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Certified Control Oriented Learning: A Robust
Predictor-Based Approach

Rajiv Singh and Mario Sznaier", Fellow, IEEE

Abstract—We present a novel approach to the problem of
learning the behavior of dynamical systems for the purpose
of robust control design. The approach is centered around
the derivation of stable predictors of potentially unstable
systems and using them to identify plant models that can
be ranked by their complexity (order) vs. empirical Nu-gap
value.

Index Terms—Identification for control, robust control.

[. INTRODUCTION

GOAL of system identification can be stated as one

of deriving a mathematical description of a dynamical
system that is no more complicated than what the application
demands. The derived model must of course be consistent with
both the system measurements as well as any prior knowl-
edge about its behavior and the disturbances. In this context,
the goal of control-oriented identification is to be able to cer-
tify that if the priors are correct, then a controller designed
using the identified plant will also stabilize the true, unknown
system.

It is well-known that stable, finite-horizon, predictors can
be posed even for unstable systems, a fact at the core of
the prediction error minimization (PEM) framework [1]. This
observation provides the inspiration for the line of approach
described in this letter. In short, we lean on the stability of
predictors to perform the identification of unstable systems.

In this letter, we discuss approaches to steer the identifi-
cation process toward control-friendliness, that is, trade-off
the open-loop closeness of the model’s response to the mea-
sured one for better closed-loop guarantees. The main tool
used for assessing this trade-off is the v-gap metric that mea-
sures the closed-loop distance between systems: specifically,
if two systems are close in this metric, then there exists a
controller that simultaneously stabilizes both. As discussed in
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an earlier publication [2], this assessment cannot be done by
open-loop measures of the distance between plants.

Approaches that take into account the closed-loop objec-
tives such as the gap metric have been considered under
various settings earlier. Some are based on coprime factor
identification and typically either require the knowledge of
a stabilizing controller beforehand [3], [4], [5], [6], or rely on
relaxations that are hard to scale up [7]. Reference [8] mini-
mizes the uncertainty in the identified coprime factors subject
to robust stability constraints. However, a prior structure on
the transfer function is imposed essentially limiting the role
of gap-minimization to a gain K. Reference [2] proposed a
generalized interpolation-based approach. In the absence of
noise, this method leads to a semi-definite program. However,
in the presence of noise, retaining convexity requires using a
relaxation that leads to conservative bounds on the uncertainty.

Our objective is to identify a model Gj; that is as close
as possible to the true system Gp in the gap metric while
respecting the uncertainty bounds prescribed on the measure-
ments. Since Gy is unknown, this can’t be achieved directly.
Instead, using the prior that the uncertainty bounds envelope
the response of Gp, we can estimate the worst-case distance
between the true system and the identified model in the gap-
metric sense. This is represented by the chord Py — P> in
Figure 1 which denotes the distance between the stereographic
projections of two response values i and /; in the complex
plane; see [9] for more details. Assuming /| represents the true
plant response, the objective then is to find an optimal value
for hy inside the disk of uncertainty. The standard approach
to identifying a stable model that guarantees adherence to the
prescribed bounds is using the interpolatory algorithms [10],
[11]. Our methodology leverages this approach for control-
oriented identification of potentially unstable systems without
requiring closed-loop experimentation. Our contributions are
as follows:

1) An ersatz scheme for estimating the Chebyshev center
of the consistency set in the v-gap sense.
A method for the identification of a robust predictor that
can handle both time and frequency domain data.
An empirical analysis of the trade-offs between the com-
peting goals of minimizing the v-gap and keeping the
order of the identified model low.
Ilustration of the efficacy of the proposed approach on
a system that is not strongly stabilizable.

2)

3)

4)
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Fig. 1. Stereographic projection and chordal distances. Corresponding
to a point hy e C, 3 h]®™ st. the chordal distance between their pro-
jections, Py and PJ"®X respectively, is maximized. N = (0, 0, 1) denotes
the “north pole” of the Riemann sphere, and C = (0, 0.0.5) its center. If
—h/|h? ¢ D(hm, €), the Chebyshev center is the point hee which bisects
the projections of the closest (h) and the farthest (h) points on the disk
(the dotted green line bisects the dashed cherry-colored line and meets
the complex plane at hcc).

