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Abstract—Existing adversarial algorithms for Deep Reinforce-
ment Learning (DRL) have largely focused on identifying an
optimal time to attack a DRL agent. However, little work has
been explored in injecting efficient adversarial perturbations
in DRL environments. We propose a suite of novel DRL ad-
versarial attacks, called ACADIA, representing AttaCks Against
Deep relnforcement leArning. ACADIA provides a set of efficient
and robust perturbation-based adversarial attacks to disturb the
DRL agent’s decision-making based on novel combinations of
techniques utilizing momentum, ADAM optimizer (i.e., Root Mean
Square Propagation, or RMSProp), and initial randomization.
These kinds of DRL attacks with novel integration of such
techniques have not been studied in the existing Deep Neural
Networks (DNNs) and DRL research. We consider two well-known
DRL algorithms, Deep-Q Learning Network (DQN) and Proximal
Policy Optimization (PPO), under Atari games and MuJoCo
where both targeted and non-targeted attacks are considered with
or without the state-of-the-art defenses in DRL (i.e., RADIAL
and ATLA). Our results demonstrate that the proposed ACADIA
outperforms existing gradient-based counterparts under a wide
range of experimental settings. ACADIA is nine times faster than
the state-of-the-art Carlini & Wagner (CW) method with better
performance under defenses of DRL.

Index Terms—Deep reinforcement learning, adversarial attacks,
Deep-Q learning Network, Proximal Policy Optimization

I. INTRODUCTION

Deep Reinforcement Learning (DRL) algorithms learn poli-
cies to guide an agent to take optimal actions based on the
states of its environment. They have successfully achieved high
performance on various tasks, such as robotics, autonomous
vehicles, and cybersecurity. Various attacks and defenses [7, 24]
have been studied for supervised Deep Neural Network (DNN)
applications, such as image classification [7] or natural lan-
guage processing. However, adversarial attacks and defenses
are largely unexplored in DRL settings. DRL is used in numer-
ous critical safety and security applications and motivated us to
develop robust DRL. To develop a robust DRL, it is natural to
consider robust attacks for validating robust defenses in DRL.

Adversarial attacks in DRL have been studied to answer:
How to attack and When to attack. The first how-to-attack
question is about what perturbation method can be used to
disrupt the state during an episode. The second when-to-attack
question is about identifying an optimal time to attack during
an episode. In this work, we focus on answering how-to-attack.
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To this end, we propose ACADIA, a set of novel adversarial
AttaCks Against Deep relnforcement leArning. Therefore, we
aim to develop robust and fast attacks by generating effective
and efficient adversarial states in DRL settings.

Unlike DNN settings, developing fast and robust adversarial
attacks in DRL faces the following challenges:

o Sequential decision making under dynamic settings: A dy-
namic series of steps exists for a DRL agent to continuously
learn and take an action based on a reward. The DRL agent
continuously tackles multiple situations in an episode. This
implies that one time attack success in one step does not
guarantee attack success in future steps.

Discrete or continuous action spaces: Depending on a given
setting, discrete or continuous action spaces are considered.
Lack of usefulness of DNN-based attacks in DRL settings:
The existing adversarial attacks developed for DNNs [1, 4,
5,7, 19, 21, 22] do not guarantee their performance in DRL.

Our work has the following key contributions:

1) The proposed ACADIA provides a suite of efficient and
effective adversarial attacks to disrupt DRL operations.
The ACADIA consists of a suite of novel adversarial
attacks: Iterative ACADIA (1ACADIA), ADAM-based It-
erative ACADIA (aiACADIRA), and Momentum-based, It-
erative ACADIA (miACADIA). These attacks are designed
to generate fast and robust adversarial perturbations to
compromise a DRL agent.

2) The iACADIA, aiACADIA and miACADIA are designed
based on novel combinations of RMSProp (Root Mean
Square Propagation) for iterative steps, random initializa-
tion for a random start, and momentum for escaping from
local optima to boost efficiency and effectiveness in terms
of the speed of performing attacks and the robustness of
attacks under the state-of-the-art defenses in DRL.

3) We conduct extensive experiments based on Deep-Q
Learning Network (DQN) and Proximal Policy Opti-
mization (PPO) on Atari games (i.e., Pong, BankHeist,
and RoadRunner) and MuJoCo environments with/without
state-of-the-art defenses in a given DRL algorithm.

4) Our results show that all three variants of ACADIA
outperform the Carlini & Wagner method (CW) on av-
erage attack execution time per perturbation (AET), while
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maintaining comparable attack success rate (ASR), and av-
erage reward (AR), with miACADIA performing the best.
ACADIA also outperforms the state-of-the-art perturbation
methods on ASR and AR under DRL with defenses.

II. RELATED WORK
A. Adversarial Attacks in DNNs

Goodfellow [7] proposed the Fast Gradient Sign Method
(FGSM), which does not guarantee 100% ASR against state-
of-the-art defenses. The CW method [1] is known to be the
most effective method with 100% ASR but is significantly
slower than other counterparts. Naive FGSM provided the basis
to build more sophisticated and better variants of FGSM in
ASR, such as Randomized FGSM (RFGSM) [19], Diversity
Iterative FGSM (DI-FGSM) [22], Momentum Iterative FGSM
(MI-FGSM) [4], and ADAM Iterative FGM (AI-FGM) [21].
The Projected Gradient Descent (PGD) [5] was proposed as a
variant of Iterative FGSM (I-FGSM) to enhance its robustness.
AutoAttack [3] extended the PGD attack to resolve the subopti-
mal step size and problems of the objective function. AI-FGM
was proposed for black-box attacks on DNNs [23].

