Could »-Category Theory B
Taught to Undergraduate

Emily Riehl

1. The Algebra of Paths this graph is reflexive, with the constant patlt eefth

It is natural to probe a suitably nice topological spacePfiByx € X defining a distinguished endoarrow.
means of its paths, the continuous functions from the sfe@? this reflexive directed graph be given the structure
dard unit interval I = [0, 1] c R t@B#t what structure Of a category®o do so,it is natural to define the com-
do the paths in X form? posite of a path p from x to y and a path ¢ from y to z

To startthe paths form the edges of a directed gragty 9luing together these continuous maps-byecon-
whose vertices are the points of X: a path p : I » X defigkgnating the paths—and then by reparametrizing via th

an arrow from the point p(0) to the point Majeover, homeomorphism 7 = I4{Lq/ that traverses each path at
double speed:
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composites (p * ¢) * rand p x (g * r) are notwddleal: Comp(p, g) € Map@ X) of continuous maps h%A X
the have the same image in X, their parametrizationstdift restrict on the boundary horn to p U ¢:
fer. Howeverthey are based homotaplhe sense that

there exists a continuous function h: 7 x I - X so that Comp(p, q)J% Map(Z, X)
h(—, 0) = (p * q) * A(—, 1) =p * (g * r), l ] \l/res (1.4)
h(0, =) =refl and h(1, —) = ref] * —21 s Map(l U_ol, X)

a situation we summarize by writing (p * g) * r = p * (qThe)homotopical uniqueness of path composition can
Similarly, the paths pxreflref] xp = p are all based ho-be strengthened by the following observation:
motopic, though not equal (unless p is the constant path).

Paths are also invertible up to based homotopy: for S¥gPrem 1.5or any composable paths p and q in a space
path p: 1 - X from x to y, its reversal 71: I — X, de- the space of composites Comp(p, q) is contractible.

fined by precomposing with the flipping automorphism 5o what do the paths in X formWe have seen that
1= |, defines an inverse up to based homotopy* # * pthey form a weak groupoid with a multivalued but homo-
refl and p! * p = refl These observations motivate th@pically unique composition lalm. fact,this weak cat-
following definition: egory is an infinite-dimensional categbg based ho-
Definition 1.Bor a space X, the fundamental groué%‘?&’p'es h:1x I- X between parallebaths s and 1
71X is the category whose: hemselves .mlght be rggarded as paths h:71- Map(l, X)
, , between points s and ¢ in the space Map(/, X) to which

* objects are the points of X and Theorem 1.5 equally appliesd these observations ex-

* arrows are based homotopy classes of paths of X tend iteratively to higher-dimensional homotofies.
with composition defined by concatenatidentity ar- points, paths,and higher paths in a space X assemble
rows defined by the constant paghd,inverses defined into a weak infinite-dimensional category—with interact-
by reversing paths. ing weak composition and identities for paths at all lev-

The fundamentagroupoid of a space X answersa els—in which all morphisms are weakly inverSoieh

slightly different question than originally patestrib- 2 Structure is known as an e-groupoid.

ing the structure formed by the based homotopy classBg§dromotopy hypothdde.fundamentatgroupoid
paths in X.The paths themselves form something like%. X Of paths in X captures the data of all of the higher ho-
weak groupoid where composition is not uniquely defiR@EppPy groups of the space, information which is referrec
Indeed, given paths p from x to y and ¢ from y to z, thd© as the homotopy type of the fpadamous letter to
composite inyX is represented by any path s so that tikdtdlen [G], Grothendieck formulated his homotopy hypot
is a based homotopy h witnessing pxg = 5. Here, the 88§§@@siting that the fundamental »-groupoid construc-
homotopy h defines a continuous function from the s&igé defines an equivalence between homotopy types and
2-simplex into X that restricts along the boundary trighAglEoupoids. Grothendieck’s vision was that this result

to the map defined by gluing the three paths: should be provable for various modelswofgroupoids
that were then under development, though some instead
an2 sk use this thesis to define an »-groupoid to be a homotopy
type.
\E /[ There issomething unsatisfyinghough, aboutthe
% naive interpretation of the homotopy hypothesis as the

While multivalued composition operatiorare not assertion ofa bijection between the collection ofio-

well-behaved in general, this one has a certain homofBBFOPY typesand the collection of «-groupoids, or

cal uniqueness propertihe witnessing homotopies for &/€N as an equivalencebetween thehomotopy cate-
two such composites can be glued together—by a hi P of spacéand t.he hom.otopy category of «-group-
dimensionaknalogue othe construction (1.1)—to de- 0'ds- The disappointmenties in the fact that both
fine a homotopy s = p * ¢ =This suggests that the wit2Paces and oo_-gro_upm_ds I'Ve_ mosaturally as_the ob-
nessing homotopies that fill the triangles formed by tgetsin weak infinite-dimensionatategorieswith the

paths between x and y and z n,“,g ht be prOdUCtlver_reIFamously, the definition of a weak 3-dimensional category by Gordon, F

garded as part of the composition dates, the moduli ;5,4 street takes six pages to state.

