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Ultra Data-Oriented Parallel Fractional Hot-Deck
Imputation with Efficient Linearized Variance

Estimation
Yicheng Yang, Yonghyun Kwon, Jae Kwang Kim, and In Ho Cho∗

Abstract—Parallel fractional hot-deck imputation (P-FHDI [1]) is a general-purpose, assumption-free tool for handling item
nonresponse in big incomplete data by combining the theory of FHDI and parallel computing. FHDI cures multivariate missing data by
filling each missing unit with multiple observed values (thus, hot-deck) without resorting to distributional assumptions. P-FHDI can
tackle big incomplete data with millions of instances (big-n) or 10, 000 variables (big-p). However, handling ultra incomplete data (i.e.,
concurrently big-n and big-p) with tremendous instances and high dimensionality has posed problems to P-FHDI due to excessive
memory requirement and execution time. To tackle the aforementioned challenges, we propose the ultra data-oriented P-FHDI (named
UP-FHDI) capable of curing ultra incomplete data. In addition to the parallel Jackknife method, this paper enables a computationally
efficient ultra data-oriented variance estimation using parallel linearization techniques. Results confirm that UP-FHDI can tackle an
ultra dataset with one million instances and 10, 000 variables. This paper illustrates the special parallel algorithms of UP-FHDI and
confirms its positive impact on the subsequent deep learning performance.

Index Terms—Ultra data-oriented parallel fractional hot-deck imputation, ultra incomplete data, ultrahigh dimensional missing data
curing, parallel linearized variance estimation, two-staged feature selection, deep learning.
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1 INTRODUCTION

INCOMPLETE data commonly occurs in nearly all scientific
and engineering domains, which may result in biased

estimation of parameters and exacerbate subsequent
statistical analyses [2]. Inadequate handling of missing data
may lead to incorrect statistical inference and subsequent
machine learning (ML) [3]. A popular approach, known
as listwise deletion [4], is to omit instances with missing
values from analysis, but it may seriously bias sample
statistics if the data does not follow the assumption of
missing completely at random (MCAR). Pairwise deletion
proposed by [5] is found deficient for severe missingness.
Naive imputation (i.e., replace missing values with the
mean of observed values) is popular [6], but it may lead
to inconsistent bias when there is considerable missingness
inequality across variables.

There are two branches of imputation theory that
replace a missing value with statistically plausible values
[7]: single imputation and repeated imputation. The single
imputation uses expectation-maximization (EM) to replace
each missing item with a predicted value estimated by the
maximum likelihood methods [8]. However, it may require
a considerable convergence time when data missingness is
severe. Single imputation methods tend to underestimate
the standard errors.
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Repeated imputation includes two popular methods:
multiple imputation and fractional imputation. Multiple
imputation proposed by Rubin [9] overcomes the downside
of single imputation by replacing each missing value
with several plausible values representing the distribution
of all possible values. The R package mice implements
multiple imputation using chained equations to handle
multivariate missing data such that each variable has
its own imputation model [10]. However, the so-called
“congeniality” and “self-efficiency” conditions are required
for the validity of multiple imputation which may pose
challenges in practice [11], [12]. Fractional imputation,
proposed by [13] and extensively discussed in [14], [15],
[16], creates a complete dataset with fractional weights
after imputation. Departing from the fractional imputation,
[17] proposed fractional hot-deck imputation, a non-
parametric imputation method using two-phase sampling
for stratification. Some of the authors of this paper
developed the R package FHDI [18] to perform fractional
hot-deck imputation or fully-efficient fractional imputation
(FEFI) to cure general multivariate incomplete datasets
without prior distributional assumptions.

Recently, ML-based imputation methods have been
gradually emerging: e.g., generative adversarial net-
works (GAN) for missing data [19], [20]. K-Harmonic
mean imputation [21], sequential regression multivariate
imputation [22], Fuzzy C-Means imputation [23], and
predictive mean matching [24] are also noteworthy.
These existing imputation methods often require expert-
level distributional assumptions that are difficult for
general researchers. Also, computational limitations pose
fundamental challenges to curing big incomplete data.

This paper follows the conventions in [1] to divide
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different types of big incomplete data according to their
configurations – “big-n” data with many instances, “big-
p” data with high dimensionality, and “ultra” data with
concurrently many instances and high-dimensionality. None
of the aforementioned existing imputation methods are
adequate to cure these three categories of big incomplete
data. As the first attempt to handle big-n data with
millions of instances or big-p data with 10, 000 variables,
some authors of this paper developed an initial version
of parallel-FHDI (P-FHDI) by leveraging high-performance
computing (HPC) technologies and adding big data-
oriented algorithms to FHDI [1]. Yet, “ultra” data was
beyond the scope of the previous P-FHDI.

This paper develops ultra (concurrently big-n and big-
p) data-oriented parallel FHDI (denoted as UP-FHDI) with
specialized theoretical and computational advancements.
UP-FHDI inherits the essence of FHDI theory, i.e.,
imputation cells are created to match donors and recipients,
and the observed values of each donor are jointly imputed
to fill missing items, generating a single completed dataset
at the end.

The major contributions of this paper compared to
the previous works are as follows: (1) UP-FHDI supports
inter-processor communication and IO communication with
the hard drive necessary for ultra data storage, while
the previous P-FHDI allows only memory usage and no
external data storage; (2) UP-FHDI adopts the parallel k-
nearest neighbors (KNN) method for handling deficient
donors (i.e., when a missing cell has less than two possible
donors), while P-FHDI uses the cell collapsing scheme that
causes substantial computing time; (3) UP-FHDI enables
a fast and efficient variance estimation by developing
parallel linearization techniques, while P-FHDI uses the
parallel Jackknife method that is not feasible for ultra
data; (4) This paper evaluates the performance of UP-FHDI
against baseline imputation methods using large real-world
and ultra synthetic datasets and affirms that UP-FHDI is
adequate to tackle a wide spectrum of missing data; (5) This
paper proposes a two-staged feature selection method using
parallel mutual information and the graphical lasso, which
facilitates the investigation of the impact of UP-FHDI on
the subsequent deep learning performance with ultrahigh
dimensional data.

The rest of this paper is organized as follows: we review
the related work in Section 2. Section 3 recaps the backbone
theories of the four stages of UP-FHDI. Section 4 presents
the adopted parallel file system and expounds upon the
primary parallel algorithms of UP-FHDI. Section 5 validates
UP-FHDI by Monte Carlo simulations and comparative
studies against baseline imputation methods. Section 6
evaluates scaling performance and provides cost models.
Section 7 introduces a two-staged feature selection method
and investigates the impact of UP-FHDI on subsequent deep
learning performance. Finally, we present the future works
and concluding remarks in Sections 8 and 9. Comprehensive
examples in APPENDIX I illustrate how to use UP-FHDI.

2 RELATED WORK

This section reviews state-of-the-art parallel computing-
based imputation methods. [25] developed a parallel

imputation algorithm with cloud-based tensor
decomposition to impute missing epigenomics experiments.
Package MaCH developed the genotype imputation to
infer the missing genotypes in genetic studies. However,
it considers all observed genotypes when imputing each
missing genotype, leading to a quadratic execution time
increase, for which [26] proposed a parallel MaCH-
based imputation using GPU implementations. Yet, the
above parallel imputation methods are restrictive in
bioinformatics, and the favorable scaling performance is
not broadly confirmed. Incompleteness often occurs in
big enterprise data, [27] proposed a parallel imputation
framework to cure enterprise registration data, but it
is tailored for big geo-referenced text data processing,
exhibiting limited scaling (3.5 times at maximum). Other
related works include R package missForst [28] for
mixed-type data and parallel Bayesian Markov chain
Monte Carlo (MCMC) imputation [29] for missing data
in epidemiology. missForst adopted the random-forest
imputation method and could run in parallel when the
computation of random forests is time-consuming. [29]
first adopted parallel MCMC for Bayesian imputation
on the disk-based shared memory, which parallelized
MCMC iterations over available nodes by a simple divide-
and-conquer strategy, resulting in promising scalability.
However, the parallel MCMC requires highly customized,
setting-specific, and parallelized software. All of these
parallel imputation methods are restricted to specific
disciplines and not suitable for general ultra incomplete
data in broad science and engineering domains, which is to
be tackled by the present UP-FHDI.

3 KEY EQUATIONS FOR UP-FHDI

For a concise description of UP-FHDI, we introduce the
following basic setup. Assume a finite population U with p-
dimensional continuous variables y = {y1, y2, . . . , yp}, and
yil represents the ith realization of the lth variable where i ∈
{1, 2, . . . , N} and l ∈ {1, 2, . . . , p}. A response indicator δil
takes the value of 1 if yil is observed and δil = 0 otherwise.
Given the number of categories K , one can discretize
continuous variables y to discrete variables z, the so-called
“imputation cells,” such that z take values within categories
{1, 2, · · · ,K} for each variable. The y-values within the
same value of z are relatively homogeneous. One can
decompose an instance yi = {yi,obs,yi,mis} as the observed
and missing parts, respectively. Similarly, the corresponding
z-vector is decomposed as zi = {zi,obs, zi,mis}.

Let A be the index set of the sample of size n selected
by a probability sampling mechanism. Consider AM as
an index set of missing units such that AM = {i ∈
A;
∏p
l=1 δil = 0}; alternatively an index set with observed

units is AR = {i ∈ A;
∏p
l=1 δil = 1} such that AM ∪AR =

A. Imputation cells z consist of missing patterns zM = {zi |
i ∈ AM} and observed patterns zR = {zi | i ∈ AR}.
The cross-classification of all variables forms imputation
cells z, and we assume a cell mean model on the cells
determined by z. Considering a finite mixture model under
missing at random (MAR), the conditional distribution of
f(yi,mis | yi,obs) can be approximated (See detailed theory
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Fig. 1: Key four stages of UP-FHDI. The new theoretical advancements for UP-FHDI are marked with diamonds. The
incremental updates of UP-FHDI based on P-FHDI are marked with stars. Note that X∗ is the set of selected variables for
all recipients and m is the minimum number of matched donors for all recipients.

in [1]). Fig. 1 gives audiences a comprehensive guide to UP-
FHDI theory. We will follow this diagram to present key
equations of UP-FHDI stages as follows.

3.1 Cell construction and variable reduction

The mathematical symbol ’
∑

’ proposed in [1] denotes a
loop that repeats a sequence of the same operation S(x)
with discrete input augments. Consequently, the operations∑b
i=a S(xi) enumerate a sequence of S(xi) in a vector

format. The operations
∑b
i=a

∑d
j=c S(xij) enumerate a

sequence of S(xij) in a matrix format. This paper continues
to use these notations to facilitate the description of UP-
FHDI. [17] proposed the discretization method to pre-
determine imputation cells z using the estimated sample
quantiles. Considering zM and zR, we can obtain index sets
of unique missing patterns ÃM = {i, j ∈ AM | ∀i 6=
j, zi 6= zj} of size ñM and unique observed patterns
ÃR = {i, j ∈ AR | ∀i 6= j, zi 6= zj} of size ñR,
respectively. Sequentially, we can further extract the unique
missing patterns z̃M = {zi | i ∈ ÃM} and unique observed
patterns z̃R = {zi | i ∈ ÃR}. Let Di ∈ NMi be the donor
indices for the ith recipient zi = {zi,obs, zi,mis} where
Di = {j ∈ ÃR | zj,obs = zi,obs} with a size of Mi. The
entity Mi is the number of donors for the ith recipient.
We can perform an exhausting search over z̃R to iteratively
obtain index sets of donors for all recipients L = {Di | i ∈
ÃM}. Meanwhile, we derive a set of the number of total
donors for all recipients M = {Mi | i ∈ ÃM}. [1] gave full
details on unique pattern extraction and donor search, this
section needs no further elaboration.

