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Abstract. We consider a 2 x 2 system of hyperbolic balance laws that is the converted form
under inverse Hopf-Cole transformation of a Keller-Segel type chemotaxis model. We study
Cauchy problem when Cauchy data connect two different end-states as x—+co. The background
wave is a diffusive contact wave of the reduced system.

We establish global existence of solution and study the time asymptotic behavior. In the special
case where the cellular population initially approaches its stable equilibrium value as x—+o, we
obtain nonlinear stability of the diffusive contact wave under smallness assumption. In the
general case where the population initially does not approach to its stable equilibrium value at
least at one of the far fields, we use a correction function in the time asymptotic ansatz, and show
that the population approaches logistically to its stable equilibrium value. Our result shows two
significant differences when comparing to Euler equations with damping. The first one is the
existence of a secondary wave in the time asymptotic ansatz. This implies that our solutions
converge to the diffusive contact wave slower than those of Euler equations with damping. The
second one is that the correction function logistically grows rather than exponentially decays.

Keywords: Nonlinear stability; asymptotic behavior; logarithmic chemotactic singularity.

1. Introduction

We consider the Cauchy problem of a two by two hyperbolic system,
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Vet Ux= 0,
(x ERt>0, (1.1) u+ (uv) =ru(1u),

\t X -

219 (v,u)(x,0) = (vo,uo) (x), (1.2)
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where the parameter r > 0 is a constant, and the initial data satisfy

xozoo 1, Uz) (1.3) lim (vo,uo)(x) = (v
with?~ # v+ and us > 0. The goal is to establish the existence of global-intime
solution and to study the time asymptotic behavior of the solution under appropriate
assumptions.

1.1. Background

Consider a Keller-Segel type chemotaxis model with logistic growth, logarithmic
sensitivity and density-dependent production/consumption rate for a non-diffusive
chemical signal and a non-diffusive cellular population,
S = —jlUS — OS,
u zeR, t>0
u = —x[u(lns),|. + au (1 - R) (14)
Here the unknown functions are s = s(x,t) and u = u(x,t) for the concentration of the
chemical signal and the density of the cellular population, respectively. The system
parameters are constants and have the following meaning: # /= 0 is the coefficient of
density-dependent production/consumption rate of the chemical signal; o = 0 the
natural degradation rate of the signal; X /= 0 the coefficient of chemotactic
sensitivity; a > 0 the natural growth rate of the cellular population and K > 0 the
typical carrying capacity of the environment for the population. For a more detailed
discussion on the model see [23-25] and references therein.
The logarithmic function in (1.4) can be removed via the inverse Hopf-Cole
transformation [5]:
1= {(Ilns), = Sz
v={ns)s == (1.5)
Under the new variables v and u, the reaction-diffusion system (1.4) is converted into
a system of balance laws,

v + pug = 0,

uy + x(uv), = au (1 - %) (1.6)

We assume yu > 0, which implies y,u > 0, or y,u < 0. The former is interpreted as
cells are attracted to and consume the chemical, while the latter indicates that cells
deposit the signal to modify the local environment for succeeding passages [15].
Mathematically, (1.6) is hyperbolic in biologically relevant regimes when yu > 0, while
it may change type when yu < 0 [23].

Under the assumption yu > 0, we introduce rescaled and dimensionless variables,

t=xuKt, &=+/xuKz, ©=sign(x) X, v, U= it
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Dropping the check accent after the change of variables, we obtain (1.1) with

aD
r=___>0. (1.8) yuK

Therefore, (1.1) is the converted form of the chemotaxis model (1.4) under the
transformation (1.5) followed by the rescaling (1.7).
Correspondingly, (1.4) is considered with Cauchy data

(s,u)(x,0) = (so,uo)(x), XER. (1.9)

Here uoin (1.9) is the unscaled version of uoin (1.2). Therefore, based on the physical
relevance, we set u+ > 0 in (1.3). The other initial function sois related to voin (1.2) by
the transformation (1.5) and the rescaling (1.7). Assuming y > 0, for simplicity and
without loss of generality, we bypass the scaling to discuss the connection between

voand so. That is,

vo(x) = v(w, 0) = (Inso)'(z) = ?Eg

which implies
s0(x) = s0(0)els W (0) >0 (1.10)
Note that the Cauchy data (1.2) satisfy (1.3). This includes (but is not limited to)
the following special cases.

(1) 0 <wv. <ocand [ |vo(y)[dy < o0 p this case, (1.3) and (1.10) imply
lim so(x) =0, lim so(x) = s+ < 0. *5-00

X500

0
(2) —0 <vs<0and)—o [0W)] 4y < o similarly, (1.3) and (1.10) imply
x--00 - < 00, Jim-w so(x) = 0. lim so(x) = s
(3) 0 <v-<ooand - <v:<0.In this case,

lim so(x) = 0.

X400

We observe that in those special cases, sois not bounded away from zero while v-
>v.. Similarly, if we assume y < 0, there are also special cases where sois not bounded
away from zero while v- < v.. In other words, the singularity of the logarithmic
function in (1.4) is intrinsic, which is further translated into technical difficulties
associated withV~ # v+ in (1.1)-(1.3).
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1.2. Connection with existing literature

There is an abundant literature on chemotaxis models similar to (1.4). For a short
discussion and a list of related references see [23, 24]. In fact, the model studied in
[23, 24] differs from (1.4) in that it is for a diffusive cellular population. Since the focus
of this paper is on the mathematical theories for the hyperbolic system (1.1)
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(assuming u+ > 0 in (1.3)), especially those related to nonlinear stability, we give a
brief discussion in that regard.

A general system of hyperbolic balance laws takes the form

we+ fiw)x=g(w), (1.11)
where w,fg € R Here w is the unknown density function, fthe flux function and g the
reaction term. In physical applications, the Jacobian matrix f has real, distinct
eigenvalues or can be symmetrized with an entropy function, and the Jacobian matrix
gis rank deficient.

We observe that (1.1) is an example of (1.11), where

v U 0
w={"), rw= ( ) glw) = ( )
(u) uv ru(l —u)/ (1.12)

[t is clear that

has two real, distinct eigenvalues’\i =s(EVeZ+ 4y in the biologically relevant
regime u > 0. [t is also clear that g is rank deficient.

There is an extensive literature on the general system (1.11) when Cauchy data
are around constant equilibrium states, see [19] and references therein. In particular,

pointwise time asymptotic behavior of solutions is studied in [22]. The results apply
to (1.1), (1.2) with

lim (vo,u0)(x) = (0,1),

X 5+00

e.g. see [20, 17]. Here the constant equilibrium state (0,1) is the stable one in the
physically interesting scenario. That is, it corresponds to

X>zoolim So(X) = Sz, 0 <st<oo, (1.13)

see [23] for details. In view of Sec. 1.1, so(x) and hence s(x,t) in the original model is
bounded away from zero, or the logarithmic singularity in (1.4) does not play an
intrinsic role in such a scenario. This paper is to advance the research to the much
more complicated situation when¥- # U4 for arbitrary v+ and arbitrary uz > 0 in
(1.3), provided |v- - v+| + |u- — u+| is small.
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In the case of Cauchy data connecting two different end-states as x = o, a system
in the form (1.11) is usually studied around a permanent wave, which is a diffusive
version of an elementary wave of the corresponding equilibrium system/equation.
Therefore, the type of the permanent wave depends on the system under
consideration. For (1.1), the equilibrium equation is a linear equation as to be seen
below. The only relevant elementary waves are contact discontinuities. Thus, we
consider the Cauchy problem (1.1)-(1.3) around a diffusive contact wave in this
paper. For a 2 x 2 hyperbolic system that admits diffusive rarefaction waves and
traveling waves (shock waves) readers are referred to [8].
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In the existing literature several models in the form (1.11) have been studied
around diffusive contact waves, also known as diffusion waves. Among them are Euler
equations with linear or nonlinear damping, bipolar hydrodynamical models for
semiconductors, etc. Comparing to those models, (1.1)-(1.3) exhibits significant new
features that may shed light on the future study of the general system (1.11) around
a diffusive contact wave. Since Euler equations with damping are perhaps most
extensively studied, we give a more detailed discussion and make a comparison with
(1.1)-(1.3) below.

1.3. Comparison to Euler equations with damping

We consider Euler equations with damping for isentropic flows,

l Ve— Ux= O,
( XER  t>0, (1.14)

kur+ p(V)x=-ry,

where r > 0 is a constant. The unknown functions v and u stand for the specific volume
and velocity, respectively, while p is the pressure, a given smooth function of v
satisfying P'(v) <0. The model describes a compressible flow through a porous
medium.

We observe two differences between (1.1) and (1.14). The first is that the
nonlinear flux function in (1.14)2is p(v), depending only on v, while the counterpart
in (1.1)2is uv, depending on both unknown functions. The second one is the lower

order term in the second equation, which governs the evolution of u as x — *oo.