space of composites of p and ¢ is defined as follows: 2Homotopy types can be understood as isomorphism classes of objects il
. . . motopy category of spaces, the category obtained by localizing the cate

Definition 1.3Given composable paths p and g in @ spaces and continuous functions by the weak homotopy equivalences, tf

space X, the space of composites of p and g is the subispasceat induce isomorphisms on all homotopy groups.
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standard morphismbetween them supplemented by composition structuref homotopy coherentnatural
higher-dimensional weakly invertible morphisfhsis, transformationbetween homotopy coheredtagrams
a more robust expression of the homotopy hypothesifBY]. Joyal was the first to assert that “most concepts and
the assertion thathe «-categorie$ spaces and ofe-  sults of category theory can be extended to [ »-categories
groupoids are equivalérsip now we must explain whatand pioneered the developmemtf «-categoricaéna-

w-categories are. logues of standard categorical notion&yJje then de-
. . . veloped various aspects ®fcategory theory thatere
2. »-Categories in Mathematics needed for his thesis on derived algebraic geometry [L1].

Overthe pastfew decadesy-categories—weak infiniteHis books [L2, L3] and the online textbook Kerodon are
dimensional categories with weakly invertible morphismsary references for uses of this technology, while text:
above dimension one—have been invading certain arwritten by CisinskGroth,Hinich, Rezk,and others pro-

eas ofmathematicsin derived algebraic geometithe  vide parallel introductions to the field.

derived category @fring is now understood as the 1-  If one delves further into the »-categories literature,
categorical quotient of the «-category of chain compkxas, curiosities soon become apparent:

and an «-categorical property called “stability” explaigs Particularly in talks or lecture series introducing the
the triangulated structure borne by the derived category UT)ject, the definition of w-category is frequently de-

mathgmatical physics, Atiyah's topologicgl quantum fiel ayedand when definitions are givéhey don't al-
theories have been “extended up” to define functors be-Ways agree.

tween »-categorfes.-categories have also made appear- . N
* 9 9 PP 'Qﬂese competing definitions are referred to as models

ances in the Langlands program in representation theaqr , . ) .
and in symplectig geomFe)tn?among ofher@rfithen's oc% -categoriesyhich are Bourbaki-style mathematical

model categories [Q] from abstract homotopy theory%F@c.tur.e.S deﬁned In terms of sets anql functions that repr
now understood as presentations of «-categories. sent infinite-dimensional categories with a weak composi-
Ordinary categories “frame a template for a mathefioft/aw in which all morphisms above dimension one are

ical theory,” with the objects providing the “nouns” age Iy 'mvertlbleln. order of_ appeara'nthese |'nclude _
the morphisms the “verbs,” in a metaphor suggesteds plicial categories, quasi-categories, relative categories

Mazur. As the objects mathematicians study increaseS egorienmplete Segaaceand 1-complicidtseach

complexitya more robustlinguistic template may be © which comes with an associated array of naturally oc-

required to adequately describe their nathabitats— c.EJrring e'xamples [Bel. _ N
with adjectivesadverbs,pronouns, prepositionscon- (i) Considerable work has gone into defining the key no-

junctions,interjectionsand so on—leading to the idea tions for and proving the fundamental results about
of an «-category.Like an ordinary 1-categorgn - -categories, but sometimes this work is later redevel
category hasbjectsand morphisms,now thoughtof oped starting from a different model.

as “1-dimensional” transformationBhe extra linguis- For instance, [KV] begins:
tic color is provided by higher-dimensionahvertible
morphisms between morphisms—such as chain homo- (, 1)_categories appear in various areas of mathe-
topies or diffeomorphisms—and higher morphisms be- 1, 4tics For example, they became a necessary in-
tween these morphisms, continuing all the way up. redient in the geometric Langlands protikem.
How might a researcher in one of these areas go aboufis pooks [L2, L3] Lurie developed a theory of co-
learning this new technology of «-categoAesPhow categories in the language of quasi-categories and

might ~-category theory ultimately be distilled down intQytanged many results tfe ordinary category
something that we could reasonably teach advanced UNtheory to this setting.

dergraduates of the future? In his work [R1] Rezk introduced another
Curiosities from the literatuseategories were first model of «-categories, which he called complete

introduced by Boardman and Vogt to describe the Segal spaceThis model has certain advantages.
For example,t has a generalization to («, n)-

