
 

Journal of Hyperbolic Differential Equations 
Vol. 20, No. 1 (2023) 219–257 
c World Scientific Publishing Company 

DOI: 10.1142/S0219891623500078 

Convergence to a diffusive contact wave for solutions to a 

system of hyperbolic balance laws 

Yanni Zeng 

Department of Mathematics 
University of Alabama at Birmingham 

Birmingham, AL 35294-1241, USA ynzeng@uab.edu 

Received 17 January 2022 
Revised 1 April 2022 

Accepted 6 April 2022 
Published 19 May 2023 

Communicated by T.-P. Liu 

Abstract. We consider a 2 × 2 system of hyperbolic balance laws that is the converted form 

under inverse Hopf–Cole transformation of a Keller–Segel type chemotaxis model. We study 

Cauchy problem when Cauchy data connect two different end-states as x→±∞. The background 

wave is a diffusive contact wave of the reduced system. 

We establish global existence of solution and study the time asymptotic behavior. In the special 

case where the cellular population initially approaches its stable equilibrium value as x→±∞, we 

obtain nonlinear stability of the diffusive contact wave under smallness assumption. In the 

general case where the population initially does not approach to its stable equilibrium value at 

least at one of the far fields, we use a correction function in the time asymptotic ansatz, and show 

that the population approaches logistically to its stable equilibrium value. Our result shows two 

significant differences when comparing to Euler equations with damping. The first one is the 

existence of a secondary wave in the time asymptotic ansatz. This implies that our solutions 

converge to the diffusive contact wave slower than those of Euler equations with damping. The 

second one is that the correction function logistically grows rather than exponentially decays. 

Keywords: Nonlinear stability; asymptotic behavior; logarithmic chemotactic singularity. 

1. Introduction 

We consider the Cauchy problem of a two by two hyperbolic system, 
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vt + ux = 0, 

x ∈ R, t > 0, (1.1) u + (uv) = ru(1 u), 

219 

⎧ 

⎩ t x −  

(v,u)(x,0) = (v0,u0)(x), (1.2) 

⎨ 
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where the parameter r > 0 is a constant, and the initial data satisfy 

x→±∞ ±,u±) (1.3) lim (v0,u0)(x) = (v 
with  and u± > 0. The goal is to establish the existence of global-intime 

solution and to study the time asymptotic behavior of the solution under appropriate 

assumptions. 

1.1. Background 

Consider a Keller–Segel type chemotaxis model with logistic growth, logarithmic 

sensitivity and density-dependent production/consumption rate for a non-diffusive 

chemical signal and a non-diffusive cellular population, 

 . (1.4) 

Here the unknown functions are s = s(x,t) and u = u(x,t) for the concentration of the 

chemical signal and the density of the cellular population, respectively. The system 

parameters are constants and have the following meaning: = 0 is the coefficient of 

density-dependent production/consumption rate of the chemical signal; σ ≥ 0 the 

natural degradation rate of the signal; = 0 the coefficient of chemotactic 

sensitivity; a > 0 the natural growth rate of the cellular population and K > 0 the 

typical carrying capacity of the environment for the population. For a more detailed 

discussion on the model see [23–25] and references therein. 

The logarithmic function in (1.4) can be removed via the inverse Hopf–Cole 

transformation [5]: 

 . (1.5) 

Under the new variables v and u, the reaction-diffusion system (1.4) is converted into 

a system of balance laws, 

(1.6) 

. 

We assume χμ > 0, which implies χ,μ > 0, or χ,μ < 0. The former is interpreted as 

cells are attracted to and consume the chemical, while the latter indicates that cells 

deposit the signal to modify the local environment for succeeding passages [15]. 

Mathematically, (1.6) is hyperbolic in biologically relevant regimes when χμ > 0, while 

it may change type when χμ < 0 [23]. 

Under the assumption χμ > 0, we introduce rescaled and dimensionless variables, 

 . (1.7) 
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Dropping the check accent after the change of variables, we obtain (1.1) with 

aD 
r =  > 0. (1.8) χμK 

Therefore, (1.1) is the converted form of the chemotaxis model (1.4) under the 

transformation (1.5) followed by the rescaling (1.7). 

Correspondingly, (1.4) is considered with Cauchy data 

 (s,u)(x,0) = (s0,u0)(x), x ∈ R. (1.9) 

Here u0 in (1.9) is the unscaled version of u0 in (1.2). Therefore, based on the physical 

relevance, we set u± > 0 in (1.3). The other initial function s0 is related to v0 in (1.2) by 

the transformation (1.5) and the rescaling (1.7). Assuming χ > 0, for simplicity and 

without loss of generality, we bypass the scaling to discuss the connection between 

v0 and s0. That is, 

, 

which implies 

 . (1.10) 

Note that the Cauchy data (1.2) satisfy (1.3). This includes (but is not limited to) 

the following special cases. 

. In this case, (1.3) and (1.10) imply 

lim s0(x) = 0, lim s0(x) = s+ < ∞. x→−∞

 x→∞ 

(2) −∞ < v+ < 0 and . Similarly, (1.3) and (1.10) imply 
x→−∞ − < ∞, xlim→∞ s0(x) = 0. lim s0(x) = s 

(3) 0 < v− < ∞ and −∞ < v+ < 0. In this case, 

lim s0(x) = 0. 
x→±∞ 

We observe that in those special cases, s0 is not bounded away from zero while v− 

> v+. Similarly, if we assume χ < 0, there are also special cases where s0 is not bounded 

away from zero while v− < v+. In other words, the singularity of the logarithmic 

function in (1.4) is intrinsic, which is further translated into technical difficulties 

associated with  
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1.2. Connection with existing literature 

There is an abundant literature on chemotaxis models similar to (1.4). For a short 

discussion and a list of related references see [23, 24]. In fact, the model studied in 

[23, 24] differs from (1.4) in that it is for a diffusive cellular population. Since the focus 

of this paper is on the mathematical theories for the hyperbolic system (1.1) 
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(assuming u± > 0 in (1.3)), especially those related to nonlinear stability, we give a 

brief discussion in that regard. 