In (1.14), it is exponential decay while in (1.1) it is logistic growth. Those two
differences alter the components in the time asymptotic solution beyond the primary
wave.
It is shown in [4] that the solution of (1.14), (1.2), (1.3) time asymptotically
behaves like one of the following systems:
1

' Ve=-_p (V)xx,
| { (1.15)
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| kp(v)x= ru,

where the first equation is the porous medium equation and the second one is Darcy’s
law. Also see [13, 14, 16] and references therein. The intuitive observation is as
follows. The equilibrium manifold of (1.14) is u = 0. Substituting it into (1.14): gives
us the equilibrium equation

ve=0, (1.16)

which is also known as the reduced equation. A better (the next order) approximation
is obtained by first dropping us, the higher order term in time decay in (1.14)2. This
gives us (1.15)2. Then we substitute it into (1.14)1to have (1.15)1. The idea employed
here is Chapman-Enskog expansion.
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To illustrate the differences between (1.1) and (1.14) one by one, for the moment
we assume u- = us = u whileV- # U+ in (1.3). Here "u needs to be an equilibrium state.
Thus, 'u = 0 for (1.14) while "u =1 for (1.1).

We now follow [4] to consider the Cauchy problem (1.14), (1.2), where

J:li.gloc(ﬂu’ U(_))(l’) = (t’i’ D)’ v :,é U+' (117)

Let "v(xt) = @(x/Vt + 1) be the unique self-similar solution of the porous medium
equation

satisfying the boundary condition

lim v (xt) = v= (1.19)
~ 1

O == PO (1.18)

X>too

Here the uniqueness is up to a translation. Noting the equation for vin (1.14) and
(1.18) for "v are conservation laws, we define the translation xo uniquely by setting

oC

/_x [o(z,t) — (z + z0, 1)]dz = / [vo(z) — v(x + 20, 0)]dz = 0. (1.20)

— 00
With (1.15)2 we define the primary wave in the time asymptotic ansatz as

(ﬂ: ﬁ) (9‘: + 2o, t): U= _%p(f'):l‘. (1.21)

The end-states v+ form a v ifx<0,ifcontact discontinuity with
(x,1) =

x>0,

speed zero of the reducedu equation (1.16),

vy
see [18]. The primary wave “v defined by (1.18), (1.19) can be regarded as a diffusive k
version of "v. While it is called a diffusion wave in [4], we call "v a diffusive contact
wave to emphasize its relation with "v.

Based on (1.20) one introduces new variables,
V.= [ [owt) = oy +av.0)dy,
Uz, t) = u(x, t) — u(x + xo,t).
Thus,

Vi(x,6) =v(xt) - v (x + xo0,t).
IVa(@llz2wy ~ E+1) 71, [UE) L2y ~ (t+1)77
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Nonlinear stability of a weak diffusive contact wave is studied in [4]. That s, if |v*
-v-|is smalland V (x,0) and U(x,0) = Vi(x,0) are small in H3(R) and H%(R), respectively,
then there exists a global-in-time solution of (1.14), (1.2), (1.17). The solution
converges in L2(R) N L*(R) to (vu)(x + xot) time asymptotically, with
[(Ve, U)E) L2ryrpo= vy decaying at the rate (t + 1) 1.. The decay rate is improved to

optimal ones,,
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IVaOllpe@ ~E+1)"" (U)o ~(E+1)72

and, under a variety of assump-
tions on the initial data [13, 14].

For (1.1), similarly, we derive an approximate system that is the counterpart of
the porous medium equation and Darcy’s law (1.15), see Sec. 2 for details. As a
consequence, the primary wave in the time asymptotic ansatz of the solution to (1.1)-
(1.3) is a diffusive contact wave. Our analysis, however, reveals a significant
difference in that there exists a secondary wave in the asymptotic ansatz. The v-
component of the wave has zero mass and decays with the same rates as a heat kernel.
(It has positive and negative peaks as observed from numerical simulations.) The u-
component, on the other hand, decays at the same rates as the first derivative of a
heat kernel. See Sec. 2 for details.

Our results show that the remainder of the solution to (1.1)-(1.3) after taking out

the primary and secondary waves is higher order in LZ(R)NL®(R). This implies that
the secondary wave is the leading term in the time-asymptotic error when
approximating the solution by the diffusive contact wave. Therefore, the contact wave
is stable, and the L2-convergence rates to it are (t+1) 1 for the v-component and (¢t +
1)73 for the u-component. The L*-convergence rates are (t + 1) and (t+ 1)1,
respectively. This is to compare with (t+ 1)2.and (t+ 1) for L2 and (t+1)-! and
(t+1)=for L=, respectively, for Euler equations with damping (1.14).

The existence of the secondary wave and hence the slower convergence rates to
the diffusive contact wave comes from the fact that the nonlinear flux in the equation
for u in (1.1) contains both v and u. More precisely, in the notations of (1.11) and
(1.12), Owaf2 = 0u(uv) = v does not decay in time due to the background permanent
wave. In the case of Euler equations with damping, the corresponding dw.f> = du(p(v))
= 0 for (1.14). There are other models in the literature studied around diffusive
contact waves, such as the model for heat wave in rigid solids at low temperature [7]
and the bipolar hydrodynamical model for semiconductors [2]. Also see [3, 6] and
references therein. In those models, the counterparts of dw.f2 are either zero or
decaying in time sufficiently fast, and hence there are no secondary waves. To the best
of the author’s knowledge, the existence of a secondary wave is a novelty of (1.1) that
may shed light on the future study of more general systems in the form of (1.11).

The other main difference between (1.1) and (1.14) is the diffusion mechanism in
the second equation. It is exponential decay in (1.14) but logistic growth in (1.1). To
illustrate the difference we now letV— 7 U+ andU- # U+ in (1.3), and consider the
Cauchy problem (1.14), (1.2). In this case, the asymptotic ansatz (1.21) does not
match the end-states for the u-component. The remedy is to construct an auxiliary
function. In [4], it is defined as
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T

(2, 1) = et [u_ (s —u) f

—00

mo(y)di‘/] ’ (1.22)

U_—T.L+ o
ert

o(x,t) = .

mo(x),
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where mo(x) is a smooth function with compact support, satisfying

mol(z)dr =1
fR olz)de =1 (1.23)

It is clear that ("v,u") is the solution of
Uy — ity =10

Uy = —71U (1.24)

with “u(x,t) — eu: as x — +oo. Here the rate equation in (1.24) is from the rate
equation in (1.14) when x — *o00, governing the evolution of u as x — *oo. The initial

value of “u is

T

a(x,0) =u_ + (uy —u_) [ mo(y)dy, (1.25)

which connects “u = u-to “u = u+ smoothly in the compact support of mo(x).

The asymptotic ansatz (1.21) is now updated as
(v(x +x0t) + Vi (xt)u (x +x0t) + U (xt)),

while the shift is updated accordingly so that
/ [vo(x) — (2 + x0,0) — 0(2,0)]dx =0
R .

The new variables now become

Vi, t) = /_J [v(y,t) — v(y + zo,t) — 0(y, t)]dy,

o0

Uxt) =u(xt) - u(x+ xo0t) - U (xt).

With the additional assumption lu— — uy <1, convergence of the solution of
(1.14), (1.2), (1.3) to a weak diffusive contact wave is studied. The same results on
global existence and convergence rates are obtained in [4, 13, 14].

In this paper, the diffusion mechanism is the logistic growth in (1.1). Therefore,
our construction of an auxiliary function is via the logistic function, see Sec. 2. There
are studies on nonlinear damping in the literature, see [7, 3, 26, 11] and references
therein. Those studies are either for the case u- = u+ = 0 and hence no auxiliary
functions, or for a perturbation of the linear damping. In particular, in [26, 11] Euler
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equations with nonlinear damping in the form —ru- B|u|9-1u are considered, where
r>0,0 /=z0and q > 1 are constants. The convergence to the diffusive contact wave
is obtained in [26] with u-=u+=0and g = 3, and in [11] with small¥- F Uy (near the
equilibrium state u = 0) and g > 5/2. Roughly speaking, the logistic growth in this
paper is equivalent to g = 2 while u: do not need to be near the equilibrium state u =
1.
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As a final remark of this part, we point out that the two new features associated
with (1.1)-(1.3) not only apply to more general hyperbolic balance laws in the form
of (1.11), but also to hyperbolic-parabolic balance laws,

we+ f{w)x= [B(W)wx]x+ g(w). (1.26)
Here B € Rmis the viscosity matrix (usually rank deficient). In fact, in a recent paper

[21], we consider the chemotaxis model for a diffusive cellular population. The

converted system is
Ve + Uy = 0,

up + (u)y = ey +1ru(l — ) (1.27)

s

which is a prototype of (1.26). We consider the case limy-zw(vo,uo)(x) = (v+1) with
U— # U4+, Therefore, there is no auxiliary function needed but we do observe a
secondary wave atop of the diffusive contact wave.

1.4. Goals and plan

In this paper, we establish the global existence of solution to (1.1)-(1.3) when Cauchy
data are perturbations of a weak diffusive contact wave under appropriate
assumptions. We identify and justify the leading term, a secondary wave, in the time-
asymptotic error and an auxiliary function for the u-component to approach the
equilibrium state® = 1 if {u—,uy} # {1} These give us the nonlinear stability of
the contact wave and large time behavior of solution to (1.1)-(1.3). We expect that
our results can provide an innovative insight into asymptotic solutions of systems in
the forms of (1.11) and (1.26), beyond what has been understood through the Euler
equations with damping. Our results are obtained via energy and weighted energy
methods. Using more sophisticated methods, it is possible to obtain results in L¢-
spaces, 1 < p < oo, and fine-tune the higher order terms for their better accuracy. These
are left to future works.