3In fact, a version of this result had been proven already by Quillen for Ehgeté ries (see [R2])

complex model of »-groupoids [Q], but this was not so clearly understoo ﬂ the ) .

time. is naturalto extend results of the ordinary

4L urie’s “fully extended” topological quantum field theories are also “e%@E@8@ry theory to the setting of complete Segal
down” so that they might be understood as functors between (, n)-catgpartes.|n this note we do this for the Yoneda

with non-invertiblaorphismsp to and includinghe dimension n of lemma.

the indexingcobordisms.Here we reservéhe term “co-categoriefdr . . )

“(w, 1)-categories,” which have non-invertible morphisms only in t& b&kgrnativelyauthors decline to pick a model at all
dimension. and instead work “model-independently.”

In recentyears «~-categories omore formally,
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One instance of this appears in the precursor [L1] to W2fjuenessas contractibility and automatically ensure
which avoids selecting a model of «-categories at allthat all constructions are invariant under equivalence.

We will begin in §1 with an informateview of

the theory of »-categorieThere are many ap-
proaches to the foundation of this subjeath
having itsown particularmeritsand demerits.
Rather than single out one of those foundations
here,we shall attemptto explain the ideas in-
volved and how to work with thefhe hope is

that this will render this paper readable to a wide
audiencewhile experts will be able to fill in the
details missing from our exposition in whatever

3. The Formal Theory of »-Categories

In the paper “General theory of natural equivalences” tha
marked the birth of category the&ilenberg and Mac
Lane observed that categories, functors, and natural tran:
formations assemble into a 2-category CAT. The essence
this result is the observation that natural transformations
gan be composed in 2-dimensiansfth of waystverti-
cally” along a boundary functor or “horizontally” along a
boundary category.

More generally, Power proves that any pasting diagram

framework they happen to prefer. . . g
y happ p ) ) .. compatibly oriented functors and natural transformations
The fundamentalbstacle to giving a uniform defini-p 55 5 unique composite.

tion of an »-category is that our traditional set-based foun-

dations for mathematics are not really suitable for reason- h D ,
ing about «~-categories: sets do not feature prominently in /\'7\ \
g 2 E

w~-categorical data, especially when «-categories are only A

well-defined up to equivalence, as they must be when dif- s m \\

. ) . e R o g 4 G
ferent models are involWahen considered up to equiv- N\ . bo ‘
alence, »-categories, like ordinary categories, do not have J }/ Z«(

a well-defined set of obje@ssentially, «-categories are B X F

1-categor.ies in which dhe sets have been replaced b’i’he pasting compositehich in the example above de-
-groupoids.Where a category has a set of elements, s a naturatransformation between the categories A

«-category has an «-groupoid Of elements, _and whergnza G from the functor rph to the functor skf, can be de-
category has hom-sets of morphissmgategories have

ti ite of whiskeri f th
®-groupoidal mapping spat@e axioms that turn a digomposed as a vertiaadmposite of whiskerings of the

ted hint t dinthe | atomic naturatransformations «, 3, y, 6,for instance,
rected grapn Into a cateégory are expressed in the fa ach’lmposite factors as rpp followed by rpg followed by
of set theorya category has a composition function sat-

an followed by sgma followed by sdf, among eight total

isfying axioms expressed in first-order logic with eqL“F)bgélsibiIitiesPower’s theorem is that pasting composition

By analogy;omposition in an «-category can be unde < well-defined.

stood as a morphism between «-groupoids, but such mgrr'nilarly in well-behaved models of »-categories:
phisms no longer define functions since homotopy types '

do not have underlying sets of pdinfhis is why there Proposition 3.1 (JoyaRiehl-Verity).x-categories;-
is no canonical model of »-categories. functors, and «-natural transformations assemble into a c

Reimagining the foundations of »-categoryetheéid/l closed 2-category «-CAT.

spite these subtleties, it is possible to reason rigorously-lamg resultwas first observed in the quasi-category
model-independently about «-categories without get el by Joyal [J]. Since the category of quasi-categories

bogged down in the combinatorial scaffolding of a Paf. i(<-:'artesian closedt is enriched overtself, defining
ular model. The framework introduced in §3 considerafly 2)-category ofjuasi-categoriesThe 2-category
streamlines the basic core theory of «-categories, thaygh ¢;_ategories is obtained by a quotienting process,

its scope is currently more limited than the corpus of ez maps each hom-quasi-category to its homotopy cat-

sults that har\:_e been proven ufflj‘ng a modtlel. ¢ egoryby applying the lefadjointto the (nerve) inclu-
Howeverthis currentstate ofthe artemploys proof i, 'of categories into quasi-categofile. other “well-

techniques that are unfamiliar to non-category theoriB aved” models—including complete SegatesSe-
and thus is not feasible to integrate into the undergr categoriesnd 1-compliciatets among others—are

ate curriculumihe concluding §4 describes a more spegz artesian closesh a similar construction defines a

ulative dream for the future where enhancements to Jﬁh@ategory of complete Segal spaces, anHTem adopt
foundations of mathematics would allow us to interpret '