UP-FHDI must overcome the curse of dimensionality.
A huge literature was accumulated on the problem of
variable reduction (e.g., [30], [31], [32], [33]). Noteworthy,
[34] proposed the sure independence screening (SIS) for
ultrahigh dimensional variable selection. Inspired by the
screening step of SIS, [1] came up with a correlation-based
SIS to filter out noise variables with weak correlations
to responses (i.e., missing variables). Suppose we select
v variables for a recipient such that v � p. Let X =
{X1, . . . , Xq} be always observed and Y = {Y1, . . . , Yw}
be subject to missingness such that p = q + w. Consider
rk = (r1k, r

2
k, . . . , r

q
k) as a vector of sample correlations of X

given Yk. This paper proposes a complement to the existing
correlation-based SIS as follows:

(1) Compute correlation vectors rk where k ∈
{1, . . . , w}.

(2) Extract r∗ = (r∗1 , r
∗
2 , . . . , r

∗
q ), where r∗i =

max(ri1, r
i
2, . . . , r

i
k).

(3) Define sub-covariate set M for imputing Y such
that

M = {1 6 i 6 q; | r∗i | is among top of the
larget v, where r∗i ∈ r∗}.

(1)

By contrast, the existing SIS in [1] derived M =
∩wk=1Mk or M = ∪wk=1Mk, where Mk is the sub-
covariate set with top correlations for imputing Yk.

Imputation cells z after discretization can not always
guarantee at least two donors for every recipient to capture
the variability from imputation. Denote the minimum entity
of M be m. [1] adopted the cell collapsing to produce more
donors and stop only if m > 2. The non-parallelizable cell
collapsing method is computationally intractable in practice.
As a remedy, this paper applies the KNN method [35] to
efficiently determine deficient donors. Let e ∈ RñR be the
Euclidean distance (ED) between a recipient zi and z̃R. Let
w be the observed covariate set for zi if SIS is not used.
Otherwise, w is set to be the sub-covariate set M derived
by SIS for zi. Suppose zi has less than two donors such that
Mi < 2, the KNN algorithm consists of the following steps:

(1) Compute e by

e =
ñR∑
j=1

√√√√∑
l∈w

(
zil
kl
−
z̃R(j,l)

kl

)2

. (2)

where z̃R(j,l) ∈ z̃R and kl is the number of
categories of zl.

(2) Suppose et1 is the minimum entity of e. Add t1 to
Di and update Mi. If Mi > 2, stop.

(3) Suppose et2 is the second minimum entity of e. Add
t2 to Di and update Mi.

We will iteratively apply the KNN method to every
unqualified recipient until m > 2.

3.2 Estimation of cell probability with selected
variables
A modified EM algorithm by weighting was proposed
by [36] and extensively used in [1], [17] to estimate the
conditional probability. This section extends this method
with selected variables. Let X∗ be the selected covariates
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in the sub-covariate set M derived by SIS such that X∗ ⊂
X = {X1, . . . , Xq}. Consider Y = {Y1, . . . , Yw} as a w-
dimensional categorical random vector with support C. We
develop an EM algorithm for estimating the joint probability
for P (Y | X∗). Let πc(x∗) = P (Y = c | x∗) be the
conditional probability of Y = c given X∗ = x∗. Note that∑

c∈C
πc(x

∗) = 1. (3)

The E-step is to compute the conditional probability
p
(t)
i (c) ≡ P (t)(yi = c | x∗i ,yi,obs)
= I(yi,obs = cobs(i)) · P (t)(yi,mis = cmis(i) | x∗i ,yi,obs),

(4)
where {cobs(i), cmis(i)} is a partition of c based on the
missing pattern in unit i. And P (t)(yi,mis = cmis(i) |
x∗i ,yi,obs) is

P (t) =


π(t)
c (x∗i )∑

c∈Ci
π

(t)
c (x∗i )

if yi,obs = cobs(i)

0 otherwise,
(5)

and Ci = {c ∈ C;yi,obs = cobs(i)} is the subset of C
whose cobs(i) components are equal to yi,obs. The M-step
is to update the conditional probability as

π(t+1)
c (x∗) =

∑n
i=1 I(x∗i = x∗, yi,obs = cobs(i))p

(t)
i (c)∑

c∈C
∑n
i=1 I(x∗i = x∗, yi,obs = cobs(i))p

(t)
i (c)

.

(6)

3.3 Imputation

For simplicity in description, consider two discrete random
variables (z1, z2) with the same support of (zobs, zmis). The
key equation for developing fractional hot deck imputation
is to approximate the conditional distribution of f(ymis |
yobs) by

f(ymis | yobs)
=
∑
z2

∑
z1

p(z1, z2 | yobs)f(ymis | z1, z2)

=
∑
z2

∑
z1

p(z1 | yobs)p(z2 | z1)f(ymis | z1, z2) (7)

= p(z1 = zobs | yobs)p(zmis | zobs)f(ymis | z1 = zobs, z2 = zmis)

= p(z1 = zobs | yobs)p(zmis | zobs)f(ymis | z2 = zmis).

where the last equality is derived under the conditional
independence between ymis and zobs given zmis. The first
component is equal to I(z1 = zobs) if zobs is a sufficient
summary of yobs. The second component is computed by
the above EM algorithm. The third component is computed
from the hot-deck imputation within z.

For concise explanations, let A be partitioned into G
groups such that A = A1 ∪ . . . ,AG. The group Ag can
be sub-partitioned into ARg

= {j ∈ Ag; δj = 1} and
AMg

= {j ∈ Ag; δj = 0}. Let nRg
and nMg

be size of
ARg

and AMg
, respectively. We can decompose a donor

for the ith recipient (zi,obs, zi,mis) as (zj,obs, z
∗
j,mis) where

zj,obs = zi,obs and z∗j,mis is a possible imputed value for
zi,mis. Let w∗ij,FEFI be the fractional weights of the jth
FEFI donor for the ith recipient. The FEFI donors refer to
all possible donors and w∗ij,FEFI is expressed by

w∗ij,FEFI = π̂z∗j,mis|zj,obs

wj∑
l∈A wlal

. (8)

The term al = 1 if (zl,obs, z
∗
l,mis) = (zj,obs, z

∗
j,mis).

Otherwise, al = 0. Note that
∑nRg

j=1 w
∗
ij,FEFI = 1. The term

π̂z∗j,mis|zj,obs
is the conditional probability of z∗j,mis given

zj,obs computed by

π̂z∗j,mis|zobs
=
P (z∗j,mis, zobs)

P (zobs)
=

P (z∗j,mis, zobs)∑nRg

j=1 P (z∗j,mis, zobs)
.

(9)
where P (z∗j,mis, zobs) is the joint probability derived after
the convergence of the EM algorithm in the preceding
subsection. Note that

∑nRg

j=1 π̂z∗j,mis|zj,obs
= 1. The tailored

systematic sampling [18] was designated to efficiently select
M FHDI donors among FEFI donors. UP-FHDI inherits this
method with modifications. Originally, the first step of the
tailored systematic sampling scheme sorts all FEFI donors in
Mahalanobis distance by the half-ascending half-descending
order. However, computation of Mahalanobis distance is
intractable when the dimension space is ultra-high. As a
remedy, we substitute this step with a random shuffle and
confirm that this modification affects the mean estimates in
a negligible manner. Let w∗ij be the fractional weights of the
jth FHDI donor for the ith recipient. The w∗ij is given by

w∗ij =

{
1
M if nRg

> M
w∗ij,FEFI if nRg

6M,
(10)

The FHDI estimator of yl can be expressed by

Ŷl,FHDI =
∑
i∈A

wi{δilyil + (1− δil)
M∑
j=1

w∗ijy
∗(j)
il }. (11)

where y∗(j)il is the jth imputed value of yil.

3.4 Fast and efficient variance estimation for ultra data

Popular variance estimation methods include balanced
repeated replication [37], bootstrap [38], and Jackknife
methods [39]. The Jackknife variance estimation had
been successfully implemented into P-FHDI and proved
to be effective [1]. We modified the parallel Jackknife
method in this study for better efficiency. Yet, it is not
applicable for ultra data owing to the computational
bottleneck. To overcome this challenge, we develop a
linearized variance estimation technique based on one of
the author’s dedicated prior works [40]. Consider variance
estimation of a deterministic imputation. Assume the
original sample is decomposed into G disjoint groups. The
sample observations follow the cell mean model:

yi | i ∈ Ag
i.i.d∼ (µg, σ

2
g). (12)

where Ag is the index set of group g. Let ng and rg be the
number of elements and the number of observed elements
in group g, respectively. Assume the response mechanism
is MAR and the parameter of interest is θ = E(Y ). We
will use a deterministic imputation with η̂ = (µ̂1, . . . , µ̂G),
where µ̂g = r−1g

∑
i∈Ag

δiyi is the gth cell mean of y among
respondents. The imputed estimator of θ will be

θ̂I =
1

n

G∑
g=1

∑
i∈Ag

{
δiyi + (1− δi)µ̂g

}
=

1

n

G∑
g=1

ngµ̂g, (13)

Writing eig = yi − µg for i ∈ Ag , we can express

θ̂I =
1

n

G∑
g=1

ngµg +
ng
rg

∑
i∈Ag

δieig

 ,
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Using E(eig) = 0, the uncertainty associated with ng/rg is
asymptotically negligible. Thus, the imputed estimator θ̂I
can be expressed by

θ̂I ∼=
1

n

G∑
g=1

∑
i∈Ag

{
µg +

1

pg
δi(yi − µg)

}
. (14)

where pg is the probability limit of rg/ng . The resulting
variance estimator is

V̂ (θ̂I) =
1

n(n− 1)

G∑
g=1

∑
i∈Ag

(d̂gi − d̄n)2, (15)

where
d̂gi = µ̂g +

ng
rg
δi(yi − µ̂g), (16)

d̄n =
1

n

G∑
g=1

∑
i∈Ag

d̂gi. (17)

We can extend the linearization formula for the variance
of the mean estimator of FHDI with multivariate missing
data, where M imputed values are randomly selected
from respondents in the same imputation cell. The FHDI
estimator of the mean of yl is given by

µ̂l,FHDI =
1

n

n∑
i=1

{
δilyil + (1− δil)ȳ∗il

}
, (18)

where

ȳ∗il = M−1
M∑
j=1

y
∗(j)
il . (19)

Assume each unit i in the sample belong to one and only one
imputation cell. Let ȳgl be the sample mean of yl among the
respondents in cell g such that

ȳgl =
1

rgl

∑
i∈Sgl

δilyil, (20)

where Sgl ∈ Nngl is the index set of the units in imputation
cell g. And rgl is the number of observed units (i.e., δi = 1)
in cell g of yl. The variance estimator of µ̂l,FHDI can be
expressed by

V̂ (µ̂l,FHDI) =
1

n(n− 1)

n∑
i=1

(η̂il − η̄l)2 , (21)

where
η̂il = δilȳgl + (1− δil)ȳ∗il + δil

ngl
rgl

(yil − ȳgl), (22)

and η̄l = n−1
∑n
i=1 η̂il. The standard error of µ̂l,FHDI is

computed by

ŜE(µ̂l,FHDI) =
√
V̂ (µ̂l,FHDI). (23)

4 PARALLEL ALGORITHMS OF UP-FHDI
Fig. 2 visualizes the parallel file system tailored for UP-
FHDI. This system targets the HPC environment that
allows simultaneous access from multiple compute servers.
Suppose we have in total Q processors indexed by
0, . . . , Q − 1. The slave processors indexed by 1, . . . , Q − 1
perform distributed computations. The master processor
(indexed by 0) is responsible for aggregating results from
slave processors. The MPI library [41] provides basic
routines MPI Send and MPI Recv (denoted as MPI SR
for brevity), and MPI Bcast to support inter-processor
communication. The master processor integrates pieces
of results together by an operation MPI Gather (denoted

Fig. 2: Scheme of the parallel file system on multiple
writers and readers. The IO communication between
slave processors and the hard drive is conveyed by
MPI File Read and MPI File Write routines. The OOOPS
optimally throttles the IO workload (solid green circles).

as Ω). The operation Ωji (i 6= 0) integrates results
generated by slave processors (indexed by i to j) and
stacks them on the master. Notably, the parallel file system
supports IO communication between slave processors and
the hard drive by cooperative parallel IO in MPI, thereby
overcoming out-of-memory problems. We adopt IO routines
MPI File Read (denoted as MPI RD) and MPI File Write
(denoted as MPI WR) to simultaneously read or write
from multiple processes to a single binary file on the hard
drive. The MPI parallel IO is superior to non-parallel IO
since its operations are collective such that IO is scalable.
A single user’s intensive and simultaneous IO running
on a small number of nodes can overload the metadata
server and degrade global file system performance. As a
remedy, [42] developed the Optimal Overload IO Protection
System (OOOPS) to automatically detect and throttle the IO
workload. We apply this tool with UP-FHDI to dynamically
adjust IO during the job without interruption. Hereafter,
any vector or matrix will be marked with a star symbol
’*’ on the left-up corner when it is temporarily placed
on the hard drive. The development of UP-FHDI is
conducted and tested on the local HPC of ISU (Condo
[43]) and NSF Cyberinfrastructure’s HPC (Stampede2 [44]).
The benchmark tests across different HPC environments
guarantee the compatibility of UP-FHDI.

