Could ∞-Category Theory B Taught to Undergraduate

Emily Riehl

1. The Algebra of Paths

dard unit interval $I = [0, 1] \subset \mathbf{R}$ to what structure of a category To do so, it is natural to define the comdo the paths in *X* form?

an arrow from the point p(0) to the point Maleeover,

Emily Riehils a professor of mathematics at Johns Hopkins Uhligersity. email addressrischl@jhu.edu .

Communicated by Notices Associate Editor Steven Sam. For permission to reprint this article, please contact: reprint-permission@ams.org .

DOI: https://doi.org/10.1090/noti2692

this graph is reflexive, with the constant path earth It is natural to probe a suitably nice topological space $\Re \operatorname{igh}_X \in X$ defining a distinguished endoarrow. means of its paths, the continuous functions from the scan this reflexive directed graph be given the structure posite of a path p from x to y and a path q from y to z

To startthe paths form the edges of a directed graphy gluing together these continuous maps-byeconwhose vertices are the points of X: a path $p:I \to X$ defines at the paths—and then by reparametrizing via the homeomorphism $I \cong I \not\sqsubseteq_0 I$ that traverses each path at double speed:

$$I \xrightarrow{\cong} I \cup_{1=0} I \xrightarrow{p \cup q} X \tag{1.1}$$

But the composition operation * fails to be associative or unital. In general, given a path r from z to w, the

composites (p * q) * r and p * (q * r) are notwerited: Comp $(p, q) \subset \text{Map}(\Delta X)$ of continuous maps $h^2 \cdot \Delta X$ the have the same image in X, their parametrizations that restrict on the boundary horn to $p \cup q$: fer. Howeverthey are based homotopthe sense that

there exists a continuous function $h: I \times I \to X$ so that

$$h(-,0) \coloneqq (p * q) * h(-,1) \coloneqq p * (q * r),$$

 $h(0,-) \coloneqq \text{refl} \text{ and } h(1,-) \coloneqq \text{refl}.$

$$\begin{array}{ccc}
\operatorname{Comp}(p,q) & \longrightarrow & \operatorname{Map}(\mathcal{L},X) \\
\downarrow & & \downarrow_{\operatorname{res}} \\
& * & \longrightarrow & \operatorname{Map}(I \cup_{l=0} I,X)
\end{array} \tag{1.4}$$

a situation we summarize by writing $(p * q) * r \simeq p * (q \mathsf{TMe})$ homotopical uniqueness of path composition can Similarly, the paths $p * reflect * p \simeq p$ are all based hobe strengthened by the following observation: motopic, though not equal (unless p is the constant path).

Paths are also invertible up to based homotopy: for any composable paths p and q in a space

the space of composites Comp(p, q) is contractible. path $p: I \to X$ from x to y, its reversal $\overline{p}^1: I \to X$, defined by precomposing with the flipping automorphism So what do the paths in X form We have seen that refl and $p^{-1}*p \simeq \text{refl}$ These observations motivate the pically unique composition lake. fact, this weak catfollowing definition:

 $\pi_1 X$ is the category whose:

- objects are the points of X and
- with composition defined by concatenatidentity arby reversing paths.

The fundamenta groupoid of a space X answersa slightly different question than originally postesscribing the structure formed by the based homotopy classes dromotopy hypothesie fundamental groupoid Indeed, given paths p from x to y and q from y to z, the as the homotopy type of to the map defined by gluing the three paths:

While multivalued composition operations not well-behaved in general, this one has a certain homotopic typesand the collection of ∞-groupoids, or cal uniqueness propertthe witnessing homotopies for even as an equivalence between the homotopy catedimensionabnalogue of the construction (1.1)—to define a homotopy $s \approx p * q \approx Th$ is suggests that the witspaces and ∞ -groupoids live most turally as the obnessing homotopies that fill the triangles formed by the paths between x and y and z might be productively re $_{\overline{1}Famously}$, the definition of a weak 3-dimensional category by Gordon, Fgarded as part of the composition data, the moduli space of composites of p and q is defined as follows: 2 Homotopy types can be understood as isomorphism classes of objects in

Definition 1.3Given composable paths p and q in a space X, the space of composites of p and q is the subspace at induce isomorphisms on all homotopy groups.

 $I \cong I$, defines an inverse up to based homotopy! p * pthey form a weak groupoid with a multivalued but homoegory is an infinite-dimensional categony. based ho-**Definition 1.2**or a space X, the **fundamental groupoid** $h: I \times I \to X$ between parallelepaths s and tthemselves might be regarded as paths $h: I \to Map(I, X)$ between points s and t in the space Map(I, X) to which Theorem 1.5 equally appliced these observations ex-• arrows are based homotopy classes of paths of X tend iteratively to higher-dimensional homotopiles. points, paths, and higher paths in a space X assemble rows defined by the constant pathed, inverses defined into a weak infinite-dimensional category—with interacting weak composition and identities for paths at all levels—in which all morphisms are weakly invertsblets a structure is known as an ∞-groupoid.

paths in X. The paths themselves form something like $T_{\Theta}X$ of paths in X captures the data of all of the higher howeak groupoid where composition is not uniquely definetopy groups of the space, information which is referred composite in x is represented by any path s so that the length [G], Grothendieck formulated his homotopy hypot is a based homotopy h witnessing p*q = s. Here, the 65i5 69 siting that the fundamental ∞ -groupoid construchomotopy h defines a continuous function from the stipm defines an equivalence between homotopy types and 2-simplex into X that restricts along the boundary triangle upoids. Grothendieck's vision was that this result should be provable for various models of groupoids that were then under development, though some instead use this thesis to *define* an ∞-groupoid to be a homotopy

