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ABSTRACT: Seasonal climate forecasts have socioeconomic value, and the quality of the forecasts is important to various
societal applications. Here we evaluate seasonal forecasts of three climate variables, vapor pressure deficit (VPD), temper-
ature, and precipitation, from operational dynamical models over the major cropland areas of South America; analyze their
predictability from global and local circulation patterns, such as El Niño–Southern Oscillation (ENSO); and attribute the
source of prediction errors. We show that the European Centre for Medium-Range Weather Forecasts (ECMWF) model
has the highest quality among the models evaluated. Forecasts of VPD and temperature have better agreement with obser-
vations (average Pearson correlation of 0.65 and 0.70, respectively, among all months for 1-month-lead predictions from
the ECMWF) than those of precipitation (0.40). Forecasts degrade with increasing lead times, and the degradation is due
to the following reasons: 1) the failure of capturing local circulation patterns and capturing the linkages between the pat-
terns and local climate; and 2) the overestimation of ENSO’s influence on regions not affected by ENSO. For regions af-
fected by ENSO, forecasts of the three climate variables as well as their extremes are well predicted up to 6 months ahead,
providing valuable lead time for risk preparedness and management. The results provide useful information for further de-
velopment of dynamical models and for those who use seasonal climate forecasts for planning and management.

SIGNIFICANCE STATEMENT: Seasonal climate forecasts have socioeconomic value, and the quality of the forecasts
is important to their applications. This study evaluated the quality of monthly forecasts of three important climate varia-
bles that are critical to agricultural management, risk assessment, and natural hazards warning. The findings provide useful
information for those who use seasonal climate forecasts for planning and management. This study also analyzed the pre-
dictability of the climate variables and the attribution of prediction errors and thus provides insights for understanding
models’ varying performance and for future improvement of seasonal climate forecasts from dynamical models.

KEYWORDS: Atmospheric circulation; Climate prediction; Dynamical system model; Extreme events;
Forecast verification/skill; Seasonal forecasting

1. Introduction

Seasonal climate forecasts provide valuable information for

early warnings, risk assessment, and decision-making pro-

cesses in multiple sectors, including but not limited to disaster

management, water resources, agriculture, energy, and public

health (Thomson et al. 2006; Clements et al. 2013; National

Research Council 2016; Andersson et al. 2020; Orlov et al.

2020; White et al. 2022). Take the agriculture sector as an ex-

ample: seasonal climate forecasts have been used to support

operational decisions on crop management (selection of crops,

timing of planting and harvest), irrigation scheduling, and

product marketing and trading (Clements et al. 2013; Ceglar

and Toreti 2021; White et al. 2022). As seasonal climate

forecasts continue increasing their socioeconomic potentials,

several meteorological forecast services around the world, such

as the European Centre for Medium-Range Weather Forecasts

(ECMWF), the Meteorological Office of the United Kingdom,

and the United States’National Centers for Environmental Pre-

diction (NCEP), are providing routine operational seasonal

forecasts at regional and global scales. However, the quality of

those forecasts varies with dynamical models, variables of inter-

est, and geographical locations, among other factors, and inac-

curate forecasts may even be harmful to end users (Ziervogel

et al. 2005). Therefore, the quality of the climate forecasts needs

to be thoroughly evaluated.

There are numerous studies evaluating the quality of monthly

and seasonal climate forecasts (Jia et al. 2015; Ogutu et al.

2017; Johnson et al. 2019; Gubler et al. 2020; Ehsan et al. 2021;

Klingaman et al. 2021; Calı̀ Quaglia et al. 2022). Almost all the

existing studies focused on forecasts of precipitation or/and air

temperature, two of the most important climate variables that

are essential for agricultural planning and are indicators of natu-

ral disasters such as heat waves, floods, and droughts. Another

variable, vapor pressure deficit (VPD), is also essential for

agricultural planning and risk assessment (Lobell et al. 2014;
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Peng et al. 2018) and an indicator of plant water stress

(Zhang et al. 2021a,b), droughts (Kimm et al. 2020; Zhou

et al. 2020), and wildfires (Mueller et al. 2020; Zhuang et al.

2021) and thus also deserves attention. VPD is the differ-

ence between the moisture in the air and the moisture the

air can hold at saturation; it describes air humidity and

evapotranspiration and regulates plant growth and functioning

(Yuan et al. 2019; Grossiord et al. 2020). VPD forecasts are not

available for most seasonal forecast models (such as those partic-

ipating in the North American Multi-Model Ensemble) except

for those who join the Copernicus Climate Change Service

[i.e., ECMWF, the Met Office (UKMO), Météo-France (MF),

Deutscher Wetterdienst (DWD), Centro Euro-Mediterraneo

sui Cambiamenti Climatici (CMCC), NCEP, and Japan Meteo-

rological Agency (JMA)], not to mention the evaluations of the

forecasts.