4.1 Parallel cell construction
Let v be the number of reduced variables after SIS per
each missing pattern. Algorithm 1 recaps the key sub-
steps of parallel cell construction with SIS. The function
CAT predetermines imputation cells z and the function
ZMAT decomposes z into unique missing patterns z̃M
and unique observed patterns z̃R. Sequentially, we pair
donors for each recipient by function nDAU. Note that
we search donors for each recipient based on v selected
variables when SIS is activated by setting v 6= 0. Otherwise,
donors are determined based on all observed variables of
a recipient. If there exists zi ∈ z̃M such that Mi < 2 (i.e.,
deficient donor situation), we adopt the KNN function until
every recipient has at least two donors. Unless otherwise
stated, UniformDistr(.) means a simple uniform task/data
distribution scheme. The indices (s and e) represent the
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beginning and ending of distributed work on processor
q, respectively. In lines 1 and 2 of Algorithm 2, we read
distributed raw data on hard drive y(q) to each slave
processor. Considering the estimated distribution function
of yk:

F̂k(t) =

∑
i∈A δikwiI(yik ≤ t)∑

i∈A δikwi
. (24)

For every yk where k ∈ {s, . . . , e}, we construct proportions
{q̂a1 , . . . , q̂aG} satisfying 0 < a1 < · · · < aG in line 4, the
estimated sampling quantile of yk for ag is defined as:

q̂ag = min{t, F̂ (t) > ag}. (25)
From lines 5 to 9, we can discrete yk to zk with respect
to {q̂a1 , . . . , q̂aG}. In lines 11 and 12, write distributed
imputation cells z(q) from slave processors to the hard drive
and integrate as ∗z. In lines 1 and 2 of Algorithm 3, read
distributed imputation cells z(q) to each slave processor. Let
F ∈ N such that z = z1 ∪ · · · ∪ zF . We can iteratively
compare z(q) with zf , f ∈ {1, . . . , F} in lines 3 to 6
to remove duplicates in z(q), and thus obtain distributed
unique patterns z̃(q). Hence, z̃(i) ∩ z̃(j) = ∅ whenever i 6= j.
Distributed unique observed patterns z̃

(q)
R and missing

patterns z̃
(q)
M can be partitioned from z̃(q) in line 7. In lines

8 and 9, we simultaneously write z̃
(q)
R and z̃

(q)
M as ∗z̃R and

∗z̃M on the hard drive via the parallel file system.

Algorithm 1 Parallel cell construction
Input: raw data ∗y
Output: imputation cells ∗z, unique observed patterns

∗z̃R, unique missing patterns ∗z̃M , donor list L
1: Invoke function CAT(∗y)→ ∗z
2: Invoke function ZMAT(∗z)→ ∗z̃R, ∗z̃M
3: if v==0 then
4: Invoke function nDAU(∗z̃R, ∗z̃M )→M ,L
5: else
6: Invoke function RANK(∗y)→ V
7: Invoke function nDAU(∗z̃R, ∗z̃M ,V)→M ,L
8: end if
9: m = min(M )

10: if m < 2 then
11: Invoke function KNN(∗z̃R, ∗z̃M ,M ,L)→ L
12: end if

Algorithm 2 Parallel function CAT
Input: raw data ∗y
Output: imputation cells ∗z

1: UniformDistr(p)→ s, e
2: MPI RD(∗y(q))→ y(q)

3: for ∀ k in s : e do
4: Construct cumulative proportions {q̂a1 , . . . , q̂aG}
5: for ∀ i in 1 : n do
6: if q̂ag−1 < yik < q̂ag then
7: zik = g
8: end if
9: end for

10: end for
11: MPI WR(z(q))→ ∗z(q)

12: ∗z = ΩQ−11
∗z(q)

Algorithm 3 Parallel function ZMAT
Input: imputation cells ∗z
Output: unique observed patterns ∗z̃R and unique

missing patterns ∗z̃M
1: UniformDistr(n)→ s, e
2: MPI RD(∗z(q))→ z(q)

3: for ∀ f in 1 : F do
4: MPI RD(∗zf )→ zf
5: Compare(z(q), zf )→ z̃(q)

6: end for
7: z̃(q) → z̃(q)R , z̃(q)M
8: MPI WR

(
z̃(q)R ; z̃(q)M

)
→ ∗z̃(q)R , ∗z̃(q)M

9: ∗z̃R = ΩQ−11

(
∗z̃(q)R

)
; ∗z̃M = ΩQ−11 (∗z̃(q)M )

Let vk = {l | 1 6 l 6 p;
∣∣∣rlk∣∣∣ is among the top of largest t},

where rlk is a simple correlation computed by observed
values of yk and yl. Let V =

∑p
k=1 vk be an index set

that has top t correlations. Note that t is a user-defined
integer where t > v. In high dimensional space, the use
of t significantly reduces the memory usage and guarantees
one can extract v reduced variables from V. In lines 1 and 2
of Algorithm 4, read distributed raw data y(q) to each slave
processor. Consider F ∈ N such that y1∪· · ·∪yF = y. In line
6, derive an index list vk based on the computed correlations
between y(q)k and yf . If f equals one, V(q) can be initialized
by including vk where k ∈ {1, . . . , p/(Q − 1)}. Otherwise,
we need to update the existing vk in V(q) in contrast with
the vk generated in the current iteration. Generally, we
always retain the latest index sets in V(q) after updates
within iterations. See the SIS algorithm in Section 3.1 for
more explanations. In line 14, we can integrate V(q) on the
master processor and broadcast V to slaves in line 15.

In lines 1 and 2 of Algorithm 5, we read distributed
recipients z̃(q)M to each slave processor. From lines 3 to 15,
pair donors for each recipient z̃(q)M,k ∈ z̃(q)M . Let F ∈ N such
that z̃R = z̃R1 ∪ · · · ∪ z̃RF . Likewise, let Ãf be an index set
of z̃Rf such that ÃR = Ã1∪ . . . ÃF . We iteratively compare
z̃
(q)
M,k with z̃Rf from lines 6 to 13 to obtain donor list Dk

and the number of donors Mk by
Dk =

∑
t∈Ãf

tI(z̃
(q)
M,k = z̃Rf,t), (26)

Mk =
∑
t∈Ãf

I(z̃
(q)
M,k = z̃Rf,t). (27)

where z̃Rf,t ∈ z̃Rf . Note that t ∈ Ãf in Eq. (26) will be
mapping to t ∈ ÃR globally before adding to Dk. When
no variable reduction is applied by setting v = 0, I(z̃

(q)
M,k =

z̃Rf,t) = 1 if z̃(q)M,k = z̃Rf,t is true concerning all observed

variables w of z̃(q)M,k (lines 7 and 8). Otherwise, we need to

first obtain an index set of selected variables v for z̃(q)M,k by
either of the SIS methods in line 10. Note that the proposed
SIS method in Section 3.1 is denoted as global herein. Then
I(z̃

(q)
M,k = z̃Rf,t) = 1 if z̃(q)M,k = z̃Rf,t is true concerning only

the selected variables v of z̃(q)M,k (lines 11 and 12). In lines
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16 and 17, we can integrate L(q) and M (q) on the master
processor and broadcast L and M to slaves (line 18).

Algorithm 4 Parallel function RANK
Input: raw data ∗y
Output: ranking list V

1: UniformDistr(p)−→ s, e
2: MPI RD(∗y(q)) −→ y(q)

3: for ∀ f in 1 : F do
4: MPI RD(∗yf ) −→ yf
5: for ∀ k in 1 : p/(Q− 1) do
6: Correlation(y(q)k , yf ) −→ vk
7: if f==1 then
8: V(q).add(vk)
9: else

10: V(q).update(vk)
11: end if
12: end for
13: end for
14: MPI SR(V(q)); V = ΩQ−11 V(q)

15: MPI Bcast(V)

Algorithm 5 Parallel function nDAU
Input: unique observed patterns ∗z̃R and unique

missing patterns ∗z̃M , ranking list V
Output: donor list L, number set of donors M

1: UniformDistr(ñM )→ s, e
2: MPI RD(∗z̃(q)M )→ z̃

(q)
M

3: for ∀ k in 1 : ñ
(q)
M do

4: for ∀ f in 1 : F do
5: MPI RD

(∗z̃Rf)→ z̃Rf
6: if v==0 then
7: Compare(z̃

(q)
M,k, z̃Rf )→ L(q).add(Dk)

8: Compare(z̃
(q)
M,k, z̃Rf )→M (q).add(Mk)

9: else
10: v = ∩k∈wvk ‖v= ∪k∈wvk ‖v= globalk∈wvk
11: Compare(z̃

(q)
M,k, z̃Rf ,v)→ L(q).add(Dk)

12: Compare(z̃
(q)
M,k, z̃Rf ,v)→M (q).add(Mk)

13: end if
14: end for
15: end for
16: MPI SR(L(q)); L = ΩQ−11 L(q)

17: MPI SR(M (q)); M = ΩQ−11 M (q)

18: MPI Bcast(L;M )

In lines 1 and 2 of Algorithm 6, distributed recipients
z̃(q)M are read from the hard drive. From lines 3 to 15, we
will determine deficient donors for recipients z̃(q)M,k that has
Mk < 2. Initialize global minimum ED (denoted as et1 ) and
global second-minimum ED (denoted as et2 ) as an infinitely
large constant ε in line 4. Let t1 ∈ ÃR be an instance index
that has an ED of et1 . Likewise, let t2 ∈ ÃR be an instance
index that has an ED of et2 and t1 6= t2. Let F ∈ N such
that z̃R = z̃R1 ∪ · · · ∪ z̃RF . From lines 5 to 10, compute ED
e between z̃(q)M,k and z̃R1, . . . , z̃RF iteratively by Eq. (2) and
update t1 and t2 within iterations. In line 11, add t1 to donor
list L and update Mk. If Mk is still less than two, continue

to add t2 to L such that two donors will be guaranteed. In
line 16, we can integrate L(q) on the master processor and
broadcast L to slaves in line 17.