There is something unsatisfyinghough, about the naïve interpretation of the homotopy hypothesis as the assertion of a bijection between the collection of otwo such composites can be glued together—by a higher—of spaces and the homotopy category of ∞-groupoids. The disappointmenties in the fact that both

and Street takes six pages to state.

motopy category of spaces, the category obtained by localizing the category spaces and continuous functions by the weak homotopy equivalences, the

standard morphism between them supplemented by composition structure f homotopy coherent natural higher-dimensional weakly invertible morphis**Ths**us, the assertion thatthe ∞-categories spaces and of∞groupoids are equivalento now we must explain whatand pioneered the developmento ∞-categorical na-∞-categories are.

2. ∞-Categories in Mathematics

above dimension one—have been invading certain arwritten by CisinskGroth, Hinich, Rezk, and others proeas ofmathematics In derived algebraic geomethe derived category afring is now understood as the 1categorical quotient of the ∞-category of chain complexes curiosities soon become apparent: and an ∞-categorical property called "stability" explains Particularly in talks or lecture series introducing the the triangulated structure borne by the derived category subject, the definition of ∞-category is frequently demathematical physics, Atiyah's topological quantum field ayed and when definitions are giveney don't altheories have been "extended up" to define functors be-ways agree. tween ∞-categories.-categories have also made appearances in the Langlands program in representation theory has competing definitions are referred to as *models* and in symplectic geometry among other **Argitan**'s of ∞ -categories which are Bourbaki-style mathematical and in symplectic geometry among other Quebsn's now understood as presentations of ∞ -categories.

ical theory," with the objects providing the "nouns" and invertible order of appearance include Mazur. As the objects mathematicians study increase in somplete Segabceand 1-complicisets each complexitya more robustlinguistic template may be required to adequately describe their nathrablitats with adjectivesadverbs, pronouns, prepositions, conjunctions,interjectionsand so on—leading to the idea of an ∞-category. Like an ordinary 1-categoran ∞category has bjects and morphisms, now thought of as "1-dimensional" transformationThe extra linguis- For instance, [KV] begins: tic color is provided by higher-dimensionanivertible morphisms between morphisms—such as chain homotopies or diffeomorphisms—and higher morphisms between these morphisms, continuing all the way up.

learning this new technology of ∞-categor Aess! how might ∞-category theory ultimately be distilled down into extended many results the ordinary category something that we could reasonably teach advanced untheory to this setting. dergraduates of the future?

Curiosities from the literaturcategories were first introduced by Boardman and Vogt to describe the

transformationbetween homotopy coheredtagrams a more robust expression of the homotopy hypothesitally]. Joyal was the first to assert that "most concepts and sults of category theory can be extended to [∞-categories logues of standard categorical notions. Up then developed various aspects of category theory thatere

needed for his thesis on derived algebraic geometry [L1]. Over the pastfew decades p-categories—weak infiniteHis books [L2, L3] and the online textbook Kerodon are dimensional categories with weakly invertible morphismary references for uses of this technology, while texts vide parallel introductions to the field.

If one delves further into the ∞-categories literature,

model categories [Q] from abstract homotopy theory are under defined in terms of sets and functions that repr sent infinite-dimensional categories with a weak composi-Ordinary categories "frame a template for a mathemat-" in which all morphisms above dimension one are the morphisms the "verbs," in a metaphor suggested by of which comes with an associated array of naturally occurring examples [Be].

> (ii) Considerable work has gone into defining the key notions for and proving the fundamental results about ∞-categories, but sometimes this work is later redevel oped starting from a different model.

In recent years ∞-categories omore formally, (∞,1)-categories appear in various areas of mathematics. For example, they became a necessary ingredient in the geometric Langlands problem. How might a researcher in one of these areas go abouth books [L2, L3] Lurie developed a theory of ∞categories in the language of quasi-categories and

In his work [R1] Rezk introduced another model of ∞-categories, which he called complete Segal spaces his model has certain advantages. For example, it has a generalization to (∞, n) -

ਹਿੱ is naturalto extend results of the ordinary lemma.

and instead work "model-independently."

³In fact, a version of this result had been proven already by Quillen for the Kalbries (see [R2]). complex model of ∞-groupoids [Q], but this was not so clearly understood time.

⁴Lurie's "fully extended" topological quantum field theories are also "e**katego**ry theory to the setting of complete Segal down" so that they might be understood as functors between (∞, n) -catepartees. In this note we do this for the Yoneda with non-invertible orphisms p to and including the dimension n of the indexing obordisms. Here we reserve he term "∞-categorie for

[&]quot;(∞, 1)-categories," which have non-invertible morphisms only in thii bAlternativelyauthors decline to pick a model at all dimension.

One instance of this appears in the precursor [L1] to [Li2] quenesses contractibility and automatically ensure which avoids selecting a model of ∞-categories at all that all constructions are invariant under equivalence.

