisfies

(4.1) AR, wi)éc=—0A(k,w)c” — 0A(K,w)dc.

The Fredholm alternative implies that there exists a dc such that (4.1) holds if and
only if 0 A(k,w)c* + dA(k,w)dc L H:l/Q or, equivalently,

(4.2) (0A(k,w)c* + 5 A(k,w)dc,cj) =0, j=-1,1.

In addition, when (4.2) holds, there exists a unique dc L H, */? that solves (4.1), and
the solution of the system (4.1) takes the form

sc=—AT K", w})(SA(K,w)c* + 5 A(K,w)dc),
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where A denotes the restriction of A onto the subspace that is orthogonal to H, V2.

Explicitly,
-1
(43) o= (T4 A (R wDAAGRw)) AL (R w]BA(R w)e"
Combining (4.2) and (4.3), and expanding c* as ¢* =a_jc_1 + ajc; for certain a_,

aq € C, we have the following lemma for (k,w).

LEMMA 4.1. For a fized € that is sufficiently small, a pair of (k,w) in the neigh-
borhood of (k*,w7) is on the dispersion surface if and only if the following 2x2 system
holds:

(4.4) a1 {(T+T)sA(k,w)c_1,¢;) + o1 ((Z+ T)oA(k,w)er,¢j) =0, j=-1,1,

where ay and a_q are constants, ay - a_1 # 0, and the operator

T(kw) i= —6.A(r,w) (I v All(n*,wf)(SA(h:,w)) AT (K" W),
Let dam n = Gmn(K,w) — Gmn(K*,w]). We have the following lemma for dan, »,
by using the decomposition (3.3)—(3.5) and a standard perturbation argument.

LEMMA 4.2. For each fized € < 1, near the Dirac point (K*,w7), there holds that
(4.5)

Sam,n =(0K,0w) - /0 " i i G () (V,{,WGAG (n*,w{;a(r(t) — r(T))) + O(l)) ¢ (T)drdt
+ O(|6k|%) + O(|6w|?)

for sufficiently small 6k and dw, where Gy is defined in (3.4).

THEOREM 4.3. For each fized € < 1, there are two distinct branches of eigenvalues

wit (k) near the Dirac point (K*,w?) given by

@0 wile =i+ o (Z) b w7l 0) + O~ K
(4.7) wy (k) =wi — 3010? (T) |k —k*|(1 +O(E)) +O(|lk — &*[%).

Proof. By Lemma 4.1, in the neighborhood of (k*,w7), the pair (k,w) satisfies

(ZT+T)A(k,w)c_1,c-1) (T4 T)0A(k,w)c1,c-1)
det =0.
(Z+T)0AK,w)c_1,c1)  {(Z+T)oA(k,w)er,cr)

-1
Recalling that 7 (k,w) := —0A(k,w) (I—#Aj_l(&*,wi‘)cSA(&,w)) AT (k*,w?), using
Lemma 4.2, the above equation reads
<6.A(n,w)c_1,c_1> <(SA(K;,(U)C1,C_1>
(4.8) det =0
(0A(K,w)c_1,c1)  (6A(K,w)cq,cq)

up to the first order in terms of dx and dw for each entry of the matrix.
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Since the nth component of the vectors ¢; and ¢_; is 0 when mod(n,3) =0, we
only need to consider the components of da, , for mod(m,3) # 0 and mod(n,3) #0
in (4.8). To this end, we define the set of indices relevant to (4.8) as

E:={(m,n) €Z x Z: mod(m,3) # 0 and mod (n,3) # 0},

and call such day, , relevant to (4.8). The complement of E is denoted by E°. The
components da, , with (m,n) € E€ are irrelevant to (4.8) and we can neglect them.

To obtain the perturbation J0A(k,w), we first compute the gradient
ViwGag (K", wise(r(t) —r(7))). The partial derivatives of g;(k*,w7,x) with respect
to k =(K1,k2) and w are

* * ix1ei(n*+q]‘)‘x 2(/{‘1( +q471)8i(n*+qj).x
afilgj(K ’(,Ul,X): ;

@DP =1 T (@) — |s7]?)?
s i(k*Hay)-x 2(k3 ) et(kT+a;)x
v iToe K3+ qj2)e
8K29j(K’ ’wl’x): (UJ*)2 — ‘K,*|2 2 * j2 *|2 2
1 ((wi)? = |x*]?)