Algorithm 6 Parallel function KNN
Input: unique observed patterns ∗z̃R, unique

missing patterns ∗z̃M , donor list L, number set
of donors M

Output: donor list L
1: UniformDistr(ñM )→ s, e
2: MPI RD(∗z̃(q)M )→ z̃(q)M
3: for z̃(q)M,k ∈ z̃(q)M such that Mk < 2 do
4: t1 = t2 = 0 and et1 = et2 = ε
5: for ∀ f in 1 : F do
6: MPI RD

(∗z̃Rf)→ z̃Rf
7: Euclidean(z̃

(q)
M,k, z̃Rf )→ e

8: min(et1 , e) −→ et1 , t1
9: second min(et2 , e) −→ et2 , t2

10: end for
11: L.add(t1); Mk = Mk + occurrence of z̃R,t1
12: if Mk < 2 then
13: L.add(t2);
14: end if
15: end for
16: MPI SR(L(q)); L = ΩQ−11 L(q)

17: MPI Bcast(L)

4.2 Parallel imputation
The EM algorithm in the estimation of cell probability
is an implicit and iterative process such that it does not
support a simple divide-and-conquer parallelism. Hence,
we only apply necessary parallelisms to multiple linear
search operations (see [1] for details of parallel cell
probability). In line 1 of Algorithm 7, each slave is aware of
boundary indices of distributed tasks. From lines 2 to 13, it
selects FHDI donors among FEFI donors for each recipient
and computes corresponding fractional weights. In line 3,
compute fractional weights w∗kj,FEFI for FEFI donors by
Eq. (8). If the kth recipient has less than M donors such that
Mk 6 M , we will adopt all possible donors in lk, where
lk ∈ L is the donor index list for the kth recipient. In line
5, import imputed values to memory regarding lk and add

imputed values along with w∗kj,FEFI to Ŷ
(q)

in line 6. If
the kth recipient has more than M donors in lk such that
Mk > M , we apply the tailored systematic sampling scheme
[18] to efficiently select M donors as lM in line 8. In line 9,
it computes fractional weights w∗kj for FHDI donors by Eq.
(10). Likewise, import imputed values to memory regarding

lM and add imputed values along with w∗kj to Ŷ
(q)

in line
11. In lines 14 and 15, it simultaneously writes distributed

imputed values Ŷ
(q)

to the hard drive and integrates them
as ∗Ŷ.

4.3 Parallel variance estimation
Full details about the parallel Jackknife variance estimation
are available in [1]. This section will focus on the parallel
linearization techniques in Algorithm 8.
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Algorithm 7 Parallel imputation
Input: raw data ∗y, unique missing patterns ∗z̃M , donor

list L, number set of donors M
Output: imputed valus ∗Ŷ

1: UniformDistr(ñM )→ s, e
2: for ∀ k in s : e do
3: compute w∗kj,FEFI
4: if Mk 6M then
5: lk → ∗yk; MPI RD(∗yk)→ yk
6: Ŷ

(q)
.add(w∗kj,FEFI); Ŷ

(q)
.add(yk)

7: else
8: select lM = {l | l ∈ lk} & |lM | = M
9: Compute w∗kj

10: lM → ∗yk; MPI RD(∗yk)→ yk
11: Ŷ

(q)
.add(w∗kj); Ŷ

(q)
.add(yk)

12: end if
13: end for
14: MPI WR(Ŷ

(q)
)→ ∗Ŷ

(q)

15: ∗Ŷ = ΩQ−11
∗Ŷ

(q)

Algorithm 8 Parallel linearized variance estimation
Input: raw data ∗y, response indicator ∗r,

imputation cells ∗z, imputed values ∗Ŷ
Output: variance estimator V̂ of µ̂FHDI

1: UniformDistr(p)→ s, e
2: MPI RD(∗y(q))→ y(q)

3: MPI RD(∗r(q))→ r(q)

4: MPI RD(∗z(q))→ z(q)

5: MPI RD(∗Ŷ
(q)

)→ Ŷ
(q)

6: Compute y(q)

7: Compute Θ̂
(q)

8: Compute θ
(q)

9: Compute V̂
(q)

(µ̂FHDI)

10: MPI SR(V̂
(q)

(µ̂FHDI))

11: V̂ = ΩQ−11 V̂
(q)

(µ̂FHDI)

In lines 1 to 5 of Algorithm 8, we read distributed raw
data y(q), response indicator r(q), imputation cells z(q), and

imputed values Ŷ
(q)

from the hard drive, respectively. In
line 6, one can determine sample means y(q) ∈ RG×

p
Q−1

among the respondents in different imputation groups by

y(q) =
e∑
l=s

G∑
g=1

 1

rgl

∑
i∈Sgl

δilyil

 . (28)

where Sgl ∈ Nngl is the index set of the units in imputation
cell g. And rgl is the number of observed units in cell g
of yl. However, if it has multiple donors, one may not
determine an imputation group for a missing unit (i.e.,
δ = 0). UP-FHDI uses conditional probability to determine
the imputation cells for missing units. Suppose a recipient
zi = (zi,mis, zi,obs) has two donors (z

∗(h1)
i,mis, zi,obs) and

(z
∗(h2)
i,mis, zi,obs). Given conditional probability π̂(zi,mis =

z
∗(h1)
i,mis | zi,obs) and π̂(zi,mis = z

∗(h2)
i,mis | zi,obs) of donors,

one can determine a imputation cell for zi,mis by

• zi,mis ∈ Sg1 if π̂(zi,mis = z
∗(h1)
i,mis | zi,obs) >

π̂(zi,mis = z
∗(h2)
i,mis | zi,obs).

• zi,mis ∈ Sg2 if π̂(zi,mis = z
∗(h1)
i,mis | zi,obs) <

π̂(zi,mis = z
∗(h2)
i,mis | zi,obs).

• zi,mis ∈ Sg1 or Sg1 if π̂(zi,mis = z
∗(h1)
i,mis | zi,obs) =

π̂(zi,mis = z
∗(h2)
i,mis | zi,obs).

Note that conditional probabilities can be obtained from the
EM algorithm in the estimation of cell probability. In line 7,

compute Θ̂
(q)
∈ Rn×

p
Q−1 by

Θ̂
(q)

=
e∑
l=s

n∑
i=1

η̂il

=
e∑
l=s

n∑
i=1

{
δilȳgl + (1− δil)ȳ∗il + δil

ngl
rgl

(yil − ȳgl)
}
.

(29)
where ȳgl ∈ y(q) and ȳ∗il is defined in Eq. (19). Compute
θ̄
(q) ∈ R

p
t−1 by

θ̄
(q)

=
e∑
l=s

 1

n

n∑
i=1

Θ̂
(q)

il

 . (30)

In line 9, the variance estimator V̂ (µ̂FHDI)
(q) ∈ R

p
Q−1 on

slave processor q is given by

V̂ (µ̂FHDI)
(q) =

e∑
l=s

 1

n(n− 1)

n∑
i=1

(
Θ̂

(q)

il − θ̄
(q)
l

)2
 .

(31)
and we integrate V̂ (µ̂FHDI) ∈ Rp on the master processor
in lines 10 and 11 such that ŜE is computed by ŜE =

√
V̂ .

5 VALIDATION

This section conducts Monte Carlo (MC) simulations, a
comparison between Jackknife and linearized variance
estimation, and a performance comparison of UP-FHDI
against baseline imputations (naive method and an
advanced machine learning-based method) with large
synthetic and real-world datasets. We provide a step-by-step
illustration in APPENDIX I on how to use UP-FHDI.

5.1 Monte Carlo simulations versus UP-FHDI
Let U(n, p, η) denote a finite population with n instances
and p variables issued by η missing rate in proportion.
Unless otherwise stated, missingness under MCAR is
created by the Bernoulli distribution as δil ∼ Ber(τ) where
τ is the probability of response. Let B be the MC simulation
size. MC simulations follow steps:

(MC1) Generate synthetic data by
Y1 = 1 + e1

Y2 = 2 + ρe1 +
√

1− ρ2e2
Y3 = Y1 + e3

Y4 = −1 + 0.5Y3 + e4.

(32)

where e1, e2, e4 are randomly generated by the
standard normal distribution. The term e3 is
randomly generated by the gamma distribution.
Thus, µ1 = 1, µ2 = 2, µ3 = 2, and µ4 = 0.

(MC2) Create 30% missingness to the synthetic data.
(MC3) Perform imputation of UP-FHDI with random

donor selection.
(MC4) Perform Jackknife variance estimation.
(MC5) Repeat steps (MC1) to (MC4) over B times.

The relative bias (RB) of the standard error of the imputed
point estimator (i.e., mean estimator) ỸFHDI is defined as

RB =
E(ŜE)− SE(ỸFHDI)

SE(ỸFHDI)
, (33)
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where ŜE is the square root of the variance estimator
V̂ (ŶFHDI) and SE(ỸFHDI) is the square root of the
sampling variance of the mean estimator ỸFHDI .

E(ŜE) =
1

B

B∑
b=1

√
V̂ (ŶFHDI)(b), (34)

where V̂ (ŶFHDI)
(b) is the variance estimator from the bth

MC sample.

SE(ỸFHDI) =

√√√√ 1

B

B∑
b=1

(
Ỹ

(b)
FHDI − Y FHDI

)2
, (35)

where Ỹ (b)
FHDI is the imputed point estimator from the bth

MC sample and Y FHDI is given by

Y FHDI =

∑B
b=1 Ỹ

(b)
FHDI

B
. (36)

We present MC simulation results of UP-FHDI without SIS
in Table 1. Likewise, MC results using SIS are shown in
Table 2. The mean estimates Y FHDI from MC simulations
have negligible differences with true column mean µ, and
thus good accuracy of the UP-FHDI imputation is affirmed.
Average RB in Tables 1 and 2 are 1.96% and 2.87% (less
than 5 percent), validating the Jackknife variance estimator.

5.2 Linearized variance estimation vs Jackknife

In Fig. 3, we investigate whether the linearized variance
estimator is an accurate substitute for the Jackknife variance
estimator. Absolute difference of standard errors (ADSE) is
defined as

ADSE =
1

p

p∑
l=1

ADl =
1

p

p∑
l=1

∣∣∣∣∣ ŜELinear,l − ŜEJack,lŜEJack,l

∣∣∣∣∣ . (37)

where ADl is the absolute difference between ŜELinear,l
and ŜEJack,l. Note that ŜELinear,l and ŜEJack,l are
the standard errors of the mean estimator of yl
using linearization techniques and the Jackknife method,
respectively. Remarkably, ADSE between Jackknife and
linearization gradually converges to an acceptable datum
as datasets become larger. Meanwhile, we confirm an
alignment between linearized and the Jackknife variance
estimators with a minor ADSE in Table 3 with an ultra
dataset. Overall, the linearized variance estimator is a
good alternative to the Jackknife variance estimator for
ultra data (e.g., n ≥ 20, 000). It should be noted that the
linearized variance estimation may not be recommended
for a small-sized data curing due to substantial difference
from the Jackknife (see large ADSE in the left range
of Fig. 3). Although the Jackknife is recommended for
small to medium-sized datasets, APPENDIX II affirms a
significant advancement in the computational efficiency of
the linearization techniques.

5.3 Baseline imputations versus UP-FHDI with large
synthetic and real-world datasets

Next, we validate the performance and accuracy of UP-
FHDI with large real-world and ultra synthetic datasets.
Table 4 presents the adopted incomplete datasets, which are
publicly accessible in IEEE DataPort [45]. Some variables
in real-world datasets have significantly skewed data
distributions, as shown in APPENDIX III. For generating

TABLE 1: MC results of UP-FHDI with the Jackknife method
based on 1800 simulation runs. Input data is U(1000, 4, 0.3)
and no variable reduction is applied

y1 y2 y3 y4

E(ŜE) 0.0350 0.0367 0.0497 0.0519
SE(ỸFHDI) 0.0356 0.0373 0.0516 0.0523
RB (%) -1.64 -1.62 -3.74 -0.85
Y FHDI 1.002 1.999 2.001 0.001
true µ 1 2 2 0

synthetic data, Eq. (38) is used until we obtain total p
variables:

Yi =

{
1 + ei if i = 0 ‖ i mod 8 ≡ 0
Yi−1 + ei if i mod 8 6≡ 0

Yi+1 = Yi + 2 + ρ× ei +
√

1− ρ2ei+1

Yi+2 = Yi+1 + ei+2

Yi+3 = −1 + Yi + 0.25Yi+2 + ei+3.