We will begin in §1 with an informal eview of the theory of ∞-categorie There are many approaches to the foundation of this subject, having its own particularmerits and demerits. Rather than single out one of those foundations here, we shall attempt explain the ideas involved and how to work with the Time hope is audiencewhile experts will be able to fill in the details missing from our exposition in whatever framework they happen to prefer.

The fundamentadbstacle to giving a uniform definition of an ∞-category is that our traditional set-based foundations for mathematics are not really suitable for reasoning about ∞-categories: sets do not feature prominently in ∞ -categorical data, especially when ∞ -categories are only Awell-defined up to equivalence, as they must be when different models are involved then considered up to equivalence, ∞-categories, like ordinary categories, do not have a well-defined set of objects entially, ∞-categories are

1-categories in which athe sets have been replaced by the pasting composite hich in the example above decategory has hom-sets of morphisms ategories have stood as a morphism between ∞-groupoids, but such melimilarly, in well-behaved models of ∞-categories: phisms no longer define functions since homotopy types do not have underlying sets of pointhis is why there **Proposition 3.1** (JoyaRiehl-Verity).∞*-categories*,is no canonical model of ∞-categories.

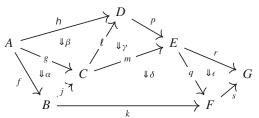
spite these subtleties, it is possible to reason rigorously and resultwas first observed in the quasi-category model-independently about ∞-categories without gettingdel by Joyal [J]. Since the category of quasi-categories bogged down in the combinatorial scaffolding of a particartesian closedt is enriched overitself, defining ular model. The framework introduced in §3 considerably $(\infty, 2)$ -category of uasi-categories. The 2-category sults that have been proven using a model.

Howeverthis currentstate of the artemploys proof techniques that are unfamiliar to non-category theorists models—including complete SegatesSeulative dream for the future where enhancements to the stategory of complete Segal spaces, and so autopt foundations of mathematics would allow us to interpret

3. The Formal Theory of ∞-Categories

In the paper "General theory of natural equivalences" tha marked the birth of category the Eilenberg and Mac Lane observed that categories, functors, and natural trans formations assemble into a 2-category CAT. The essence this result is the observation that natural transformations that this will render this paper readable to a wider and be composed in 2-dimensions that the composed in 2-dimensions the composed in 2-dimensions that the composed in 2-dimensions that the composed in 2-dimensions that the composed in 2-dimensions the composed in 2-dimensions that the composed in 2-dimensions the composed in 2-dimensions that the composed in 2-dimensions that the composed in 2-dimensions that the composed in 2-dimensions the composed in 2-dimensions that the composed in 2-dimensions the co cally" along a boundary functor or "horizontally" along a boundary category.

More generally, Power proves that any pasting diagram compatibly oriented functors and natural transformations has a unique composite.



 ∞ -groupoids. Where a category has a set of elements, an anturatransformation between the categories A ∞ -category has an ∞ -groupoid of elements, and where and G from the functor rph to the functor skf , can be decategory has nom-sets of morphisms ategories have composed as a vertice imposite of whiskerings of the ∞ -groupoidal mapping spaces axioms that turn a diatomic natural transformations α , β , γ , δ , for instance, rected graph into a category are expressed in the language the composite factors as $rp\beta$ followed by $r\gamma g$ followed by of set theorya category has a composition function sat-mg followed by $sqm\alpha$ followed by $s\delta f$, among eight total isfying axioms expressed in first-order logic with equality sibilities Power's theorem is that pasting composition By analogy composition in an ∞-category can be under well-defined.

functors, and ∞-natural transformations assemble into a c Reimagining the foundations of ∞-category ethesian closed 2-category ∞-CAT.

streamlines the basic core theory of ∞-categories, though varies is obtained by a quotienting process, its scope is currently more limited than the corpus of that maps each hom-quasi-category to its homotopy category by applying the lefadjoint to the (nerve) inclusion of categories into quasi-categoribe.other "welland thus is not feasible to integrate into the undergraducategories and 1-compliciatets among others—are ate curriculum. The concluding §4 describes a more specific cartesian closes a similar construction defines a

 $^{^{7}}$ While the meaning of the terms "∞-categories" and "∞-functors" in a gi 5 "Large" ∞-categories also exist and behave like large 1-categorie $\mathfrak m$ odel is typically clear, the "∞-natural transformations," which can be u ⁶Similar considerations have motivated Scholze et al to use the ter**st**ot**ochins æ'qu**ivalence classes of 2-cells in the ambient (∞, 2)-category, an referring to the "soul" of a "space"—as a synonym for ∞-groupoidsevident.

a "model-independent" point of viewte that these 2- prove the following facts about adjunctions between ∞categories are all biequivade/Ithe same" in the sense categories. appropriate to 2-category theory [RV2, §E.2].

The good newswhich is surprising to many experts, **Proposition 3.4** ([RV2,1.9]). *Adjunction* setween ∞ is that a fair portion of the basic theory of ∞-categories compose: can be developed in the 2-category ∞ +TCh&Te aspects

might be described as *formal category theory*, as they in Notice B = A and C = A where C = A in the state of the state A = A and C = A in the state A = A in junction, limit, and colimit that can be defined internally

to any 2-category. the 2-category CAT, these recover Proposition 3.5 ([RV22.1.10]). Given an adjunction classicahotions from 1-category theomylile in the 2-category ∞ -CAT these specialize to the correct notions A = B between ∞ -categories and a functoral classicahotions from 1-category theoryhile in the 2-

 ∞ -category theory Thus, for the core basic theory involving these notions, ordinary category theory extends to u is left adjoint to u if and only if there exists a natural iso categories simply by appending the prefix " $\infty-$ " [RV2, $h \leq m f \leq f$. 4].