Climate variables at monthly and seasonal scales are strongly

influenced by El Niño–Southern Oscillation (ENSO), an oce-

anic and atmospheric circulation teleconnection pattern. The

predictability of ENSO is argued to be the main source of pre-

dictability of the climate at monthly and seasonal time scales for

many regions over the globe (Manzanas et al. 2014). Dynamical

models have reliable skills to predict ENSO with months ahead

but the prediction skill for climate variables, especially precipi-

tation, is less promising (Johnson et al. 2019). The skill of cli-

mate forecasts depends also on the skill of forecasts of local

circulation patterns and the forecast linkages between the pat-

terns and the climate. A recent study showed that ECMWF

failed to predict the North American monsoon precipitation

but successfully forecasted the local circulation patterns (Prein

et al. 2022), which were then used to estimate the precipitation

accurately (Prein et al. 2022). Therefore, understanding the

forecast skill of local circulation patterns can help identify

model deficiencies and provide information for future model

improvement.

South America plays an increasingly important role in

global crop production. Brazil has exceeded the United States

in soybean production and become the largest producer in re-

cent years and is likely to be the world leader in soybean pro-

duction in the next decade (Colussi and Schnitkey 2021). In

addition, Brazil is the largest producer of sugarcane (the most

produced crop product), and its annual production accounted

for 13% of world production in 2000 and increased to 40% in

2019 (FAO 2021). Brazil is also the second largest producer of

cattle, which relies heavily on pasture and grassland. However,

Brazil’s grass and crop production depends on the climate condi-

tion: yields decline in dry and hot years with unusually low pre-

cipitation during the early stages of crop development (Rattis

et al. 2021). Therefore, climate forecasts with months ahead are

of vital importance to agricultural planning and risk management

of the regions.

Seasonal forecasts of temperature and precipitation in

South America from dynamical models have been widely eval-

uated (e.g., Bombardi et al. 2018; Andrian et al. 2023; Ferreira

et al. 2022). The seasonal forecasts of temperature are gener-

ally better than those of precipitation (Andrian et al. 2023;

Ferreira et al. 2022); temperature has high predictability over

northern South America and moderate predictability over

higher latitudes, while precipitation has moderate predictabil-

ity over northeastern Brazil and southeastern South America

(Andrian et al. 2023). The predictability of summer precipita-

tion over northern and southeastern South America is from

ENSO, which modulates its dominant interannual variability

(Bombardi et al. 2018). However, the prediction performance

does not solely stem from ENSO, but also from local processes

(Gubler et al. 2020).

Similar to other regions in the world, the climate in South

America is influenced by the ENSO teleconnection, com-

monly represented by the Niño-3.4 index (Cai et al. 2020).

During an El Niño event, the positive sea surface temperature

(SST) anomaly in the equatorial eastern Pacific decreases the

east–west SST gradient and hence weakens the Walker circu-

lation (Gill 1980), resulting in a warmer and drier condition

over the equatorial eastern South America and a cooler and

rainier condition over southeastern South America through

Rossby wave teleconnections (Ghil and Mo 1991; Cai et al.

2020). The impact of ENSO on South America climate is

modulated by other large-scale oceanic and atmospheric pat-

terns, such as Indian Ocean dipole (IOD) mode (Chan et al.

2008), Southern Annular Mode (SAM) (Gillett et al. 2006;

Vera and Osman 2018), and Pacific–South American (PSA)

pattern (Irving and Simmonds 2016). These large-scale pat-

terns affect local circulations, such as trade winds and the

South America low-level jet (SALLJ) (Boers et al. 2014;

Montini et al. 2019). Specifically, trade winds with moist air

from the tropical Atlantic are blocked by the Andes after

reaching the Amazon basin and then deflected to the south

(forming the SALLJ), facilitating the development of meso-

scale convective systems, and contributing to precipitation in

southeast South America (Salio et al. 2007; Boers et al. 2014).

Therefore, a high-performance forecast of trade winds and

the SALLJ may help to forecast climate variables, such as

precipitation and VPD, in South America.

This study addressed two scientific questions: 1) How do

dynamical models perform on seasonal time scales? 2) How

could dynamical models potentially improve their predic-

tions? To answer the first question, we evaluated the ability of

dynamical models in capturing the spatial and temporal patterns

of three important climate variables (temperature, precipitation,

and VPD). The quality of the forecasts was evaluated for each

month with 1–6-month lead time for the major croplands over

South America. We also evaluated the models’ ability in predict-

ing extremes associated with the climate variables. To answer the

second question, we analyzed the linkages between potential pre-

dictors, i.e., global and local circulation patterns, and the local

climate and quantified the contribution of prediction errors of

circulation patterns to the prediction errors of the climate

variables.