A general system of hyperbolic balance laws takes the form 

 wt + f(w)x = g(w), (1.11) 

where w,f,g ∈ Rn. Here w is the unknown density function, f the flux function and g the 

reaction term. In physical applications, the Jacobian matrix f has real, distinct 

eigenvalues or can be symmetrized with an entropy function, and the Jacobian matrix 

g is rank deficient. 

We observe that (1.1) is an example of (1.11), where 

 . (1.12) 

It is clear that 

 

has two real, distinct eigenvalues ) in the biologically relevant 

regime u > 0. It is also clear that g is rank deficient. 

There is an extensive literature on the general system (1.11) when Cauchy data 

are around constant equilibrium states, see [19] and references therein. In particular, 

pointwise time asymptotic behavior of solutions is studied in [22]. The results apply 

to (1.1), (1.2) with 

lim (v0,u0)(x) = (0,1), 
x→±∞ 

e.g. see [20, 17]. Here the constant equilibrium state (0,1) is the stable one in the 

physically interesting scenario. That is, it corresponds to 

 x→±∞lim s0(x) = s±, 0 < s± < ∞, (1.13) 

see [23] for details. In view of Sec. 1.1, s0(x) and hence s(x,t) in the original model is 

bounded away from zero, or the logarithmic singularity in (1.4) does not play an 

intrinsic role in such a scenario. This paper is to advance the research to the much 

more complicated situation when  for arbitrary v± and arbitrary u± > 0 in 

(1.3), provided |v− − v+| + |u− − u+| is small. 
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In the case of Cauchy data connecting two different end-states as x → ±∞, a system 

in the form (1.11) is usually studied around a permanent wave, which is a diffusive 

version of an elementary wave of the corresponding equilibrium system/equation. 

Therefore, the type of the permanent wave depends on the system under 

consideration. For (1.1), the equilibrium equation is a linear equation as to be seen 

below. The only relevant elementary waves are contact discontinuities. Thus, we 

consider the Cauchy problem (1.1)–(1.3) around a diffusive contact wave in this 

paper. For a 2 × 2 hyperbolic system that admits diffusive rarefaction waves and 

traveling waves (shock waves) readers are referred to [8]. 
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In the existing literature several models in the form (1.11) have been studied 

around diffusive contact waves, also known as diffusion waves. Among them are Euler 

equations with linear or nonlinear damping, bipolar hydrodynamical models for 

semiconductors, etc. Comparing to those models, (1.1)–(1.3) exhibits significant new 

features that may shed light on the future study of the general system (1.11) around 

a diffusive contact wave. Since Euler equations with damping are perhaps most 

extensively studied, we give a more detailed discussion and make a comparison with 

(1.1)–(1.3) below. 

1.3. Comparison to Euler equations with damping 

We consider Euler equations with damping for isentropic flows, 

vt − ux = 0, 

 x ∈ R, t > 0, (1.14) 

⎩ut + p(v)x = −ru, 

where r > 0 is a constant. The unknown functions v and u stand for the specific volume 

and velocity, respectively, while p is the pressure, a given smooth function of v 

satisfying 0. The model describes a compressible flow through a porous 

medium. 

We observe two differences between (1.1) and (1.14). The first is that the 

nonlinear flux function in (1.14)2 is p(v), depending only on v, while the counterpart 

in (1.1)2 is uv, depending on both unknown functions. The second one is the lower 

order term in the second equation, which governs the evolution of u as x → ±∞. 

In (1.14), it is exponential decay while in (1.1) it is logistic growth. Those two 

differences alter the components in the time asymptotic solution beyond the primary 

wave. 

It is shown in [4] that the solution of (1.14), (1.2), (1.3) time asymptotically 

behaves like one of the following systems: 

1 

vt = − p(v)xx, 

(1.15) 

 ⎨ r− 

⎧ 

⎪ 

⎨ 

⎧ 
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 ⎪⎩p(v)x = ru, 

where the first equation is the porous medium equation and the second one is Darcy’s 

law. Also see [13, 14, 16] and references therein. The intuitive observation is as 

follows. The equilibrium manifold of (1.14) is u = 0. Substituting it into (1.14)1 gives 

us the equilibrium equation 

 vt = 0, (1.16) 

which is also known as the reduced equation. A better (the next order) approximation 

is obtained by first dropping ut, the higher order term in time decay in (1.14)2. This 

gives us (1.15)2. Then we substitute it into (1.14)1 to have (1.15)1. The idea employed 

here is Chapman–Enskog expansion. 
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To illustrate the differences between (1.1) and (1.14) one by one, for the moment 

we assume u− = u+ = ̄ u while  in (1.3). Here ̄ u needs to be an equilibrium state. 

Thus, ¯u = 0 for (1.14) while ¯u = 1 for (1.1). 

We now follow [4] to consider the Cauchy problem (1.14), (1.2), where 

 . (1.17) 

 
Let ¯v(x,t) = φ(x/√t + 1) be the unique self-similar solution of the porous medium 

equation 

 , (1.18) 

x→±∞ 

Here the uniqueness is up to a translation. Noting the equation for v in (1.14) and 

(1.18) for ¯v are conservation laws, we define the translation x0 uniquely by setting 

 

With (1.15)2 we define the primary wave in the time asymptotic ansatz as 

 . (1.21) 

The end-states v± form a contact discontinuity with 

speed zero of the reduced equation (1.16), 

see [18]. The primary wave ̄ v defined by (1.18), (1.19) can be regarded as a diffusive⎩ 

version of ˆv. While it is called a diffusion wave in [4], we call ¯v a diffusive contact 

wave to emphasize its relation with ˆv. 