Based on our extensive literature review, MI-FGSM and PGD
attacks are considered to be the most efficient and robust state-
of-the-art adversarial examples in DNNs. AI-FGM, RFGSM,
DI-FGSM, AutoAttack and MI-FGSM were designed and eval-
vated in the context of DNNs. However, their performances
have not been validated in DRL settings.

B. Adversarial Attacks in DRL

Huang, et al. [8] extended the adversarial attacks to DRL
first by crafting the existing FGSM to algorithms like DQN to
all time steps during an episode. Kos and Song [9] investigated
the effectiveness of adversarial examples and random noise on
DRL policies. Later, the state-of-the-art DRL attacks mainly
identified an optimal time to attack the DRL agent [12]. Sun
et al. [18] proposed a strategic timed attack based on [12].
They perturbed in a minimum number of critical moments to
introduce severe damage to an agent while being undetectable.
Tretschk et al. [20] used Adversarial Transformer Network
(ATN) to maximize the adversarial reward through a sequence
of adversarial inputs. Most of the when-to-attack strategies
based attacks employed the CW [1] to perturb those critical
moments. However, CW is known to be very slow. Chen et
al. [2] proposed a common dominant adversarial examples
generation method to confuse the agent with obstacles. Pan
et al. [16] exploited the temporal consistency of the states. None
of these attacks is generic enough to be widely used across
varied settings of DRL since they show performance on limited
settings. Fast perturbation methods, such as naive FGSM [7],
have been used in DRL [8]. However, naive FGSM is easily
detectable. Another variant of FGSM, called Projected Gradient
Method (PGD), is one of the state-of-the-art DRL attacks and
provides faster and higher ASR than CW under defenses.
However, the state-of-the-art defenses in DRL [6, 15, 26]
recently challenged the robustness of PGD-based attacks [5],
which were originally designed for DNNs. Pattanaik, et al. [17]
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proposed Gradient-Based (GB) attacks similar to FGSM but
with a different cost function. GB is also not robust due to lack
of randomness. Therefore, there is a critical need to develop
scalable, effective, and robust state perturbation attacks in DRL
settings.

III. PRELIMINARIES
A. Deep Reinforcement Learning

Reinforcement learning (RL) algorithms optimize the ex-
pected cumulative reward by training a policy n. This policy
can be a deterministic or probabilistic function that maps state
s to action a, 7 : S — A, where S and A are state and action
spaces, respectively. In Deep RL (DRL), this policy function &
is learned by a neural network. Deep Q-Networks (DQN) [13]
and Proximal Policy Optimization (PPO) are two well-known
DRL algorithms, which are evaluated in our work.

B. Adversarial States Generation Methods

We leveraged the following methods to develop our attacks.
1) Tterative Fast Gradient Sign Method (I-FGSM): I-
FGSM [10] takes multiple small steps of size @ in the direction
of the gradient. Given x%=0, on every iteration k, it performs:

xk

ey

2) Randomized FGSM (RFGSM): RFGSM [19] adds a
small random step, @, to FGSM to escape the non-smooth
vicinity of the data point before linearizing the model’s loss.
The perturbed state is computed as:

— k1 clip, (a - sign(VlOSS(Xk_l)))~

adv

Xppasm =X + (€ —a) - sign(Vyloss(x', yuue))s  (2)
where x" =x+a - sign(N(0,1)). 3)
3) Momentum Iterative FGSM (MI-FGSM): MI-

FGSM [4] is a variant of FGSM that integrates the momentum
at each step of an I-FGSM to escape from poor local maxima
and stabilize update directions. Starting with x* = 0, at every
iteration k, the perturbation update is:

Vioss(x*~1)
|[Vloss(x*=1)||;”
= xk —clip_( - sign(g")).

k

g k-1

8 4)
(5)

Here 4 is the decay factor and g is the accumulated gradient
at iteration k.

=4

where x¥

C. Definitions

« Non-Targeted Attack in DRL: The attacker aims to reduce
the reward of the DRL agent by crafting a perturbation that
can lead to a sub-optimal action.

« Targeted Attack in DRL: The attacker seeks to perturb the
state so that the DRL agent takes a specific targeted action.
For example, in Atari Pong, a targeted attack could be to
make the DRL agent take the action “up” at a given point.

« Robustness of DRL Attack: A DRL attack is said to be
robust if it achieves high ASR and low AR under defenses.
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Fig. 1.

during an episode to compromise a DRL agent following: (a) DRL agent observes a true non-adversarial state s,
(b) Start by adding a random step of size a to s{™¢; (c¢) Starting with k = 0 until number of steps m, compute the adversarial state 9

, momentum-based accumulated gradient g™ACAPIAK o ADAM based gradient g ACAPIAK yging sA
A,m-1

basic gradient g ‘ACAD 1A,k

it; and (d) Compute adveriarlal action, aﬂdv by giving a final adver%arlal state s,

IV. PROBLEM STATEMENT

A DRL agent interacts with the environment and learns pol-
icy 7 to choose action a given state s and obtains reward (s, a).
This policy 7 can be a probabilistic model n(s,a) ~ [0, 1],
which gives the probability of taking action a given state s.
The 7 can also be a deterministic model s : a = 7(s). The goal
of the DRL agent is to maximize the cumulative reward R, by
learning an optimal policy n*. The reward that the DRL agent
aims to maximize is the expected discounted reward over next
T — 1 time steps, represented by:

~

R, =
t

Ea,~7r(s,)[7t”(5t,at)], (6)

Il
(=]

where y € [0, 1) is the discount factor. An attacker aims to
reduce reward R, by adding perturbation ¢; to the agent’s
observation s; to mislead the agent to take non-optimal action
a;. The attacker has to generate perturbation ¢ as small as
possible to be undetected. At each time step, the attacker may
or may not choose to add perturbation ¢ to state s, based on
its strategy. In this way, the expected cumulative reward after
the attack is given by:

T-1

Ragv = Z Ea?deﬂ(sﬁutat) [y'r(s,,a,)],

t=0

N

where u, at given time ¢ is 1 if the attacker injects perturbation;
otherwise, u, = 0.
In this work, we aim to solve the following problems:

An overview of Generic ACADIA. It can be either iACADIA, miACADIA or aiACADIA depending upon gradient g4

3

in (c). It attacks a frame ¢

true [I‘LlC

and takes non- adversarlal true action, a;
by calibrating elther

Ak and al™, and then clipping

to the DRL agent.

We aim to design the perturbations d¢, d1,...,07-1 to force
the DRL agent to take the corresponding adversarial actions,
denoted by a3¥, a3, ... a3,

These adversarlal actions should reduce the reward of the
DRL agent R,, and the reward of the DRL agent under
defense, Rgefense in @ non-targeted setting. The reduced reward
is represented by R,qy in Eq. (7).

These adversarial perturbations should generate the required
targeted actions in the targeted attack setting.

We aim to find each perturbation d, in a realistic time that
could work under real settings.

V. DESCRIPTION OF ACADIA

To develop robust, effective, and efficient perturbations,
we propose the ACADIA framework that provides the fol-
lowing three novel attacks: 1iACADIA for Iterative ACADIA,
aiACADIA for ADAM-based iACADIA, and miACADIA for
Momentum-based iACADIA. ACADIA integrates RMSProp,
momentum, random initialization and FGSM to maximize the
effectiveness and efficiency of the proposed adversarial attacks
in DRL settings. The ACADIA performs state perturbation
attacks on observation and reward of the DRL agent. All of
our attacks differ in computing the gradient of the loss function
and changing a step size through a number of steps. Now we
discuss a generic version of our attacks where we will attack
a single state during an episode. We describe the generic form
of ACADIA and the three schemes in detail as follows:

e Generic ACADIA: Let A be one of the ACADIA schemes
(i.e., 1ACADIA, miACADIA or aiACADIA) which differs

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 27,2023 at 03:18:24 UTC from IEEE Xplore. Restrictions apply.



2022 IEEE Conference on Communications and Network Security (CNS)

in computing a gradient g” of the loss function. We consider
the true label, a™¢, the action produced by the DRL policy
at a time step ¢ during an episode, represented by:

true

true
a;

(s, ),

®)

where s{™ is the original non-adversarial state at time step
t. At each iterative step k of the attack until step m, we
calculate adversarial state s‘f"k by taking a step of size « in
the direction of the gradient g? ok Starting with adding the
random step of size, «, to s?“e, called a random initialization,
s?’o, which is given by:

A0 _ _true :

s =5+ - sign(N(0, 1)), )
on every iteration k of ACADIA until m, the attacker
computes its state at k, s?’k by:

Ak

Ak—1
Sy

=5, +a- sign(gf"k). (10)

The attacker will compute its action at a frame ¢, a®®", by:

adv A,m-1
a; . ).

=7n(s (11
Fig. 1 describes the key procedures of the generic ACADIA
framework.

iACADIA: This attack computes a regular gradient without
incorporating any momentum or RMSProp term by:

iACADIA k A k-1

—_ true
& = Vaka loss(s;

,a; ), (12)
where A is 1ACADIA here and loss function can be the cross
entropy or Mean Squared Error (MSE). We use the cross
entropy loss in our experiments.

miACADIA: This attack incorporates momentum in comput-
miACADIA,0

ing a gradient with g, =0 by:
miACADIA,k _
t = (13)
) V Ak loss(s?’k_l, atme
miACADIA, k-1 5
t _ )
||vs?,k_lloss(s;*”< Lame)||,

where A is miACADIA here, u is a decay factor and
g;“iACADIA’k is an accumulated gradient incorporating mo-
mentum at iteration k.

aiACADIA: This attack uses the ADAM optimizer that
incorporates momentum m and RMSProp v in computing a

gradient with m?’o =0 and vf\’o =0 and is performed by:

V ax-iloss(so 7 gt
gt = — , (14)
IV ax-iloss(s;o "1 ate) ]
m = g m M (=) g (15)
v = o v L (1= ) - (6402, (16)
Ak
g:liACADIA,k _ m; ’ (17)
vitep
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where A is aiACADIA here, u; and u, are decay factors
and B is a very small number to make the denominator non-
zero. This attack does not use the sign function in Eq. (10).
Therefore, this equation can be re-written by:

S;uACADIA,k — siuACADIA,k—l +a

) g?iACADIA,k. (18)
Removing the sign function here means adapting the step
size @. This is exactly similar to adapting the learning rate
to converge to global minima smoothly.