2. Data and methods

a. Evaluated variables

We evaluate three climate variables, i.e., VPD, tempera-

ture, and precipitation, over the major crop production region

of South America (668–408W, 428–08S) (Fig. 1b) and three
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circulation patterns, i.e., ENSO, northerly moisture trans-

port associated with the SALLJ, and easterly moisture

transport associated with trade winds, that affect the local

climates at a monthly scale. VPD is calculated as the differ-

ence between the saturated vapor pressure given air tem-

perature (T; 8C) and the actual vapor pressure, and thus it

describes the dryness of the air. The higher the VPD value,

the drier the atmosphere. The saturated vapor pressure is

calculated as follows:

svp(T) 5 6:108 3 exp
17:27 3 T

T 1 237:3

( )

: (1)

To overcome the underestimation of VPD due to temporal

aggregation (Allen et al. 1998), monthly mean VPD is calcu-

lated as

VPD 5
[svp(Tmn) 1 svp(Tmx)]

2
2 svp(Dmean), (2)

where Tmn and Tmx are the monthly mean of daily minimum

and maximum air temperatures, respectively, and Dmean is

the monthly mean dewpoint temperature. The ENSO phe-

nomenon is represented by the Niño-3.4 index, which is the

SST average over 1708–1208W, 58S–58N. Northerly moisture

transport associated with the SALLJ is represented by the

V850 index defined as the 850-hPa meridional wind averaged

over 658–558W and 258–158S (Wang et al. 2004). Easterly

moisture transport associated with trade winds is represented

by the U850 index defined as the 850-hPa zonal wind aver-

aged over 708–508W, 158–58S (Yin et al. 2014). We choose the

three indices because the local climate over South America is

influenced mostly by these indices (Fig. S1 in the online

supplemental material). The location of the study domain and

the indices are shown in Fig. 1a. Variables and indices are

standardized against the mean and standard deviation of each

month during 1994–2016 (corresponding to the hindcast pe-

riod of the dynamical models, see the next section).

b. Forecasts from dynamical models

The 1–6-month-lead forecasts of monthly air temperature

and total precipitation are obtained and VPD calculated for

five models from the Copernicus Climate Change Service

(C3S) Climate Data Store (CDS) (ECMWF, UKMO, MF,

DWD, and CMCC) (https://cds.climate.copernicus.eu/). The

other two models in the CDS are not included (NCEP and

JMA) as they do not have matched variables. Forecasts of the

three indices (Niño-3.4, V850, U850) are calculated only for

the ECMWF model because it outperforms the others. The

forecasts have been initialized since January 1993 and the pre-

dictions were made for each day and up to 6 months after the

initialization. The predictions between 1993 and 2016 are re-

ferred to as hindcasts and those after 2016 are referred to as

forecasts (we will not distinguish hindcast and forecast hereaf-

ter, but only the hindcast period and forecast period). Since

the first initialization date is in January 1993, the 2–6-month-

lead predictions for January 1993 are not available, and so for

3–6-month-lead predictions for February 1993, etc. As the

predictions in 1993 and those in the forecast period are not al-

ways available (Table S1), we focus on the hindcast period be-

tween 1994 and 2016 in this study. The forecasts have global

coverage with 18 spatial resolution. Table S1 lists the details

of the models and further details of the dynamical models are

referred to the Copernicus Climate Change Service.

c. Benchmark data

Monthly temperature and VPD from ECMWF Reanalysis

v5 (ERA5) (Muñoz Sabater 2019b) are used to benchmark

temperature and VPD forecasts. The daily minimum and

maximum 2-m air temperatures used to calculate the monthly

VPD are from the hourly ERA5 data (Muñoz Sabater 2019a)

FIG. 1. Land cover and the study domains. (a) The study domain (668–408W, 428–08S) and the region of the three indices: Niño-3.4
(1708–1208W, 58S–58N), V850 (658–558W, 258–158S), and U850 (708–508W, 158–58S). (b) Three land cover types in South America and the
study domain. The original land cover data are from GLOBCOVER 2009 (ESA 2010). Regions that contain croplands in the original
land cover data are grouped into “Cropland”; regions that contain grasslands are grouped into “Grassland”; regions that are a mosaic of
croplands and grasslands are grouped into Cropland if croplands account for more than 50% and Grassland otherwise; and the rest is
grouped into “Others.”

ZHANG E T A L . 803APRIL 2023

Brought to you by Georgia Tech Library | Unauthenticated | Downloaded 08/27/23 12:30 AM UTC



using the daily statistics calculator application provided by the

Copernicus CDS, and then aggregated to get monthly values.

The spatial resolution of the ERA5 data used in this study is

18 3 18. Precipitation (mm day21) data used to benchmark

the precipitation forecasts are from CPC daily precipitation

with 0.258 spatial resolution. Missing values of daily precipita-

tion (20070226, 20020701, 20050728) were filled with the values

in the previous day, and then the daily data were aggregated to

monthly mean data. The CPC precipitation is linearly interpo-

lated into 18. The Niño-3.4 index is obtained from the NOAA

Physical Sciences Laboratory (PSL) website; the V850 and

U850 indices are calculated from the ERA5 monthly data.

d. Evaluation framework and metrics

To simplify the notations, we refer to climate variables as Y

and indices as X; those from observations as Yo and Xo and

those from forecasts as Yf and Xf. Figure 2 shows the frame-

work for evaluating dynamical model forecasts with five steps.