Il. PRELIMINARIES
A. Notation

G(z) = Z}’io gizi is a discrete-time transfer function that is
analytic inside the unit disk. H, , denotes space of functions
analytic inside the disk of radius p > 1, equipped with the
norm [|G(2)lleo,p = Supy; <, IG(2)| (e.g., exponentially stable
systems with a stability margin of p —1). Hg, , denotes the
i-ball in Hoo p, €8, He, , = {G € Hoopt [Glloo,p < K}
We will denote Hoo,1 as simply Hoo. The symbol “®” repre-
sents the convolution operator. Ty denotes the Toeplitz matrix
associated with the impulse response sequence, g(¢), of G(z).
G(z)” denotes the conjugate of G(z): G(z)” = G' (1/z). Finally,
Veap(G1, G2) denotes the v—gap metric between plants G1 and
Gy.

B. Predictor Model

Consider a linear model G(z) that aims to perform the
best prediction of the output of another, potentially unsta-
ble, linear system G(z) = B,(z)/Ap(z) one step into the
future using all available measurements of G(z) up to a given
time instant 7. Under a stochastic embedding framework, the
optimal predictor can be expressed in terms of the system’s
true and noise dynamics. For example, consider a Box-Jenkins
model structure where the data-generating system contains
additive colored noise so that y,,(1) = Bp(q)/Ap(q@u() +
Cp(q)/Dp(gq)e(t), where y,(f) is the noisy output generated
owing to the input u(f) and disturbance e(¢), and g denotes
the backward shift operator. The optimal predictor (in the
prediction mean squared error (MSE) sense) is given by [1]:

_ Dp(@By(9) Cp(q) — Dp(q)
Co(@Ap(q) Cp(q)

The predictor for a single-input single-output (SISO) system
is thus another system with one output y(f) and two inputs

y(@®)

u(n) + Ym (t) ey

u(t), and y,, (). The fundamental assumption underlying the
PEM framework is that the predictor is stable. This implies
that C,(q) is a stable polynomial and that the unstable roots
of Ap(g) are canceled by those of D,(q). Succinctly, Eq. (1)
can be written as:

Y = 8u ® u() + gy,, ® ym (1) ©))
Y (@) = Hy(@)U(®) + Hy, Yin(o) 3

where g,, and g, denote the impulse responses from u(r)
and y,,(¢), and Hy,(w), Hy, (w) the corresponding frequency
responses. Y ,U, Y, are the Fourier transforms of the corre-
sponding time-domain signals y, u, and y,, respectively. In this
letter, g, gy,,, Hy(®), and Hy, (w) are the primary design vari-
ables. Note that the true plant response can be obtained from
that of the predictor as follows:

H(w) = H,()/(1 — Hy,, (w)). “)

C. Nu-Gap Metric and Robust Stabilizability

Given two SISO models Gi(z), G2(z) with frequency
responses Hi(¢/“) and Hy(¢“), the v-gap between G, G is
given by ([9], Theorem 17.6):

19 (H (), Ho(6) oo

if det((I + Hy(¢®)"Hi(*)) # 0 and
wno det(/ + Hy"Hy) + n(Hy) — n(Hz) (5)
—no(Hz) =0,

1 otherwise

Veap(G1, G2) =

where wno denotes the winding number, n(H) and no(H)
denote the number of unstable and unit circle poles of G,
respectively, and where

|H} (0)—Hp (w)] (6)

W (H)(w), H =
(Hy (o), H2(w)) VIHH (@) 2/ 1+ Hy (@) 2

The advantage of this expression is that it can be calculated
directly from the frequency response data. Given a controller
C that stabilizes a certain plant G, define:

bop = ||[f](1+ GO~ GiI

Then, if bopr > Veap(G1, G2) the controller C also stabilizes
G2 ([9, Th. 17.8]). We will exploit this result to ascertain
whether or not a controller designed using the identified model
is guaranteed to stabilize the actual plant.