Proposition 3.6 ([RV21.12]). Any equivalence can be Equivalences and adjunctibe following definitions promoted to an adjoint equivalence at the cost of replacing make sense in an arbitrary cartesian closed 2-category, the chatural isomorphisms. as ∞-CAT.

given by:

- a pair of ∞ -categories A and B,
- a pair of ∞ -functors $g:A\to B$ and $h:B\to A$, and
- a pair of invertible ∞-natural transformations $\alpha : id_A \cong hg$, and $\beta : gh \cong id$

Definition 3.3An **adjunction** between ∞-categories is given by:

- a pair of ∞ -categories A and B,
- a pair of ∞ -functors $u:A\to B$ and $f:B\to A$, and
- a pair of ∞-natural transformations n induf and $\epsilon : fu \Rightarrow id_A$

so that the following pasting identities hold:

One commonly writes $A \longrightarrow B$ to indicate that f is

left adjoint to *it*s **right adjoint** ith the data of the unit η and counit ϵ being left implicit.

Relative adjunctioThe unit and counit in an adjunc-**Definition 3.2**An equivalence between ∞-categoriesion satisfy a universal property in the 2-category ∞-CAT that we now explore in the case of the counit $\epsilon: \hbar u \Rightarrow id$ Given any ∞ -functors $a: X \to A$ and $b: X \to B$, pasting with *ϵ* defines a bijection between ∞-natural transformations $\alpha : fb \Rightarrow a$ and $\beta : b \Rightarrow ua$. Any $\alpha : fa \Rightarrow b$ factors through a unique β : $b \Rightarrow ua$ as displayed below:

which is to say that the pair (u, ϵ) defines an absolute right *lifting* of ig through f. Indeed, f is left adjoint to u with counit ϵ if and only if (u, ϵ) defines an absolute right lifting of id, through f [RV2, 2.3.7].

Any component ϵa of the counit ϵ of an adjunction satisfies a universal property analogous to (3.7):

which asserts that $(ua, \epsilon a)$ defines an absolute right lifting of a through f. Motivated by examples such as these, ab-

Among the many advantages of using definitions the tute right liftings (r, ϱ) of a generic ∞ -functor $g: C \to A$ are taken "off the shelf" from the 2-categories literattheough $f: B \to A$ can be thought of as exhibiting r as is that the standard 2-categorical proofs then special \vec{r} is that the standard 2-categorical proofs then special \vec{r} is that the standard 2-categorical proofs then special \vec{r} is that the standard 2-categorical proofs then special \vec{r} is the standard 2-categorical proofs then special \vec{r} is the standard 2-categorical proofs.

731

 $^{^9}$ What is less obvious is that these definitions are "correct" for ∞-categor ⁸The technical part of this story involves proofs that the "synthetic"o**rgr. Informact** as of equivalentibes; easily seen in any of the mordels. notions introduced here agree with the previously-defined "analytit" enotions in the previous introduced here agree with the previously-defined "analytit" enotions in the previous introduced here agree with the previous in the previous agreement in the previous introduced here agree with the previous agreement in the previous agreement agreement in the previous agreement agre the guasi-categories model¶¶VBµt we encourage those not alreadølææensional data enumerated in Definition 3.3 suffices to determine a fu quainted with the analytic theory of some model of ∞-categories to**nleatopyhæderadf**unction," uniquely up to a contractible **spæieæ**f definitions first. [RV1].

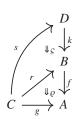
Definition 3. Laiven ∞ -functors $g: C \to A$ and $f: B \to A$ A with common codomaina, functor $r: C \to B$ and ∞ natural transformation $\rho: fr \Rightarrow g$ define an **absolute** right lifting of g through f or a right adjoint ela**tive to** g if pasting with ϱ induces a bijection between ∞ natural transformations as displayed below:

The following lemmas about relative right adjoints admit straightforward 2-categorical proofs:

Lemma 3.9 ([RV22.3.6]). If (r, ϱ) is right adjoint to $f: B \to A$ relative to $g: C \to A$ then for any $c: X \to C$, $(rc, \varrho c)$ is right adjoint to f relative to ϱc .

$$X \xrightarrow{c} C \xrightarrow{r} \downarrow_{Q} \downarrow_{f}$$

Lemma 3.10 ([RV2, 2.4. Σ)) ppose that (r, ϱ) is right agreelative left adjoint at d, as encoded by absolute lifting cjoint to $f: B \to A$ relative to $g: C \to A$. Then in any diagrams: of ∞-functors and ∞-natural transformations



is right adjoint to fk relative to g.

right adjoint and admits J-shaped colimits if the consta diagrams functor admits a left adjoint:

$$A \xrightarrow[\lim]{\text{colim}} A^J$$

The counit λ of the adjunction $\Delta \dashv \lim$ and the unit γ of the adjunction colim $\dashv \Delta$ encode the limit and colimit cones, as is most easily seen when considering their components at a diagram $d: 1 \rightarrow By$ Lemma 3.9, the right and left adjoints restrict to define relative adjunctions:

$$1 \xrightarrow{A} A^{J} = A^{J} \qquad 1 \xrightarrow{A} A^{J} = A^{J}$$

These observations allow us to generalize Definition 3.11 to express the universal properties of the limit or colimit of a single diagram in settings where the limit and colimit functors do not exist.