The plan of the paper is as follows. In Sec. 2, we give the needed preliminaries and
state main results. In Sec. 3, we prove Theorem 2.4 to establish global existence of
solution. In Sec. 4, we prove Theorem 2.5 to obtain convergence rates of the solution
to the asymptotic solution and hence justify the asymptotic solution. In Appendix A,
we prove Lemma 2.3.
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2. Preliminaries and Main Results

We first derive equations that define the primary wave for (1.1)-(1.3). Considering u
as a perturbation of the equilibrium state u = 1 we write (1.1)zas

(u=1De+ v+ [(u=-D]x=-r(u-1) -r(u-1)=

Identifying the leading terms in time decay rates, we have

vx -r(u-1).
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Therefore, with (1.1)1 we define the leading term in the time asymptotic solution for
(vu) as (v,1 + u), where ("v,u’) satisfies
f"f + ﬁ:r: = 0

Uy = —1il. (2.1)

Substituting (2.1)zinto (2.1)1gives us

1 |
(V_t=_V_xx, | | (22)

r

1

-ru =vx
We observe that (2.2) is the counterpart of (1.15), the porous medium equation and
Darcy’s law.

Now we define “v as the self-similar solution of (2.2)1 with

limv(xt)=v

X—*oo +. (23)
Consequently, “u is obtained by (2.2)2. Explicitly,

o(x,t) = % eV’ dy + \L}t /\/4(r+1}f_1- o dy

T ™

Vat+n/r o
_ v_ + vy v vy erf ( x }
2 2 VAt +1)/r

3 — ol
w(x,t) = _V-" Y% i

47T'r(t + ]) (2_4)

We note that the solution to (2.2)1, (2.3) is unique up to a translation. We will
determine the translation xo later and use ("v,u’)(x + xo,t) instead. We also note that
v(x,t) in (2.4) is a diffusive contact wave of the heat equation (2.2)1, with Riemann
dataatt=-1.

The leading term ("v,1 + “u) so constructed is not sufficiently accurate. To

construct a secondary wave we substitute (v,u) in (1.1) by (v + v%,1 + "u + u*), apply
(2.1) and keep the leading terms in time decay only. We arrive at
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v +ul =0, (2.5)
vk +rut = —R(x,t)

1 1
Vf = S Unp + - Ra(2,)

1,1
ut = v - ;R(l t).
where

R(x,t) = (Cuxv)) (x,0). (2.6)
Substituting (2.5)zinto (2.5)1gives us

(2.7)
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Here (2.7)1is to be solved with
v¥(x,0) =0. (2.8)

Thus by Duhamel’s principle, we have an explicit expression for v,

_rle—w)?
e =7 Ry (y, T)dydt

v (z,t) =f;]ﬁﬁ (2.9)

and u*(x,t) is given accordingly by (2.7)2.

The above derivation of ("v,u”) and (v*,u*) is based on expansions with respect to
time decay, the idea of Chapman-Enskog expansion. The asymptotic ansatz
constructed so far satisfies the following boundary condition:

lim (v+ V51 +u+Y)(xt) = (v
vt 1), (2.10)

see (2.4) and (2.25) below. Comparing with (1.3), (2.10) is satisfactory if u-=u+= 1.
Otherwise, an auxiliary function is needed to match the boundary data for the u-
component as x — oo,

Therefore, we consider the case {4~ u+} # {1}, From (1.1)2we observe that
u(+oo,t) evolves according to the logistic equation

¢e=rp(1 - ¢). (2.11)
The solution to (2.11) is the logistic function,
@(x,0)
p(x,t) = z —
2(@,0) + [1— p(z, 0] " (212)

We want ¢(x,0) to connect u-to u+ smoothly. For this we use the same function as

in [4] for (1.14), which is the initial function on the right-hand side of (1.22)1. That is,
wolx) =@(z,0) =u_ + (uyp —u_) / mo(y)dy,
(x) = ¢(,0) + o) (2.13)

where mo(y) is a smooth, nonnegative function with compact support, satisfying

/ mo(y)dy =1
JR . (2.14)

With the addition of an auxiliary function ("v,u"), we expect that the new ansatz ("v
+ v+, 1+ u+u+u") matches ("v,¢p) as x = oo, For this we set 1 + “u = ¢p. Thus, with

(2.12) and (2.13) we define
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[po(x) —1]e~"
‘PU(QT) + [1 — @(J(iﬁ)}e—rt. 015)

(x,t) = o(z,t) — 1=

Correspondingly, we set
ch(x)e !
rio(z){wo(z) + [1 — wo(z)]e~} (2.16)

o(z, t) =
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We observe that ("v,u") satisfies
U + Uy = 0,

iy = —ra(l + )

(2.17)

Recall that "v as a solution to (2.2)1, (2.3) is unique up to a translation. As the final
step in the construction of an asymptotic ansatz, we now determine the translation xo

by setting
/ fvo(z) — 5z + 20, 0) — B(z, 0)]dz = 0
R .
From (2.16) and (2.13), this is equivalent to

e _g

[vo(x) — v(z,0)]de — (vy —v_)xo — 1 In
" roou_

Thus, the constant xo is uniquely determined by
1 1 U4
Ty = ——" o(z) — o(z,0)]de — —In —
xq P— {/R[’Lg(.z) v(x, 0)]da ~In— }
Combining (1.1)1, (2.1)1, (2.5)1and (2.17)1, we have
1
é f[v(:tz, t) — v(z + xo,t) — v* (2 + xo,t) — 0(2,t)]dz =0
R .
With (2.8) and (2.18) we further have

fR[v(:r, t) — v(x + 0, t) — v (T + 20, ) — D(2, )]dr =0

This allows us to define a new variable

Ve, t) = /j [v(y,t) — O(y + xo,t) — V" (y + 20, t) — O(y, t)]dy.

Thatis,

Vi(xt) = v(xt) - v (x + xo,t) - v*(x + x0,t) = V'(x,).

We also introduce a new variable,
Uxt) =u(xt) -1 -u(x+xot) — u*(x + xo,t) — u"(x,t).

These give us the following decomposition:

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)
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vz, t) = 0(x + 2o, t) +v* (x4 20, ) + 0(z, t) + Vi (2,1), (2.23)
w(x, t) =1+ u(x + xo,t) + u* (2 + z0,t) + @z, t) + Ulx,t)

In (2.23), the
time asymptotic ansatz for (v,u)(xt) is ("v,1 + “u)(x + xo,t) + (v*,u*)(x+xo,t) with the
correction ("v,u™)(x,t), while (VxU)(x,t) is the remainder. Here all the components of
the ansatz including the shift are uniquely defined by (2.4), (2.9), (2.7)2, (2.15), (2.16),
(2.13) and (2.19). In particular, if u-=u+=1, we have "u =v"= 0 and (2.23) is simplified.

The exact, explicit formulation of the
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components in the ansatz, however, does not provide a clear, convenient picture
when comparing them with the remainder. Thus, we give their precise, pointwise
estimates before we state the main results concerning the remainder.

Lemma 2.1. For a fixed t = 0, v’ (x,t) monotonically increases or decreases from v-to v+

on R Let L 0<r <r/4
oL o(z,t) = O(1)|v- —vg|(t+1)"2e F1, 1>1,
be an 20(2, 1) (Do— —vy|(t+1)"2e » P arbitrarily
- 1 ',122
fixed ALz, t) = O(1)|o- —vy|(t+1)" 5 e FT, 1>0 constant. For x

ER, t=0, we have

(2.24)

Proof. The monotonicity "v(x,t) comes from (2.1)zand (2.4)2, which imply “vxs 0 if v-
2 vs+. The estimates in (2.24), on the other hand, are direct consequence of u (x,t) in

(2.4)2and vk = -ru, see (2.1)2.0

Lemma 2.2 ([21]). Let 0 <" < /4 pe an arbitrarily fixed constant and I = 0 be an

. re R, t >0, we have
integer. For

1 r x2
Ohvt (2,t) = O(1)[v_ — vy|(t+1)" 5 e 5T

2 22
6_,";Ju*(:1:,t) =O0(1)|v- —vgl(t + 1)_%67 oL, (2.25)

Lemma 2.2 is proved in [21], applying a result from [9]. For the auxiliary function
we give Lp-estimates instead.

) i . Lemma 2.3. Fora fixed t 2 0,

(1 —u_)e "] to (uy — 1)e " /[uy + (1 —uy)e ™

an integer. We have the following estimates for t > u"(x,t) monotonically connects
_ _rt

[[@(t)|| ooy < Ce™™, (u--1et/[u-+onR. Let1<p

< oo and | be
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10 a(1) || Loy < Clu_ —uyle™, 1>1

[10%3(8)|| Lo ()
where C > 0 is a constant.