9wk ay)x

O gj (K", W), X) = — 5.
((wi)? = [r=[?)

Here we have used the relation |k* + q;|?> = |k*|? for j = 1,2,3. By the Taylor
expansi d using the fact that the size of (w})? — |&*|? i 2

pansion and using the fact that the size of (w})? — |k*|? is comparable to £*, we
obtain

. (Y2 L2
8H1GAS(K" 7w175(x_Y))_(a> ((wT)2—|I€*2)2\/§< Z3 a5(372 312)

(4.9) - % (2;)252@1 1) yz)) +0 <1) ,

2
2| =222 —
( ¢ a e(x2 —y2)

)
(4.10) - é (27T>252 (1 —91)° = (22— 12)*) ) +0 (i) :
(4.11)

OuwGax (K™, wi;e(x—y)) —21 3 L (27T)252|x y?|+0 <1>
WGy (K wle(x—y) = ————= |3—5 | — - -
0 ! ((wp)? — |,{*|2)2 3\ a €

Dy Ging (R, w0} s2(x — y)) = (

Next we compute the leading-order terms in da, , defined in (4.5). The calculation
is based on the relation

2

1 . ) B ’
I'(t) _ I‘(T) — ((ezt + e—zt — e — 6_”), 5

(et — it —eiT 4 e_”)) .
First, the leading-order term zo — y3 in the kernel 0,;, Go(k*,w;e(x—y)) in (4.9)
takes the following form:
1 . , A _
To — Yo = 272'(6115 _ efzt — e + 6717')

= §<¢1(t>¢0<7> — ¢_1 (D)0 (1)) — Go(t)p1(T) + Po(t) 1 (7).
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The term contributes T, —%, —% % to the element day,,, in (4.5) for (m,n) = (1,0),
(=1,0), (0,—1), (0,1), respectively. However, each of these pairs of (m,n) ¢ E since ei-
ther m =0 or n =0, and the corresponding element da, , will not contribute to (4.8).
The next leading-order term, (z1—y1)(x2—y2) in Ok, Go(K*,wi;e(x—y)) in (4.9),
takes the following form:
1 it —it T —4iT 1 it —it T —4iT
—2(6 +e e e )-21_(6 e eT+e ')

:%(—¢1(t)¢1(7') + é_1(t)¢_1()) + remainder terms.

In the above, the remainder terms only contribute to da,, , for (m,n) € E¢ and we
can neglect them. Thus the term (z1 —y1)(z2 — y2) contributes —%, % to da,,, in
(4.5) for (m,n) =(1,-1),(—1,1) € E, respectively.

Similarly, it is straightforward to calculate and verify that among the relevant
elements in dap, n, the term (z1 —y1)? — (22 — y2)? in Ok, Gaz (K", wise(x —y)) of
(4.10) contributes —2m, —27 to (1,—1),(—1,1), respectively, and the term |x — y|? in
0,Gp; (K", wi;e(x—y)) of (4.11) contributes —27, —27 to (1,—1),(—1, 1), respectively.

In view of the expansions (4.9)—(4.11) and summing up their contributions to 6.4,
we see that each entry in the 2 x 2 matrix of (4.8) takes the form

(w1 — y1)(332 - yz)

(0 A(K,w)c;,c;) = ( ) —4 (27T> 0k1(Aic;, cj)
((w |H*| )\ 9 \a
2 (2w 2wy
-3 (a) dka(Azc;, cj) + dw—— 3 <A3c“c]>>
1
+0 <Emax |0k, (5w|)>
where
0 * % 0 * =27
A= * $k ok , Ay = * ok * ,
—% * 0 —2m % 0
-2 0
Az = * *% *

The element with a double star corresponds to the (0,0) entry, and the elements that
are labeled as *, xx or are not displayed are either 0 or irrelevant to (4.8). Therefore,
up to the leading orders in dx and dw, the relation between dx and dw is given by

(— 4wt +0(e))bw 2 (= &+ 0()om + (3 + O(e) on2)
2 (& + 0E)dr1 + (5 + 0(e) ona (— dwi +0(e))dw
=0.
Hence the dispersion relations (4.6)—(4.7) follow and the proof is complete. d
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5. Dirac points for higher frequency bands of the Dirichlet problem.
For k = k™, the eigenvalues located at higher bands lie in the vicinity of the singular
frequency Wy (Kk*) € Qsing(K*) for n=2,3,.... It can be calculated explicitly that

o (k*) =2|r"|, @3(k*) =VT|K*|, Gu(k*)=V13|K"|, @5(k*)=4|c"],....