Definition 3.12A diagram $d: J \rightarrow A$ between ∞ categories **admits a limit** just when Δ admits a relative right adjoint at d and **admits a colimit** just when Δ admit

$$\begin{array}{ccc}
 & A & & A \\
 & \downarrow & \downarrow & & \\
 & 1 \xrightarrow{d} A^{J} & & 1 \xrightarrow{d} A^{J}
\end{array}$$

There is an easy formal proof of the ∞-categorical version of a classical theorem:

Theorem 3.1 Bight adjoints preserve limits and left adjoint (s, σ) is right adjoint to k relative to r if and only if (s, ρ)

Proof. Consider an adjunction as in Definition 3.3 and a Limits and colimitelative adjunctions can be used timit of a diagram as in Definition 3.762 show that the

define limits and colimits of diagrams valued inside alimit is preserved by the right adjoint, we must show that ∞ -category A and indexed by another ∞ -catego $\triangle J$. a cartesian closed 2-categor CAT contains a terminal ∞ -category 1, which admits a unique ∞ -functor $!: J \to 1$ from any other ∞ -category J. Maps $a: 1 \rightarrow A$ from the terminal ∞-category into another ∞-category define *elements*

any diagram $d: J \to A$ defines an element $d: 1 \xrightarrow{J} iA$ the ∞ -category behaped diagrams in Exponentiation joint encoded by the component at d of the council ϵ with the unique functor $!: J \to 1$ defines the constant the adjunction $J \to u'$, as below-left:

grams functor $\Delta: A \xrightarrow{J}$, Awhich carries an element of A to the constant J-shaped diagram at that element.

Definition 3.1\(\text{A}\)n \infty-category A admits J-shaped lim- $A \xrightarrow{u} B$ $A \xrightarrow{u} A$ $A \xrightarrow{u} A$

¹⁰We find this terminology less confusing than referring to the "objectom, the 2-functoriality of the exponential in a cartesian closed 2-categor $y^{j}\Delta = \Delta f$ and $\epsilon^{-j}\Delta = \Delta \epsilon$. Hence, ∞ -category A, which is itself an object of ∞ -CAT.

the pasting diagram displayed above-left equals the general theory when offered this point, the displayed above-centerich equals the diagram aboveproofs of the results stated here are not too difficult. right.This latter diagram is a pasted composite of relativæut these results encompass only a small portion of ∞right adjoints, and is then a relative right adjoint in its attegory theory, and for most of the rest there is a greate right by Lemma 3.10. jump in complexity when extending from 1-categories to ∞-categories. This is best illustrated by considering the

press the full universal properties of adjunctions between a manufacture by considering and co/limits in ∞-categories hese require additional stated as follows: ∞ -category Hom(f,g) equipped with canonical functors ent to the ∞ -groupoid of functors Hom(A,b)and an ∞ -natural transformation as below-left, forme \mathfrak{GVGV} A. the pullback of ∞-categories below-right:

While the universal property of $H_p(m, g)$ as an object of ∞-CAT is weaker than the standard notion of comma [L2, §5.1.3]. object in 2-category theory, nevertheless:

Theorem 3.15 ([RV \mathfrak{Z} 5.8]). An ∞ -functor $f: B \rightarrow A$ admits a right adjoint $r: C \to B$ relative to $g: C \to A$ if amork. only if there exists an equivalence over $C \times B$:

$$Hom_{A}(f, g) \simeq_{C \times B} Hom_{B}(B, r).$$

When Theorem 3.15 is applied to $f: B \to A$ and itd specializes to:

Corollary 3.16 ([RV2, 4.1Ah]) ∞ -functor $f: B \rightarrow A$ admits a right adjoint $u: A \to B$ if and only A iff H0)n $\Rightarrow_{A \times B}$ $Hom_k(B, u)$.

When Theorem 3.15 is applied to $\Delta: A \to A^J$ and $d: \mathbf{1} \to A^J$ it specializes to:

Corollary 3.17 ([RV2, 4.3.**A**]) diagram $d: J \rightarrow A$ has a (ii) respect equivalences between these spaces themselves $limit \ \ell : 1 \rightarrow A \ if \ and \ only \ if \ Horto A, \ d) \approx Horn (A, \ell).$

Here the comma ∞ -category $H_{\Omega}(\Delta, d)$ defines the ∞ -category α fones over dThe ∞ -category Hom(A, ℓ) admits a terminalelementd,: 1 \rightarrow Hom_A (A, ℓ) , which defines a right adjoint to the unique functor !: Hom_A $(A, \ell) \rightarrow 1$. Via the equivalence $H_0(\Delta, d) \approx$ $\operatorname{Hom}_A(A, \ell)$ we see that the limit cone is terminal in the • reflexivity for all x, x = x is true. ∞-category ofcones. Indeed,d admits a limit if and only if the ∞ -category of cones admits a terminal element predicates P(x) = P(x) holds if and only if

structure borne by the 2-category ∞ -GAThely the ex-istence of comma ∞ -categories for any pair of ∞ -functors $a, b: 1 \to A$, the ∞ -groupoid ($a \circ b$) is equiva- $f: B \to A$ and $g: C \to A$. The comma ∞ -category is an lent to the ∞ -groupoid of functors $a \circ b$.