Step 1 evaluates models’ performance in predicting climate

variables of interest, which is represented by the correlation

between forecasts and observations [r(Yo, Yf)]. To under-

stand the predictability of the climate variables, steps 2–4

evaluate potential predictors (e.g., circulation patterns) that

affect local climates. Specifically, step 2 evaluates the ob-

served linkages between potential predictors and the climate

variables, which are represented by the correlation between cli-

mate variables and indices from the observations [r(Xo, Yo)].

Step 3 evaluates the models’ performance in predicting the pre-

dictors and step 4 in capturing the linkages, which are repre-

sented by the correlation between forecasts and observations

for the indices [r(Xo, Xf)] and the correlation between climate

variables and indices from forecasts [r(Xf, Yf)], respectively.

FIG. 2. Evaluation framework. Observed and forecasted climate variables are referred to as Yo and Yf, respectively; and observed and
forecasted indices are referred to as Xo and Xf, respectively. In step 1, we evaluate models’ ability in predicting climate variable Y through
correlation coefficient (r) between observation and model forecasts [r(Yo, Yf)]. In step 2, we evaluate the observed effect of index X on
Y [r(Xo, Yo)]. In steps 3 and 4, we evaluate the model’s performance in predicting index X [r(Xo, Xf)] and in capturing the linkage be-
tween X and Y [r(Xf, Yf)], respectively. In step 5, we show how much of the climate variable errors (Yerr) were attributed to index errors
(Xerr) [r2(Xerr, Yerr)], where the errors are defined as the difference between model forecasts and observations. For Yerr, it is the aver-
age of errors over the pixels of high impact from X, defined as r(Xo, Yo) is significant at 99% confidence level via Student’s t test as out-
lined by the thick black line in step 2.
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Last, to investigate the source of prediction errors of the cli-

mate variables and thus to help future model developments,

step 5 quantifies the contribution of predictor errors to cli-

mate variable errors, which is represented by the coefficient

of determination between the errors of climate forecasts

and the errors of indices forecasts [r2(Xerr, Yerr)]. The er-

rors are calculated as the difference between forecasts and

observations, and for the spatially distributed climate varia-

bles, the errors (Yerr) are the averages across the grid

points that are significantly affected by the index (Xo), that

is, r(Xo, Yo) exceeds the 99% confidence level. Therefore,

the r2(Xerr, Yerr) explains the contribution of the index

error to the climate variable error in the corresponding

regions.

Three verification metrics are used to evaluate the perfor-

mance of forecasts compared to the benchmark data: Pearson

correlation coefficient (r; CC), Heidke skill score (HSS), and

root-mean-square error (RMSE); the coefficient of determina-

tion (r2) metric is used to quantify the variance of one variable

explained by another, or the attribution of one variable to an-

other. CC is used to measure the performance on spatial or

temporal patterns, and it is verified by Student’s t test given

the sample size. RMSE measures the random error of the pre-

dictions, since all variables are standardized, the RMSE

measures the error in the scale of the standard deviation of

the variable and thus a RMSE of 1 can be used as a thresh-

old to distinguish the good and poor performance in terms

of errors. To compare the RMSE with the climatology of

the variable, we define rRMSE (%) where we multiply the

RMSE with the standard deviation of the observations and

then divide it by the climatology. Since the variables are

standardized, this way of calculating rRMSE is the same as

rescaling the forecasts such that the forecasts and observa-

tions have the same mean and standard deviation, then cal-

culating the RMSE between the rescaled forecasts and the

observations, and then normalizing the RMSE by the clima-

tology. Note that model bias is removed before evaluation

as the variables are standardized. HSS is used to quantify

the detection skill of the forecasts on the sign (positive or

negative) of the standardized variable (Zhao et al. 2021,

2023),

HSS 5
H 2 E

N 2 E
, (3)

where N is the total number of samples of a variable, and

H and E are the total and expected number of the correct pre-

dictions of the sign of the standardized variable, and E has an

expected value of N/3 for a random forecast. The value of

HSS ranges from 20.5 to 1 and a score of 1 (20.5) indicates a

perfect (perfectly incorrect) prediction, and a value of 0.5 is

commonly used as a threshold to distinguish the good and

poor detection skill.

As the response of the climates to the circulation patterns

varies spatially in the study domain, we group pixels with simi-

lar temporal variability into clusters using hierarchical cluster-

ing analysis. Specifically, we calculate the Euclidean distance

with a Ward’s linkage (Ward 1963; Zhao et al. 2017) between

any two clusters, and clusters with small Euclidean distances

can merge. We choose the Euclidean distance of 5 as the

threshold for merging and the consequent number of clusters

is retained. A large threshold may lead to too few clusters

(fails to distinguish the differences) while a small threshold

may lead to too many clusters (fails to group the similarities),

and a choice of 5 gives a reasonable number of clusters (2–5)

for each monthly climate variable as shown in the supplemental

material (supplemental videos S1, S2, and S3).