"While the meaning of the terms “«-categories” and “«-functors” in a gi
>“Large” w-categories also exist and behave like large 1-categoriesnodel is typically clear, the “~-natural transformations,” which can be u
8sSimilar considerations have motivated Scholze et al to use the tersto@ahan&guivalence classes of 2-cells in the ambient («~, 2)-category, ar
referring to the “soul” of a “space”—as a synonym for «-groupoidsevident.
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a “model-independent” point of viewte that these 2- prove the following facts about adjunctions between oo-
categories are all biequivaletithe same” in the sense categories.
appropriate to 2-category theory [RV2, §E.2]. . . )

The good newswhich is surprising to many experts,Pm'Cms!tlon 3.4 ([RV2,1.9]). Adjunctionsetween o-
is that a fair portion of the basic theory of «-categori&81€90ries compose:
can be developed in the 2-category «&%Ee aspects ! 2 fog
might be described as formal category theory, as they inxof‘vi\ B ‘\’r C - A )(J_\ C
definitions of categorical notions such as equivalence, ad- ~1 ~—71 s
junction, limit, and colimit that can be defined internally . ) ) )
to any 2-categohy.the 2-category CAT, these recover EH@Position 3.5 ([RV2.1.10]).Given an adjunction
classicahotions from 1-category theomhile in the 2- kf-\
category «-CAT these specialize to the correct notiondin L_ B between »-categories and a furnkterf
w-category theohyhus, for the core basic theory involy-. = . . . . .
ing these notions, ordinary category theory extends o g_left adjomt to u if and only if there exists a natural iso
categories simply by appending the prefix “c—" [RVPREM f = .

41. ] ] _ o Proposition 3.6 ([RV21.12]).Any equivalence can be
Equivalences and adjuncfiibagollowing definitions promoted to an adjoint equivalence at the cost of replacir
make sense in an arbitrary cartesian closed 2-categowgy,t#iéChatural isomorphisms.

as «-CAT. : . : , L :
Relative adjunctiofte unit and counit in an adjunc-

Definition 3.2\n equivalence between «-categoriesign satisfy a universal property in the 2-category «-CAT
given by: that we now explore in the case of the counit ¢: fu = id
Given any o-functorsa: X - A and b : X = B, pasting
with ¢ defines a bijection between «~-natural transforma-
tionsa:fb=aand f:b=ua. Anya:fa = b factors
through a unique g8 : b = ua as displayed below:

* a pair of w-categories A and B,

e a pair of o-functorsg: A ->Band h: B - A, and

* a pair of invertible »-natural transformations
atidy =hg,andg:gh=id

b b
= =g m - - . . X B X B
D_efmlt:u.)n 3.3An adjunction between «-categories is L 7 \l/f ~ fm . (3.7)
given by: « = P
* a pair of »-categories A and B, A=——=A A A

e a pair of o-functorsu:A -» Bandf: B — A, and

+ a pair of w-natural transformations 5 =d:f and which is to say that the pair (u, ¢) defines an absolute righi

lifting of ig through f.Indeed, fis left adjoint to « with

¢ fu=id 4 counit ¢ if and only if (u, ¢) defines an absolute right lifting
so that the following pasting identities hold: of id, through f[RV2, 2.3.7].
3 B 3 5 PR Any component ¢ of the counit ¢ of an adjunction sat-
/\(u,,/[’lﬂ( [o= (—H), ytﬂi\,’lu,,ﬂ =‘(\=/f isfies a universal property analogous to (3.7):
A A A A A A b b
Y —23 B Yy — 2 VB
i A
x| Yiee |f = x| 3 =" f
One commonly writesA kj_\ B to indicate that fis l L l ! S be l
~— X Ha A X Ha A A

left adjoint to its right adjoinkjth the data of the

unit ; and counit ¢ being left implicit. which asserts that (ua, «a) defines an absolute right lifting

of a through f. Motivated by examples such as these, ab-
Among the many advantages of using definitions tBatute right liftings (r, o) of a generic ~-functor g: C » A
are taken “off the shelf” from the 2-categories literatiféough f: B - A can be thought of as exhibiting r as
is that the standard 2-categorical proofs then specializghbadjoint to f relative to g with partial counit o.