As shown below, the studies of Dirac points near @, (k*) are parallel to the Dirac point
at the crossing of the first two band surfaces studied in sections 3 and 4. The first dif-
ference lies in the choice of the set of vectors Af(w,) :={q € A*: |k* +q| = |0, (k)|}
and the decomposition of the Green’s function (3.3)—(3.5) associated with the set
A§(@y). The cardinal number of the set Af(wy,) is a multiple of 3. Here we only dis-
cuss the Dirac point near ws(k*) and w3 (k*) when the cardinal number of Afj(w2) and
Af(@s) is 3 and 6, respectively. We highlight the similarities and differences in theses
two scenarios. The Dirac points near w,(k*) for n > 3 can be obtained similarly.

Remark 5.1. We point out that there also exist Dirac points when the Bloch
wave vector k # k* for higher frequency bands. This is illustrated in the left panel
of Figure 4, where Dirac points appear at the crossing of the seventh and eighth, and
the tenth and eleventh band surfaces, respectively, between the MT' segments in the
Brillouin zone. The mathematical analysis of these Dirac points are beyond the scope
of this paper and will be investigated in the future.

5.1. Dirac point near ws(k*). The set Aj(w2) = {q1,92,q3}, where q; =
2 (—3,-1)7T, q2 = 27”(%, —1)T, and q3 = 27”(—%, 1)T. To obtain the Dirac point,
we solve the characteristic values of the systems (2.15)—(2.17) in the region Q. (2k*) :=

{w ERT: ™ (27”)252 <w?— 26 < |67”| (%’)252}. As explained in Remark 3.1, the

lower and upper bounds are chosen so that Q. (2k*) includes the eigenvalues that are

J T
(’{ B ); /
Dirac point
........ 3 (K*) J
Q3(H*)
Dirac point
K

FiG. 4. Left: The dispersion curves along the segments M — I"' = K — M owver the Brillouin
zone when ¢ = 0.1. When k& = K*, Dirac points appear at the crossing of the first and second,
the fourth and fifth, the eighth and ninth, and the tenth and eleventh band surfaces, respectively.
Dirac points also appear at the crossing of the seventh and eighth, and the tenth and eleventh band
surfaces between the MT' segments. Right: Zoomed view of the crossing of the eighth and ninth band
surfaces. One Dirac point is formed by these two band surfaces in the O(e?) wicinity of the singular
frequency w3(k*) at k* = K.
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of order O(g?) away from wy. Using the set Aj(wz) above, the Green’s function
G(Kk*,w,x) is decomposed into three parts as in (3.3)—(3.5) with

1 6i(n+q)~x

Gag (R, wix) = = B
Ao(K/ w X) |Y‘ EAZ( )w2_|,€+q|2
qcig (w2

Similarly to (3.4), Gz (k,w;x) above also consists of three modes and it extracts the
singularity of the Green’s function when w approaches the singular frequency wa (k™).
In addition, it attains the Taylor expansion

2
. 1 1 4 (2r -
GAS(K, ,W,X):mm (3_3(a> |X|2> +GA6(FL ,OJ;X).

Therefore, by repeating calculations in section 3, it can be shown that for w € Qs (K*),
the matrix A can be decomposed as A =D + ¢ &, where D := diag(d, )nez with

d, =

1 1 1 16me? /27\%\ -

—( 1 — 3 = G(k*,w;0), n=0,

zw(n”n“’ﬂo»ﬂmw?—pmp( 3 (a> )* (K*,w;0),

1 1 1 8me? (272

e - =41
2 WE e 3 (a) n==h
1

_m, |n|>1,

and & = [e,n ] is bounded from H~'/2 to H'/2. As such the subsystems (2.16)(2.17)
reduce again to the characteristic equation (3.22), and we can obtain the Dirac point,

which is formed by the crossing of the fourth and fifth band surfaces shown in Figure 4
(left).

THEOREM 5.2. Letting k = k* and ¢ < 1, (1.1)~(1.2) attains an eigenvalue

2
w§:\2ﬂ*|+m~€2+0(53)

in Q. (2k*) with the corresponding eigenspace
Vo' = span{S5“ 1,85 p_ 1}, wherein o1 (t) = e + O(e) and p_1(t) = e~ + O(e).