Based on (1.20) one introduces new variables, 

 
Thus, 

Vx(x,t) = v(x,t) − v¯(x + x0,t). 

satisfying the boundary condition  

lim v¯(x,t) = v±. (1.19) 

 

if x < 0, if 

x > 0, 
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Nonlinear stability of a weak diffusive contact wave is studied in [4]. That is, if |v+ 

− v−| is small and V (x,0) and U(x,0) = Vt(x,0) are small in H3(R) and H2(R), respectively, 

then there exists a global-in-time solution of (1.14), (1.2), (1.17). The solution 

converges in L2(R) ∩ L∞(R) to (¯v,u¯)(x + x0,t) time asymptotically, with 

 decaying at the rate (t + 1)−12. The decay rate is improved to 

optimal ones,, 
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and, under a variety of assump- 

tions on the initial data [13, 14]. 

For (1.1), similarly, we derive an approximate system that is the counterpart of 

the porous medium equation and Darcy’s law (1.15), see Sec. 2 for details. As a 

consequence, the primary wave in the time asymptotic ansatz of the solution to (1.1)–

(1.3) is a diffusive contact wave. Our analysis, however, reveals a significant 

difference in that there exists a secondary wave in the asymptotic ansatz. The v-

component of the wave has zero mass and decays with the same rates as a heat kernel. 

(It has positive and negative peaks as observed from numerical simulations.) The u-

component, on the other hand, decays at the same rates as the first derivative of a 

heat kernel. See Sec. 2 for details. 

Our results show that the remainder of the solution to (1.1)–(1.3) after taking out 

the primary and secondary waves is higher order in L2(R)∩L∞(R). This implies that 

the secondary wave is the leading term in the time-asymptotic error when 

approximating the solution by the diffusive contact wave. Therefore, the contact wave 

is stable, and the L2-convergence rates to it are (t+1)−14 for the v-component and (t + 

1)−34 for the u-component. The L∞-convergence rates are (t + 1)−12 and (t+ 1)−1, 

respectively. This is to compare with (t+ 1)−34 and (t+ 1)−54 for L2 and (t+1)−1 and 

(t+1)−32 for L∞, respectively, for Euler equations with damping (1.14). 

The existence of the secondary wave and hence the slower convergence rates to 

the diffusive contact wave comes from the fact that the nonlinear flux in the equation 

for u in (1.1) contains both v and u. More precisely, in the notations of (1.11) and 

(1.12), ∂w2f2 = ∂u(uv) = v does not decay in time due to the background permanent 

wave. In the case of Euler equations with damping, the corresponding ∂w2f2 = ∂u(p(v)) 

= 0 for (1.14). There are other models in the literature studied around diffusive 

contact waves, such as the model for heat wave in rigid solids at low temperature [7] 

and the bipolar hydrodynamical model for semiconductors [2]. Also see [3, 6] and 

references therein. In those models, the counterparts of ∂w2f2 are either zero or 

decaying in time sufficiently fast, and hence there are no secondary waves. To the best 

of the author’s knowledge, the existence of a secondary wave is a novelty of (1.1) that 

may shed light on the future study of more general systems in the form of (1.11). 

The other main difference between (1.1) and (1.14) is the diffusion mechanism in 

the second equation. It is exponential decay in (1.14) but logistic growth in (1.1). To 

illustrate the difference we now let  and  in (1.3), and consider the 

Cauchy problem (1.14), (1.2). In this case, the asymptotic ansatz (1.21) does not 

match the end-states for the u-component. The remedy is to construct an auxiliary 

function. In [4], it is defined as 
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, 

(1.22) 
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where m0(x) is a smooth function with compact support, satisfying 

 . (1.23) 

It is clear that (˜v,u˜) is the solution of 

, 

(1.24) 

with ˜u(x,t) → e−rtu± as x → ±∞. Here the rate equation in (1.24) is from the rate 

equation in (1.14) when x → ±∞, governing the evolution of u as x → ±∞. The initial 

value of ˜u is 

  (1.25) 

which connects ˜u = u− to ˜u = u+ smoothly in the compact support of m0(x). 

The asymptotic ansatz (1.21) is now updated as 

(¯v(x + x0,t) + v˜(x,t),u¯(x + x0,t) + u˜(x,t)), 

while the shift is updated accordingly so that 

. 

The new variables now become 

 

U(x,t) = u(x,t) − u¯(x + x0,t) − u˜(x,t). 

With the additional assumption 1, convergence of the solution of 

(1.14), (1.2), (1.3) to a weak diffusive contact wave is studied. The same results on 

global existence and convergence rates are obtained in [4, 13, 14]. 

In this paper, the diffusion mechanism is the logistic growth in (1.1). Therefore, 

our construction of an auxiliary function is via the logistic function, see Sec. 2. There 

are studies on nonlinear damping in the literature, see [7, 3, 26, 11] and references 

therein. Those studies are either for the case u− = u+ = 0 and hence no auxiliary 

functions, or for a perturbation of the linear damping. In particular, in [26, 11] Euler 
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equations with nonlinear damping in the form −ru− β|u|q−1u are considered, where 

= 0 and q > 1 are constants. The convergence to the diffusive contact wave 

is obtained in [26] with u− = u+ = 0 and q ≥ 3, and in [11] with small  (near the 

equilibrium state u = 0) and q > 5/2. Roughly speaking, the logistic growth in this 

paper is equivalent to q = 2 while u± do not need to be near the equilibrium state u = 

1. 
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As a final remark of this part, we point out that the two new features associated 

with (1.1)–(1.3) not only apply to more general hyperbolic balance laws in the form 

of (1.11), but also to hyperbolic-parabolic balance laws, 

 wt + f(w)x = [B(w)wx]x + g(w). (1.26) 

Here B ∈ Rn×n is the viscosity matrix (usually rank deficient). In fact, in a recent paper 

[21], we consider the chemotaxis model for a diffusive cellular population. The 

converted system is 

(1.27) 

, 

which is a prototype of (1.26). We consider the case limx→±∞(v0,u0)(x) = (v±,1) with
. Therefore, there is no auxiliary function needed but we do observe a 

secondary wave atop of the diffusive contact wave. 