D. Generalized Interpolation Framework for Robust
Identification

The generalized interpolation framework, as established
in [10], [11] and further used in [12] for finding the minimal
order interpolant, generalizes the Nevanlinna-Pick interpola-
tion conditions to incorporate time-domain data. The main
result in [10] shows that the problem of finding a function
in Hg, , that interpolates given time- and frequency-domain
measurements can be reduced to a semidefinite program
(SDP). For our current purpose, it suffices to recall that a
rational interpolant G(z) exists if and only if the following
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Hermitian matrix Z(H, g, p, k) is positive semidefinite:

M;!  1x
Z(H7gap’K)i|:]0T K ]%0
;X My

|H(w;) — Hy(w))| < €,
[ym(®) — g(1) ® u(®)| < &,

i=1,2,...,Ns
t=1,2,...,N; 7

where g denotes the impulse response vector of G(z) and
H(w) its frequency response. (y,u), and H,(w;) are the
corresponding noisy measurements. The matrices My, X are

defined as:
[ 0 Sor? _[H o
Mo = [R—zsg’ 2| X=|o 1,

R = diag([1, p, p*, ..., pM1])

— 02 ] L ol o
Q—[pz_Z,Zj l,j,zl—e’ L Lj=1,2,.. N
So=121y, i=1,2,....,Np, j=1,2,...,Ny

H = diag([H(w1), H(w2), ..., H(on,)]) ®)

E. Rank Revealing Properties of the Loewner Matrices

Loewner matrices are presented in the context of Lagrange
interpolants of rational functions in [13]. Their use for system
identification within the generalized interpolation framework
is further described in [12]. For the current work, we lean on
the rank of an almost square Loewner matrix L(HY, ®) that
is composed of frequency response vector H™' computed over
Ny points on the unit circle z; = g9 @ = (w1, ..., a)Nf). If
rank(IL) = n, n < Ny/2, and all possible n-by-n Loewner sub-
matrices formed using (HNf , w) are full-rank, then there exists
a unique transfer function corresponding to this data (see [13,
Th. 1.2]).

[1l. IDENTIFICATION OF CONTROLS-FRIENDLY
PREDICTORS

This section presents the main ideas of this letter.

A. Robust Prediction Using Generalized Interpolation

For robust prediction, we need that prediction errors e(f) =
ym(t) — y(t) are bounded in the worst-case sense, that is,
le(t)] < €:(t), Vt. This is achieved by using the generalized
interpolation formulation.

Lemma 1: Given N; time-domain samples of input/output
data (u(t), ym (1)) and Ny frequency response samples H, (®),
with the following apriori measurement error bounds:

[Hp(wi) — H(w)| < ep(w),Vi=1,2,...,Ny  (10)
there exists a set of stable predictors for the plant G(z)
provided the following feasibility conditions are met:
Z(Huv gbh 10’ Kl) % 0
Z(HYm’ gyma P, KZ) = 0
@) —g®) ®u@®)| < @), t=1,2,....N;

|H(wi) — Hp(w)| < €p(w), i=1,2,....Ny  (11)

Proof: See Theorem 3, and proof therein, in [11]. [ |

B. Chebyshev Center Approximation

Given measurements H,,(w) and the corresponding uncer-
tainty bound €, over a grid of w values, what is the most
desirable location of the identified plant response H;;(w)? The
ersatz proposed here aims to answer this question.