Eq. (10) means that we move policy 7 away from an optimal
action by using the direction of the gradient. We make it
iterative to take multiple gradient direction steps. Multiple
gradient steps move the policy away from the optimal action,
contributing to generating high ASR and low AR. Adding a
random step @ at the start contributes to high ASR under
defense as it allows it to escape the non-smooth vicinity of
the data point before linearizing the model’s loss.

Eq. (13) shows the addition of a momentum term to the
gradient at each step. This addresses the problem of the
attack becoming stuck at a poor local maximum and gives
the gradient a necessary boost, called momentum, to reach the
global maximum. Momentum stabilizes the gradient updates.
We observe in the experiments that momentum helps gain high
ASR and low AR in the complex settings of DRL especially
in targeted attacks and continuous environments of DRL. In
summary, miACADIA uses the novel combination of random
start, iterative steps of size @ and momentum in a DRL setting.

The miACADIA may not converge with a constant step
size of a. By incorporating RMSProp, we change the step
size at every iteration for faster and smoother convergence.
Hence, aiACADIA uses the novel combination of random
start, iterative steps using RMSProp, and momentum in DRL.

Fig. 2 highlights the key differences between FGSM variants
and our proposed ACADIA. Random initialization helps in
robustness, and momentum together with RMSProp helps in
smoother and faster convergence. FGSM-based perturbation
methods are efficient and can work under realistic settings.
Thus, we presented a novel perturbation method using these
features to make it robust, effective and efficient. PGD (i.e.,
the baseline most similar to ours) differs from ACADIA in that
ACADIA takes a fixed size step « in a random direction instead
of uniformly choosing a random point. PGD does not incor-
porate momentum and RMSProp, showing poor convergence
especially in targeted attacks and complex settings of DRL.
PGD does have some random initialization, which increases
robustness. AutoAttack, like other PGD-based attacks, has
similar problems of convergence and is time-consuming as it
is an ensemble of different PGD-based attacks and BlackBox
attacks. The CW [1] is not only time-consuming but also not
robust showing high detectability, as shown in our experiments.
MI-FGSM does not incorporate random initialization and RM-
SProp, showing poor convergence and low robustness. ACADIA
provides a comprehensive set of features to efficiently and
effectively enhance performance under a wide range of DRL
environments in attack, application, and defense types.
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Fig. 2. Difference between FGSM variants and our proposed aiACADIA,
iACADIA and miACADIA: Momentum and RMSProp improve performance,
especially under complex settings of a targeted attack and continuous action
space in DRL.

We do not employ any strategy to find an optimal time to
attack during an episode as our major focus is to propose
a comprehensive state perturbation attack in DRL (how-fo-
attack). Instead, we attack at every step during an episode.
In addition, our approach allows a fair comparison with other
state-of-the-art attacks because ‘when-to-attack’ can change the
attack rate while we need to fix it to consider overall behavior
across the whole episode. Thus, the number of attacks during
an episode equals the episode length T (i.e., 100% attack rate).

VI. EXPERIMENT SETUP
A. Setting for Attacks and Defenses

1) Setting for Attacks: We consider a white-box attack
where the attacker does not have access to the training setup.
Howeyver, at run time, the attacker has access to the trained DRL
model and the state which it can perturb. In our experiments, we
utilize trained DQN, and PPO models using the implementation
of [14] and [25] to play within several environments. We use
DQN for Atari games and PPO for MuJoCo Walker as the
corresponding DRL algorithm is well-suitable for discrete and
continuous environments, respectively.

We assume that an attacker has computational power equiv-
alent to the commodity CPUs. To this end, we use the Google
Colaboratory CPU (AMD EPYC 7B12, 2 CPUs @ 2.3 GHz,
13 GB RAM) for DQN experiments and personal computers
for PPO due to the inability of MuJoCo to be run within the
Google Colab. PPO experiments are run on Intel(R) Core(TM)
17-9750H CPU @ 2.60 GHz 32 GB RAM. We use the libraries
of PyTorch and Open Al Gym.

We craft non-targeted and targeted attacks with and without
defenses in our evaluation experiments. For targeted attacks,
the state-of-the-art attacks of DRL use various strategies to find
the optimal time throughout the episode. Instead of using such
strategies, we generate targeted actions randomly to attack all
time steps during an episode. This helps control the experiment
across all attacks by having the strategy fixed. Attacking on all
the time steps enables testing the attacks on all situations during
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the episode. We describe a generic evaluation experiment to
apply attacks to DRL in Algorithm 1.

2) Setting for Defenses: Very few defenses have been
proposed to defend against adversarial attacks in DRL. The
conventional adversarial training defense has been widely used
in DNNs [10] and DRL [9, 17]. However, recently more
robust and efficient defense methods were proposed for DRL,
such as Robust ADversarlAl Loss (RADIAL) [15], and State
Adversarial (SA) [26], and Alternating Training of Learned
Adversaries (ATLA) [25]. We consider RADIAL and ATLA
which outperforms SA and other major defenses of DRL. In
particular, we use RADIAL-DQN, RADIAL-PPO and ATLA-
PPO as defenses. However, we could not implement ATLA-
DQN due to the lack of resources given by [25].

B. Metrics

o Average Attack Execution Time Per Perturbation (AET) is
the average time required to generate a perturbed state and
is measured by AET; = 7 (N4)/Ns, where Ny is the total
number of adversarial states computed, 7 (N,4) is the total
time elapsed to generate all adversarial states.