1.4. Goals and plan 

In this paper, we establish the global existence of solution to (1.1)–(1.3) when Cauchy 

data are perturbations of a weak diffusive contact wave under appropriate 

assumptions. We identify and justify the leading term, a secondary wave, in the time-

asymptotic error and an auxiliary function for the u-component to approach the 

equilibrium state . These give us the nonlinear stability of 

the contact wave and large time behavior of solution to (1.1)–(1.3). We expect that 

our results can provide an innovative insight into asymptotic solutions of systems in 

the forms of (1.11) and (1.26), beyond what has been understood through the Euler 

equations with damping. Our results are obtained via energy and weighted energy 

methods. Using more sophisticated methods, it is possible to obtain results in Lp-

spaces, 1 ≤ p ≤ ∞, and fine-tune the higher order terms for their better accuracy. These 

are left to future works. 

The plan of the paper is as follows. In Sec. 2, we give the needed preliminaries and 

state main results. In Sec. 3, we prove Theorem 2.4 to establish global existence of 

solution. In Sec. 4, we prove Theorem 2.5 to obtain convergence rates of the solution 

to the asymptotic solution and hence justify the asymptotic solution. In Appendix A, 

we prove Lemma 2.3. 
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2. Preliminaries and Main Results 

We first derive equations that define the primary wave for (1.1)–(1.3). Considering u 

as a perturbation of the equilibrium state u = 1 we write (1.1)2 as 

(u − 1)t + vx + [(u − 1)v]x = −r(u − 1) − r(u − 1)2. 

Identifying the leading terms in time decay rates, we have 

vx ≈ −r(u − 1). 
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Therefore, with (1.1)1 we define the leading term in the time asymptotic solution for 

(v,u) as (¯v,1 + ¯u), where (¯v,u¯) satisfies 

, 

(2.1) 

Substituting (2.1)2 into (2.1)1 gives us 

1 

⎧v¯t = v¯xx, ⎪⎪⎨ (2.2) 

r 

1 

⎪⎪⎩ 
−r u¯ =v¯x. 

We observe that (2.2) is the counterpart of (1.15), the porous medium equation and 

Darcy’s law. 

Now we define ¯v as the self-similar solution of (2.2)1 with 

lim v¯(x,t) = v 

 x→±∞ ±. (2.3) 

Consequently, ¯u is obtained by (2.2)2. Explicitly, 

  (2.4) 

We note that the solution to (2.2)1, (2.3) is unique up to a translation. We will 

determine the translation x0 later and use (¯v,u¯)(x + x0,t) instead. We also note that 

¯v(x,t) in (2.4) is a diffusive contact wave of the heat equation (2.2)1, with Riemann 

data at t = −1. 

The leading term (¯v,1 + ¯u) so constructed is not sufficiently accurate. To 

construct a secondary wave we substitute (v,u) in (1.1) by (¯v + v∗,1 + ¯u + u∗), apply 

(2.1) and keep the leading terms in time decay only. We arrive at 
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(2.5) 

, 

where  

R(x,t) = (¯uxv¯)(x,t). 

Substituting (2.5)2 into (2.5)1 gives us 

(2.6) 

, 

(2.7) 
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Here (2.7)1 is to be solved with 

 v∗(x,0) = 0. (2.8) 

Thus by Duhamel’s principle, we have an explicit expression for v∗, 

  (2.9) 

and u∗(x,t) is given accordingly by (2.7)2. 

The above derivation of (¯v,u¯) and (v∗,u∗) is based on expansions with respect to 

time decay, the idea of Chapman–Enskog expansion. The asymptotic ansatz 

constructed so far satisfies the following boundary condition: 

lim (¯v + v∗,1 + ¯u + u∗)(x,t) = (v 

 x→±∞ ±,1), (2.10) 

see (2.4) and (2.25) below. Comparing with (1.3), (2.10) is satisfactory if u− = u+ = 1. 

Otherwise, an auxiliary function is needed to match the boundary data for the u-

component as x → ±∞. 

Therefore, we consider the case . From (1.1)2 we observe that 

u(±∞,t) evolves according to the logistic equation 

ϕt = rϕ(1 − ϕ). 

The solution to (2.11) is the logistic function, 

(2.11) 

 . (2.12) 

We want ϕ(x,0) to connect u− to u+ smoothly. For this we use the same function as 

in [4] for (1.14), which is the initial function on the right-hand side of (1.22)1. That is, 

  (2.13) 

where m0(y) is a smooth, nonnegative function with compact support, satisfying 

 . (2.14) 

With the addition of an auxiliary function (˜v,u˜), we expect that the new ansatz (¯v 

+ v∗ + v,˜ 1 + ¯u + u∗ + u˜) matches (¯v,ϕ) as x → ±∞. For this we set 1 + ˜u = ϕ. Thus, with 

(2.12) and (2.13) we define 
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 . (2.15) 

Correspondingly, we set 

 . (2.16) 
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We observe that (˜v,u˜) satisfies 

(2.17) 

. 

Recall that ¯v as a solution to (2.2)1, (2.3) is unique up to a translation. As the final 

step in the construction of an asymptotic ansatz, we now determine the translation x0 

by setting 

 . (2.18) 

From (2.16) and (2.13), this is equivalent to 

. 
Thus, the constant x0 is uniquely determined by 

 . (2.19) 

Combining (1.1)1, (2.1)1, (2.5)1 and (2.17)1, we have 

. 