One direction of this equivalence is easy to describe: th map from right to left is defined by evaluation at the identity element $i\not a$ 1 \rightarrow Hom $_A(a, a)$. The inverse equivalence defines the Yoneda embedding, which is notoriously difficult to construct in ∞-category theory as it involves equipping A with a homotopy coherent composition func-

To achieve further simplifications of ∞-category theory, one idea is to ask our foundation system to do more of the

4. A Synthetic Theory of ∞-Categories

To explain the desiderate or an alternative foundation, consider the default notions of "sameness" for ∞categorical data wo elements in an ∞-category are the same if and only if they are connected by a path in the underlying ∞-groupoid, while parallel morphisms are the same if and only if they are connected by an invertible 2cell, defining a path in the appropriate mapping space. Fo an ∞-categorical construction to be "well-defined" it must

- (i) respect the notions of sameness encoded by paths in suitable spaces, and
- since they are only well-defined as homotopy types.

Axiomatizingamenes traditional foundations, there is a similar axiom that mathematical constructions or results must respect sameness as encoded by equality The axioms that define the binary relation "=" in first-ord

• indiscernibility of identicalsor all x, y and for all P(y) holds.

Could we teach this to undergraduates? If classica Accet of the govern Martin-Löf's identity types in ar egory theory were a standard course in the undergraditate ative foundational framework for constructive mathmathematics curriculum, then perhaps students with empetrics known as dependit theory [M-Li]ere the ticular interest in the subject might go on to learn sommemitives include types like $d\mathbf{N}_{n}(\mathbf{R})$, and Group and 2-category theorike students with a particular interesterms like $17 : \mathbf{N}, :IGL_n(\mathbf{R}), S_n : Group,$ which may dein algebra might go on to take more specialized courspenish on an arbitrary context of variables drawn from preclassical algebraic geomethy ebraic number theory, viously defined types (ether $n : \mathbf{N}$ appearing in three

[RV2, 4.3.2].

examples abov $\frac{1}{2}$) In traditional foundations, mathematidentification p: x = x defines a path from x to y in ical structures are defined in the language of set the ϕ ϕ ϕ -groupoid A, identifications in dependent type thewhile proofs obey the rules of first-order longidepen- ory are often referred to colloquially as "paths." dent type theory, mathematical constructions and mathe-homotopical interpretation of dependent type t matical proofs are unified bth are given by terms in apory. The homotopical nterpretation of ependentype propriate type The ambient type then describes the someony was discovered in the early 21st century by Awode of object being constructed or the mathematical statement and Voevodslowilding on earlier work of Hofbeing proven, while the context describes the inputs totalme and Streicherhis connection inspired Voevodsky construction or the hypotheses for the theorem. to make the following definition:

The rules for Martin-Löf's identity types include:

 identity-formation in the contextof two variables x, y : A there is a type $x_A \Rightarrow y$.

Types encode mathematically meaningful statements or assertions this rule says that it is reasonable to inquire x is identifiable with x with all quantifiers interpreted in the same type \mathbb{C} ertain identity types \mathbb{C} ch as 3 \mathbb{R} 4, will be empty, since the terms 3 and 4 cannot be identifiest as contractible spaces might contain uncountably but the type nevertheless exists.

refl: x = A x.

encoded by the type, so this rule corresponds to the reflects identifications, theory behaves as af conivity axiom.

 identity-elimination: given any family of types Q(x, y, p) depending on x, y : A and p : x = Ato provide a family ofterms $q_{,y,p}$: Q(x, y, p) for all x, y, p it suffices to provide a family of terms dQ(x, x, ref.) for all x.

This rule implies Leibniz's indiscernibility in indiscernibility indiscernibility in indiscernibility indiscernibili and much more besides:

any type with the structure of an ∞-groupoid, in whichath be tearn coded as terms in a universe of t∜petsus, identifications encode homotopies.

erated identity types of a type A provides:

- functions $(-1)^1 : (x = A y) \rightarrow (y = A x)$ that invert identifications,
- functions $* : (x_A \Rightarrow y) \times (y \Rightarrow z) \rightarrow (x =_A z)$ that compose identifications,
- higher identifications assoc : $(p*q)_{x} \underline{*}_{r} = p*(q*r)$ between composable triples of identifications,

ing the identity-elimination rule from the reflexivity terms provided by the identity-introduction rule. Since an

 $\Sigma_{x:A} \prod_{y:A} x =_A y$

whether x and y might be identified, once x and y are terms ... as requiring continuous specifications of data.

infinitely many points ontractible types might contain • identity-introduction on x:A, there is a term more than one term. But since any two terms in a contractible type may be identified since identity-Terms in types are witnesses to the truth of the state imination implies that all of dependentype theory tractible type had a unique term.

> Univalent foundation artin-Löf's dependent type theory is a formal system in which all constructions are conti uous in paths, our first desideratume second desideratum, of well-definednessnderequivalencesetween types, follows once Voevodsky's univalence axiom is adde to dependentype theory, resulting in a formal system called homotopy type theory or univalent foundations.

Voevodsky's univalence connects two notions of same-Theorem 4.1 ([BG, Lul]he iterated identity types proviets for types traditional dependent type theory, types are the points, the identifications are the paths, and threehiobien of sameness between types A, B belonging to a universe \mathscr{U} is given by paths $p: A_{\mathscr{U}} = \mathscr{B}$ in the universe.