Aside from the verification metrics, we also calculate sev-

eral indices describing the extreme of a year. An extreme wet

year is defined such that the cumulative density (i.e., the pro-

portion of grids that meet a certain criterion) of VPD being

less than 21 [CD(Y , 21)] or the cumulative density of pre-

cipitation being greater than 1 [CD(Y . 1)] is as large as pos-

sible, and vice versa for an extreme dry year. Note that all

variables are standardized and thus a value of 1 indicates

one standard deviation from the mean (or climatology). Ex-

treme hot or extreme cold years can be defined similarly

with respect to the variable temperature. Since the study

domain is too large to have a strictly extreme wet (or dry)

situation for the whole domain, that is, one part of the do-

main may be extremely wet, but the other part could be

extremely dry, a year could be both an extremely wet year

for one part of a domain and an extremely dry year for the

other part of the domain. To describe the generality of

the extreme situation of a year, we calculate the cumulative

density of extremes, the cumulative density of a variable

being either less than 21 or greater than 1 [CD(|Y| . 1)],

and thus the cumulative density of extremes describes the

proportion of domains being extreme (either extremely wet

or extremely dry).

3. Results and discussion

a. Overall performance of climate forecasts

Among the three climate variables, temperature has the

best forecasts in terms of the correlation with observations

(Fig. 3), the HSS detection score (Fig. S2), and the RMSE

(Fig. S3). Precipitation forecasts have the lowest correlation

and HSS detection score, and the highest RMSE. VPD has in-

termediate quality compared to temperature and precipita-

tion. Since VPD could be more important to plant growth

than precipitation (Voelker et al. 2014), and the forecasts of

VPD have better agreement with observations than precipita-

tion forecasts, the VPD forecasts from dynamical models

could be more useful than precipitation forecasts for ecologi-

cal and agricultural applications.

The quality of the forecasts also varies with target month

and lead time. During October–May, corresponding to the

growing season of soybean in South America, the forecasts of

VPD have a correlation of 0.53 (average for all models and

the eight months between October and May) for the 1-month-

lead prediction but decreased to 0.26 for the 6-month-lead pre-

diction; while the forecasts during June–September decreased

from 0.47 with 1-month lead to 0.14 with 6-month lead. The

higher performance during the growing-season months than
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that during the non-growing-season months is also observed

for temperature (0.63 versus 0.48 for 1-month-lead predictions)

and for precipitation (0.31 versus 0.28 for 1-month-lead pre-

dictions), consistent with a previous study that found higher

forecast skills in austral summer (December–February) and

autumn (March–May) than in austral winter (June–August)

(Andrian et al. 2023).

The ECMWF model has the best quality among the five dy-

namical models evaluated, consistent with a previous study

that compared ECMWF with other models at a subseasonal

scale (Klingaman et al. 2021). The 1-month-lead VPD predic-

tion from ECMWF has a correlation of 0.66 averaged for

growing-season months, while that correlation is at least 15%

smaller for other models (0.56, 0.42, 0.46, and 0.53 for CMCC,

DWD, MF, and UKMO, respectively). The 1-month-lead pre-

diction for temperature and precipitation from the ECMWF

model has a correlation of 0.74 and 0.41, respectively. Since

ECMWF has the best quality among the models, we will focus

on the forecasts from the ECMWF model in the rest of the

evaluations.

b. Spatial heterogeneity of performance

The quality of climate forecasts varies spatially (Fig. 4, Figs. S4–

S11). For VPD forecasts, even though the overall performance of

the 1-month-lead predictions are good (r . 0.53; p , 0.01) for

each month (Fig. 3), the forecasts over the eastern Central Andes

have low correlations (r , 0.53; p . 0.01) with observations and

high errors (RMSE . 1 and rRMSE . 25%) from October to

April, and the low performance is also observed over southern

Brazil from May to August (Fig. 4 and Figs. S4, S5). Similarly,

although the overall performance of VPD forecasts is poor when

the lead time is longer than 2 months (Fig. 3), the forecasts over

northern Brazil have correlations ;0.7, RMSEs ;0.7, and

rRMSEs ;10% from October to April even for 6-month-lead

predictions (Fig. 4 and Figs. S4, S5); and the same for regions of

Uruguay and eastern Argentina fromOctober to January.