Average Reward (AR) measures the average reward across

all episodes. Given N,, the number of episodes, and r;, the

accumulated reward during an episode i, AR is measured by

AR = 3N r;/N,.

o Attack Success Rate (ASR) measures the total number of
attack successes over the total number of attack attempts.
ASR is measured by ASRy7r = NAS/Nyr, where N45 is
the total number of attack successes by targeted or non-
targeted attacks and N7 is the total number of attempts by
targeted or non-targeted attacks. Under non-targeted attacks,
a failure indicates that the attack is entirely unable to succeed
or the DRL agent takes an action maximizing its reward. An
attack attempt is defined as a one-time attack per time step.
On the other hand, targeted attack success means generating
a perturbation targeting to lead the DRL agent to take the
targeted action. Thus, reward reduction is not considered an
attack success in targeted attacks.

e ASR in continuous environments (ASR-C) is our novel ASR
metric in a continuous environment, such as MuJoCo. We
estimate a Mean Absolute Error (MAE) of two actions.
If the MAE of two actions is less than the threshold A,
we treat both actions as equal. In a non-targeted setting,
an attempt is considered success if MAE(a™¢, a*") > A.
However, in a targeted setting, success is defined when
MAE (a®e©d 524V) < 1 We set 1 = 0.1 in MuJoCo Walker
experiments. We set 4 = 0.1 in non-targeted setting because
A = 0.1 can create sufficient deviation from optimal actions.

C. Parameterization

The number of steps (m) is fixed at 20, which is optimal
for FGSM-based perturbation attacks based on our empirical
experiments. However, we use m = 1,000 for the CW method
at which it performed the best. For a fair comparison, we
also show results for CW with m = 20. We consider naive
FGSM, using m = 1 by definition, as a baseline. AET cannot
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be fixed as it fluctuates with high variance. However, for a fair
comparison, we consider CW with m = 100 and m = 120 as
it will take AET comparable to ACADIA. By fixing m = 20,
baseline perturbation methods are also taking AET comparable
to ACADIA. We fix € 8/255 and « 2/255 for our
experiments under DQN and PPO, which are identified as
optimal in terms of detectability, AR, and ASR after rigorous
sensitivity analysis on all considered perturbation methods.
However, our perturbation method can also work with even
smaller €’s. Due to the lack of space, we have only shown the
results of optimal parameters on different baselines for a fair
comparison. We use the cross-entropy loss function of PyTorch
for gradient-based attacks. We employ L., norm in all FGSM-
based baselines, including our attacks while using L, norm for
the CW. We run every experiment 100 times and report the
mean value and standard deviation of each metric.

D. Schemes for Comparison

We use the following perturbation attacks for comparison
against our ACADIA variants. As discussed earlier, we do not
consider strategic attacks based on when-to-attack [11, 18] as
schemes for comparison because our work mainly concerns
how-to-attack. We also did not consider AutoAttack [3] as our
baseline because it does not perform well on targeted attacks.
In addition, in DRL setting, AutoAttack was mostly similar to
PGD, which is considered in this work. Our proposed ACADIA
is compared against the following baseline and state-of-the-art
counterpart schemes:

« Fast Gradient Sign Method (FGSM) [7]: We choose this
as our baseline scheme because it has been extensively used
in both DNN and DRL settings, such as uniform attack [8].

o Carlini & Wagner Method (CW) [1]: This method is
one of the well-known state-of-the-art methods in DRL
settings, guaranteeing 100% ASR. The state-of-the-art end
goal-based DRL attacks [11, 18] use the CW to generate
targeted perturbations. Hence, outperforming the CW is a
clear indicator of advancing the state-of-the-art attacks in DL.

« Projected Gradient Method (PGD) [5]: PGD is considered
to be the most robust and fastest state-of-the-art attack in
DRL settings. Due to its robustness, PGD is usually employed
by defenders to test their defenses as in [15, 26].

o Momentum Iterative Fast Gradient Sign Method (MI-
FGSM) [4]: This is the state-of-the-art adversarial example
generator in DNN settings.

o Diversity Iterative Fast Gradient Sign Method (DI-
FGSM) [22]: We also extend DI-FGSM from DNNs to DRL
and compare it with our method.

We did not consider Robust Sarsa (RS) and Maximal Action
Difference (MAD) attacks [26] as the counterpart schemes to be
compared against ACADIA because our attacks depend on critic
so we mainly consider critic-dependent schemes. Moreover, RS,
MAD and the optimal adversary of [25] do not work under the
SA and ATLA defenses as shown in [26] and [25].

We report the average and standard deviation of ARs, AETs
and ASRs. We conduct extensive experiments to evaluate the
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Algorithm 1 Perform Attacks in DRL

Input:

A « an actions set, sy < an initial non-adversarial state

: Parameters:

. targeted «— return 1 if attack is targeted; O otherwise

: defense « return 1 if defense is applied; O otherwise

: procedure PERTURBATIONMETHOD((A, s()) > a perturbation
method used

7: for each episode do
8: for each step ¢ during an episode do
9: if targeted is true then
10: a?d"* = RandomStrategy(A)
11: s?d" = PerturbationMethod( sy, atadv*)
12: else
13: s?d" = PerturbationMethod(s;)
14: end if
15: if defense is true then
16: a?dv = DRLdefense(s?dV)
17: else
18: a?dv = DRL(s?dV)
19: end if
20: rtad", Sz+1,done = Perform(a?d")
21: if done is true then
22: break
23: end if
24: end for
25: end for