With (2.8) and (2.18) we further have 

 . (2.20) 

This allows us to define a new variable 

  (2.21) 

That is, 

Vx(x,t) = v(x,t) − v¯(x + x0,t) − v∗(x + x0,t) − v˜(x,t). 

We also introduce a new variable, 

 

U(x,t) = u(x,t) − 1 − u¯(x + x0,t) − u∗(x + x0,t) − u˜(x,t). 

These give us the following decomposition: 

(2.22) 
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(2.23) 

. 

In (2.23), the 

time asymptotic ansatz for (v,u)(x,t) is (¯v,1 + ¯u)(x + x0,t) + (v∗,u∗)(x+x0,t) with the 

correction (˜v,u˜)(x,t), while (Vx,U)(x,t) is the remainder. Here all the components of 

the ansatz including the shift are uniquely defined by (2.4), (2.9), (2.7)2, (2.15), (2.16), 

(2.13) and (2.19). In particular, if u− = u+ = 1, we have ̃ u = v˜ = 0 and (2.23) is simplified. 

The exact, explicit formulation of the 
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components in the ansatz, however, does not provide a clear, convenient picture 

when comparing them with the remainder. Thus, we give their precise, pointwise 

estimates before we state the main results concerning the remainder. 

Lemma 2.1. For a fixed t ≥ 0, v¯(x,t) monotonically increases or decreases from v− to v+ 

 on R. Let 

be an arbitrarily 

fixed constant. For x 

∈ R, t ≥ 0, we have 

(2.24) 

. 

Proof. The monotonicity ¯v(x,t) comes from (2.1)2 and (2.4)2, which imply ¯vx ≶ 0 if v− 

≷ v+. The estimates in (2.24), on the other hand, are direct consequence of u¯(x,t) in 

(2.4)2 and ¯vx = −ru¯, see (2.1)2.  

Lemma 2.2 ([21]).  be an arbitrarily fixed constant and l ≥ 0 be an 

integer. For 

, 

(2.25) 

Lemma 2.2 is proved in [21], applying a result from [9]. For the auxiliary function 

we give Lp-estimates instead. 

Lemma 2.3. For a fixed t ≥ 0, 

u˜(x,t) monotonically connects 

(u− −1)e−rt/[u− + on R. Let 1 ≤ p 

≤ ∞ and l be 

0: 
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 , (2.26) 

where C > 0 is a constant. 

We postpone the proof of Lemma 2.3 to Appendix A. Here we introduce some 

notations. We use the following abbreviations for Sobolev norms with respect to x: 

. 

We set 

 
Our first result is on global existence when the two end-states are sufficiently 

close and V0 and U0 are small. 
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Theorem 2.4.∈m+1(R) andLetU0 ∈ H and u± > 0 be constants. Let m ≥ 2 be an integer, 

V0 H m(R). Then there exists a constant ε0 > 0, such that if 

 , (2.28) 

the Cauchy problem (1.1)–(1.3) has a unique, global-in-time solution (v,u). With the 

decomposition (2.23), the solution satisfies V ∈ Ci(0,∞;Hm+1−i(R)), 0 ≤ i ≤ 2, U ∈ 

Cj(0,∞;Hm−j(R)), 0 ≤ j ≤ 1, and the following energy estimate: 

  (2.29) 

where C > 0 is a constant. 

Our next theorem is on L2 decay rates of the remainder. 

Theorem 2.5. Under the same assumptions as in Theorem 2.4, and with sufficiently 

small ε0 > 0, the global solution (v,u) of (1.1)–(1.3) has the following estimates for t ≥ 0: 

 

where C > 0 is a constant. 

With the Sobolev inequality, see (3.14), one obtains L∞ rates for V and U as follows. 
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Corollary 2.6. Under the same assumptions as in Theorem 2.4, and with sufficiently 

small ε0 > 0, the global solution (v,u) of (1.1)–(1.3) has the following estimates for t ≥ 0: 

, 
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where C > 0 is a constant. 

Consider the special case of u− = u+ = 1. In view of (2.10), the asymptotic solution 

(¯v + v∗,1 + ¯u + u∗)(x + x0,t) no longer needs a correction (i.e. ˜u = v˜ = 0 in (2.15) and 

(2.16)). Thus, corresponding to (2.19), the shift x0 is uniquely determined by 

 (2.33) The solution (v,u) of (1.1)–(1.3) is 

decomposed as 

(2.34) 

, 

where 

  (2.35) 

These are counterparts of (2.23) and (2.21). The initial data for (V,U) is simplified to 

(2.36) 

. 

Applying Theorems 2.4 and 2.5 and Corollary 2.6 to this special case, we have the 

following results. 

Corollary 2.7. Let+1  be constants and u− = u+ = 1. Let m ≥ 2 be an integer, V0 ∈ 

Hm (R) and u0 − 1 ∈ Hm(R). Then there exists a constant ε0 > 0, such that if 

 , (2.37) 

the Cauchy problem (1.1)–(1.3) has a unique, global-in-time solution (v,u). With the 

decomposition (2.34), the solution satisfies V ∈ Ci(0,∞;Hm+1−i(R)), 0 ≤ i ≤ 2, U ∈ 

Cj(0,∞;Hm−j(R)), 0 ≤ j ≤ 1, and the following energy estimate: 

  (2.38) 
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With sufficiently small ε0, the solution also has the following decay estimates for 

 

 

Here in (2.38)–(2.41), C > 0 is a constant. 

We comment that in the statement of Corollary 2.7, the assumptions on U0 are 

replaced by those on u0 − 1 due to (2.24) and (2.25). We also comment that Corollary 

2.7 gives nonlinear stability of the diffusive contact wave (¯v,1) if the wave strengthAs 

implied by (2.25), (2.39) and (2.41), in the decomposition (2.34) the|v− − v+| is weak.