_ - ’lt.»,_‘(j‘_rt, l Z 09’ (226)

We postpone the proof of Lemma 2.3 to Appendix A. Here we introduce some
notations. We use the following abbreviations for Sobolev norms with respect to x:
-l =11 Mm ey, [ = 1 ez
We set

r T

V(o) = V(.0 = [ (o)~ o(y +20,0) ~ 50,0) s

Up(z) = U(z,0) = up(x) — 1 — itz + 20,0) — u”(x + x0,0) — @z, 0)

= up(z) — @z + 20,0) — u" (z + x0,0) — wo(z). (2.27)
Our first result is on global existence when the two end-states are sufficiently
close and Voand Uoare small.
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v_ # vy

Theorem 2.4.€m+1(R) andLetUo € H and u:> 0 be constants. Let m = 2 be an integer,

Vo H m(R). Then there exists a constant o > 0, such that if

o — ] + fuz = el 4 [Vollms + Vol < e (2.28)
the Cauchy problem (1.1)-(1.3) has a unique, global-in-time solution (v,u). With the
decomposition (2.23), the solution satisfies V € (i(0,00;H™*1-(R)), 0 < i < 2, U €
0(0,00;H™-I(R)), 0 <j < 1, and the following energy estimate:

S:I;IJ{HV( omss +1U(2) m}+/ Ve ()II7 + 1T @)1]7,)dt

< C(Vollrugs + 1T0l7, + fo— = v ? + Jue —ug[?), (2.29)

where C > 0 is a constant.

Our next theorem is on L2 decay rates of the remainder.

Theorem 2.5. Under the same assumptions as in Theorem 2.4, and with sufficiently
small 0> 0, the global solution (v,u) of (1.1)-(1.3) has the following estimates for t = 0:
2

Z(T+ k+1[||dk Hm k + ||6§ H-’” k

k=0
+Z[ (7 + D)L OU (7)) 2,
k=0
+Z[ (7 + DR ORIV, ()2
< C(“V]”m-}—l + HU(]HIH + |(U* - 'UJF‘Q + ‘u* - u+‘2)= (230)
1050 ()
< CWVollmer + Ul + [ — vs| + Jue —us)t +1)" "5, k=0,1,
(2.31)

where C > 0 is a constant.

With the Sobolev inequality, see (3.14), one obtains L* rates for Vand U as follows.

NI

IV @Ollzwm® < CIVollm+r + [|Tollm + [ = vi| + [u- —us[)(E+1)7
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Corollary 2.6. Under the same assumptions as in Theorem 2.4, and with sufficiently
small 0> 0, the global solution (v,u) of (1.1)-(1.3) has the following estimates for t = 0:
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e

V@ llze < CUVollmsr + [Vl + - — v
U)oy < C(]

+lue —ug ) +1)77,

o

Vollm+1 + [[Uollm + [v— —vi| + |Jum —ug[)(t+1)77,
(2.32)

|

where C > 0 is a constant.

Consider the special case of u- = u+ = 1. In view of (2.10), the asymptotic solution
(v +vs1 + "u + u*)(x + xo,t) no longer needs a correction (i.e. "u=v" =0 in (2.15) and

(2.16)). Thus, corresponding to (2.19), the shift xois uniquely determined by
0 = N f [vo(2) — 0(x,0)]dx.
R

Uy — V- (2.33) The solution (v,u) of (1.1)-(1.3) is

decomposed as

v(z,t) = v(x + zo,t) + v* (2 + 20, t) + Vi (2, 1),

w(z,t) =1+ a(z + xo, t) +w*(x + 20,t) + Uz, 1) (2:34)
where
T
Vix,t) = [ [v(y,t) — o(y + z0,t) — v* (y + z0, t)]dy.
. (2.35)

These are counterparts of (2.23) and (2.21). The initial data for (V,U) is simplified to
V(@) = V(2.0 = [ [unlo) = oy + 0,0)dy,
T (2.36)
Un(z) =U(2,0) = up(z) — 1 — a(x + x0,0) — u* (2 + x0,0)

Applying Theorems 2.4 and 2.5 and Corollary 2.6 to this special case, we have the
following results.

Corollary 2.7. Let*1 V-~ # U4 be constants and u-=u+= 1. Let m = 2 be an integer, Vo €
Hm (R) and uo - 1 € Hm(R). Then there exists a constant €0 > 0, such that if

[v— —vg| 4 [Vollm+1 + [Juo — 1|m < &g, (2.37)
the Cauchy problem (1.1)-(1.3) has a unique, global-in-time solution (v,u). With the
decomposition (2.34), the solution satisfies V € Ci(0,00;H™1-i(R)), 0 < i < 2, U €

0(0,00;H™-(R)), 0 <j < 1, and the following energy estimate:

f:gg{llV(f)HiH +HIU@®1%} +A V(O + 1T (0)]7]dt

S C(H%||?n+l + HUO - 1”?n +

v —vif). (2.38)
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With sufficiently small o, the solution also has the following decay estimates for
t > 0:

2
Z t+ 1 k+1 Hai!1 ( )Hfrn k + HB";(]( )“m A]
k=0

+Z[ +] A+1H()AU’ Hm .L

k=0

1 t
+§:]Xr+n“w@*WuﬂﬁHFuh
k=00

|V0||m+1 + “uo “m V- — q"+|2)= (239)

Ak i_k :
HdiU(t)“m-—k < C([IVollms1 + lluo = fm + [v- — vy [)(E+1) 7 k= 0,1,
(2.40)

-1
VOl 2@ < CUIVollm+1 + [luo = lm + v — v [)(E+1)77,

Vel < CUVllms + llua = Ul + o — i )t + 1%, (2.41)

1T Loe ) < st + w0 = Ll + v- =i )(E+ 1)1
Here in (2.38)-(2.41), C > 0 is a constant.

We comment that in the statement of Corollary 2.7, the assumptions on Up are
replaced by those on uo - 1 due to (2.24) and (2.25). We also comment that Corollary
2.7 gives nonlinear stability of the diffusive contact wave ("v,1) if the wave strengthAs

implied by (2.25), (2.39) and (2.41), in the decomposition (2.34) the|v- - v:| is weak.
L2 decay rates for v and Vx are (t+1)u and (t+1)7%, respectively, and the

corresponding L® rates are (t + 1) zand (t + 1)-%. The rates indicate that in both L2
and L=, while “v is the primary wave, v*is a secondary wave in the v-component.

Similarly, in the u-component the primary wave upon the equilibrium stste u = 1
is 'u, which is a heat kernel and hence has decay rates (¢t+1)-tsand (t+1)%in L?and L®,
respectively. On the other hand, u*and U in (2.34) are of higher order in time-decay.
The rates are (t+1)-3:and (¢t+1)-1in LZ2and (¢t+1)-'and (t+1)5in L®, respectively, see
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(2.25), (2.40) and (2.41). This also justifies that u* is a secondary wave in the u-
component.

In summary, in the special case u- = u:+ = 1 the global solution (v,u) of (1.1)- (1.3)
is time-asymptotically approximated by ("v,1+ "u)(x+xo,t), with (v*,u*)(x+ xo,t) as the
leading term is the error. The approximation is in both L2and L.

In the general case ux> 0 but {u_,ur} # {1}, there is a correction term
(v, u") in the asymptotic error. While ("v,u”) decays exponentially in time in L*®, "u is
not in L2, see Lemma 2.3. Therefore, for the general case the solution (v,u) of (1.1)-

(1.3) is time asymptotically approximated by ("v,1 + "u)(x + xo,t) in L* and
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(ve,u*)(x + xo,t) is the leading term is the error. We comment that in the general case
although |u- - u+| is small, u+ themselves do not need to be close to the equilibrium
stateu = 1.

The rates for V, U and their derivatives in (2.30)-(2.32) can be improved to
optimal ones by a different set of analytic tools. It is left to a future work since the
main purpose of this paper is the global existence of solution, the nonlinear stability
of and the convergence to diffusive contact wave, and the identification of the
asymptotic ansatz.

3. Global Existence of Solution

In this section, we prove Theorem 2.4 to establish the existence of a solution global in
time for (1.1)-(1.3). First, we rewrite (1.1) in terms of V and U as defined in (2.21)
and (2.22). Substituting (2.23) into (1.1) and applying (2.1), (2.5) and (2.17) give us

u’t + Ur == U-
U+(Q+a+u +a+U)We 4+ (@ +0" +04+ V) )U, = Fy + I,

3.1
where
Fi=-ut—uw = V= [(u+w+u)(v+ v+ v)]x+ uxw -r(Cu +u*)?
=2rCu+u”u”
F=-rU-rUz?- (_Vx+ Ut + V~X)U_ (_UX+ U*x + uNX)VX
=2rCu+uw+u")U. (3.2)

Here in (3.1), (3.2) and for the rest of the paper, ("v,u") and (v*u*) are understood as
(Cvu)(x + xo,t) and (v¥,u*)(x + xo,t), respectively.

Using matrix notation we write (3.1) as

Vi 0 1 Vi 0
+ - . - : = |, (3.3)
vy, l+u+u* +a+U v+0v"+04+7V, vy, Fi+F

which is for the unknown function (Vy U)t. It is clear that if

u=l+u+w+u +U>0, (3.4)

the coefficient matrix on the left-hand side of (3.3) has two real, distinct eigenvalues
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1
AL = E(t:ﬂ: v? + 4u)

In this case, (3.3) is strictly hyperbolic. Here for small solutions under consideration,

(3.4) is guaranteed by our assumptions u+ > 0 and lvo — vy <1, together with the
estimates on “u, u*and “u given in Lemmas 2.1-2.3.