26: end procedure

efficiency, effectiveness, and robustness of our attacks com-
pared to the benchmark attacks. We consider both targeted and
non-targeted attacks, and DRL with and without the state-of-
the-art defenses (i.e., RADIAL and ATLA). For non-targeted
(NT) attacks, we avoid the desired action identified by the
DRL model. For targeted (T) attacks, we take a particular
perturbation to mislead a DRL agent to take the attacker’s
desired action. The targeted actions are chosen randomly to
evaluate the ability of perturbation methods to generate a
targeted action. We do not include targeted attacks on MuJoCo
Walker environments since most of the attacks, including CW,
cannot precisely generate random targeted actions. Therefore,
we leave studying efficient and precise targeted attacks in
continuous DRL environments for our future work. Our source
code is available on these Github repositories: DQN and PPO
MuJoCo experiments.

VII. RESULTS & ANALYSES
A. Attack Success Rate (ASR)

Table I shows a comprehensive comparison between
ACADIA variants and the baselines on Attack Sucess Rate
(ASR) when tested on DQN, RADIAL-DQN, PPO and
RADIAL-PPO playing Atari and MuJoCo environments.
Higher ASR means a stronger attack. It is quite obvious that our
proposed ACADIA outperforms its counterparts and baseline
schemes in ASR particularly under harsher environments with
targeted attacks or defenses in DRL (i.e., RADIAL).

Table II also shows the comparison of all the schemes consid-
ered in ASR-Continuous (ASR-C) for MuJoCo Walker where
a DRL agent uses ATLA-PPO and RADIAL-PPO defenses
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TABLE I
ATTACK SUCCESS RATE (ASR) FOR DQN AND PPO UNDER TARGETED (T) AND NON-TARGETED (NT) ATTACKS WITH AND WITHOUT RADIAL
DEFENSE ON ATARI GAMES AND MUJOCO ENVIRONMENTS. HIGHER ASR MEANS A STRONGER ATTACK.

Perturbation Pong BankHeist RoadRunner MuJoCo Walker
Method (steps)
Vanilla-DQN RADIAL-DQN Vanilla-DQN RADIAL-DQN Vanilla-DQN RADIAL-DQN | Vanilla-PPO | RADIAL-PPO
NT T NT T NT T NT T NT T NT T NT NT
CW (1000) 100% 100% 3% 16% 100% 100% 3% 5% 95% 97% 1% 0% 100% 98%
CW (120) 100% 16% 3% 17% 94% 4% 0% 6% 83% 7% 3% 4% 98% 100%
CW (100) 100% 17% 3% 17% 91% 5% 0% 4% 94% 7% 2% 5% 96% 100%
CW (20) 100% 16% 3% 16% 100% 6% 3% 5% 98% 6% 2% 0% 100% 98%
PGD (20) 100% 100% 99% 72% 100% 100% 99% 78% 99% 76% 99% 89% 100% 100%
DIFGSM (20) 100% 99% 73% 44% 100% 99% 88% 68% 99% 79% 89% 79% 100% 100%
MIFGSM (20) 100% 99% 75% 65% 100% 100% 100% 88% 99% 96% 100% 91% 100% 100%
FGSM (1) 85% 35% 28% 16% 100% 66% 47% 47% 79% 43% 91% 85% 100% 100%
miACADIA 100% 100% 99% 78% 100% 100% 100% 90% 99% 98 % 100% 95% 100% 100%
(20)
iACADIA (20) 100% 100% 99 % 73% 100 % 100% 99% 79 % 9%  76% 100% 91% 100% 100%
aiACADIA (20) 100% 100% 99% 75% 100% 100% 100% 92% 99% 97 % 99% 96 % 100% 100%
TABLE II

ASR-CONTINUOUS (ASR-C) FOR MUJOCO WALKER USING PPO

Perturbation

Vanilla-PPO ATLA-PPO | RADIAL-PPO
Method (steps)

in the presence of non-targeted attacks. This metric actually
shows whether an attack can generate a different action or not
based on the A value. Here we set 4 = 0.1. Clearly, ACADIA
performs either better than or is comparable to baselines. CW is
affected under RADIAL-PPO but with a minor impact. Hence,
interestingly, CW works well under defenses in the MuJoCo
PPO experiments while performing poorly on Atari games
under RADIAL-DQN.

B. Average Reward (AR)

Table III shows the AR performance comparison of all
attack methods. Lower AR means a stronger attack. ACADIA
variants outperform all baselines. When RADIAL is used as
a defense in DRL, all alternatives are impacted. However, the
ACADIA variants are impacted the least. On the other hand,
CW completely fails in both non-targeted and targeted attacks,
performing worse than even naive FGSM under RADIAL
defense. PGD performs comparably to the worst ACADIA
variant in ASR but not to the best variant of ACADIA under
a wide range of environmental settings (i.e., targeted or non-
targeted attacks and with/without defense).

Table III shows the performance of all the considered
schemes in AR under 14 different environments. aiACADIA
outperforms CW (1000) under 10 out of 14 environments. CW
(1000) only outperforms aiACADIA under 4 environments
which do not consider RADIAL defense. miACADIA and
aiACADIA outperform MI-FGSM in AR in 11 out of 14
environments. The remaining three cases show miACADIA and
aiACADIA show comparable performance to MI-FGSM and
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CW(1000). CW(100), CW(120) and CW(20) perform worse
than ACADIA in all cases in AR. Hence, overall our proposed
attacks outperform in AR.