 L2 decay rates for v∗ and Vx are (t+1)−14 and (t+1)−12, respectively, and the 

corresponding L∞ rates are (t + 1)−12 and (t + 1)−34. The rates indicate that in both L2 

and L∞, while ¯v is the primary wave, v∗ is a secondary wave in the v-component. 

Similarly, in the u-component the primary wave upon the equilibrium stste u = 1 

is ¯u, which is a heat kernel and hence has decay rates (t+1)−14 and (t+1)−12 in L2 and L∞, 

respectively. On the other hand, u∗ and U in (2.34) are of higher order in time-decay. 

The rates are (t+1)−34 and (t+1)−1 in L2 and (t+1)−1 and (t+1)−54 in L∞, respectively, see 
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(2.25), (2.40) and (2.41). This also justifies that u∗ is a secondary wave in the u-

component. 

In summary, in the special case u− = u+ = 1 the global solution (v,u) of (1.1)– (1.3) 

is time-asymptotically approximated by (¯v,1+ ¯u)(x+x0,t), with (v∗,u∗)(x+ x0,t) as the 

leading term is the error. The approximation is in both L2 and L∞. 

In the general case u± > 0 but , there is a correction term 

(v,˜ u˜) in the asymptotic error. While (˜v,u˜) decays exponentially in time in L∞, ˜u is 

not in L2, see Lemma 2.3. Therefore, for the general case the solution (v,u) of (1.1)–

(1.3) is time asymptotically approximated by (¯v,1 + ¯u)(x + x0,t) in L∞ and 
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(v∗,u∗)(x + x0,t) is the leading term is the error. We comment that in the general case 

although |u− − u+| is small, u± themselves do not need to be close to the equilibrium 

state u = 1. 

The rates for V , U and their derivatives in (2.30)–(2.32) can be improved to 

optimal ones by a different set of analytic tools. It is left to a future work since the 

main purpose of this paper is the global existence of solution, the nonlinear stability 

of and the convergence to diffusive contact wave, and the identification of the 

asymptotic ansatz. 

3. Global Existence of Solution 

In this section, we prove Theorem 2.4 to establish the existence of a solution global in 

time for (1.1)–(1.3). First, we rewrite (1.1) in terms of V and U as defined in (2.21) 

and (2.22). Substituting (2.23) into (1.1) and applying (2.1), (2.5) and (2.17) give us 

  (3.1) 

where 

F1 = −u¯t − u∗t − v˜x − [(¯u + u∗ + u˜)(¯v + v∗ + v˜)]x + ¯uxv¯ −r(¯u + u∗)2 

− 2r(¯u + u∗)u,˜ 

F˜ = −rU − rU2 − (¯vx + vx∗ + v˜x)U − (¯ux + u∗x + u˜x)Vx 

 −2r(¯u + u∗ + u˜)U. (3.2) 

Here in (3.1), (3.2) and for the rest of the paper, (¯v,u¯) and (v∗,u∗) are understood as 

(¯v,u¯)(x + x0,t) and (v∗,u∗)(x + x0,t), respectively. 

Using matrix notation we write (3.1) as 

 

which is for the unknown function (Vx,U)t. It is clear that if 

 u = 1 + ¯u + u∗ + u˜ + U > 0, (3.4) 

the coefficient matrix on the left-hand side of (3.3) has two real, distinct eigenvalues 
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. 

In this case, (3.3) is strictly hyperbolic. Here for small solutions under consideration, 

(3.4) is guaranteed by our assumptions u± > 0 and 1, together with the 

estimates on ¯u, u∗ and ˜u given in Lemmas 2.1–2.3. 

The existence of a unique solution local in time for the Cauchy problem of a 

hyperbolic system is classical and via standard iterations [1]. Also see [12, 10]. With 
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appropriate a priori estimates, global existence of solution follows, using a standard 

continuity argument. Our goal in this section is to prove the a priori estimates given 

in the following proposition, which then implies Theorem 2.4. 

Proposition 3.1. Let m ≥ 2 be an integer, V0 ∈ Hm+1(R) and U0 ∈ Hm(R). Suppose that 

(V,U) is a solution of (3.1) with Cauchy data V (x,0) = V0(x), U(x,0) = U0(x), satisfying for 

some T > 0 the following regularity: V ∈ Ci(0,T;Hm+1−i(R)), 0 ≤ i ≤ 2, 

 U ∈ Cj(0,T;Hm−j(R)), 0 ≤ j ≤ 1. 

Let 

 . (3.5) 

Then there exist constants δ0,δ1 > 0, such that if |v− − v+| + |u− − u+| ≤ δ0 and Nm(T) ≤ δ1, 

the following a priori estimate holds: 

 , (3.6) 

where C > 0 is a constant. 

Proof. In the following C denotes a generic positive constant. In particular, it is 

independent of T. We first rewrite (3.1) as 

  (3.7) 

where with F1 defined in (3.2), we have 

F = F1 + F2 + F3, 

 F2 
= −rU2, (3.8) 

F3 = −[(¯v + v∗ + v˜)U]x − 2r(¯u + u∗ + u˜)U. 

For 0 ≤ l ≤ m, m ≥ 2, we apply ∂xl to (3.7)2 to have 

  (3.9) 
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Multiply (3.9) by ∂xl U and integrate with respect to x. After integration by parts and 

applying (3.7)1, we have 
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where 

 

 −(1 + ¯u + u∗ + u˜ + U)∂xl+1V }dx. (3.11) 

From (3.2), (2.1), (2.5) and (2.6), we have 

 1 1 

F1 = v¯xt + (vx∗ + ¯uxv¯)t − v˜x − (¯uv¯)x − [¯u(v∗ + v˜)]x − [(u∗ + u˜)(¯v + v∗ + v˜)]x r r 

+ ¯uxv¯ − ru¯2 − r(2¯uu∗ + u∗2 + 2(¯u + u∗)u˜] 

 1 1 

= − (¯u + u∗)xx + (¯uxv¯)t − [v˜ + ¯u(v∗ + v˜) + (u∗ + u˜)(¯v + v∗ + v˜)]x r

 r 

−r[2¯uu∗ + u∗2 + 2(¯u + u∗)u˜]. 