What is less obvious is that these definitions are “correct” for w-categol
8The technical part of this story involves proofs that the “syntheticbmyr. ltffdiftneaddse of equivalenthésjs easily seen in any of the mbdels.
notions introduced here agree with the previously-defined “analytitfienoéismefradjunctions, this is quite subtle, and involves the fact that the
the quasi-categories model§RVBut we encourage those not alreadyliaaensional data enumerated in Definition 3.3 suffices to determine a f
quainted with the analytic theory of some model of »-categories taedopyhesecradfunction,” uniquely up to a contractible spazeas
definitions first. [RV1].
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Definition 3.&iven o-functorsg: C—» A and f: B— right adjoint and admits /-shaped colimits if the consta
A with common codomairg functor r: C » B and »- diagrams functor admits a left adjoint:
naturaltransformation ¢ : fr = g define an absolute

colim
right lifting of ¢ through f or a right adjoirntelfa- N
tive to ¢ if pasting with o induces a bijection between - A );ij“‘
natural transformations as displayed below: lim
b b The counit A of the adjunction A H lim and the unit y
X —> B X —> 8B h . ; S e
3p A of the adjunction colim — A encode the limit and colimit
‘i Via L‘ = ‘i P f cones, as is most easily seen when considering their com-
/ onents at a diagram 4 : 1 £ By Lemma 3.9, the right
C—>A C—>A p ) y g

and left adjoints restrict to define relative adjunctions:

The following lemmas about relative right adjoints ad- _ A A
mit straightforward 2-categorical proofs: ‘%(\LA c°%\lﬁ

. . L ]_ﬁAJ_AJ 1ﬁA"—A"
Lemma 3.9 ([RV22.3.6]). If (r, ¢) is rightadjointto o ‘ _ .
fiB = Arelative to g : C— A then for any ¢: X » C, These observations allow us to generalize Definition 3.11

(rc, oc) is right adjoint to f relative to gc. to express the universal properties of the limit or colimit
' of a single diagram in settings where the limit and colimit

B functors do not exist.
/u\llf Definition 3.12A diagram d:J - A between co-
X —>C—>A categories admits a limit just when A admits a relative

right adjoint at 4 and admits a colimit just when A admif
Lemma 3.10 ([RV2, 2.4.Bpppose that (r, o) is right ad-relative left adjoint at ¢, as encoded by absolute lifting ¢

joint to f: B —» A relative to g : C = A. Then in any diagegrams:
A A
lim d colimd
ol e

of w-functors and «-natural transformations
1 —> A’ 1 —> A’

There is an easy formal proof of the «~-categorical ver-
sion of a classical theorem:

C—74 Theorem 3.1Right adjoints preserve limits and left adjoin

(s, 0) is right adjoint to k relative to r if and only if (s, dor@3€erve colimits.

is right adjoint to fk relative to g. Proof.Consider an adjunction as in Definition 3.3 and a

Limits and colimiRelative adjunctions can be used tgmit of a diagram as in Definition 3Ti2show that the
define limits and colimits of diagrams valued inside amit is preserved by the right adjoint, we must show that

co-category A and indexed by another «-categoAsJ. A—3B
a cartesian closed 2-categerZAT contains a terminal lim d

o-category 1, which admits a unique o-functor!:J7-1 /M’ lA lA
from any other »-category J. Maps a:1 = A from the ter- 1 ﬁ Al — B

minal «-category into another «-category define elements
in the w=-category!dUsing the cartesian closed structudefines a relative right adjoBytLemma 3.10, it suffices

any diagram d : J - A defines an element d: 1 Lim  to demonstrate this after pasting with the relative right ac
the «-category bEhaped diagrams irExponentiation joint encoded by the component at d of the coloit ¢

with the unique functor ! : J > 1 defines the constant dig-adjunction’f— 4/, as below-left:
grams functor A : A -5, Avhich carries an element of A to A—>3B

B B

the constant J-shaped diagram at that element. '%\19 , P /{y vima
> J " 7 = =

Definition 3.1An ~-category A admits J-shaped lim- <" Xij “V\L j} HV(\L
- . . . J . 42 J.U.é
its if the constant diagrams functor A : A/-admits a N 12 ;dA, o 12 S g
10x/e find this terminology less confusing than referring to the “objEE@MAtRE 2-functoriality of the exponential in a cartesian
w-category A, which is itself an object of «-CAT. closed 2-categorg/A = Afand ¢ ‘A =Ae. Hence,
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the pasting diagram displayed above-left equals the sepresentation theory when offeffeam this point, the
displayed above-centehich equals the diagram aboveproofs of the results stated here are not too difficult.
right.This latter diagram is a pasted composite of relati\But these results encompass only a small portion of c-
right adjoints, and is then a relative right adjoint in iteategory theory, and for most of the rest there is a greate
right by Lemma 3.10. O jump in complexity when extending from 1-categories to