Table IV shows the performance comparison of all the

CW (1000) 100% 100% 98% ) )
CW (20) 100% 32% 98% compared methods in AR for MuJoCo Walker when DRL (i.e.,
gg 838; gggz 2(')3; g;gz PPO) uses ATLA or RADIAL as a defense under non-targeted
PGD (20) 100% 98% 100% attacks. ACADIA again show robustness against RADIAL-PPO
MI-FGSM (20) 100% 98% 100% because it achieves the minimum reward among all the base-
FGSM (1) 100% 96% 100% . . ..
mIACADIA (20) 100% 100% 100% lines. ACADIA outperforms showing minimum rewards under
iACADIA (20) 100% 98% 100% ATLA-PPO as compared to the gradient-based counterparts.
aiACADIA (20) 100% 100% 100%

However, CW can achieve a lower reward than our attacks
under ATLA-PPO. The performance of our attacks can be
evaluated through the reward reduction obtained. In MuJoCo
Walker, the maximum reward achieved by ATLA-PPO under
no attack is around 4,000 while our best attack gives 321.
Therefore, the reward reduction is around 3,679 by our attacks.
Considering our attacks achieve 100% ASR, we can conclude
that our attacks do not take the worst actions but can distract
the DRL agent to take non-optimal actions, which fulfills our
goal to take non-optimal actions with and without defenses.

C. Average Attack Execution Time (AET)

Table V shows the comparison of AET for Atari Pong played
by DQN. We also performed experiments for Atari RoadRunner
and Atari BankHeist played by DQN and MuJoCo Walker
played by PPO under targeted and non-targeted attacks. Overall,
FGSM variants perform comparably. Non-targeted iACADIA,
the best performing, is 12 ms faster than the non-targeted PGD
attack for Pong played by DQN. Thus, PGD can be considered
equivalent to ACADIA in AET. For targeted attacks, PGD shows
comparable performance to ACADIA. 1ACADIA outperforms
again in AET for targeted attacks. Interestingly, CW with 20
steps is faster than most FGSM variants with 20 steps although
CW performs poorly with 20 steps. CW with 100-120 steps
takes AET comparable to ACADIA. miACADIA (20 steps) is
six to nine times faster than the state-of-the-art CW (1,000
steps) with better robustness. Similar results are observed for
other Atari games and MuJoCo environments. As our attacks
take a little more time than other FGSM counterparts, the
question is whether it is worth spending more time. Minute
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TABLE III
AVERAGE REWARD (AR) FOR DQN AND PPO UNDER TARGETED (T) AND NON-TARGETED (NT) ATTACKS WITH AND WITHOUT RADIAL DEFENSE ON
ATARI GAMES AND MUJOCO ENVIRONMENTS. LOWER AR MEANS A STRONGER ATTACK.

Perturbation Pong BankHeist
Method (steps)
Vanilla DQN RADIAL-DQN Vanilla DQN RADIAL-DQN
Non-Targeted Targeted Non-Targeted Targeted Non-Targeted Targeted Non-Targeted Targeted
CW (1000) -21+0 -21+0 +20.85 + 0.3 +20.5+0.5 0+0 0+0 252 + 34 302 + 39
CW (120) -21+0 +20.5+£0.5 +21+0 +20.5+0.5 6300 780+ 0 390 + 390 390 + 170
CW (100) -19+0 +21 £ 0 +20.5 £ 0.5 +20.5 £ 0.5 450+ 0 770 = 10 390 + 170 390 + 170
CW (20) —21+0 +20.7 £ 0.4 +20.7 £ 0.4 +20.8 £ 0.4 550 + 50 710 = 10 309 + 36 321 +46
PGD (20) —21+0 -20.6+0.4 -20.9+0.2 -20.4+0.8 6+9 10+0 2.3+5.5 4+6
DIFGSM (20) —21+0 -20.3+0.6 -19.8+1.3 -16.7+2.6 3+4 20 + 8 1+4 4+6
MIFGSM (20) —21+0 -20.8+0.4 -20.5+0.7 -20.4+0.7 0+0 20 + 8 0.6+2.4 3.6+5.4
FGSM (1) -21+0 -20.7+0.9 +20.7 £ 0.4 +16.8 7.8 0+0 23 +20 0+0 2.3+4.2
miACADIA (20) -21+ 0 -20.7+ 0.4 -20.9+ 0.2 -20.3+ 0.9 0+ 0 16 + 17 1.6+ 4.5 3£ 5.2
iACADIA (20) =21+ 0 -20.3+ 0.6 -20.9+ 0.3 -20.2+ 0.9 6+ 4 6+ 4 1+ 3 3+ 4.5
aiACADIA (20) 21+ 0 -20.5+ 0.5 21+ 0 21+ 0 0+ 0 20+ 8 1+ 2 3+ 0
RoadRunner MuJoCo Walker
Perturbation Vanilla DQN RADIAL-DQN Vanilla PPO RADIAL-PPO
Method (steps)
Non-Targeted Targeted Non-Targeted Targeted Non-Targeted Non-Targeted
CW (1000) 0+0 0+0 14000 + 1000 18400 + 15400 -7+3 -14+1
CW (120) 11700 £ 0 0+0 5750 + 4750 9050 + 5550 -7+2 -11+0.3
CW (100) 100+ 0 0+0 22200 + 15000 9050 + 5550 —-6+2 -12+0.3
CW (20) 8600 + 0 0+0 14000 + 1000 18400 + 15400 —5+8 -18+3
PGD (20) 200 = 141 0+£0 17 £45 23+£76 T1+£3 49+ 1
DIFGSM (20) 1100 + 816 0+0 87 + 106 280 + 399 68 + 8 49+ 1
MIFGSM (20) 500 +0 0+0 3+18 3+18 76 +4 49+ 1
FGSM (1) 100 + 0 0+0 247 + 394 220 + 338 52+3 49+ 1
miACADIA (20) 33+ 47 0+ 0 0+ 0 73+ 254 52+3 -50+2
iACADIA (20) 100+ 141 0+ 0 13+ 34 33+ 79 67 +3 -50+1
aiACADIA (20) 23+ 22 0+0 0+ 0 0+ 0 52+3 -51+3
TABLE IV
AVERAGE REWARD (AR) FOR MuJOCO WALKER USING PPO UNDER TABLE V
NON-TARGETED ATTACKS ATTACK EXECUTION TIME (AET) FOR PONG USING DQN
Perturbation Vanilla-PPO | ATLA-PPO | RADIAL-PPO Perturbation Method (steps) ‘ Pong |
Method (steps) | Non-Targeted | Targeted |
CW (1000) 716 + 32 963 + 20
CW (1000) -7+3 -14+1 -14+1 CW (120) 11829 9% 1
CW (20) -5+8 -7+4 -18+3 CW (100) 97<35 9:6
CW (120) -7+2 -10+2 -11+0.3 MIFGSM (20) 128+ 8 138+ 8
CW (100) —-6+2 -10+1 -12+0.3 DIFGSM (20) 103+ 6 135+ 14
PGD (20) T1+3 330 +42 -49+1 PGD (20) 94+ 6 117 +13
MI-FGSM (20) 76 +4 331 +48 -49+ 1 CW (20) 212 26+2
FGSM (1) 52+3 351 +27 49+ 1 _FGSM () 6£2 6.3+0.7
miACADIA (20) | 52%3 32280 —50+2 miACADIA (20) 12627 12527
iACADIA (20) 673 325+43 =501 LS LEXCDN el | okl
aiACADIA (20) 52+3 321 +43 -51+3 _ _