FIG. 3. The correlation coefficient (r) between observed and forecasted climate variables (VPD, T2m, and precip) in each month with
each lead time from the five dynamical models (CMCC, DWD, ECMWF, MF, and UKMO). The correlation coefficients are calculated
from the time series between 1994 and 2016 for each pixel over the region (668–408W, 428S–0) (as in step 1 in Fig. 2). The figure shows the
spatial average of the coefficients over all pixels. The 99% confidence level of the correlation coefficient of the time series of a single pixel
is marked in the color bar and the coefficients that exceed the confidence level are circled in the figure. The black box in each panel indi-
cates the growing season (October–May) of soybean in South America.
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For precipitation forecasts, the 1-month-lead prediction

over northeastern Brazil, Uruguay, and eastern Argentina is

significantly correlated with observations in the growing sea-

son (Fig. S6). The quality of the forecasts holds even when

the prediction is conducted 6 months ahead for regions over

Uruguay and eastern Argentina in November and December

(Figs. S6–S8). Temperature forecasts are better than both

VPD forecasts and precipitation forecasts (Figs. S9–S11). The

temperature forecasts have CC exceeding 0.9, RMSE less

than 0.5, and rRMSE less than 0.5% for some parts of north-

ern Brazil in the growing season with a 1-month lead, and

the CC remains larger than 0.6 with longer lead times. Over

the southern part of South America, however, the tempera-

ture forecasts have low CCs (,0.3) and high RMSEs (.1)

when the lead time is longer than 2 months (Figs. S9–S11).

The spatial variation of the performance of temperature and

precipitation forecasts is consistent with previous findings

(Andrian et al. 2023; Ferreira et al. 2022).

c. Performance of extreme events

Accurate prediction of extreme events, such as extreme wet

and extreme dry events, is important to risk preparedness and

assessment, and thus in this section, we evaluate ECMWF’s

ability to predict extreme events. Based on January VPD ob-

servations, 1997 and 2008 are selected as two extreme wet

years and 2006 and 2015 two extreme dry years (Fig. S12).

The observations and forecasts of January VPD in those ex-

treme years are shown in Fig. 5. Even though the ECMWF

model has a hard time capturing the location and magnitude

of the extremes (VPD . 1 or VPD, 21), the forecasts agree

FIG. 4. The spatial map of the correlation coefficient (r) between observed and forecasted VPD in each month with each lead time
[LD-1–LD-6 for 1–6-month lead, respectively]. The correlation coefficients are calculated from the time series between 1994 and 2016 for
each pixel. The 99% confidence level of the correlation coefficient is outlined with thick blue lines.
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well with observations in terms of the spatial pattern in the

wet or dry years, especially for the 1-month-lead prediction:

the correlations with observations are ;0.5 for the two wet

years and ;0.7–0.8 for the two dry years, and the HSS de-

tection scores are between ;0.5 and 0.8. The quality of the

6-month predictions decreased significantly compared to the

1-month predictions for the wet year 2008 and the dry year

2006, but still has a correlation of ;0.4 for the wet year 1997

and the dry year 2015. The performance for extreme years

based on precipitation (Fig. S13) is similar to the perfor-

mance of extremes based on VPD, while temperature is well

predicted in extreme years even with a 6-month lead

(Fig. S14).

Note that an extreme wet year does not mean extreme wet

conditions for the whole domain, as a part of the domain

could be extremely dry; the same applies to an extreme dry

FIG. 5. Observed and forecasted January VPD in two wet years (1997 and 2008) and two dry years (2006 and 2015). The forecasts are
1-month-lead (LD1) and 6-month-lead (LD6) predictions from the ECMWF model. For observations, the domain mean value and the
cumulative density of VPD smaller than 21 [CD(Y , 21)] are listed for wet years; the domain mean and the cumulative density of VPD
larger than 1 [CD(Y. 1)] are listed for dry years. For forecasts, the correlation coefficient (r), HSS, and RMSE against the corresponding
observations are listed. Black lines indicate the contours of 1 and21.
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year (Fig. 5). To quantify the overall extreme situation of a

year, an extreme index, defined as the cumulative density of both

extremely wet and extremely dry (|Y| . 1), is calculated. The re-

gression of the quality of 1-month-lead January VPD forecasts on

the extreme index has a coefficient of 1.22 (p 5 0.0014) (Fig. 6),

suggesting that the forecasts are better in more extreme years.

Figure 6 also shows that the forecasts of 1-month-lead January

VPD in dry years, when the dry region is larger than the wet re-

gion, have higher correlations with observations than those in wet

years, when the wet region is larger than the dry region. Although

this relationship between forecast quality and extreme index does

not hold for every variable, it holds for monthly VPD in January–

May and September–October; monthly temperature in January,

April, and September; and monthly precipitation in December–

April for the 1-month-lead predictions from the ECMWF model

(Fig. S15).

d. Performance in relation to oceanic and

atmospheric patterns

As shown in Figs. 4 and 5, the climate variables have spatial

variations, and those spatial variations are a result of the im-

pact of oceanic and atmospheric circulation patterns, such

as ENSO (Cai et al. 2020), northerly moisture transport

associated with SALLJ (Montini et al. 2019), and easterly

moisture transport associated with trade winds (Yin et al.