Universal properti2finitions 3.3 and 3.12 do not e c-categoriesThis is best illustrated by considering the

press the full universal properties of adjunctions bet\;\yé)é}?da Iemmawf_nch in an importantspecialcase is
and co/limits in «-categorieThese require additional Stated as follows:

structure borne by the 2-category «-@#mhely the ex- '{heorem 3.18 ([RV2, 5.7.Gjuen an «-category A and
C

istence of comma «-categories for any pair of «-functor ) . ; .
fiB—->Aandg C—A. T%e comma oo}ic%tegory is an® ements a, b1 - A, the «-groupoid tdoh) is equiva-

w-category Hogtf, g) equipped with canonical functoréent to the «-groupoid of functgis\Hom» Hom (A, b)
and an «-natural transformation as below-left, forme@usf A.

the pullback of «-categories below-right: One direction of this equivalence is easy to describe: th

Hom, (f, §) —=0% Hom, (f, §) ———> A2 map from right to left is defined by evaluation at the iden:
wod, wo o dsen], Jisosgom (3.14)  tity element jd 1 - Hom , (a, a). The inverse equiva-
c——F—>4A CXB———pAXA lence defines the Yoneda embedding, which is notoriously

difficult to construct in «-category theory as it involves
equipping A with a homotopy coherent composition func-
Mn [L2, §5.1.31.

To achieve further simplifications of «-category theory,
Theorem 3.15 ([R\®25.8]).An «-functor f: B - A one idea is to ask our foundation system to do more of the
admits a right adjoint r: C - B relative to g : C - A if amerk.
only if there exists an equivalence over C X B:

While the universal property of Hpffy g) as an object
of «-CAT is weaker than the standard notion of com
object in 2-category theory, nevertheless:

4. A Synthetic Theory of «-Categories

Hom (f, g) =cxs Hom, (B, r). To explain the desideratgor an alternativefounda-
When Theorem 3.15 is applied to 7: B - A apdid tion, consider the default notions of “sameness” for e-
specializes to: categorical datdwo elements in an »-category are the

same if and only if they are connected by a path in the

Corollary 3.16 ([RV2, 4.1A4)e-functor f: B = A ad- underlying «-groupoid, while parallel morphisms are the
mits a right adjoint u : A - B if and only,ifHOm= x5z  same if and only if they are connected by an invertible 2-
Hom (B, u). cell, defining a path in the appropriate mapping space. Fo

When Theorem 3.15 is applied to A: 4 - A’ and an «-categorical construction to be “well-defined” it must
d:1 - A’ it specializes to: (i) respect the notions of sameness encoded by paths in

suitable spaces, and

Corollary 3.17 ([RV2, 4.3.R]fiagram d : J = A has a (jj) respect equivalences between these spaces themselve
limit £ :1 - A if and only if Horf\, d) % Homy (A, £). since they are only well-defined as homotopy types.

Here the comma «-category Hoid\, ) defines the Axiomatizingsamenes#n traditional foundations,
w-category @bnes over dThe ~-category Hogt4, £)  there is a similar axiom that mathematical constructions
admits a terminalelementd;: 1 - Hom,(4,{), Or results must respect sameness as encoded by equality.
which definesa right adjoint to the unique functor The axioms that define the binary relation “=" in first-ord
It Hom, (4, £) - 1. Via the equivalence Hotp, d) 5  logic are:

Hom, (4, ) we see that the limit cone is terminal in the ¢ reflexivityfor all x, x = x is true.

co-category ofcones. Indeed,d admits a limit if and ¢ indiscernibility of identical$or all x, y and for all
only if the «-category of cones admits a terminal elemenpredicates Af x = y then P(x) holds if and only if
[RV2, 4.3.2]. P(y) holds.