In the neighborhood of (k*,w3), there are two distinct branches of eigenvalues given by

) =i & g (2 I = w7114 0(0) + Ol = P

*
3w \ a

5.2. Dirac point near w3(x*). Differently from the studies of Dirac points near
w1 (k*) and @a(Kk™), here the set Af(ws) consists of 6 vectors:

T
2 2 2T 2
=T (= 2) L qe= (V3T g5 = —(0,-2)7
a < 7 ) @ ="—(=V3,1)" a5 =—(0,-2)

_am (1 N w4 N w2 VY
q4_a 37 7(15—a \/g? 7(16—a \/37 .
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Correspondingly, we define
6i(n+q) X

1
Gy (k,wix) = — Z

2 __ 27
Y| achzion @ |k +q]

which attains the Taylor expansion

. 1 1 14 (21> -
GA;(K', ,w,X):mm (6— E (a) X|2> +GA3(K’ ,w,x)

First, repeating the procedure in section 4, it can be shown that in the O(g?)
vicinity of the singular frequency ws(Kk*), there exists a Dirac point given by

2|\':fa 240 (53) .

wi = VT|K"|+

The two branches of eigenvalues near (k*,w3) are

2 21
wE (k) =l + 2123 (a) Ik — 57| (1+0()) + Ok — K*[2).
This Dirac point is formed by crossing of the tenth and eleventh band surfaces of the
eigenvalue problem (see Figure 4, left). In this scenario, there also exist a Dirac point
in the O(e*) vicinity of the singular frequency @ws(k*) for subsystems (2.16) and (2.17)
when k = k*. This is shown in Figure 4 (right). One can use the elements a; 1, a_2 1,
a1,—2, and a_s o in the matrix A to set up the characteristic equation and obtain
the leading-order term of the eigenvalue. Here we omit the very technical calculations
for this Dirac point.

6. Dirac points for the Neumann eigenvalue problem. In this section,
we consider the Dirac points for the Neumann eigenvalue problem (1.1), (1.3). The
asymptotic expansions of the Dirac points when k = k* are obtained by using the
double-layer integral operator to derive the characteristic equation. The key steps are
parallel to the Dirichlet eigenvalue problem. Therefore, in what follows we describe the
main procedure briefly and highlight the main difference from the Dirichlet problem.

First, applying the Green’s identity, the Bloch mode % for the eigenvalue problem
(1.1), (1.3) can be represented by the double-layer potential

(6.1) w(x):_/ew Ww(y)dsy forx € V..

Taking the limit when x approaches the obstacle boundary and using the jump relation
for the double-layer potential, we obtain the integral equation over dD.:

M+/ OC(R WX ZY) |\ ds, =0 forx € D,
y€0D,

2 ov(y)
By a change of variables, the above integral equation reads
1
(6.2) (21'+€IC§7°’) P =0.

Here the double-layer integral operator K is defined over 0D, and takes the form

] (x) = / Ok, wie(x — y))(y)dsy, x €Dy,

y€EOD,
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in which the kernel

: _0G(k,wix—y) 1 ik +q) - v(y) elsra) (=)
Ol,wix—y)im = 5 = Y e o

forx #y.
The operator K% is bounded on H'/2(9Dy).

To solve for the eigenpair (w, 1) of the integral equation (6.2), we expand ¥ (r(t)) €
HY2([0,27)) as ¥(r(t)) = Y00 cubn(t) and define the matrix A = [, ], Wwherein

1
(6.3) A (Kyw) = 55%” +e (Pm, KEYy).

Then the eigenvalue problem reduces to solving nonzero vector ¢ = {¢, }nez € H!/2
for the linear system A(k,w)c=0. The key steps for deriving the eigenvalues when
Kk = K* are summarized as follows:
(i) Decomposition of the system: First, the decomposition of the whole linear
system A(k,w)c = 0 into the three subsystems in the form of (2.15)—(2.17)
is based upon the important fact that a,,, # 0 only if mod(m —n,3) = 0.
This also holds true for the coefficients a,, , defined in (6.3) because of the
relation
Un (%) = KE “[p] = 5 u, (Rx),
which follows from VG(k*,w;x) = RTVG(k*,w; Rx) for x # 0 and v(y) =
y for y € 0D,. The proof can be carried out by repeating the lines in
Lemma 2.3.
(ii) Decomposition of the matriz A: The decomposition of A follows from the de-
composition of the integral operator ng* . For w near the singular frequency
w1(Kk*), we decompose the kernel ©(k,w;x —y) into three parts as