Applying (2.1) and Lemmas 2.1–2.3, for l ≥ 0, we have 

, 

where 0 . This implies 

 

Thus, (3.11) and (3.12) give us 

. (3.13) 

Recall Sobolev inequality: If ψ ∈ H1(R), then ψ ∈ L∞(R), with 

 . (3.14) 

Applying (3.14) to F2 in (3.8) gives us 

 . (3.15) 

Therefore, from (3.11), we have 

 . (3.16) 
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For I3 from (3.8) and (3.11), we have 

(3.17) 
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Applying (2.24)–(2.26) and by integration by parts, we have 

 

 

Similarly, 

 

 

 . (3.19) 

Next, we write I4 in (3.11) as 

(3.20) 

We use (2.2), (2.7) and (2.17)2 to convert derivatives with respect to t into those with 

respect to x, and apply the estimates (2.24)–(2.26) to have 

 . (3.21) 

Here we have assumed, say, δ0 + δ1 ≤ 1. Similarly, applying (3.1)2, we have 
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Besides (2.24)–(2.26), we apply (3.14), (3.12) and (3.2), and note δ0 + δ1 ≤ 1 to have 

. (3.22) It 

is clear that I43 = 0 if l = 0. On the other hand, if l ≥ 1, 

 

Using (3.14), the last term in (3.20) can be estimated similarly. If l = 0, I44 = 0. If l ≥ 1, 

 

 . (3.24) 

Combining (3.10), (3.13) and (3.16)–(3.24), for 0 ≤ l ≤ m, we have 

 

 
where the last term on the right-hand side exists only when l ≥ 1. 

Integrating (3.25) with respect to time on [0,t] and noting (3.5) give us 
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This can be further simplified to 

 (3.26) 

From Lemma 2.3, 1 + ˜− rt]−1, which impliesu monotonically connects [1 + (1/u− − 

1)e−rt]−1 to [1 + 

(1/u+ 1)e− 

 1 + u˜ ≥ min{u−,u+,1} ≡ c0 > 0. (3.27) 

Thus, (3.26) is further simplified to 

  (3.28) 

Let 

 

Then (3.28) implies 
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Applying Gro¨nwall’s inequality, we have 

. 

Thar is, 

 
From (3.1)1, we have 

Vt + U = 0, 

which implies 

(3.30) 

  (3.31) 

With (3.7)1 we write 

. 

Thus, 

(3.32) 

Applying (3.30), we have 

 . (3.33) 

Applying (2.24), (2.25), (3.14) and (3.5), we also have 

 . (3.34) 

Finally, from (3.8) 

 . (3.35) 

Here applying (3.12) gives us 

 

Also from (3.8) and (3.5), 

  (3.37) 
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(3.38) 

where we have used (3.30) and (2.2), and c0 is defined in (3.27). Combining (3.32)– 

(3.38) we arrive at 

 

 

Substituting (3.39) into (3.31) gives us 

. 

Applying (3.27) and integrating the result with respect to time on [0,t] for 0 ≤ t ≤ T, 

we have 

 

which can be further simplified to 
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After simplifying, we apply (3.29) with l = 0 for the estimate on  

. This gives us 

 

Similar to the derivation of (3.29), via Gro¨nwall’s inequality we arrive at 

(3.40) Therefore, 

 (3.41) Now we 

substitute (3.41) into (3.40) to have 

 (3.42) 
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Finally, we sum up (3.42) and (3.29) for 0 ≤ l ≤ m. This gives us the following 

estimate: 

  (3.43) 

We still need to estimate ). For this we multiply (3.9) 
by ∂xl+2V , 0 ≤ l ≤ m − 1, and integrate the result with respect to x. These give us 

 , (3.44) 

where 

 

 (3.45) By integration by 

parts and (3.30), we have 

 . (3.46) 

By (2.24)–(2.26) and (3.14), we have 
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(3.47) 
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From (3.8), we write 

  (3.48) 

Applying (3.12) gives us 

 

It is clear from (3.8) and (3.14) that 

  (3.50) 

Also, from (3.8), (2.24)–(2.26) and (3.14), we have 

 

 

 

Combining (3.48)–(3.51) gives us 

  (3.52) 

Now we substitute (3.46), (3.47) and (3.52) into (3.44) and note (3.27). We arrive 

at 
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which can be further simplified to 

 
for 0 ≤ l ≤ m − 1. 

We sum up (3.53) for 0 ≤ l ≤ m − 1 and integrate the result with respect to time on 

[0,t]. These give us 

(3.54) 

Using (3.43) we further simplify (3.54) to 

(3.55) 

Next we combine (3.43) and (3.55) to have 

 
With the definition (3.5), this implies 
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Under the assumption |v− −v+|+|u− −u+| ≤ δ0 and Nm(t) ≤ δ1, and by choosing δ0 and δ1 

small, we obtain (3.6). Thus, we have proved Proposition 3.1 and hence Theorem 2.4. 
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4. Asymptotic Behavior of Solution 

In this section, we prove Theorem 2.5, which justifies (¯v(x+x0,t)+v∗(x+x0,t),1+ 

u¯(x+x0,t)+u∗(x+x0,t)) as an asymptotic solution to (1.1)–(1.3). This is to be done by 

weighted energy estimate. We continue to use C as a generic positive constant. 

For k = 1,2,3 and k − 1 ≤ l ≤ m, we multiply (3.25) in the energy estimate by a weight 

(t + 1)k. This gives us 

 

 

After simplifying, we integrate both sides with respect to time on [0,t]. Applying 

(3.27), (2.24)–(2.26), (3.14) and (2.29) gives us 
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(4.1) 

where the last term on the right-hand side is for l ≥ 1. 