Could we teach this to undergraduates? If classicalAgatlogous rules govern Martin-L6f’s identity types in ar
egory theory were a standard course in the undergradliateative foundational framework for constructive math:-
mathematics curriculum, then perhaps students withenpaiies known as dependimie theory [M-lHere the

ticular interest in the subject might go on to learn sompemitives include types like®,, (R), and Group and
2-category theotike students with a particular interesterms like 17 : N,:IGL ,(R), §, : Group, which may de-

in algebra might go on to take more specialized courgEnishon an arbitrary context of variables drawn from pre-
classical algebraic geomeadtkyebraic number theooy, viously defined types (efipe n: N appearing in three
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examples abovB)ln traditional foundations, mathematdentification p : x =, y defines a path from x to y in
ical structures are defined in the language of set thed#ye ~-groupoid A, identifications in dependent type the-
while proofs obey the rules of first-order lbgidepen- ory are often referred to colloquially as “paths.”
dent type theory, mathematical constructions and mdathe-homotopical interpretation of dependent type 1
matical proofs are unifidzbth are given by terms in apery.The homotopicainterpretation oflependentype
propriate type$he ambient type then describes the sthieory was discovered in the early 21st century by Awode
of object being constructed or the mathematical statgaerdn and Voevodskwilding on earlier work of Hof-
being proven, while the context describes the inputs teaihe and Streichdrhis connection inspired Voevodsky
construction or the hypotheses for the theorem. to make the following definition:

The rules for Martin-L6f’s identity types indude:

« identity-formationin the contexbf two variables
x,y + A there is a type ;5.

. . zx:A I_IyZA X =4 Y
Types encode mathematically meaningful statements %rl

s_ " H . .
sertionsso this rule says that it is reasonable to inquil)@ cah may be read as “there exists x : 4, so that for all y:

whether x and y might be identified, once x and y are @e%iiqentiﬁable with y* with all quantifiers interpreted

in the same typeertain identity typesjch as 3 & 4, as requiring continuous specifications ofdata.
will be empty, since the terms 3 and 4 cannot be identifigst as contractible spaces might contain uncountably

Definition 4.2.type A is contractible just when there is
a term of type

but the type nevertheless exists. infinitely many pointgontractible types might contain
« identity-introductiorfor any x : A, there is a term more than one term. But since any two termsn a
refl :x =, x. contractible type may be identifiethd since identity-

Terms in types are witnesses to the truth of the statefigpination impliesthatall of dependentype theory
encoded by the type, so this rule corresponds to the FERRRCES identificatiortfie theory behaves as & con-
ivity axiom. tractible type had a unique ten:m.

« identity-elimination: given any family of types Univalent foundatidvartin-L6f’s dependent type the-
O(x, v, p) dependingonx,y:Aandp:x= , y, Oryisa formal systgm in W.hICh all constructlons_are conti
to provide a family oterms ¢, : O(x, y, p) for uous in paths, our first de5|deratﬂihe second desider-
all x, y, p it suffices to provide a family of terms ¢ atum, of well-definednessnderequivalencebetween

types, follows once Voevodsky’s univalence axiom is adde
O(x, x, ref]) for all x. AR

to dependentype theoryresulting in a formabkystem
called homotopy type theory or univalent foundations.

Voevodsky’s univalence connects two notions of same-
Theorem 4.1 ([BG, LuThe iterated identity types proweks for typek traditional dependent type theory, types
any type with the structure of an «-groupoid, in whichaihdéezntoded as terms in a universe of tyyp&hus,
are the points, the identifications are the paths, and reeimghien of sameness between types A, B belonging to :
identifications encode homotopies. universe 9/ is given by paths p : 4,78 in the universe.

In low dimensions, the «~-groupoid structure on theﬁr@pthe_r notion of sameness is suggested by types as c-

: . ; ) groupoids: for any A and B there is a type A = B of (homo-
erated identity types of a type A provides: . SBy i ; oo
) 1. i topy) equivalences from A t3 By identity-elimination,

* functions ()" : (x= 4 y) > (y = 4 x) thatinvert i, define a natural map id-to-equiv : AB= A = B it
identifications, _ suffices to define the image of refl= ,, A, which we

* functions — % —: (45) X (y 5 2) = (k=4 2 that  (zke to be the identity equivalefite univalence axiom
compose identifications, asserts that this map is an equivalence for all types A and

* higher identifications assoc : (p*q)kr =p*(g*r) g
between composable triples of identifications, By univalence, an equivalence ¢ : A = B gives rise to a

and much more.All of these terms are constructed uspath ua(e) : A 5, B, which can then be used to transport
ing the identity-elimination rule from the reflexivity terms

provided by the identity-introduction ruleSince an  13The definition ofontractibleypesnakesiseof the dependentpair

and dependenfunction typeisi dependerype theonyA term oftype

1Yn a mathematictbtement of the form “Let . . . be . . . therstuff” Zea My x =4 y provides a term c : A, the “center of contraction,” togethe
following the “let” likely declares the names of the variables in thewithtaxaaely of pathsep=, z for all z : A, the “contracting homotopy.”
scribed after the “be,” while the stuff after the “then” most likely déBarisel’s pgvedox can be resolved by a cumulative hierarchy of univers

This rule implies Leibniz’s indiscernibility afenticals
and much more besides:

or term in that context. 15t is an interesting challenge to define a type whose data witnesses the
120ne additional rule, not listed here, concerns the computational bedyayiof ef B is an equivalence in such a way that this type is contractibl
this system. whenever it is inhabited.
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terms in any type involving A to terms in the correspdoldews from this axiom that composition is associa-

ing type involving B. Thus, univalent mathematics is &ivi®and unital,using canonicaldentity arrows id :
matically invariant under equivalence between typesHom, (x, x).