2014). Moreover, the occurrence of ENSO is the major

cause of extreme wet/dry and cold/hot events (Pepler et al.

2015; Hao et al. 2018; Cai et al. 2020). Therefore, in this sec-

tion, we evaluate the performance of the ECMWF model in

capturing the circulation patterns (Fig. 7) and in capturing

the linkages between the patterns and the climate variables

(Fig. 8).

The ENSO signal, represented by the Niño-3.4 index, is well

captured by the ECMWF model, with correlations . 0.92 for

1-month-lead predictions and .0.65 for 6-month-lead predic-

tions in each month (Fig. 7). This forecast quality is consistent

with the high autocorrelation (or persistence) of the Niño index

(Fig. S16), indicating that the persistence of ENSO is possibly

one reason for its high forecast quality. Long-lead forecasts of

northerly moisture transport associated with SALLJ (repre-

sented by the V850 index) in October–December and easterly

moisture transport associated with trade winds (represented by

the U850 index) in March also have high correlation with ob-

servations (Fig. 7), which is consistent with the high correlation

between the indices and the lead-time Niño index in corre-

sponding months (Fig. S16), indicating that the prediction skill

of the V850 during October–December and that of U850 in

March are highly correlated with the ENSO signal at least

6 months before. However, the forecasts of V850 and U850

in other months do not agree with observations except when

the predictions were made with a short lead time (e.g.,

1 month). The indices in those months (except for U850 in

November and December) are not correlated with the

1-month-lead Niño index (Fig. S16), demonstrating that the

predictability of V850 and U850 in those months is not

related to Niño-3.4, indicating the independence of the

northerly moisture transport associated with SALLJ and

the easterly moisture transport associated with trade winds

from the ENSO signal in those months.

Figure 8 shows the performance of the ECMWF model in

capturing the linkages between the circulation patterns and

the climate variable January VPD. The spatial map of the

January VPD is grouped into three clusters (Fig. 8a). Each

cluster represents a region where the January VPD is strongly

correlated with one or more of the patterns/indices: cluster 1

is correlated with the U850 and V850 indices, cluster 2 with

Niño-3.4, and cluster 3 with V850 (Fig. 8b). For the pixels

whose VPD is correlated with Niño-3.4 (cluster 2, red dots in

Fig. 8), the forecast correlations between VPD and Niño-3.4

agree with the observed correlations in spite of slight overesti-

mations with longer lead times (Fig. 8c); the VPD forecasts

also agree with observations (r . 0.53; p , 0.01), with slightly

decreases in correlation with longer lead times (Fig. 8d). For

the pixels that are correlated with U850 (cluster 1, blue dots

in Fig. 8) (which are also correlated with V850), the model

captures the correlation between VPD and U850, but overes-

timates the correlation between VPD and Niño-3.4 with lead

times longer than 2 months (Fig. 8c). The Niño-3.4 index is

well predicted, but the relationship between Niño-3.4 and

VPD is wrong, and the wrong relationship could be the reason

for the incorrect estimates of VPD (Fig. 8d). For the pixels

FIG. 6. Model performance of January VPD vs the index of ex-
treme for each year. Model performance is quantified by the corre-
lation coefficient between forecast and observed January VPD
[r(Yo, Yf)], and the forecasted January VPD is 1-month lead pre-
dictions from ECMWF. The extreme index of a year is defined as
the cumulative density (CD) of the standardized variable value ex-
ceeding11 or21 among the pixels in the study domain (|Yo|. 1).
If the cumulative density of the positive part [CD(Yo . 1)] is
larger than that of the negative part CD(Yo , 21), then the year
is defined as a dry year in this figure, and a wet year otherwise. The
linear relationship between r(Yo, Yf) and the extreme index is esti-
mated, and the r2 and p value metrics for the relationship are calcu-
lated. The solid line is the linear regression, and the dashed lines
are the 95% confidence bounds for the fitted regression.
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that are correlated with V850 (cluster 3, orange dots in Fig. 8),

the correlation between VPD and V850 is well captured by

the model with the 1-month lead time but is overestimated

with longer lead times (Fig. 8d).