O(k",w;x—y)=0pg,(x—-Yy) +@A3(X—y) +é(x—y)
_ 0Hp(w;x—y)  OGa; (K", wix—y) OG(k*,w;x —y)
v (y) ov(y) owly)

where Ho, Gz, and G are given in (3.3)-(3.5). Correspondingly, e is
decomposed as IC’;*"” = KHye + Kaz e + Key in which Kpg o, Kz e, and K¢
are the integral operators with the kernel O, (e(x —y)), Oa;(e(x—y)), and
©(e(x —y)), respectively. In addition, Kp, . and K. are bounded operators
on H'/2(0D,) for w near w; (k*).

A key observation is that ©,x attains the expansion

a

2
(64 Ox(e(x—¥) = 1 T <—§(2”) |x—y|2+o<e2>>,

which yields

1 1 dre (2m\° )
wrowE | (a) +o >>’ menet

2
(pm:Kngepn)=q L L (2me (27 2 i1
05€ |Y|w2—|f<,*|2 3 a —1—0(8) s m=n

1

1
Y]w? = |s*[?

0 (smax(&lmI,Inl)) ’ otherwise.
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Therefore, recalling that

1 _
am,n(’{"'aw) = ién,n +€ (¢m7KA6,6¢71,) +e (Qbmv]CHo,ed)n) +e (¢m7’Cs¢n> )

the matrix A can be decomposed as A =D + ¢ & near the singular frequency
w1(k*), where D :=diag(d, )nez with

L1 dme? (2m)? 0
Vw2 — |2 3 \a/) |0 "7

1 1 2re? [2m\ 2
- - = (2= =41
T Vler e 3 () neE

In| > 1,

N RN~ N~

and € = [e ] is bounded on H/2,
(iii) Characteristic equation: We rewrite each system in (2.15)—(2.17) as

(6.5) ajjei+(¢,8;) =0, Ajej+¢a; =0, j=0,%1,

where the vectors &;, ¢;, and A; are defined by (3.16)-(3.18). Using the
decomposition of the matrix A in (ii), then A; = D; +£&; (H;/zj — H;/*zj)
is invertible. As such the system (6.5) reduces to the characteristic equation

a5 ("w) = (A7 a5 (8" w), & (5, w) ) =0, j=0,1,—1.

Explicitly, we obtain

20e? 1 ag?
. e — frd d — _— =
(6.6) SRR +0(e)=0 an 5 +w2—|n*|2 +0(e)=0
for j =0 and j = +£1, respectively, where o := % (27“)2

Solving the second equation in (6.6) for j = 1, we obtain the Dirac point near
w1 (Kk*) :=|Kk*| as follows.

THEOREM 6.1. If k = K*, the integral equation (6.2) attains the characteristic
value

«

-52+O(53)

o=l - o
in the vicinity of w1(k*). The corresponding eigenspace V* := span{1(t),v_1(t)},
where 1;(t) = et + O(e) € Hi{zj([O, 27]) for j==1.

The Dirac point (k*,w7) is formed by the crossing of the first two band surfaces
shown in Figure 5. Similarly to the Dirichlet problem, the Neumann eigenvalue wj is
also located in the O(g?) vicinity of the singular frequency @ (k*), but it is smaller
than @1 (k*). One major difference of the two eigenvalue problems is that, for small ¢,
the Dirichlet Dirac point (k*,w]) is the extreme point of the first two band surfaces
(maximum and minimum, respectively) and a band gap can be opened near (k*,w?)
if the honeycomb lattice is perturbed suitably (cf. Figure 2). This is not the case for
the Neumann Dirac point and the obstacle needs to be large enough for (k*,w?) to be
an extreme point (cf. Figure 5). The mathematical investigation of such differences
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w9 (H*)’

Dirac point Dirac point

Dirac point . A
Dirac point

M r K M M T K M

Fic. 5. The dispersion curves along the segments M — I' — K — M owver the Brillouin zone
when € =0.1 (left) and € =0.2 (right). The lattice constant a =1.

will be left for future work. Finally, one can obtain the Dirac points for the higher
frequency bands by decomposing the integral operator Kf ** properly and repeating
the above calculations.
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