(38)

where ρ = 0.5 and ei, ei+1, ei+3 are randomly generated
by the normal distribution with a user-defined standard
deviation (SD), and the term ei+2 is randomly generated
by the gamma distribution. We create 30% missingness to
all datasets by different missing mechanisms: MCAR and
missing not at random (MNAR). Although missingness is
generated by MCAR for simplicity, UP-FHDI should hold
for response models based on MAR. Table 4 summarises
resultant synthetic data and adopted real-world datasets
to compare the performance of UP-FHDI and baseline
imputation methods, including naive imputation and
the recently proposed Generative Adversarial Imputation
Network (GAIN). The naive imputation adopts a simple
mean estimator computed using observed values. GAIN
is a GAN-based framework that employs an imputer
network to handle the missing data [19]. Experiments show
that GAIN outperforms many state-of-the-art imputation
techniques, and the summary of key theories of GAIN
is presented in APPENDIX IV. This study adopts the
default settings to build the GAIN model. Considering the
stochastic nature of GAIN, we conduct ten experiments
for each dataset and average the performance measures.
Let the average standard error of the mean estimator be
SE = 1/p

∑p
l=1 ŜEl and RMSE is given by

RMSE =

√∑p
l=1

∑n
i=1(yil − ŷil)2
n× p

. (39)

where yil and ŷil are normalized units of original data and
imputed values by Min-Max normalization, respectively.
Using large real-world datasets (Earthquake, Bridge Strain,
Travel Time, and CT Slices), UP-FHDI performs well
comparable to GAIN regarding RMSE results. Note that
the default-setting GAIN aborted when it was applied to
Swarm, p53, and Radar (the last three rows in Table 5).
It appears that GAIN may require specific extensions for
large/ultra data curing. Tables 5 and 6 show that UP-FHDI
consistently outperforms naive imputation with smaller SE
and RMSE using large real-world and ultra synthetic
datasets, respectively. Similar performance of UP-FHDI
under MNAR assumption can be found in APPENDIX V.
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TABLE 2: MC results of UP-FHDI with the Jackknife
method based on 2000 simulation runs. Input data is
U(1000, 24, 0.3) and four selected variables are used

y1 y2 y3 . . . y24

E(ŜE) 0.0367 0.0386 0.0525 . . . 0.0547
SE(ỸFHDI) 0.0354 0.0372 0.0511 . . . 0.0534
RB (%) 3.82 3.81 2.68 . . . 2.50
Y FHDI 1.001 2.000 2.001 . . . -0.002
true µ 1 2 2 . . . 0

Fig. 3: Impact of the number of instances on ADSE defined
in Eq. (37) with datasets U(n, 24, 0.3): 24 variables and 30%
missing rate by varying n. SIS uses four selected variables.

TABLE 3: ADSE between the Jackknife and linearized
variance estimators. Input data is U(10, 000, 0.1M, 0.3) and
SIS uses four selected variables

Methods y1 y2 y3 y4 . . . ADSE

ŜEJack 0.0096 0.0164 0.0189 0.0178 . . .

ŜELinear 0.0097 0.0166 0.0193 0.0181 . . .

AD 0.99% 1.17% 1.79% 1.73% . . . 1.41%

TABLE 4: Summary of adopted incomplete synthetic and
real-world datasets U(instances, variables, missing rate)

Dataset Dimension Source
Synthetic 1 U(100, 80, 0.3) Eq. (38)
Synthetic 2 U(10000, 0.1M, 0.3) Eq. (38)
Synthetic 3 U(0.1M, 10000, 0.3) Eq. (38)
Earthquake U(901512, 15, 0.3) USGS [46]

Bridge Strain U(492641, 31, 0.3) InTrans [47]
Travel Time U(23772, 50, 0.3) IEEE DataPort

CT Slices U(53500, 380, 0.3) UCI [48]
Swarm U(24016, 2400, 0.3) UCI

p53 U(31159, 5408, 0.3) UCI
Radar U(325834, 175, 0.3) UCI

6 COST ANALYSIS AND SCALABILITY

The cost model is important since it gives audiences an
insight into the computational performance of UP-FHDI.
Given constant time for a unit operation, one can build a
cost model based on the total number of unit operations
in computation and communication. Let α be the basic

TABLE 5: Comparison of SE and RMSE between UP-
FHDI, naive imputation, and GAIN with incomplete real-
world datasets under MCAR

Dataset Method Var. est SIS SE RMSE

Earthquake
Naive × × 0.0094 0.0445
GAIN × × × 0.0469

UP-FHDI Linearization × 0.0088 0.0287

Bridge Strain
Naive × × 0.0724 0.0896
GAIN × × × 0.0869

UP-FHDI Linearization × 0.0676 0.0341

Travel Time

Naive × × 0.3902 0.0164
GAIN × × × 0.0122

UP-FHDI Linearization 4 0.3788 0.0136
UP-FHDI Jackknife 4 0.3405 0.0136

CT Slices

Naive × × 0.0016 0.1319
GAIN × × × 0.2271

UP-FHDI Linearization 90 0.0015 0.0696
UP-FHDI Jackknife 90 0.0015 0.0696

Swarm
Naive × × 2.1644 0.0851

UP-FHDI Linearization 50 2.1312 0.0539
UP-FHDI Jackknife 50 2.0593 0.0539

p53
Naive × × 0.0076 0.0224

UP-FHDI Linearization 15 0.0073 0.0173
UP-FHDI Jackknife 15 0.0073 0.0173

Radar
Naive × × 2.6030 0.0557

UP-FHDI Linearization 35 2.4442 0.0291
UP-FHDI Jackknife 35 2.3476 0.0291

TABLE 6: Comparison of SE and RMSE between UP-
FHDI and naive imputation with ultra incomplete datasets
U(10000, 0.1M, 0.3) by varying SD used in synthetic data
generation. SIS uses four selected variables

SD Method SE RMSE Method SE RMSE

3
UP-FHDI

0.052 0.078
Naive

0.062 0.084
5 0.084 0.081 0.100 0.091
8 0.134 0.083 0.160 0.096

computational cost per unit. Although there exist intra-node
and inter-node communication transfer costs, let β be the
overall communication transfer cost per unit for simplicity
and L be the communication startup cost. Likewise, IO
communication can be approximated by a startup cost
and a unit transfer cost in the same way as inter-node
communication. IO communication transfer cost can be
classified as contiguous (denoted as γ1) and non-contiguous
types (denoted as γ2). Contiguous IO makes a single IO
request and allows access to a contiguous chunk of data
at a time, whereas non-contiguous IO must be accessed
by making separate function calls to access each individual
contiguous piece iteratively, and thus γ2 � γ1 [49]. Let L1

and L2 be the associated startup cost for contiguous and
non-contiguous IO, respectively. Typically, L2 � L1. Let
s = max(n, p) and thus total running time T (Q) with Q
available processors can be expressed by

T (Q) ≈ α
′

Q
+ β

′
Q. (40)

where α
′

= O(s3)α + O(s2)γ2 and β
′

= O(L2). By
substituting Eq. (40), the scalability of T (Q)

T (cpQ) is given by

T (Q)

T (cpQ)
= cp ×

α
′
+Q2β

′

α′ + c2pQ
2β′

. (41)

where cp ∈ N+. See detailed inference of Eqs. (40)
and (41) in APPENDIX VI. Figs. 4 and 5 study UP-
FHDI scaling performance by varying Q. Overall, UP-
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FHDI yields favorable scalability that agrees with the
cost models of speedup and running time. Due to the
inevitable use of non-contiguous IO, UP-FHDI does not
exhibit the ideal linear speedup. Table 7 presents the
execution time of UP-FHDI stages for curing extremely big
data. Remarkably, UP-FHDI has no limitations to cure an
incomplete dataset U(1M, 10000, 0.3) in a volume of 80 GB,
although Stampede2 has the maximum run time limit (48
hours).

Fig. 4: Speedup of UP-FHDI with input datasets
U(10000, 0.1M, 0.3) and U(0.1M, 10000, 0.3). Note that we
adopt 4 selected variables for SIS.

Fig. 5: Running time of UP-FHDI with input datasets
U(10000, 0.1M, 0.3) and U(0.1M, 10000, 0.3). Note that we
adopt 4 selected variables for SIS.

TABLE 7: Execution time of UP-FHDI stages with extremely
big datasets. We adopt SIS with 8 selected variables
for U(0.5M, 10000, 0.3) and 14 selected variables for
U(1M, 10000, 0.3). Stage numbers i ∼ iv represent cell
construction, estimation of cell probability, imputation, and
variance estimation, respectively. Note that all execution
time is measured in hours

Datasets Q i ii iii iv T (Q)

U(0.5M, 10000, 0.3) 192 10.13 0.01 0.18 1.64 11.96
U(1M, 10000, 0.3) 240 28.47 0.04 0.27 5.42 34.20

7 IMPACT OF UP-FHDI ON DEEP LEARNING

The impact of FHDI on the subsequent ML has been
extensively discussed in [3] with datasets of moderate
size. Following a similar methodology, we investigate the
impact of UP-FHDI on deep learning with ultra incomplete
datasets. We segment the investigation as the following
procedures:

(i) Generate an ultra synthetic dataset U(n, p) and p
variables are indexed by {0, 1, . . . , p − 1}. Split
U(n, p) as disjoint U1(0.7n, p) and U2(0.3n, p) such
that U1 ∪ U2 = U.

(ii) Perform the two-staged feature selection on U(n, p)
regarding the target variable indexed by p − 1, and
thus obtain a list of important features v ∈ Nv . Note
that the target variable is guaranteed to be included
in v.

(iii) Create 30% missingness to U1(0.7n, p) and cure
it with either of imputation methods to derive
imputed values Û1(0.7n, p).

(iv) Extract important features from U1(0.7n, p),
Û1(0.7n, p), and U2(0.3n, p) regarding v such that
we will have training datasets U1(0.7n, v) and
Û1(0.7n, v), and a test dataset U2(0.3n, v).

(v) Build deep learning models with training datasets
U1(0.7n, v) and Û1(0.7n, v), respectively. Test
different predictive models on the same U2(0.3n, v)
and compute nRMSE by

nRMSE =

√∑0.3n
i=1 {(ŷi,cured − yi)2/0.3n}√∑0.3n
i=1 {(ŷi,ori − yi)2/0.3n}

. (42)

where yi is the ith unit of the target variable
in U2(0.3n, v). And ŷi,cured and ŷi,ori are the
predictions of yi based on Û1(0.7n, v) and
U1(0.7n, v), respectively.

For deep learning predictions, this study adopts the R
package h2o [50]. We enable the ReLU activation function
and four hidden layers, and twenty neurons in each layer
for the implementation.

As a complement to the above investigation, the two-
staged feature selection is presented as follows. Ultrahigh
dimensional data (e.g., p > 10, 000) may pose challenges
to the direct use of existing ML methods. Feature selection
has been proven to be effective in removing redundant
features to improve subsequent learning performance [51].
Generally, feature selection techniques can be classified
into three groups: (i) wrapper methods [52], [53], (ii) filter
methods [54], [55], and (iii) embedded methods [56], [30].
To investigate the impact of UP-FHDI on deep learning,
we need to have a subset of v features such that v � p.
This paper proposes a two-staged feature selection method
that leverages the mutual information (shrink the large-
sized to the medium-sized features) and then graphical
LASSO (shrink the medium-sized to a final subset of v
features). Firstly, we develop a parallel filter method based
on mutual information (MI) to reduce to vI (e.g., up to 100)
features. The MI provides a measure of how much useful
information is conveyed to the target variable by including
a predictor. Hence, including features with high MI will help
to boost prediction accuracy. Consider yI = {y0, . . . , yp−2}

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3249567

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

as predictors and yp−1 as the target variable. Let y(q)
I be

the distributed predictors of size p(q) on the slave processor
q. Let z(q)I be discrete values of y(q)

I . Denote MI of the
distributed predictors as MI(q). Key steps of the MI-based
parallel filter method are:

(MI1) Discretize y(q)
I to z(q)I by categories G(q) using the

estimated sample quantiles. Similarly, discrete yp−1
to zp−1 by the category Gp−1.