The existence of a unique solution local in time for the Cauchy problem of a
hyperbolic system is classical and via standard iterations [1]. Also see [12, 10]. With
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appropriate a priori estimates, global existence of solution follows, using a standard
continuity argument. Our goal in this section is to prove the a priori estimates given
in the following proposition, which then implies Theorem 2.4.

Proposition 3.1. Let m = 2 be an integer, Vo € H™1(R) and Uo € H™(R). Suppose that
(W U) is a solution of (3.1) with Cauchy data V (x,0) = Vo(x), U(x,0) = Uo(x), satisfying for
some T > 0 the following regularity: V € Ci(0,T;H™1-{(R)), 0 i< 2,

U € 0(0,T;H™(R)), 0<j<1.

Let
jv_?” (t) = _Sllp {HV(T)‘|31+1 + HU(T)”?_”}
0<r<t
t
+f I/;'U(T ?n + U T) :1211. dT! tE O'T
; IV (T[54 1U(T)]]5] [ ]. 35)

Then there exist constants 80,61 > 0, such that if |v- - v:| + |u-— us+| < doand Nm(T) < 1,

the following a priori estimate holds:

N (@) < CIVoll5 e + 10015 + fv- = v + Jum = ug ), (3.6)

where C > 0 is a constant.

Proof. In the following C denotes a generic positive constant. In particular, it is
independent of T. We first rewrite (3.1) as

Vx:f + Ur = 0!

U+[1+a+u* +ia+ U)WV, +rU =F, (3.7)
where with F1 defined in (3.2), we have

F=Fi1+F+F3,

F2~ -rU?, (3.8)

Fs=-[Cv+ v+ VU= 2rCu +u*+ u)U

For0<l<m,m=2,we apply dxto (3.7)2to have

O U + O (L + a4 u* + a+ U)V,] 4 rdLU = 9L F. (3.9)
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Multiply (3.9) by 0¥ U and integrate with respect to x. After integration by parts and
applying (3.7)1, we have

d

4
7 [%Ilé’iUll2 + % /R(l +a+ut i+ U)5V)? dnz] +rllolu)? =3I,
i=1

(3.10)
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where

I; :/aﬁuaﬁ,ﬁ, dr, 1<i<3,
R

I, = %[(ﬂ; +up 4y 4+ U) (0L V)2 doe — / QUL +a+u* +a+U)V,]
R R

—(1+7u+u+u + U)oLtV }dx. (3.11)

From (3.2), (2.1), (2.5) and (2.6), we have

1 1
Fi=vi+ (v F uxv )e—= V= (uv)e= [u(v'+ V) ]x— [(w+ u)(v+ v+ V)kr r

+ U —ru - r(27uuwr + ur+ 2(Cu + u)u’

1 1
= —(u+ Yt _(uev)e= [V + u(M+v) + B+ u)(v+ V) er
r

—-r[27uw + u2+ 2(Cu + u)u.

Applying (2.1) and Lemmas 2.1-2.3, for [ = 0, we have

_1+3 v-"(:r+.-:

LR < Clom — v |(t+ 1) F e =555 4 |ob5) 4+ |04
where 0< " < 1. This implies
IOLF ()oqay < Clo- —wg|(t 4 1) 5% 4 Clu_ —uyle™, 1<p<oc.
(3.12)

v

+ o (av))

Thus, (3.11) and (3.12) give us
I < |LU 0L Fy | < ClELU [o- —val(t+ 1) 7378 + us —usle ™) (313)
Recall Sobolev inequality: If i € H1(R), then ¥ € L°(R), with

, PITE ST ,
[l < V2IwlzllvlIz < V2[l¥l, (3.14)
Applying (3.14) to Fzin (3.8) gives us

!
= roLU?|| < € S|PV < CIU U]
=0 . (3.15)

|0, F>

Therefore, from (3.11), we have

L <|oUl|lo. Rl < C

UNUmlU]L, (3.16)
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For Izsfrom (3.8) and (3.11), we have
= / LTI (5 + v* + )] dz — 20 f LU (@ + u” + @)U da
R R

= I31 + I3, (3.17)
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Applying (2.24)-(2.26) and by integration by parts, we have
1 .
Iy == [ (040" + 0500 )z da
R

- f ALU{I (0 +v* + D)) — (0 + 0" +0)0 U} da
R
< 1 /(ﬁi +ur+ ”E',;)(aiU)Q dx
2 ]:R M ;

1
HIQLUNC Y 1057 (0 + 0™ + 0)| ey 02U |
3=0

!

<O Mo — vl + 1)TET 4 s — ug e OLU 0L

§=0
Similarly,
Lyp < 2r(|OLU|[|0](a + w* + @)U]|

-1

<CY Mo — v+ D)7 A Jus —ugleT U] 0LV
=0

+Cllo- —vg|(t+1)"2 + e OLU |2
Next, we write l4in (3.11) as

I = %/(ﬂt +uf + @) (0, V)? do + % / U(0;"1V)* dw
R R

—f AU (1 +a+u +a)V,] — (1 +a+u" +0)0 Vde
R

N f LU [P (UV,) — U V] de = Ty + Lio + Las + Lua.
R

(3.18)

(3.19)

(3.20)

We use (2.2), (2.7) and (2.17)2to convert derivatives with respect to t into those with

respect to x, and apply the estimates (2.24)-(2.26) to have

1 - * ~ ol
Ly < Sl +uf + G| Loy 10: V2

< Cllo- =gt +1)72 + e oV
Here we have assumed, say, 8o+ 81 < 1. Similarly, applying (3.1)2, we have

1 .
Ly < G Uil oy |95V

1 - _ .
< 5[”(1 +a+ut + a4 U)Vor| o) + [|(0 4+ 0" + 0+ Vo) Us| L~ (r

+ || F1|| o= (ry + 1| V2.

L= (R)]

(3.21)
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Besides (2.24)-(2.26), we apply (3.14), (3.12) and (3.2), and note o+ 61< 1 to have

Ly < Cl[Vaalli + 1U]l2 + Jo— = v (¢ + )71+ [um —ue[e™™ 05V 322) 1t
is clear that Is3= 0 if I = 0. On the other hand, if / > 1,
I
Lis < ClJOLUY| S 105 (a4 u” 4+ )| ey |92 Ve

i=0

1 .
< CIALUN Y lo- —vel(t+ 1) F 4 fun —ugle YOIV (3.23)

=0

Using (3.14), the last term in (3.20) can be estimated similarly. If /=0, [44=0.1f [ > 1,

1
Iy < - / 0V @O U W de + C|0,U|| Y |02U0 V|
R

i=1
< lfVM(GLU)Qd:'f
-1 ) )
+CNAUN D105V ooy |0 Vi | + 100U Vi 2 ()
j=1

-1
< C | WVaell|0LU1? + 105U Y 103U 11|85~ Va |
i=1
< CNOUINU il Vasllim—1, (3.24)
Combining (3.10), (3.13) and (3.16)-(3.24), for 0 <[ < m, we have

% [%Ilfﬁ;’cUll2 + % /R(l Fa4ut a4 U)(@_L“V)ngc] +rl|otu|?
< Cflo —vg|t + 1777 4 Juz — up e YO + CUU I + [|Vaallm—r
- = vt 4+ D)7 4 fus =g le AU U,
+Clo- — vy |(t+1)7HOLU |2 + Ce " (|0LU |2 + 941 V]?)
+Cllo- = vt + )7 + [Vio |1 + [[U 2] 10,7 V)

+Clo- = v |(t+ 1) H|OLU | Ve -1 (3.25)
where the last term on the right-hand side exists only when /= 1.

Integrating (3.25) with respect to time on [0,¢] and noting (3.5) give us
1 1 . ! .
SNV + 5 [+t +a+ D)@V 0 de+ 7 [ 04U dr
R 0
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1 1
< SIEUO) + I+ @ +u* + @+ U)(0)| ey [10: V(0

2
= I

t
Clo- — vy )2+ [u_ —ug|?) + g / 10.U (7)) dr
JO
t
+CNm(t) + |v- — v | + [u- — u+\]£ U NF + Ve ()17 dr

t
+C [T + [0V )P dr
0

This can be further simplified to

FIU@I +3 [ [0+ D@ V@ e+ 5 [ ov @) ar

< LU )2 + -1V (0 )||2+|vffv+|2+|u-u+\21
F CIN () + o — o]+ Jue — ug N2,

.
+C[ e OU (T + (10,7 V(7)) dr
JO

(3.26)
From Lemma 2.3, 1 + - t]-1, which impliesu monotonically connects [1 + (1/u--
De]1to 1+
(1/u+ De-
1+ u” 2 min{u-u+,1} = co> 0. (3.27)
Thus, (3.26) is further simplified to
LTI + 1 VO + [ 100 dr
< CllIBU O + |85 V(O) [ + - = v + fu — uy[?]
+ O (1) + - — v + fuz — ur IN2 ()
t
+C'f e TIOLU (TP + [0V (7)) dr. (3.28)

Let
t
E(t) = 0,U @) + |85V (@©)|1* + [ 85U (7)||* dr,
Jo
p(t) = CllU )7 + 10, V(O)1* + [o- —vi ] + [u— —uy|?]