Figure 8d also shows that the performance of VPD fore-

casts is consistent with the correlation between VPD and

Niño-3.4 when the lead time is longer than 2 months, indi-

cating that the forecast skill of VPD in the study domain

with long lead times is possibly linked to Niño-3.4, even if

the regions are not significantly affected by Niño-3.4. In

other words, for regions that are affected by ENSO, the

forecasts of January VPD are well predicted, but for regions

that are not affected by ENSO, the forecasts of January

VPD are not well predicted in the ECMWF model. This

model deficiency is found for other climate variables (tem-

perature and precipitation) and in other months as well

(supplemental videos S1, S2, and S3). To quantify the attri-

bution of the circulation pattern errors to climate variable

errors in regions that are significantly affected by the circu-

lation pattern, we show the r2 metric between those two er-

rors in Fig. 9. Figure 9 reveals that although the impact area

of Niño-3.4 on the three climate variables is greater than

20% of the total area of the study domain for some months

in the growing season, the Niño-3.4 errors explains less than

10% of the variance of the errors of variables in the affected

areas for almost all months. The U850 and V850 have larger

impact areas than Niño-3.4, especially for precipitation and

VPD, and the errors in U850 and V850 explain much more

FIG. 7. The correlation coefficients between observed and forecasted indices (Niño-3.4, V850,
and U850) (as in step 3 in Fig. 2) in each month with each lead time from ECMWF. The CCs are
calculated from the times series between 1994 and 2016 and those that are significant at 99%
confidence level via two-sided Student’s t test are colored and marked in the color bar. The
growing season from October to May is boxed.
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variance than the errors in Niño-3.4 for all variables in all

months. The errors in U850, for example, explain 78%, 72%,

and 59% variance of the errors of January VPD, temperature,

and precipitation of the impacted areas, respectively.

4. Summary

As seasonal climate forecasts are playing an increasing im-

portance for socioeconomic applications, the quality of those

forecasts needs to be evaluated prior to their uses. This study

FIG. 8. The relationship between January VPD and the three indices (Niño-3.4, V850, U850) for each pixel grouped via clustering analysis.
(a) The clusters of each pixel based on the observation of January VPD between 1994 and 2016. (b) The observed correlation between VPD
and the three indices [r(Xo, Yo)]. Thick black lines indicate the 99% confidence level via two-sided Student’s t test. (c) The scatterplot of ob-
served [r(Xo, Yo)] vs forecast [r(Xf, Yf)] correlation between VPD and the three indices in six lead times (LD1–6 months). The dotted lines
indicate the 99% confidence level for the correlation coefficients, and the dashed lines are the diagonals. Scatters on the diagonal lines indicate
that the model perfectly captures the relationship between the index and VPD, those above/below the diagonal lines indicate that the model
overestimates/underestimates the positive relationship or underestimates/overestimates the negative relationship. (d) The scatterplot of the
observed correlation between VPD and the three indices [r(Xo, Yo)] vs forecast skill of VPD in each lead time (LD1–6 months) measured by
the correlation between observed and forecasted VPD [r(Yo, Yf)]. The dotted lines indicate the 99% confidence level for the correlation coef-
ficients, the dashed lines are the diagonals, and the negative parts for r(Yo, Yf) are omitted due to meaninglessness. Scatters along the diago-
nals indicate that the prediction skill of the variable from the dynamical model is equivalent to the statistical impact from the index; above the
diagonal lines means that the prediction from the dynamical model is better than the statistical impact from the index and vice versa.
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evaluated monthly forecasts of three socioeconomically im-

portant variables (temperature, precipitation, and VPD) from

five operational dynamical models. Focused on the major

cropland areas over South America, we showed that the fore-

casts are better in the growing-season months (October–May)

than in non-growing-season months (June–September) and

the quality of forecasts decreases with longer lead times; those

variations of the forecast performance are consistent with pre-

vious studies (Andrian et al. 2023).

The ECMWF model provides the best forecasts among the

models evaluated. Similar to previous studies (Bombardi et al.

2018; Andrian et al. 2023), we found spatial variations for the

quality of the forecasts from the ECMWF model. Specifically,

temperature forecasts have the highest quality among the

three variables evaluated, with high quality over northern

South America even for 6-month-lead predictions, but low

quality over southern South America when the lead time ex-

ceeds 2 months. Precipitation forecasts are the worst among

the three climate variables, but they are of high quality over

the regions of Uruguay and eastern Argentina in November

and December even with a 6-month lead time. The VPD fore-

casts are also of high quality over northeastern Brazil and

over the region of Uruguay and eastern Argentina in the

growing season, for 6-month-lead predictions. Such long-lead

predictions in the early growing season over the dense crop-

land and grassland regions could help support operational

decisions on crop management, such as selection of crops and

timing of planting.

The quality of the forecasts degrades significantly with lon-

ger lead times. To identify model deficiency and provide in-

formation for future model improvement, we evaluated the

performance of the climate variables in relation to the perfor-

mance of the circulation patterns that affect the local climate,

specifically, ENSO, easterly moisture transport associated

with trade winds, and northerly moisture transport associated

with SALLJ. The ECMWF model captures the ENSO signal

well throughout the year with any lead times between 1 and

6 months, while the two local patterns are not forecasted as

good as the ENSO signal. The model successfully predicted

the impacts of ENSO on the local climate over regions

affected by ENSO but overestimates the influence of ENSO

over regions not affected by ENSO, leading to high perfor-

mance of climate forecasts over regions affected by ENSO

and low performance over regions not affected by ENSO.

Error contribution analyses further identified that the forecast

errors in local patterns explain more than half of the variance

of the forecast errors in the climate variables, suggesting the

necessity of improving the forecasts of local patterns for bet-

ter seasonal climate forecasts.
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