»-categories in univalent foundatimare.is an ex- The second axiom involves a type of isomorphisms in
perimental exploration of «w-category theory [RS, BW/AB®Which may be defined in a similar manner to the type
in an extension of homotopy type theory in which evé@fyequivalences between types [RS, §10].

type A has a family of arrows Hofw, y) in addition to The Yoneda lemm&he advantagesf this synthetic

the family of paths x = These types are obtained froframework foro-category theory are on display when

a new type-forming operation that produces extensiototypasing the proofs of the Yoneda lemma in [RV2, 5.7.1
whose terms are type-valued diagrams that strictly estehdh [RS, 9.1We sketch the latter here in the same spe-
a given diagram along an inclusion of “shapes” (polytpksase considered in Theorem 3.18.

embedded in directed cubes constructed in the theory,of ,
a strict interval) [RS, §2-Bktension types include type!heorem 4.4 ([RB1]). Given an «-category A and éle-

ments a, b: 1 - A, the type Hémb) is equivalent to the
analogous to the pullbacks of (1.4) and (3.14). : . )
The formalsystem has semantics in complete Segatl-ype Hh Hom (x, a) = Hom (x, b) of fiberwise functions.

spaces [RS, W] so it provides a rigorous way to prove th&-key difference between Theorem 3.18 and Theorem
orems aboutw-categories as understood in traditional4.4 is that in the present framework it is straightforward t
foundationsAt the same time, the experience of workdefine the inverse equivalence to the evaluation at iden-
with «-categories in this “univalent” foundational settibgmap. The inverse equivalence takes an arrow f:
is much more akin to the experience of working with Hom, (a, ») to the naturalmapx »g P fog
categories in traditional foundations. n., Hom, (x, a) » Hom , (x, »). The usualproof then
It takes work to set up this formal system and consi@enonstrates thdhese maps are inverse equivalences.
ably more to describe its interpretation in complete Segahe direction,this is given by an identification f o
spaces; indeed, this is where the hard work of solvingdyo=yom, ..y fi Which expresses the fact that composi-
motopy coherence problems g®ag once this is done, tion in an «-category is unitialthe other direction, we
it is possible to define the notion of an »-category, samest show that a fiberwise map ¢ agrees with the map
thing that would no doubt be reassuring to undergradvhose componendt x is given by g+ ¢ ,(id,) o g
ates hoping to learn about théfhThe two axioms ex- Hom, (x, a) = Hom, (x, b). By a consequence of the uni-
press the “Segal” and “completeness” conditions of Retkisce axiom called “function extensionality,” it suffices
model [R1], respectively. to show that ¢(id,) ° g =xom, s ¢:(g). This follows
. . from the fact that fiberwise maps are automatically “nat-
_Deﬁrptmn 4.3 ([RS, 5.3,10/1)x-category is a type fbral',, providing an identificatiop(igl,) © g =yom, (us)
in which: ¢, (id, og). Since the functignrespects the identification
* every composable pair of arrows has a unique congpasg TFom, (va) & WE Obtain the required identification.
ite, and In fact, [RS, 9.5] proves a generalization of the Yoneda
« for any pair of terms x, y : A the natural map 5 = |emma that was first discovered with this formal system
y = x =, y from paths in A to isomorphisms in A isand later proven in traditional foundations [RV2, 5.7.2]
an equivalence. ConclusionSignificanttechnicalproblemsremain to
The “uniqueness” in the first axiom is in the sense gyake it feasible to teach ocf—category theory to yndergradl
Definition 4.2:what it asserts is that a suitable space 8f€s, but I'have hope that in the future the subject will no
composites analogous to Definition 1.3 is contractibléseem as forbidding as it does today.
the default meaning of uniqueness in this formal system.
Like in the space defined by (1.4), a term in the space of
composites provides a higher-dimensional witness to the
composition relatiodh composition function

ot Homy (y, z) X Hom(x, y) » Homy (x, z),

is obtained by throwing away these witnedske. any
construction in homotopy type thedtyis function re-
spectsdentificationand is therefore well-definedIt

1eRecallkhatin the formake-category theory developed in the 2-category
«-CAT, a concrete definition of «-categories is not used.
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