increase of 20 ms and 2-10 ms in AET boosted ASR of
miACADIA and aiACADIA significantly up to 22% better than
PGD and up to 24% better than MI-FGSM. Overall our attacks
are effective under realistic situations as the time to craft a
perturbation in our attacks is only a few milliseconds.

We observe that CW can be 7 to 22 times slower than
our attacks. Although in the MuJoCo experiments, CW takes
less time than in the Atari environments, it still cannot work
under realistic situations where we have less time to craft the
perturbation. Overall we show that our attacks are effective
under realistic situations as the time to craft a perturbation in
our attacks is only a few milliseconds.

In AET, iACADIA is better than miACADIA and
miACADIA is better than aiACADIA because miACADIA
incorporates momentum and ai ACADIA incorporates both mo-
mentum and RMSProp. Even our basic version, iACADIA,
performs better than most of the baselines.

On ASR and AR metrics, we observed that aiACADIA
and miACADIA perform similarly in most cases. aiACADIA
outperforms in a few instances, such as when RoadRunner is
played by Vanilla DQN. Therefore, incorporating RMSProp
helps in these cases. However, using momentum in the at-
tack significantly helps achieve high ASR and low AR. As
miACADIA takes less time than aiACADIA and shows com-
parable performance on AR and ASR, miACADIA can be
considered the best variant.

VIII. CONCLUSIONS & FUTURE WORK

We proposed ACADIA, a set of novel adversarial AttaCks
Against Deep relnforcement leArning. The ACADIA includes
Iterative ACADIA (1iACADIA), ADAM-based Iterative ACA-
DIA (aiACADIA), and Momentum-based, Iterative ACADIA
(miACADIA). To develop these, we took a novel combination
of RMSProp (Root Mean Squared Propagation) for iterative
steps, random initialization for a random start, and momentum
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for escaping from local optima to significantly enhance effi-
ciency and effectiveness in terms of the speed of performing
attacks and the robustness of attacks under defenses in DRL.
Our work is the first to develop efficient and robust perturba-
tions specifically for DRL. Our key findings are:

o ACADIA is deployable to time-sensitive real-life applications
as it can generate the state perturbations in less than 140 ms,
which is a realistic time.

o ACADIA is nine times faster than CW and comparable to
their FGSM counterparts, which are known as the most
efficient and effective state-of-the-art attacks in DL.

o ACADIA outperforms all considered attack methods in Attack
Success Rate and Average Reward overall baselines, espe-
cially under the defense.

o Under no defense, ACADIA is either better or comparable
to baselines. PGD could not perform well on targeted attack
settings while CW could not perform well under defenses.

« miACADIA can be considered as our best variant in terms
of efficiency and effectiveness.

Through our extensive experiments, we found some limita-
tions in our ACADIA, which will be explored in our future
research. First, our work has not addressed the attack based on
when-to-attack strategies. Using these strategies did not allow
us to compare our scheme with the existing when-to-attack
counterparts. However, we strongly recommend using ACADIA
with when-to-attack strategies as ACADIA can be detected if
we will attack all time steps during an episode. We attacked
all time steps just for a fair comparison. Second, we could
not extensively investigate the performance of ACADIA under
various continuous control environments of DRL.
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