+C[Nm( ) + ‘(U— - U+| + "LL_ —U+‘] rn( )
Then (3.28) implies
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E(t) <p(t)+C /f e "TE(T)dr.
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Applying Gro'nwall’s inequality, we have
E(t) < p(t)e o4 < Cp(t),

Thar is,
t
LU @) + [0V ()2 + / |00 (7|2 dr
0

< ClIALU0)]]* + |05 VO + Jo— — vy [* + ue — ug ]
+ C[Nm (t) + |v- —vg| + |Ju- — u+|]N,2”(t), 0<l<m. (329
From (3.1)1, we have
Ver U=0, (3.30)

d (1||V||9) = —fVUd:c.
dt \ 2 R (3.31)

which implies

With (3.7)1 we write
1 -
U= ;{7Uf7 [(1‘#(&4‘”* +U+U}Vr]1 +F}
Thus,
—fVUdr:lfVUtdm—lf(1+ﬂ+u*+a+U)V,?dm—E/VFda:
R rJr rJr rJr

Applying (3.30), we have

=2 (1 f VUda:) + e
dit \r Jp r . (3.33)

Applying (2.24), (2.25), (3.14) and (3.5), we also have
1
Is < . ](1 + @)V2dr + Cllo— —vy|+ Ni(®)]]| Ve
r e .

(3.34)
Finally, from (3.8)
I =In+Irp+ Izz, Iz = *1/ VFpdr, 1<k<3
rJr . (3.35)
Here applying (3.12) gives us
I < S IVINE < Cllo- — vl +1)7F 4+ fus —usle ™[V (336)

Also from (3.8) and (3.5),
I = [[VURde < OV IUIP < CNIUI,
R

I = flf(qpr v* + 0)V,U dx +2/{'&+u* +u)VU dx
r Jp R (3.37)
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< ClVe |l - QfﬂVVr. de + Cllv- —vi|(t+ 1) +e V]|
R

< DI +CIU? - 5 [ Vi Clo- - vl y VI

dt
+ Ol — vt +1)7 + e"'t]QHVH?-.
(3.38)

where we have used (3.30) and (2.2), and co is defined in (3.27). Combining (3.32)-
(3.38) we arrive at

d |1 1 ¢
—[VUd:r. < — [—]VUd:E—qugdar] - —f(l+ﬂ)1@?dm+r—0||VT|\2
R dt rJr R rJr 2r
+C|U|? + Cllo- —vi |+ N ()] Ve |®
+C(fo- —vi |+ Jue —ug)(t + D)7V + Ce V2. (3.30)
Substituting (3.39) into (3.31) gives us

d 1l e 1 U2 g
< [§|V|| —;I[RVUd:H—LuV da

+1 [(1 +@)V2 dx
" Jr
[&)) b ‘

< SeIVall? + CIUIR + Cllo- = vil + N (0] Ve

+ C(lo= = v | + [u= —ug )(t + 1) "2 |V]| + Ce>|[V|]*
Applying (3.27) and integrating the result with respect to time on [0,t] for 0 <t < T,

we have

%HV(t)H?—%f(VU)(m,t)d:r+/R(uV2 ), t) do + 2 / IVa(7)|2 dr

éHVOH2 - f/(VU){m O)dt+/(uV2 (z,0) dx +("f ||U (7 ||2d'r
+Clo — vy | + M(0)] [ IVa()IP dr + Cllo- — g + fu_ — ug])

t
x sup [V(r)] +C [ 2|V (r) | dr,
0

0<r<t

which can be further simplified to

t
*HV I + T,fo Ve (0)I* dr < C(IVoll* + 1 Tol*) IIV I

+OU@I + [v- — v | NG ()
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n f WU dr + Ny () N2 (1)

+CO(jo- —vi | +Ju- —uy|) sup [[V(7)]
0<r<t

t
+Cf e~ 2|V (7)) dr.
0
After simplifying, we apply (3.29) with [ = 0 for the estimate on U@ +
t
Jo I dr s gives us
i
IO+ [ Vel dr
< C(IIVoll + 101 + Jo— = v [* + u— — uy[?)
+O[No(t) + [o- = v | + [um —ug [N (1)

t
+C(lv- — vy |+ u —uyf) sup ||V(T)H+C/ e 2TV (7)||? dr.
0<r<t 0

Similar to the derivation of (3.29), via Gro'nwall’s inequality we arrive at
t
401 +/0 IVa(m)||? dr < C(Vollf + 1001 + [o- — vy + Ju— — uy[?)

+ C[Nm(t) + ‘U— - U+| + IU’— - u+|]NrQra(t)

+O(jv- —ve] + Jum —ug]) sup V()]
0<r<t

< C(IVollf + 10l* + Jv- — v + Ju— — us]?)
+CNm(t) + |v- — vi| + Ju- — ug [N7,(t)

1
+§ sup HV(T)H2
0<r<t

(3.40) Therefore,

S VI < CUVOlIT + 1Tl + [0 = v * + fu— —ui|?)
STEST

+C[Nm(t) + [v- — vy | + [u— — uy [INZ (), (3.41) Now we
substitute (3.41) into (3.40) to have

t
IV ©)* + A IVa(m)I* dr < CVOIIT + 100]1* + [o— — v + [um — ug[?)

+ONu(t) + Jo- —vs| +[um —ugINZ (). (3.42)
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Finally, we sum up (3.42) and (3.29) for 0 < [ < m. This gives us the following

estimate:

t

T @7 + Ve (7)) dr

m

U2, + IV OIss + /
< ClU 3, + IVol2ras + lo- — w42 + Ju_ — uy?]
-+ C[N,,,}(t) + oo — TJ+‘ +|us —us \]Nf” (t). (3.43)

-t 2 A2
We still need to estimateJo [|Voa(T)[[7 -1 d7 in N, (t). For this we multiply (3.9)
by 0x*2V, 0 <1< m - 1, and integrate the result with respect to x. These give us

/(1 + )02V de = Is + T + T
. , (3.44)

where
Iy=— f IT2VoLU, de,
R

=~ [ V(4 a4 4 4 D)V
R
— (1 4+ @)d?V + LU} da,

Lo = / 0, VO F da.
R (3.45) By integration by
parts and (3.30), we have

d

= [V Ve = G [ OHVOL da kU
R dt Jr . (3.46)

By (2.24)-(2.26) and (3.14), we have
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Iy < |\5i+2V|| a4 u* 4+ Ul g H(‘)iJrQVH

1+1
+COY |03 (@ + ut +a+ V)3 V|| + rl|0LU ||
j=1
I+1 - ‘
S CIA2V| fom —vg | Y St + 1) [0 IV + [us — uy e Vel
=0

H U2V + [U s | Vel |z + 18U | -
(3.47)
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From (3.8), we write
Lo = f A2V oL dm+[8;+2Vc‘)fﬂF2 dm+/6fn*2VaiFg dx
R R R
= Lio1 + Loz + Lhos. (3.48)

Applying (3.12) gives us
Loy < [|052V[105F | < Cllo- = vy |(t+1)7F7% 4+ fus —uyle ™[0V,

(3.49)
Itis clear from (3.8) and (3.14) that
hin = —r [ OLVOLUA)dr < rlol2V LU
R
< ClP2 VT =1 (U] (3.50)
Also, from (3.8), (2.24)-(2.26) and (3.14), we have
Tog < 10572V |[[|0; F3 |
< 102 VIO (0 + v* + 0)U]|| + 2r(|05[(a + u* + @)U}
< O VIRIOH T + [lo- — v l(t + 1) 7% + |um —ug|e™ U],
+e LU} (330
Combining (3.48)-(3.51) gives us
To < Cllo- — vl + 1) 37 4 juz — ugle ™84V
+Cla; 2V |[lo: U + Clag VT w1 1T
+lv = v+ D)7 2U e+ e U] (3.52)

Now we substitute (3.46), (3.47) and (3.52) into (3.44) and note (3.27). We arrive

at
d

2V <

[ 2vaL s+ [0 U + ok Vo,
R

+Clom — vy |(t+ 1) =2V (10, 2V] + [U])
+C(Jv- = vi| + Jum —ug )+ 1) 7O V|Vl
+CI2VINU N2V + U llm -1 [Vl + 10— [T]12)

+Cflv- —vy|(t+1)73
+Ce a2V [U)i,

1 _ -
7ot fun —ugle |02V
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which can be further simplified to
%w&ww

fa’“V@t“Ud&JrC(H@iUlh+HU -1 IV + U151 U117

+Clo- — vy |(t+ 1) 222V (JOL2V| + |U0)

+O(jo- = v| + [um =)t + 1) T2V |Vl + CU 1052V

+Cfloe —veP(E+ 1) 37 4 Jus —upPe 2 4 Ce 2| U3 (3.53)
forO<lsm-1.