(MI2) Compute MI(q) by:

MI(q) =

p(q)−1∑
l=0


Gl∑
g=1

Gp−1∑
k=1

p(g, k) log
p(g, k)

p(g)p(k)

 ,

(43)
where Gl ∈ G(q), p(g) and p(k) are marginal
probability, and p(g, k) is joint probability.

(MI3) Aggregate MI(q) on the master processor by
MI = ΩQ−11 MI(q). (44)

(MI4) Select vI features with top MI with respect to MI .
Secondly, we build graphical models based on the inverse
covariance matrix (denoted as Σ−1) to further reduce vI
features to a final small-sized subset of v features. The
inverse covariance matrix, commonly referred to as the
precision matrix displays information about the partial
correlations of variables. The zero element of Σ−1 implies
the conditional independence of two variables given the
rest. The sparsity pattern of the precision matrix Σ−1

reflects the graphical structure as a consequence of the
Hammersley-Clifford theorem [57]. We use R package
glasso [58] to estimate a sparse precision matrix Σ−1 using a
lasso (L1) penalty (see [59] for details about graphical lasso).
Assume N multivariate normal observations of dimension
p such that Xi ∼ Np(µ,Σ) where i = 1, . . . , N and µ and
Σ are unknown mean and covariance matrix. Let Θ = Σ−1

be a precision matrix. The estimation of Θ follows steps:
(1) Let W = S + ρI be the estimate of Σ and ρ is a

regularization parameter. Express W and S by

W =

(
W11 w12

wT12 w22

)
, S =

(
S11 s12
sT12 s22

)
. (45)

The diagonal entries of W remain unchanged
throughout the following steps.

(2) For j = 1, . . . , p, solve the lasso problem by

β̂ = min
β

{
1

2

∥∥∥W 1/2
11 β − b

∥∥∥2 + ρ‖β‖1
}
. (46)

where b = W
−1/2
11 s12. Fill in the W using w12 =

W11β̂.
(3) Continue until the convergence of W.

Without inverting the estimated W, the graphical lasso
algorithm enables the estimation of Θ in a computationally
efficient way. Expanding the relation WΘ = I by(

W11 w12

wT12 w22

)(
Θ11 θ12
θT12 θ22

)
=

(
I 0

0T 1

)
, (47)

θ12 = −W−111 w12θ22

θ22 = 1/
(
w22 − wT22W−111 w12

)
.

(48)

Since β̂ = W−111 w12, it follows that
θ̂12 = −β̂θ̂22
θ̂22 = 1/

(
w22 − wT22β̂

)
.

(49)

Since we compute β̂ by solving Eq. (46), the θ̂12 has
many zeros and thus estimated Θ becomes sparse. One
can gradually increase ρ to make Θ more sparse until we
obtain v selected features connected to the target variable, as
shown in Fig. 6. Regarding memory usage and speedup, the
parallel MI is linearly scalable with ultra data. It considers
relationships between predictors and the target. By contrast,
the glasso package is not directly applicable to ultra data
but takes relationships among the medium-sized set of
variables into consideration. We illustrate using the parallel
MI program and glasso package in APPENDIX VII and VIII,
respectively.

Fig. 6: Part of the graphical network model generated by
graphical lasso for ρ = 0.6 based on U(0.1M, 100), which
is extracted from raw data U(0.1M, 10000) by parallel MI.
Note that node (9999) in the left top corner is the target
variable while nodes 9992-9998 are its important features.

After the two-staged feature selection, this study follows
the proposed investigation procedures with synthetic
datasets U(0.1M, 10000) generated by Eq. (38). The formula
indicates that seven variables are closely connected to the
target variable. This fact is well captured by the two-
staged feature selection. In particular, the final graphical
model of seven important features (nodes indexed by 9992-
9998) connected to the target variable (node indexed by
9999) is visualized as a network in Fig. 6. The validity of
the two-staged feature selection is confirmed. Lastly, we
investigate the impact of different imputation methods on
deep learning predictions in terms of the normalized RMSE
nRMSE (see Table 8). In essence, nRMSE being closer to
1 means that an imputation method does not disturb (or
negatively impact) the prediction performance. Given Eq.
(38), we prepared three ultra datasets by varying underlying
SD used in the synthetic data generation. Throughout
all three ultra datasets, Table 8 shows that UP-FHDI
positively impacts deep learning performance compared to
the naive method. The difference between UP-FHDI and
naive imputation may not be significant due to the simple
structure of the adopted synthetic data.

8 FUTURE RESEARCH

There is room to improve UP-FHDI’s scalability due to non-
contiguous IO communication between nodes and the hard
drive disk. An optimal workflow shall upgrade the parallel
file system for more efficient IO communication. By new
theories, the adopted Euclidean distance-based KNN shall
be improved to embrace fully categorical datasets.
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TABLE 8: The impact of naive imputation and UP-FHDI on
the subsequent deep learning performance. An increasing
standard deviation (SD) is used for different datasets

SD 3 12 16

Methods Naive UP-FHDI Naive UP-FHDI Naive UP-FHDI

RMSE 2.239 2.154 7.526 7.422 9.647 9.438
nRMSE 1.053 1.013 1.021 1.006 1.026 1.004

9 CONCLUSION

In a new era of big data and powerful computing, there is
a strong need for a big data-oriented imputation paradigm
for data-driven scientific discovery. By inheriting all existing
functionalities of the general-purpose, assumption-free
data-curing tool P-FHDI, this paper proposed the ultra data-
oriented P-FHDI (UP-FHDI). We document the full details
of UP-FHDI with respect to the adopted parallel file system,
ultra data-oriented parallelisms, parallel linearization
techniques, and impacts on the subsequent deep learning.
The Monte Carlo simulations and comparative studies
against baseline imputation methods affirm the validity of
UP-FHDI, and analytical cost models exhibit its promising
scaling performance. This program enables big incomplete
data imputation and efficient parallel variance estimation,
and ultimately improves the subsequent deep learning with
the cured big data. We share all the developed codes,
examples, and documents in [60].
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Appendix to Ultra Data-Oriented Parallel Fractional
Hot-Deck Imputation with Efficient Linearized

Variance Estimation

APPENDIX I: Detailed Explanations and Examples of UP-FHDI
The HPC environment used in this paper is Stampede2 [1], one of the Texas Advanced Computing Center’s (TACC) flagship

supercomputers. Stampede2 hosts 4200 Knights Landing (KNL) nodes and 1736 Skylake (SKX) nodes. Each KNL and SKX
nodes include 96GB and 192GB of memory, respectively. Stampede2 mounts three shared Lustre file systems available from all
nodes. Meanwhile, we tested UP-FHDI on Condo 2017 [2] of Iowa State University to confirm its compatibility. As long as the
Intel modules 15.0.2− 19.4 are available, users can deploy the developed program for missing data curing. All the developed
codes, examples, and documents are shared with associated GPL-2 in [3]. We provide full details of running UP-FHDI in the
following subsections.

A. Preparation of input files

Generally, the program must start with the initial setups (summarized in Table 1), raw missing data y, and response indicator
matrix r. We will give full explanations of each parameter in the initial setups hereafter. Users can either enable P-FHDI for big-
n and big-p data or UP-FHDI for ultra data by adjusting i option ultra. For the convenience of users, the program provides
various alternatives to read data efficiently. For example, P-FHDI has two options to import data. If i option read data = 1,
P-FHDI will read y, r, and the rest of the setups from separate TXT files. Otherwise, P-FHDI imports all required inputs
from a single TXT file for ease of use. Likewise, UP-FHDI provides two approaches to import data: MPI IO for binary
files and POSIX IO for TXT files. If i option read data = 1, UP-FHDI will read y from two binary files in opposite
data distribution by MPI IO to minimize non-contiguous reading. The data distributions in ”daty column binary.bin” and
”daty row binary.bin” must be column-oriented and row-oriented, respectively. Matrix r and initial setups will be read
from another binary file and a TXT file separately. Note that the data distributions in ”datr column binary.bin” must be
column-oriented. Otherwise, UP-FHDI will read y, r, and the rest of the setups by POSIX IO from separate TXT files.
i option read data = 1 is strongly preferred for UP-FHDI if data is ultra-large since MPI IO is much faster and scalable
rather than POSIX IO. i option read data = 0 is designed to test UP-FHDI with easy-to-use examples. The maximum data
volume imported by POSIX IO is strictly restricted by the available memory of the master processor. Overall, users shall pay
extra attention to an appropriate choice of IO method based on their purpose.
i option perform has four options for P-FHDI: the options of 1 or 4 perform all stages of P-FHDI using automatic or

user-defined imputation cells, respectively. Note that i user defined datz = 1 is mandatory if users enable P-FHDI with
user-defined imputation cells. Users can individually perform cell construction or estimation of cell probability by options 2
or 3 for specific needs. However, UP-FHDI only supports i option perform = 1 and thus all stages of UP-FHDI will be
performed. i option imputation provides two options for P-FHDI, where 1 for FEFI and 2 for FHDI. In contrast, UP-FHDI
only allows FHDI with the default option 2. Moreover, users can skip variance estimation by setting i option variance = 0.
Otherwise, the program performs variance estimation as the default. i option merge controls the C++ standard random number
generator. A choice of 0 is desired if users intend to reproduce the results for validation. Otherwise, we enable randomness
in cell collapsing, k-nearest neighbors (KNN), and donor selection. i donor defines the total number of donors used in the
imputation process. [4] recommends five as the default number of donors after detailed case studies. i option collapsing > 0
activates the sure independent screening (SIS) to reduce all variables to a user-defined number of selected variables. Otherwise,
no variable reduction is adopted with i option collapsing = 0. i option SIS type provides different methods for SIS and is
meaningful only if i option collapsing > 0. i option cellmake = 1 enables the cell collapsing to generate artificial donors
in cell construction. Alternatively, the default i option cellmake = 2 performs KNN to determine deficient donors. Options
1 and 2 for i option var type run the Jackknife and linearized variance estimation, respectively. Note that this option is
meaningful only if i option variance = 1 and P-FHDI merely allows the Jackknife variance estimation.

The following parameters are designed to reduce memory usage. We suggest users adjust these parameters accordingly for
different ultra datasets if more efficient memory usage is desired. top correlation defines the number of top-ranking variables
used for the extraction of selected variables in SIS. An optimal top correlation is the least value that guarantees extraction
of i option collapsing selected variables. memory defines available memory per MPI task. The default value of 8 is suitable
for 24 tasks per SKX node on Stampede2. If UP-FHDI runs out of memory, try to request fewer tasks per node to give each
task more memory. Here is an example of initial settings:
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i o p t i o n r e a d d a t a 1
i o p t i o n u l t r a 1
i o p t i o n p e r f o r m 1
nrow 100
n c o l 80
i o p t i o n i m p u t a t i o n 2
i o p t i o n v a r i a n c e 1
i o p t i o n m e r g e 0
i d o n o r 5
i u s e r d e f i n e d d a t z 0
i o p t i o n c o l l a p s i n g 4
i o p t i o n S I S t y p e 3
t o p c o r r e l a t i o n 1000
i o p t i o n c e l l m a k e 2
i o p t i o n v a r t y p e 2
memory 8

Except for initial setups in Table 1, users must provide additional information about variable categories, variable types, and
instance sampling weights. The variable categories define the number of categories of all variables created in imputation cells.
The maximum value of a category is 35 and [4] suggests categories of each variable between 30 and 35 after detailed case
studies. In practice, a large category is not always substantially beneficial, but computations increase monotonically. Hence,
starting with a small number of categories is reasonable. For example, users can define three categories for all variables by:

c a t e g o r y
3 3 3 3 . . .