Taking k = 1 in (4.1) and summing up for 0 ≤ l ≤ m, we have 

(4.2) 

where we have used (2.29) and Cauchy–Schwarz inequality. With (2.29), the last term 

on the right-hand side is bounded by 

 

Thus, with the bound ε0 on the data as defined in (2.28), (4.2) is simplified to 
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Next we multiply (3.53) by the weight (t + 1) and sum up for 0 ≤ l ≤ m − 1. 

With (2.29), these give us 

 

Integrating with respect to time on [0,t] and simplifying with (2.29), we arrive at 

 

Substituting (4.3) into the right-hand side gives us 

  (4.4) 

We sum up (4.3) and (4.4) to have 

. 
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For small ε0 > 0, this implies 

 . (4.5) 

Next, we take k = 2 in (4.1) and sum up for 1 ≤ l ≤ m. Similar to the derivation of 

(4.3) but applying both (2.29) and (4.5), we have 

(4.6) 

The second term on the right-hand side of (4.6) is bounded by 

, 

where we have applied (4.5). The third term on the right-hand side of (4.6) is treated 

similarly, while the fourth term is bounded by 
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, 
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using (4.5) and (2.29). Therefore, after simplifying, (4.6) implies 

. 

Taking ε0 > 0 small, we arrive at 

 

 . (4.7) 

Next we multiply (3.53) by (t + 1)2, sum up for 1 ≤ l ≤ m − 1, and integrate with 

respect to time on [0,t]. Similar to the derivation of (4.4) but applying (4.5) and (4.7) 

in addition to (2.29), we have 

 

Thus for ε0 > 0 small, we have 
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To improve the decay rate of, we multiply (3.7)2 by U and integrate with respect 

to x. These give us 

, 

which is simplified to 

 

Applying Lemmas 2.1–2.3, (3.14), (2.29), (3.8), (4.7), (3.12) and (4.5), the righthand 

side is bounded by 

 

Thus, (4.9) is simplified to 

. 

Applying Gronwall’s inequality we arrive at 

 . (4.10) 

Combining (4.10) and (4.7) gives us 

 

We now go back to (4.1) and take k = 3. After summing up for 2 ≤ l ≤ m, similar to 

the derivation of (4.6), we have 
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where we have applied (4.7) and (4.8) besides (2.29). For the second and fourth terms 

on the right-hand side of (4.12) we use (4.11) and bounded them by 

 

For the third and fifth terms on the right-hand side of (4.12) we bounded them by 

 

Therefore, (4.12) is simplified as 

. 

Taking ε0 > 0 sufficiently small, we have 

(4.13) 

Combining (4.5), (4.7), (4.8) and (4.13) we obtain (2.30). 
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Finally, we consider the improved estimate on. For this we take l = 1 in (3.9) and 

test it with Ux. These give us 

 

Simplifying (4.14) and applying (3.8), we have 

 

Applying Lemmas 2.1–2.3, (2.29), (2.30), (3.14) and (3.12), one can verify that the 

right-hand side is bounded by 

. 

Thus, similar to the derivation of (4.10), Gronwall’s inequality gives us 

. 

Together with (2.30), we have 

 

We obtain (2.31) from (4.11) and (4.15). 
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Appendix A. Proof of Lemma 2.3 

We now prove Lemma 2.3. From (2.13), 

 . (A.1) 

Since m0(x) ≥ 0, ϕ0(x) monotonically connects u− to u+ on the compact support of m0 

while taking the value u− on the left and u+ on the right of the support. 

Since u± > 0, ϕ0(x) > 0 on R. Besides, the denominator in (2.12), 
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ϕ0(x) + [1 − ϕ0(x)]e−rt = ϕ0(x)(1 − e−rt) + e−rt, 
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monotonically connects u−(1 − e−rt) + e−rt to u+(1 − e−rt) + e−rt. This implies 

inf{ϕ0(x) + [1 − ϕ0(x)]e−rt} 
R 

≥ min{u−(1 − e−rt) + e−rt,u+(1 − e−rt) + e−rt} 

= min{u− + (1 − u−)e−rt,u+ + (1 − u+)e−rt} 

 ≥ min{1,u−,u+} > 0. (A.2) 

From (2.15) and (2.12), 

 , (A.3) 

which has the same sign as ). Thus for a fixed t ≥ 0, ˜u(x,t) monotonically connects 

˜u(−∞,t) to ˜u(∞,t). This justifies the first statement in Lemma 2.3. Also, applying 

(A.2), we have 

, 

where C = max{|u− − 1|,|u+ − 1|}/min{1,u−,u+}. 

Next, for any integer l ≥ 1, by induction, we have 

 , (A.4) 

where 

 , (A.5) 

ckj are constants, and the orders of derivatives satisfy 1 ≤ αkj1,...,αkjkj ≤ l+1−k, 

. In particular, ) and . 

Noting (A.1), we have 

 . (A.6) 

Combining (A.2), (A.4) and (A.6) gives us 
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. (A.7) 

For the estimate on ∂xl v˜ we use (2.16) and (A.3) to write 

v˜(x,t) = h(x,t)u˜x(x,t), 

(A.8) 

. 
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Thus, 

 . (A.9) 

From (A.1), ) has a fixed sign on R, so does hx(x,t) in (A.9). Therefore, for a fixed t 

≥ 0, h(x,t) monotonically connects h(−∞,t) to h(∞,t). As discussed above, both the 

numerator and denominator of h are positive. These give us 

 
Besides, from (A.9) and by induction, for l ≥ 1, we have 

, 

where pl,k(x) are the same as those in (A.5). With (A.6), this implies 

 . (A.11) 

Now by (A.8), (A.10), (A.11) and (A.7), for l ≥ 0, we have 

, 

where ˜cjk are positive constants. 
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