In low dimensions, the ∞-groupoid structure on the itgroupoids: for any A and B there is a type $A \simeq B$ of (homotopy) equivalences from $A \stackrel{1}{\leftarrow} By$ identity-elimination, to define a natural map id-to-equiv : $AB \rightarrow A \simeq B$ it suffices to define the image of ref $= \mathcal{U}A$, which we take to be the identity equivalence univalence axiom asserts that this map is an equivalence for all types A and

By univalence, an equivalence $e: A \simeq B$ gives rise to a and much more. All of these terms are constructed uspath $ua(e): A =_{\mathcal{U}} B$, which can then be used to transport

Definition 4.2. type *A* is **contractible** just when there is a term of type

¹³The definition of ontractible pesmakes use of the dependent pair and dependentunction type is dependent the theory. A term of type 1 In a mathematical by the ment of the form "Let . . . be . . . then stuff" $\Sigma_{x:A}$ $\Pi_{y:A}$ $x =_{A}$ y provides a term c:A, the "center of contraction," together following the "let" likely declares the names of the variables in the with textablely of paths $\varphi =_A z$ for all z:A, the "contracting homotopy." scribed after the "be," while the stuff after the "then" most likely deßursbeß'a pæredox can be resolved by a cumulative hierarchy of univers 15 It is an interesting challenge to define a type whose data witnesses that or term in that context.

this system.

 $^{^{12}}$ One additional rule, not listed here, concerns the computational location of B is an equivalence in such a way that this type is contractible whenever it is inhabited.

terms in any type involving A to terms in the corresp**oall**ows from this axiom that composition is associaing type involving B. Thus, univalent mathematics is aiwtenand unital, using canonical dentity arrows id: matically invariant under equivalence between typesHom₄ (x, x).

The second axiom involves a type of isomorphisms in ∞-categories in univalent foundaThere is an experimental exploration of ∞-category theory [RS, BW,ABM]hich may be defined in a similar manner to the type in an extension of homotopy type theory in which every equivalences between types [RS, §10].

type A has a family of arrows $H_0(x, y)$ in addition to The Yoneda lemmahe advantages this synthetic the family of paths ¼ ∓. These types are obtained frorframework for∞-category theory are on display when a new type-forming operation that produces extension types ing the proofs of the Yoneda lemma in [RV2, 5.7.1 whose terms are type-valued diagrams that strictly extection [RS, 9.1We sketch the latter here in the same spea given diagram along an inclusion of "shapes" (polytoplesase considered in Theorem 3.18. embedded in directed cubes constructed in the theory of **Theorem 4.4** ([RS1]). Given an ∞ -category A and ele-

a strict interval) [RS, §2- \blacksquare \$tension types include types ments $a, b: 1 \rightarrow A$, the type H(amb) is equivalent to the analogous to the pullbacks of (1.4) and (3.14). The formal system has semantics in complete Segal $Hom_{A}(x, a) \rightarrow Hom_{A}(x, b)$ of fiberwise functions.

spaces [RS, W] so it provides a rigorous way to prove the key difference between Theorem 3.18 and Theorem orems about-categories as understood in traditional4.4 is that in the present framework it is straightforward t foundationsAt the same time, the experience of workiterine the inverse equivalence to the evaluation at idenwith ∞ -categories in this "univalent" foundational settity map. The inverse equivalence takes an arrow f: is much more akin to the experience of working with \mathbb{H} om_a (a, b) to the naturalmap $x \mapsto g$ categories in traditional foundations. $\Pi_{x:A}$ Hom_A $(x, a) \rightarrow$ Hom_A(x, b). The usual proof then

It takes work to set up this formal system and considernonstrates that hese maps are inverse equivalences. ably more to describe its interpretation in complete Steggathe direction, this is given by an identification $f \circ$ spaces; indeed, this is where the hard work of solving $d_0 o =_{\text{Hom}_{\Lambda}(a,b)} f$, which expresses the fact that composimotopy coherence problems goæt once this is done, tion in an ∞-category is unital the other direction, we it is possible to define the notion of an ∞ -category, somest show that a fiberwise map ϕ agrees with the map thing that would no doubt be reassuring to undergradwhose component x is given by $g \mapsto \phi_a(\mathrm{id}_a) \circ g$: ates hoping to learn about the fm. The two axioms ex- $\operatorname{Hom}_A(x, a) \to \operatorname{Hom}_A(x, b)$. By a consequence of the unipress the "Segal" and "completeness" conditions of Realthice axiom called "function extensionality," it suffices model [R1], respectively. to show that $\phi(id_a) \circ g =_{Hom_A(x,b)} \phi_x(g)$. This follows

Definition 4.3 ([RS, 5.3,10Afr]) ∞ -category is a type $\stackrel{\text{Hom}_A(x,b)}{\text{ural}}$," providing an identification $(ipl_a) \circ g =_{\text{Hom}_A(x,b)}$ in which:

• every composable pair of arrows has a unique condo g condo g condo g condo g, we obtain the required identification.