Moreover, UP-FHDI allows reserving non-collapsible categorical variables in the cell construction process by setting

N o n C o l l a p s i b l e c a t e g o r i c a l
1 0 0 0 . . .

The first variable is strictly considered non-collapsible categorical, and the rest of the variables are considered continuous or
collapsible categorical. As a result, UP-FHDI will skip the categorization for the first variable. Lastly, users should provide
sampling weights for all instances by

we ig h t
1
1
1
1
1

. . .

B. Compiling of UP-FHDI

This study uses the default version of the Intel compiler (i.e., Intel/18.0.2) on Stampede2. To compile UP-FHDI, run the
command:

mpicxx -o main_MPI main_MPI.cpp

where -o ∗∗ represents the name of an executable exact file and ”main_MPI.cpp” is the actual file name of the main function
of UP-FHDI. Slurm is the adopted cluster job management system on Stampede2 for job scheduling. Submitting a job script
to Slurm is a standard method to run an MPI program on a high-performance computing (HPC) system. This method allows
users not to connect while the job is pending or executing. One can submit a job script into the queue by issuing:
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TABLE 1: Summary of options for the initial settings.

• i option ultra (default: 1):
0: Perform P-FHDI 1: Perform UP-FHDI

• i option read data (default: 1):
0: If i option ultra = 1, UP-FHDI reads raw data from ”daty.txt”, the response indicator matrix from ”datr.txt”,
and the rest of the settings from ”input.txt”, separately. If i option ultra = 0, P-FHDI reads all inputs from ”input.txt”
1: If i option ultra = 1, UP-FHDI reads raw data from ”daty column binary.bin” and ”daty row binary.bin”,
the response indicator matrix from ”datr column binary.bin”, and the rest of the settings from ”input.txt”, separately.
If i option ultra = 0, P-FHDI reads raw data from ”daty.txt”, the response indicator matrix from ”datr.txt”, and
the rest of the settings from ”input.txt”, separately

• i option perform (default: 1):
1: Perform all stages using the automatic z 2: Perform cell construction only
3: Perform estimation of cell probability only 4: Perform all stages using a user-defined z

• nrow: The number of instances in y

• ncol: The number of variables in y

• i option imputation (default: 2):
1: Perform FEFI 2: Perform FHDI

• i option variance (default: 1):
0: Skip variance estimation 1: Perform variance estimation

• i option merge (default: 0):
0: Turn on the fixed seed 1: Turn on the standard random seed generator

• i donor (default: 5):
Adopt a user-defined integer as the number of donors used to fill in each missing item

• i user defined datz (default: 0):
0: Adopt the automatic z matrix 1: Adopt a user-defined z matrix

• i option collapsing (default: 4):
Activate the sure independent screening by a user-defined number of selected variables

• i option SIS type (default: 3):
Sure independent screening with 1: an intersection of simple correlations; 2: a union of simple correlations;
3: a global ranking of simple correlations

• top correlation (default: 1000):
Number of top-ranking variables based on simple correlations to be used for the extraction of selected variables in SIS

• i option cellmake (default: 2):
1: Adopt the cell collapsing method 2: Adopt the k-nearest neighbor method

• i option var type (default: 2):
1: Adopt the Jackknife variance estimation 2: Adopt the linearized variance estimation

• memory (default: 8):
Available memory in gigabyte per MPI task

sbatch run.sbatch

where ”run.sbatch” is the actual name of a job script with its expansion. [5] provides various example job scripts for MPI
jobs in the different Slurm partitions, and an example script for UP-FHDI is shown below:

#!/bin/bash
#SBATCH -J UP-FHDI # Job name
#SBATCH -o UP-FHDI.o%j # Name of the output file
#SBATCH -e UP-FHDI.e%j # Name of the error file
#SBATCH -p skx-normal # Queue (partition) name
#SBATCH -N 1 # Total number of nodes
#SBATCH -n 24 # Total number of MPI tasks
#SBATCH -t 00:30:00 # Maximum run time (hh:mm:ss)
module load ooops # Load OOOPS
set_io_param_batch $SLURM_JOBID 0 high # Set configurations of OOOPS
module load intel/18.0.2 # Load the Intel compiler
ibrun ./main_MPI # Launch MPI code

The above example describes the most common sbatch command options. The first line of a job script must specify the
interpreter that will parse non-Slurm commands by issuing #!/bin/bash. Users can use #SBATCH directives to request
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computing resources, and these directives should precede all shell commands. Slurm writes all console outputs to the file
”UP-FHDI.o%j” and error messages to the file ”UP-FHDI.e%j”, where %j is the numerical job ID. The directive ”-p”
specifies the used Slurm partition for your job. The currently available queues on Stampede2 are described in [5]. Users can
reserve computing resources by specifying the requested number of nodes, the number of MPI tasks per node, and the maximum
run time. An appropriate request of necessary computing resources is of importance rather than requesting as many resources as
possible since the scheduler will have an easier time finding a slot for your job. Users can deploy OOOPS to avoid overloading
the shared file system. The directive ”set_io_param_bacth” sets the configurations of OOOPS. ”$SLURM_JOBID” is
the submitted job ID and the use of ”0” represents the $SCRATCH file system. OOOPS provides four options to throttle the
frequency of IO activities: unlimit, high, medium, and low from the least to the most. Moreover, one can dynamically
change throttling by running the command set_io_param without interrupting users’ applications. Finally, load the Intel
compiler and launch a single application by ibrun.

C. Explanation of output files

Considering an incomplete dataset U(n, p, η), let ñM and ñR be the number of unique missing patterns and unique observed
patterns in the imputation cells, respectively. We have ñM + ñR ≈ n if the dataset is high-dimensional. Let M be the number
of selected donors. UP-FHDI generates output files summarized in Table 2 that cover all results in the R package FHDI .
Note that the total size of output files is estimated in the worst scenario. If UP-FHDI does not successfully converge in a
maximum run time, it will provide an additional debug.txt file for possible reasons and the suggested solutions.

TABLE 2: Descriptions of output files of UP-FHDI.

Output files Description Size (bytes) Total

datz binary.bin Imputation cells pn

uox binary.bin Unique observed patterns pñR

mox binary.bin Unique missing patterns pñM

fmat FHDI binary.bin Imputed values pnM

final daty binary.bin Final complete data pn

summary.txt Mean and variance estimates 20p pn(M + 3)

D. Example datasets for UP-FHDI

Table 4 in the manuscript provides three synthetic datasets and seven real-world datasets, which are publicly accessible in
IEEE DataPort [6]. Synthetic 1 is an easy-to-use example to study different IO methods (i.e., POSIX IO for TXT files and
MPI IO for binary files). Synthetic 2 and 3 are ultra incomplete data to test the strength of UP-FHDI. In particular, users can
test the use of OOOPS with Synthetic 3.

APPENDIX II: Computational Advancement of Linearization Techniques
As an extension to Section 5.2 of the manuscript, Table 3 shows that parallel linearization is much faster than the parallel

Jackknife method with various real-world datasets under different missing mechanisms. Therefore, a significant computational
advancement of linearization techniques against the Jackknife method is affirmed.

TABLE 3: Comparison of execution time between UP-FHDI with linearization techniques and Jackknife method. All real-world
datasets have 30% of missingness under MCAR and MNAR. Execution time is measured in seconds.

Mechanism Method Swarm CT Slices p53 Radar Travel Time

MCAR
Parallel linearization 385 777 852 5462 87

Parallel Jackknife 10763 31829 15611 16834 5149

MNAR
Parallel linearization 376 693 898 5141 88

Parallel Jackknife 10278 30819 13335 16378 4779

APPENDIX III: Data Distributions of Example Real-World Datasets
Table 4 in the manuscript provides ten incomplete datasets to validate the proposed method. Synthetic datasets are generated

by normal and gamma distributions. This section exhibits data distributions of three adopted real-world datasets (Bridge Strain,
Swarm, and Earthquake). Figs. 13, 14, and 15 show that many variables in real-world datasets are significantly skewed.
Therefore, UP-FHDI is adequate to handle real-world datasets with significantly skewed data distributions.
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Fig. 13: Density plots of the first fifteen variables of Bridge Strain.

Fig. 14: Density plots of the first fifteen variables of Swarm.

APPENDIX IV: Summary of Methodologies of GAN-Based Imputation Methods
The Generative Adversarial Imputation Nets (GAIN) was proposed by [7] to accurately impute missing data. See [7] for

details about GAIN. GAIN is composed of the generator (G) and the discriminator (D) with a hint vector H. Considering a
d-dimensional space, let X = (X1, . . . , Xd) be a data vector with missing values. Let M be the mask vector that indicates
observed parts X̃ of the data vector X. The hint vector H ensures G to learn the true data distribution, accurately impute
missing data, and output a completed data vector X̂. The D takes X̂ as input and attempts to distinguish between observed
components X̃ and imputed components X. Considering M̂ = D(X̂,H), the GAIN objective function can be expressed by

min
G

max
D

E
[
L(M, M̂)

]
(III.1)
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Fig. 15: Density plots of the first fifteen variables of Earthquake.

where the loss function L(a, b): {0, 1}d × [0, 1]d → R is defined by

L(a,b) =
d∑
i=1

[ai log(bi) + (1− ai) log(1− bi)] (III.2)

Let B = (B1, . . . , Bd) ∈ {0, 1}d be a random variable. Suppose that the lowercase entity is always a sample of the
corresponding uppercase entity, e.g., b is a sample of B. The key steps of the GAIN algorithm to solve the minimax optimization
problem in Eq. (III.1) are summarized as follows:

(1) Optimize D with a fixed G using mini-batches of size kD. D is trained to minimize the sum of the discriminator loss
LD by

min
D

kD∑
j=1

LD(m(j), m̂(j),b(j)) (III.3)

where m̂(j) = D(x̂(j),m(j)).
(2) Optimize G using the updated D in step (1) with mini-batches of size kG. G is trained to minimize the weighted sum

of two losses by

min
G

kG∑
j=1

LG (m(j), m̂(j),b(j)) + αLM (x̃(j), x̂(j)) (III.4)

where LG and LM are the loss applied to the missing components and observed components, respectively. The entity α
is a hyper-parameter.

(3) Iterate steps (1) and (2) until training loss is converged.
GAIN was validated with various real-world missing data, and results show that GAIN outperforms many state-of-art imputation
techniques.