We sum up (3.53) for 0 << m - 1 and integrate the result with respect to time on

[0,£]. These give us

(&) ¢ 9
5 | WVae(l s dr
0

m—1
< Y llav@los U@ + ot

1=0

0){]]

+c]ﬂwwnmw+CNa )+ ClJon — |+ [u — s JNZ(2)
+C(o- —vg P+ Ju_ —uy ) +C sup [JU(T)[_y.
0<r<t (3.54)
Using (3.43) we further simplify (3.54) to
[umrum1m<cummﬂwwmﬁ+wffu2

+ Ju_ — u+\2)

+O[Nm(t) + [v- — v+ [u- —uy [N(E). (355
Next we combine (3.43) and (3.55) to have
t

”U( m + ”V m+] +f HlU m + ||V )”?n} dT

< C(”UU“m + ||V0Hm+l + |IU— - U+|Q + |’.'_,L_ - U+|2)

+C[Nu(t) + o= — vp| + |u— —uy [N, (1)
With the definition (3.5), this implies
N2 ( < C HUDHTH + H%||1n+1 + ‘U* - U+|2 + |U* - U+|2)

e

‘|‘C[Nm( +|U 7U+‘+|u *LL+” m{t)



265 Y. Zeng

Under the assumption |v- —v.|+|u- -u+| < doand Nm(t) < 61, and by choosing do and 61

small, we obtain (3.6). Thus, we have proved Proposition 3.1 and hence Theorem 2.4.
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4. Asymptotic Behavior of Solution

In this section, we prove Theorem 2.5, which justifies ("v(x+xo,t)+v*(x+xo,t),1+
U (x+xo,t)+u*(x+xo0,t)) as an asymptotic solution to (1.1)-(1.3). This is to be done by
weighted energy estimate. We continue to use C as a generic positive constant.

Fork=1,2,3and k-1 <1< m,we multiply (3.25) in the energy estimate by a weight
(t + 1)k This gives us

d

- r+1 FILU|? + = (¢t + 1)* f(l_+ﬂ+u*+ﬁ.+U)(0_§ff1V)9dm

+""(t+1)k||5‘iU||2
gg(t DF-1eLU 2 4 & St l/(l—l—u—i—u a4 U) OV da

+ 5+ LU+ Clo- — vt +1)7F + Clum —usle™# |0,V
+C[(t+ 1 (Ul + [Vaallm—1) + o= — va| (£ +1)F!

+us = uyle” FOLU U + Clo- — vy |(t + 1)F% | 0LU 2
+Ce™ 7 ([0LU ] + [0k V]|2)

+Cllo- — vl (E+ 151+ (4 1DF([ Va1 + (U 2)]|105 V2
+Clo- — vy |(t+ 1P 2 OLU ||V |11

After simplifying, we integrate both sides with respect to time on [0,t]. Applying
(3.27), (2.24)-(2.26), (3.14) and (2.29) gives us
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t
(t+ DFNU@I® + (¢ + V¥V (0] +/ (r+ DH|oLU ()] dr
0

< C(IUlI + Voll7uss + - = 042 + Jue — uy[?)

+Oflo- —vi |t + 1) 7 + (¢ + DFUOL]]105 V(@)1

+Cf0t(7 + )0 U () + 105V (7)) dr
+Cf0 (7 + DFIU ()l + Ve (D) [ 10U (O NU (1)l dr
+Clo- v+|/0 [(r+ DU OU @l + (r+ D)F 20U (r)]*] dr

t
+Clo- — vy f (7 + 1) oLV ()| dr
0
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1
e ] (7 + DF[[Vaa(D)1 + 10 ][0V ()2 dr
! 3
+Clo- fv+|f (7 + DE 20U ()| Vi (7)1 b,
0
(4.1)

where the last term on the right-hand side is for /= 1.

Taking k = 1 in (4.1) and summing up for 0 </ < m, we have

DT + Va2 + f (r+ DU, dr

< C(”UU”m + ”V[)Hm—H. + ‘(U* - ’U+|2 + |’£L, - U’+|2}

+Cflo- —vi |t +1)% + (E+ DU @ ]I Va (0115,

v — U4

t
C[IVollm+1 + 1T0]lm + + |u- *U+|)/0 (r+ DU, dr

1
t 2
+C [ [ a]
0

X {|/Ut(r+1)z{|vm,(-r)||1+||U(T)| 2|V ()2, dr }

(4.2)

where we have used (2.29) and Cauchy-Schwarz inequality. With (2.29), the last term
on the right-hand side is bounded by

OVl + Wolln + 0= = v+ i =) { sup [(7-+ DIV, }

1
2

X{f(”l)“vw (DI + U ||2]dT}

Thus, with the bound & on the data as defined in (2.28), (4.2) is simplified to
@+ DIV +1%OR)+ [ ¢+ DIT@IE, dr

< CIU|5 + [IVollZ g1 + o = v + Ju —ug|?)

+Cey {Oililit[(“rl)l‘/ Hm]+f (7 + DIVaa (DT + U (T |m]d7}'
(4.3)
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Next we multiply (3.53) by the weight (¢t + 1) and sumup forO0 <I/<m - 1.

With (2.29), these give us
Co
D+ Vel 2y

m 1

jf |:(t +1 f@tHV@HlU dax

m—1

- Z f DIV O da + C(t + 1)[UJ2, + Ceolt + 1) Va2

+ O Va2, + Cllo —vpP(E+1)77 4 [u_ —uy [2e™™).
Integratingtwith respect to time on [0,¢] and simplifying with (2.29), we arrive at
[ Vel ar
< O+ DVa@)llm-1 10z llm-1 + ClIVG -1l Ul

+ C ”UDHH’I. + “VOHH’E+1 + |T)— - q,'+|2 + |T""— - u+|2)

t

t
+0 [ DIUEIE dr+ Ceo [ (74 1)IVer()l s dr
Substituting (4.3) into the right-hand side gives us

1
L (T + 1)HV7::1:(T)”%1—1 dr

< C{“UU”m + “VE}”m+1 + |U— - U+|2 + |’U,_ - U+|2)

+050{ sup [(7 + DI Va ()12
0<r<t

+ [+ DIVEE + Vel i

We sum up (4.3) and (4.4) to have
t
t+ 1 [“U ||m + Hvi'(t)”fn} +j0/ T + l [”U ||rrL + “VFI(T)H:)nfl] dT

<C(

”m + ‘l%‘lfrz+1 + |U— - T"‘FP + ‘u— - ?.L+|2)

+CEU{ sup [(7+ )][Va (Coll4 +/U'(T+1)[IIU(T)H?R+ Ve (P17 -1 ]d7

(4.4)

g
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For small g0 > 0, this implies
sup {(7+ D)[|U(D)|[7, + Ve (1) 7]}
0<r<t

[(T+] “U Hn)—}_HVTT Hm 1}011—

< C(IUol17 + Vol s + o — v + Jue —ug[?), (4.5)
Next, we take k = 2 in (4.1) and sum up for 1 < I < m. Similar to the derivation of

(4.3) but applying both (2.29) and (4.5), we have
t+ 1) [”U Hm 1 + (1 o CED)”VH ||m J.]

+(1f050)[0 (r+ DU (7|2, d
< C([Uo|I2, + [VollZurs + - = vr [ + [u— — uy?)
t
+C sup [(T+ 1)||U;x(T)Hm—1]/ (r+1)
0<7<t 0

XMT ) m A+ Ve (D)l [T (T [ dr + € sup [(7 4 1) [Vaa ()]
X /U (7 + DlVaa (M)l + [T 2]lVia (7)1 d7

t
+Clo- — vy j (7 4+ DU (7)1 [V (7)1 -
0 (4.6)

The second term on the right-hand side of (4.6) is bounded by

2
IR CACTIY

0<r<t

, 2
+o{ [ (r+ DT @7 + |V,u,-(fr)|i~1d"f}
J0

1 . .
< g sup (7 + 12U (7) ][54
0<r<t

+C(|Uollm

where we have applied (4.5). The third term on the right-hand side of (4.6) is treated
similarly, while the fourth term is bounded by

= = o fus —uy?)?
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Clo- — vy /D"[(T + DUa(M)71 + 1Va () F0—a] dr

< C(I10oll7 + Vollfss + fo— = o4 P+ Jus —ugf?)
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using (4.5) and (2.29). Therefore, after simplifying, (4.6) implies
(1= Ceo) sup {(7+1)*[|Ua(7)[7-1 + |V (7)1 711}
0<r<t

t
+(1=Co) [ (4 DV dr
0
< C([U6 )12, + [Vol2ss + - — vy 2 + Jus — uy|?)

+§ up {7+ 1 V2) s + 1Vea ()]}

Taking €0 > 0 small, we arrive at

t
(t+ DTy + [V (B2 1] + [ (7 + V2| Un(7) 2,y dr

< C(IUI + IVollZuss + o — v * + Jue —ug ), (4.7)

Next we multiply (3.53) by (¢ + 1)%, sum up for 1 <1< m - 1, and integrate with

respect to time on [0,¢]. Similar to the derivation of (4.4) but applying (4.5) and (4.7)
in addition to (2.29), we have

t
[ (7 + 1P Ve 7)o

JO

(”U(]H?n + ”‘/0||711+1 + |‘U* - U+|2 + |u* - U+|2)

+C sup [(r+ DT }[ (r+ DU d

0<r<t

1 Os [ [ (7 4+ 12 [Viaa (7|20 s d + / (T + DU d

+ [ ol ar]

”UUHm + H%“m+l + |‘U* - ”+|2 + |‘LL, - u+|2)

T
+Ceof (7 + 1) || Vi (7) |2, dT-
0

Thus for 0> 0 small, we have
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t
|+ 0P WVera Dl < VO + 1Vl + o = v+ e = )
(4.8)
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1T @l

To improve the decay rate of, we multiply (3.7)2by U and integrate with respect

to x. These give us

d
i (G0V12) + IR < UL+ a4 0 + 3+ D)V + 1)
T
< DI + 4@+ + a4 U)WVl + SIFI?
which is simplified to
d (1 . r
i (SIVIR) + 5001 < LA+ a o + a4 VLI + 1P (@9)

Applying Lemmas 2.1-2.3, (3.14), (2.29), (3.8), (4.7), (3.12) and (4.5), the righthand
side is bounded by
Ol +uy + o + UnlF o IVell® + Ve l® + 1 E2]1* + [URIU?