In fact, [RS, 9.5] proves a generalization of the Yoneda • for any pair of terms x, y : A the natural map x = alemma that was first discovered with this formal system $y \rightarrow x \cong_A y$ from paths in A to isomorphisms in A is and later proven in traditional foundations [RV2, 5.7.2] an equivalence. **Conclusion**Significanttechnicalproblemsremain to The "uniqueness" in the first axiom is in the sense Make it feasible to teach ∞-category theory to undergrade

from the fact that fiberwise maps are automatically "nat-

 ϕ_r (id_a $\circ g$). Since the function ϕ spects the identification

Definition 4.2:what it asserts is that a suitable space of tes, but I have hope that in the future the subject will no composites analogous to Definition 1.3 is contractiblesem as forbidding as it does today. the default meaning of uniqueness in this formal system. Like in the space defined by (1.4), a term in the space of composites provides a higher-dimensional witness to the composition relation composition function

$$\circ$$
: Hom_A $(y, z) \times$ Hom_A $(x, y) \rightarrow$ Hom_A (x, z) ,

is obtained by throwing away these witnessike any construction in homotopy type theathis function respectsidentification and is therefore well-defined It

 $^{^{16}}$ Recallthatin the formal-category theory developed in the 2-category ∞-CAT, a concrete definition of ∞-categories is not used.

ACKNOWLEDGMENTS.Tim Campion, Maru Sarazola, Mike Shulman, Dominic Verity and Jonathan Weinbergeall provided helpfulsuggestionsn an early draftversion ofthis article, while John Bourke suggested the rebranding of absolute lifting diagrams 10.2140/gt.2010.14.59R2578310 as relative adjunctions Further improvements were three anonymous referee the author is also grateful to receive supportrom the NSF via the grants DMS-1652600 and DMS-22043040m the ARO un der MURI Grant W911NF-20-1-0082, from the AFOSR under award number FA9550-21-1-0009, and from a S2022, DOI 10.1017/97811089368804354541 mons Foundation Fellowship.

[R1] Charles Rezk, A model for the homotopy theory of homo theoryTrans.Amer.Math.Soc.353 (2001)no. 3, 973-1007, DOI 10.1090/S0002-9947-00-026 MR 2804411

[R2] Charles Rezk, A Cartesian presentation weak ncategorie Geom. Topol. 14 (2010) no. 1, 521-571 DOI

[RV1] Emily Riehl and Dominic Verity Homotopy coherent made in response to comments from Steven Sam and adjunctionand theformaltheory of monads Adv. Math. **286** (2016), 802–888, DOI 10.1016/j.aim.2015.09.011. MR3415698

> [RV2] Emily Riehl and Dominic Verity, Elements of ∞categortheoryCambridge Studiein Advanced Mathematics, vol. 194, Cambridge University Press, Cambridge,

> [RS] Emily Riehl and Michael Shulman, A type theory for synthetic ∞-categories, High. Struct. 1 (2017), no. 1, 147-224 DOI 10.1007/s42001-017-0005H63912054

[W] J. Weinberger\$trictstabilityof extension typ€\$022,

References

[Ba] C. Bardomiano Mart´ınez, Limits and colimits of synth@fixiv:2203.07194. ∞-categories, 2022, arXiv:2202.12386.

[BG] Benno van den Berg and Richard Garner, Types are ω -groupoids, Proc. Lond. Math. Soc. (3) **102** (2011), n 370-394, DOI 10.1112/plms/pdg0282769118

[Be] Julia E. Bergner, The homotopy theory of $(\infty, 1)$ -cate London Mathematical Society Student Texts, vol. 90, bridge University Press, Cambridge, MRB8791455

[BV] J. M. Boardman and R. M. Vogt, Homotopy invariant braic structures on topological spaces, Lecture Notes ematics, Vol. 347, Springer-Verlag, Berlin-New York, MR0420609

category theory, 2021, arXiv:2105.01724.

[G] A. Grothendieck, Pursuing stacks, 1983, arXiv:2111.01000

[J] A. Joyal, The theory quasi-categories and its applications, ning image is courtesy of nevarpp via Getty. Advanced Course on Simplicial Methods in Higher Catehoto of Emily Riehl is courtesy of Marshall Clarke. gories, vol. 2, Centre de Recerca Matitam2008.

[KV] Ya. Varshavski i and Kazhdan, The Yoneda lemma for complet@egalspace&Russian,with Russian summary), Funktsional Anal. i Prilozhen. 48 (2014), no. 2, 3-38, DOI 10.1007/s10688-014-005@nglish transl.Funct. Anal. Appl. 48 (2014), no. 2, 81-10763288174

[L1] J. Lurie, On ∞-topoi, 2003, arXiv:0306109.

[L2] Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009, DOI 10.1515/97814008305 DBR2522659

[L3] J. Lurie, Higher algebra 2017, www.math.ias.edu /~lurie/papers/HA.pdf

[Lu] Peter LeFanu Lumsdain Weak ω-categories from intensionaltype theoffyped lambda calculi and applications, Lecture Notes in Comput. Sci., vol. 5608, Springer, Berlin, 2009, pp. 172-187, DOI 10.1007/978-3-642-02273-9 14. MR2550047

[M-L] Per Martin-Löf, An intuitionistic theory of types: predicative part, Logic Colloquium '73 (Bristol, 1973), Studies in Logic and the Foundations of Mathematics, Vol. 80, North-Holland, Amsterdam, 1975, pp. 73-1480387009

[Q] Daniel G. Quillen, HomotopicallgebraLecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967.MR0223432