A GAN-based framework (named MisGAN) was proposed by [8] to learn complex and high-dimensional data distribution
from incomplete data. See [8] for details about MisGAN. The framework equipped an adversarially trained imputer to offer
high-quality imputation. MisGAN is composed of three generator-discriminator (G,D) pairs: (Gm, Dm) for data vector x,
(Gx, Dx) for the masks m ∈ {0, 1}n, and (Gi, Di) for the imputer. Note that Gx and Gm are independent of each other with
their own noise distribution pε and pz , respectively. Let D = {(xi,mi)}i=1,...,N be an incomplete dataset with a distribution
pD and z be the noise. Define Fx, Fm, and Fi such that Dx, Dm, and Di are all 1-Lipschitz. To train an imputer-equipped
MisGAN, the data generating process and the imputer will be optimized by three objective functions. The (Gi, Di) for the
imputer will be optimized by the objective function:

min
Gi

max
Di∈Fi

Li(Di, Gi, Gx) (III.5)
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where the imputer loss is:

Li(Di, Gi, Gx) = Ez∼pz [Di(Gx(z))]− E(x,m)∼pD,ω∼pω [Di(Gi(x,m,ω))] (III.6)

Note that ω is a random vector drawn from a noise distribution pω . The (Gx, Dx) for data can be optimized by the objective
function:

min
Gx

max
Dx∈Fx

Lx(Dx, Gx, Gm) + βLi(Di, Gi, Gx) (III.7)

where β = 0.1 empirically and the data loss is:

Lx(Dx, Gx, Gm) = E(x,m)∼pD [Dx(fτ (x,m))]− Eε∼pε,z∼pε [Dx(fτ (Gx(z), Gm(ε)))] (III.8)

The masking operator fτ fills in missing elements with a constant value τ by:

fτ (x,m) = x�m + τm̄ (III.9)

where m̄ is the complement of m. The (Gm, Dm) for the masks will be optimized by the objective function:

min
Gm

max
Dm∈Fm

Lm(Dm, Gm) + αLx(Dx, Gx, Gm) (III.10)

where α = 0.2 empirically and the mask loss is:

Lm(Dm, Gm) = E(x,m)∼pD [Dm(m)]− Eε∼pε [Dm(Gm(ε))] (III.11)

MisGAN adopted convolutional networks for both generators and discriminators and was validated with three incomplete image
datasets. The Frechet Inception Distance (FID) was computed between imputed data and original fully-observed data as the
evaluation metric. The results show that MisGAN consistently outperforms baseline imputation techniques with smaller FIDs.

Our GAIN implementation is adapted from the codes released by the authors [9]. This study adopts the default settings to
build the GAIN model. Considering the stochastic nature of GAIN, we conduct ten experiments for each dataset and average
the performance measures. Thus, the number of iterations is adjusted for tolerable execution time. MisGAN was proved to
be powerful towards incomplete image datasets [8]. Yet, the extension of MisGAN to real-valued incomplete datasets has not
been discussed. Hence, this paper did not implement MisGAN for comparative studies.

APPENDIX V: Contrast between UP-FHDI and Baseline Imputation Methods under MNAR
As an extension to Section 5.3 of the manuscript, we provide a contrast between UP-FHDI and baseline imputation methods

with incomplete real-world datasets under missing not at random (MNAR). Note that we create 30% missingness to all
real-world datasets. The response indicator δil under MNAR is generated from δil ∼ Ber(ζil) such that

logit ζil = φ0 + φ1yil (IV.1)

where φ0 and φ1 can be adjusted to control 30% missingness. Table 4 shows that UP-FHDI outperforms naive imputation with
smaller SE and RMSE. Using large real-world datasets (Earthquake, Bridge Strain, Travel Time, and CT Slices), UP-FHDI
performs well comparable to GAIN regarding RMSE results. Note that the default-setting GAIN aborted when it was applied
to Swarm, p53, and Radar (the last three rows in Table 4). It appears that GAIN may require specific extensions for large/ultra
data curing.

APPENDIX VI: Cost Analysis of UP-FHDI
As an extension to Section 6 of the manuscript, we provide a detailed inference about the cost models in Eqs. (40) and (41).

Generally, we can derive the cost at four primary stages of UP-FHDI: (i) Cell construction (ii) Estimation of cell probability
(iii) Imputation, and (iv) Variance estimation. For the convenience of readers, we recap important notations used in this
section as follows. A finite sampled population is denoted by U(instances, variables, missing rate) ∈ Rn×p with n instances,
p variables, and the associated missing rate η. Let s = max(n, p) be the number of dimensions in the worst scenario. UP-
FHDI can activate SIS by setting the number of selected variables v 6= 0. Otherwise, UP-FHDI without variable reduction is
adopted. Let t be a user-defined number of top-ranking variables used in SIS. Given Q total available processors, let α be the
computational cost per element, β be the communication transfer cost per unit, and L be its startup cost. Consider γ1 and γ2
as contiguous and non-contiguous IO communication transfer costs, respectively. Similarly, let L1 and L2 be associated startup
cost for contiguous and non-contiguous IO, respectively. The total execution time T can be partitioned into the computational
time (denoted as C) and the communication time (denoted as H) such that

T = C +H (VI.1)

where C = Ci + Cii + Ciii + Civ , and H = Hi + Hii + Hiii + Hiv , respectively. Note that the cost models only include
dominating terms in the worse cases and thus ignore trivial cost.
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TABLE 4: Comparison of SE and RMSE between UP-FHDI, naive imputation, and GAIN with incomplete real-world datasets
under MNAR. Note that SIS refers to the number of selected variables used in the sure independent screening.

Dataset Method Var. est SIS SE RMSE

Earthquake
Naive × × 0.0101 0.0543

GAIN × × × 0.0719

UP-FHDI Linearization × 0.0092 0.0388

Bridge Strain
Naive × × 0.0673 0.1028

GAIN × × × 0.0916

UP-FHDI Linearization × 0.0652 0.0335

Travel Time

Naive × × 0.4357 0.0104

GAIN × × × 0.0115

UP-FHDI Linearization 4 0.3943 0.0092

UP-FHDI Jackknife 4 0.3712 0.0092

CT Slices

Naive × × 0.0016 0.1409

GAIN × × × 0.2289

UP-FHDI Linearization 90 0.0015 0.0714

UP-FHDI Jackknife 90 0.0015 0.0714

Swarm
Naive × × 2.3130 0.1281

UP-FHDI Linearization 50 2.2482 0.0653

UP-FHDI Jackknife 50 2.1638 0.0653

p53
Naive × × 0.0082 0.0294

UP-FHDI Linearization 15 0.0077 0.0212

UP-FHDI Jackknife 15 0.0079 0.0212

Radar
Naive × × 2.3089 0.0701

UP-FHDI Linearization 30 2.3104 0.0386

UP-FHDI Jackknife 30 2.3103 0.0386

(i) Cell construction: In Algorithm 2 for the categorization of imputation cells, the contiguous reading in line 2 and non-
contiguous writing in line 11 take the majority of the running time such that communication cost (denoted as H(1)

i ) is
given by

H(1)
i =

np

Q− 1
(2γ1 + γ2) + (Q− 1)(2L1 + L2) (VI.2)

In Algorithm 3 for the extraction of imputation patterns, the contiguous reading in lines 2 and 4 and contiguous writing
in lines 8 and 9 (denoted as H(2)

i ) dominate the IO communication cost by

H(2)
i =

(Q+ 1)np

Q− 1
γ1 + 3(Q− 1)L1 (VI.3)

The major computational cost in line 5 (denoted as C(2)i ) is given by

C(2)i =
n2

Q− 1
α (VI.4)

In Algorithm 4 for the generation of the ranking list, this function will be skipped if v = 0. Otherwise, the computational
cost in line 6 (denoted as C(3)i ) dominates by

C(3)i =
p2n+ pn2

Q− 1
α (VI.5)

And communication cost in lines 14 and 15 (denoted as H(3)
i ) is given by

H(3)
i =

Qpt

Q− 1
β + 2(Q− 1)L (VI.6)

In Algorithm 5 for the determination of donors, if v = 0, the primary computational cost in lines 7 and 8 (denoted as
C(4)i ) is

C(4)i =
n2p

Q− 1
α (VI.7)

Otherwise, the prime computational cost in lines 10 to 12 is

C(4)i =
np2t+ n2v

Q− 1
α (VI.8)
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In Algorithm 6 to determine deficient donors, the cost will be trivial if v 6= 0. Otherwise, the major computational cost
in line 7 (denoted as C(5)i ) is

C(5)i =
2n2p

Q− 1
α (VI.9)

By summing up the major cost in each parallel function of the cell construction, we have

Ci =

{
3s3+s2

Q−1 α if v = 0
(t+2)s3+(1+v)s2

Q−1 α if v 6= 0
(VI.10)

and

Hi =

{
(Q+3)s2

Q−1 γ1 + s2

Q−1γ2 + (5Q− 5)L1 + (Q− 1)L2 if v = 0
(Q+3)s2

Q−1 γ1 + s2

Q−1γ2 + Qst
Q−1β + (5Q− 5)L1 + (Q− 1)L2 + (2Q− 2)L if v 6= 0

(VI.11)

(ii) Estimation of cell probability: The cost in this stage is negligible in T and thus it is unnecessary to present the cost
details.

(iii) Imputation: The computational cost in this stage is trivial. Considering the worst scenario with M donors for each
recipient, the primary IO communication cost in line 10 of Algorithm 7 is given by

Hiii =
npM

Q− 1
γ2 + (Q− 1)L2 (VI.12)

(iv) Variance estimation: Likewise, the computational cost in this stage is trivial in T . The major IO communication cost in
lines 2 to 5 of Algorithm 8 turns out to be

Hiv =
2np

Q− 1
γ1 +

2np

Q− 1
γ2 + 2(Q− 1)(L1 + L2) (VI.13)

By substituting C and H of each stage of UP-FHDI derived above, we can simplify total execution time T (Q) in the worst
scenario as

T (Q) = Ci +Hi +Hiii +Hiv

≈ α
′

Q
+ β

′
Q

(VI.14)

where α
′

= O(s3)α+O(s2)γ2 and β
′

= O(L2). By substituting Eq. (VI.14), the scalability of T (Q)
T (cpQ) is expressed by

T (Q)

T (cpQ)
= cp ×

α
′
+Q2β

′

α′ + c2pQ
2β′ (VI.15)

where cp ∈ N+.

APPENDIX VII: Example of Parallel Filter Method Based on Mutual Information
This section provides instructions on running the parallel filter method based on mutual information (MI). An easy-to-use

example is available in [10]. This program requires two input files, including initial setups (summarized in Table 5) and a binary
dataset. i col target is the index of the target variable and indices of all variables are 1-indexed. i selection represents the
total number of selected features. Noticeably, the data distribution in the binary dataset must be column-oriented. To compile
the program on the Stampede2 using the default Intel compiler, run the command:

mpicxx -o main_MPI main_MPI.cpp

Afterward, submit a job script into the queue by issuing:

sbatch run.sbatch

An example job script for parallel MI is shown below:

#!/bin/bash
#SBATCH -J P-MI # Job name
#SBATCH -p normal # Queue name
#SBATCH -N 1 # Total number of nodes
#SBATCH -n 6 # Total number of MPI tasks
#SBATCH -t 00:30:00 # Max run time (hh:mm:ss)
module load intel/18.0.2 # Load the Intel compiler
ibrun ./main_MPI # Launch MPI code

The parallel MI has two output binary files summarized in Table 6.
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TABLE 5: Initial settings of parallel MI.

• nrow: The number of instances of input data
• ncol: The number of variables of input data
• category: The number of categories for all variables
• i col target: The index of the target variable
• i selection: The number of selected features

TABLE 6: Descriptions of output files of parallel MI.

Output files Description

selected daty.txt Selected features
selected id.txt Indices of selected features

APPENDIX VIII: Example of Graphical Lasso
This section illustrates the use of graphical lasso by the R package glasso. The example aims to further extract important

features from selected features by parallel MI. Suppose we store selected features by parallel MI as a matrix in R (denoted as
selected daty). Compute covariance matrix S by:

S <− cov ( s e l e c t e d d a t y )

and apply the glasso to estimate a sparse inverse covariance matrix P by:

a <− g l a s s o ( S , 0 . 6 )
P <− a $wi

where the regularization parameter for graphical lasso is set to be 0.6. A larger value of the regularization parameter gives a
more spare model. Construct a graphic model g regarding the estimated precision matrix P by

A <− i f e l s e ( P ! =0 & row ( P ) ! = c o l ( P ) , 1 , 0 )
g <− ne twork (A)

One can extract important features connected to the target variable in the graphic model g. A toy dataset and simple R code
are available in [10].
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