[0z + 05 + Tal[Foo @y 1T + (Ul + 1@+ u™ + @7 gy IU1)
< C(|Uollm + Vol 7ugs + o= = v + Jum —uy [)(t +1) 72
Thus (4.9) is simplified to
HUH2 +rl|U)* < C(1Wol17 + Vol 1+ lo- = v+ Jue —uy ) +1)7°
Applylng Gronwall’s inequality we arrive at

ITOI? < CUTZ + Vollpgs + - —val® + |um —us P)E+ 12 (410)

Combining (4. 10) and (4.7) gives us
||U Hm — “Un“m + H"/U”m+1 + |'i')_ - T)+‘2 + ‘U_ - ’U,+|2)(t + ]‘)_2‘ (411)

We now go back to (4.1) and take k = 3. After summing up for 2 < [ < m, similar to

the derivation of (4.6), we have

(t+ 1) (U (8) |70 -2 + (1 = Ce0)|[Virar (1) | 7o) f(‘f+1) Uz () [7n @
< O([U0]7 + 1VollFnsr + o = v + fus —ug?)

+C‘['(T+1)3[IIU(T)Hm+ Ve ()l ]|z (T) [l —2[|U (7)1 dT
+Clv- —m\f (7 + 12U () 2 [T (7) [l + (7 + 1) [Ue(7) 7 o]
+C][; (T + 1) [[Vaa (7)1 + U (7) 2] Viaa (7) [ —2 d

t “
+Clv- — vy /0 (7 +1)2[|Uza(7) [lm—2 |V (7) | m—1 dT, (4.12)
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where we have applied (4.7) and (4.8) besides (2.29). For the second and fourth terms
on the right-hand side of (4.12) we use (4.11) and bounded them by
1

¢ sup [(T+1)|U(7 )Ilmlfo‘(‘f+ DT ()l + Ve (T -]l Uz (7) |2 dT

0<r<t

+C sup {(7+ D[[[Vex(7)l1 +[U(7 Hz]}/ T+ 1) Viwa (7)|[5,-2 d

0<r<

< Cey { | @+ DU+ 1Var ) r

t
-l-f (T + 1)‘3“Ux‘r(1—)”?n—2 dT}
0

+ Ceo(||Uollz, + Vollmgs + [v— — vg|? + Jue —ug[?)
< Ceo(|UollZ, + IVollz iy + o= — v |* + Jum — uy|?

t
4 j (7 4 1)U (1) 20 ).

For the third and fifth terms on the right-hand side of (4.12) we bounded them by
Clo- —v+\/[f+1 [T ()17 + (7 + DNT () + 1V () [[70 -] d

< Oz ] (7 4 12U (7)][2,_o
0

+C°0(HUD||W + HVUHrn-‘r—l + |U_ - FU'F‘Q + "U,_ - u+|2)
Therefore, (4.12) is simplified as

(t + 1) [ Uza(®) 722 + (1 = C0)[[Vawa (t) 70—

1
+(1=Cz0) [ (41U ()2
< C(HUUH"m + “VE]”erl + |'U* - 'U+‘2 + |u* - ’£L+‘2)_
Taking €0 > 0 sufficiently small, we have
t
(f + 1) HlUJ‘T( )”ru 2 + ”VTJ?&“( )Hm 2] +V/0‘ (T + 1)3”U’U-T(T)H12n—2 dr

< C(”U[)Hm + ”%||m+l + |‘U* - U+|2 + |’U,, o ’LL+|2). (413)
Combining (4.5), (4.7), (4.8) and (4.13) we obtain (2.30).
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U=l

Finally, we consider the improved estimate on. For this we take I = 1 in (3.9) and
test it with Ux. These give us

4 (—IU |2) +r|U|? = - / Ue (1 +u+u* 4+ 0+ U)Vo]pw de + [ U,F, dx
R

R

—\|U %+ —||[ (I+a+u +a+U)\Velw® +

(3]

(4.14)

Simplifying (4.14) and applying (3.8), we have

d . .

SOl + U] < O + @+ w4 @4+ UValae | + | P + [ UTa 2

@ + 0% + 0)Ulaa|* + [[[(@ + u” + @)U}
Applying Lemmas 2.1-2.3, (2.29), (2.30), (3.14) and (3.12), one can verify that the
right-hand side is bounded by
O] + Vol + lv— = v P+ fue — s ) +1)72
Thus, similar to the derivation of (4.10), Gronwall’s inequality gives us
U= < CUTlG + 1Voll7ugr + lo- = v + Jus —ug ) +1)7°

Together with (2.30), we have
HU ( )Hm 1 < C(HUUHm + H%Hm+1 + |U— - ‘U+‘2 + ‘u— - ’£L+|2)(t + 1)_'5' (415)

We obtain (2.31) from (4.11) and (4.15).
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Appendix A. Proof of Lemma 2.3

We now prove Lemma 2.3. From (2.13),

vo(x) = (uy —u_jmo(z), (A1)

Since mo(x) 2 0, ¢o(x) monotonically connects u-to u+on the compact support of mo
while taking the value u- on the left and u- on the right of the support.

Since u=+ > 0, ¢po(x) > 0 on R. Besides, the denominator in (2.12),
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Po(x) + [1 = po(x)]e = po(x)(1 - e™) + e,
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monotonically connects u-(1 - e*) + e"*to u+(1 - e*) + e"%. This implies
inf{¢po(x) + [1 = go(x)]e"}
R
> min{u-(1 - e-rt) + e-r,u+(1 — e-rt) + e-rt}
=min{u-+ (1 - u-)e"u++ (1 - u+)et}

= min{1,u-u+} > 0. (A.2)

From (2.15) and (2.12),

—ri

eh(z)e
{po(x) +[1 = pol(z)]let}? (A.3)
which has the same sign as¥o (l'). Thus for a fixed ¢ = 0, “u(x,t) monotonically connects

'&w(a*‘!t) (f-:’L(’r t)

“u(-oo,t) to “u(oo,t). This justifies the first statement in Lemma 2.3. Also, applying

(A.2), we have
. u_ —1le="" [ug —1]e~"" —
| Lo m) < , < Ce™ "t
@)l < me{u- +(1—u)e ™ uy + (1 —ug)e " | — ‘ )
where € = max{|u- - 1|,|u+ - 1|}/min{1,u-,u+}.
Next, for any integer [ = 1, by induction, we have
! —r
al’ ” z, T et Z 1 —€ i)k lp-!-k(‘r)
{wo(z) + [1 — ol ')]CH""}}':JH’ (A4)
where
(cxﬂ) (”;k'i)
m(z) = ceipy (x) ey T ()
i , (A.5)

ciare constants, and the orders of derivatives satisfy 1 < akj,..., k< [+1-k,

k koo i _
ajy+e g, = l. In particular,pl-l(x) = 'Pl() )(33) andPui(z) = (-1 1”[@6(@‘)F.
Noting (A.1), we have

pr.}i:HLJ'(
Combining (A.2), (A.4) and (A.6) gives us

U —uy| (A6)
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||P.'.k!i;’(na)k+l <Clue —uygle™, 1[>1
Ty}

)
| a(t) ]| Lomy < e

i min{1l,u

(A7)
For the estimate on 0/ v we use (2.16) and (A.3) to write

Vi(xt) = h(xt)ux(xt),
ho,t) = L@+ 1 —po@le 1 [l — T w8

reo() r
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Thus,
:—!'f d 1 :—!'f,,‘l P
= A et
rdr | po(z) rleo(x)]? (A.9)
From (A.l),‘Pf}(q) has a fixed sign on R, so does hx(x,t) in (A.9). Therefore, for a fixed t

> 0, h(x,t) monotonically connects h(-oo,t) to h(oo,t). As discussed above, both the

numerator and denominator of h are positive. These give us

- 1—u_)e " ; 1—u ,— Tt
Oy = max { e e (sl

ru_ T4

< 111ax{1. L L} =C. (A.10)

rorus rug
Besides, from (A.9) and by induction, for I = 1, we have

=Tt ! 1 e Lo ()
o h(x t) = L =— L
Ozhiz, 1) roda! [’90(3?)] r Z [ipo ()] F+!1

k=1

where pik(x) are the same as those in (A.5). With (A.6), this implies
1O Lo ) < Clu— —uile™, 1>1 (A11)
Now by (A.8), (A.10), (A.11) and (A.7), for I = 0, we have

1
10,5t | oy <D &kl h(t) ]| oo &) 0520 ()| Loy < Clu— —uyle™™

k=0

7

where “cjkare positive constants.
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