Let D(hy, €) = {z € C | |z— hyu|> < €2} denote the disk of
uncertainty of radius € centered at A, for the measurement at
a given frequency. Suppose hy, ho are two feasible points with
stereographic projections P, P> on the Riemann sphere (that
is the intersection of the sphere and the lines connecting %; to
the north pole N = (0,0, 1)). The explicit expression for P;
in a coordinate system where the x — y plane is the complex
plane is given by:

_(&m> Im(hi)  |hil?)
BN RN N A T

Then, W (hi(w), hp(w)) defined in (6) is precisely the
chordal distance between the projections Pj, P>. To esti-
mate the Chebyshev center of the uncertainty set D(hy,, €),
in the gap metric sense, we need to find the points &y, hy €
D(hy, €) such that their corresponding stereographical projec-
tions maximize the chordal distance. To this effect, consider
a fixed point h; € D(hy,, €) and maximize ¥ (h(w), hy(w))
w.r.t. hy. Tedious algebra shows that the unconstrained maxi-
mum is achieved for h)'™ = —hy/|hy |2, with the correspond-
ing W(h (o), hy*(w)) = 1. Geometrically, this corresponds to
the case where the chord Py, P5'** passes through the sphere’s
center and hence has length 1 (see Figure 1). This observation
leads to the following two cases:

B.1. h5“* € D: This corresponds to the situation where the
uncertainty € in a measurement is high relative to its
magnitude |A,,|. In this case, D contains the origin, and
the chordal distance is maximized by pairs of points con-
tained in the disk such that the chords connecting their
projections all pass through the sphere’s center. Hence
the best guess for the Chebyshev center is A, = 0. This
choice supports the commonly known closed-loop objec-
tive of small gain at frequencies where the open-loop
uncertainty is large.

h3}%* ¢ D: This is the more common scenario and is the
main focus here. In this case, setting iy = ahy™, 0 <
o < 1, shows that W is maximized by taking h; = h,
the farthest point in D from the origin, and sy = &, its
diametrically opposed point in D. This suggests approxi-
mating the Chebyshev center by the point corresponding
to the mid-point of the stereographic projections of A
and h:

), i=1,2. (12

B.2.

1+ k2

he=0—=y)h+yh y=———
cc =0 =y)h+yh y SERTAERE

13)

Remark 1: Note that while h.. is inside the uncertainty
disk by construction, it may not belong to the consistency
set, since there is no guarantee that there exists a function in
M5, that interpolates these data points. Thus, one may not be
able to use h.. directly as the identified plant. Further, when
computing h.. we did not impose the winding number con-
dition. Thus A is only an approximation (ersatz) to the true
center.
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C. Main Algorithm

Let HCI\? denote the Ny-long reference response vector
obtained by using the Chebyshev center ersatz (Section III-B).
The ersatz indicates that the identification goal should be to
stay as close as possible to H.., at all frequencies, in the gap-
metric sense. In the best-case scenario, with no priors other
than that the unknown system is linear time-invariant (LTI) and
that there are no restrictions on the model order, the identified
model response can match H,. arbitrarily well. However, doing
so implicitly assumes no additional priors regarding (or pref-
erence for) lower-order models, which is often not the case.
From an Ho-synthesis perspective, it is desirable to keep
the plant model order low since the plant order is reflected
in the designed compensator order. Thus there is a trade-off
between the choice of model order and the achievable gap
in the worst case. The following problem statement quantifies
this trade-off.

Problem 1: Given noisy time- and frequency-domain mea-
surements, determine the closest stable predictor to H., in
the vg,p metric, such that the corresponding plant is (a) in the
consistency set, (b) has low order, and (c) satisfies (9)-(10).

Proposition 1: Let gﬁ;’ denote the N;-long impulse response

vector, and HZf the Ny-long frequency response vector of the
plant to be identified Gjy. The estimates are obtained as a
solution to the following optimization problem:

©  max(Vi(Hy, Hy,, ;)

Minimize i
+ A(rank(L(Hu)) + rank(]L(Hym))>
subjeCt to Z(Hlb guv IO’K‘])% 0

Z(Hy, gy, p,k2)= 0

ly(@®) — g ® u(®)|< &)
|[Hp(0p)(1 — Hy, () — Hy(w;)]

< ¢r(wy)
11— Hy, (@) 7
t=1,...,N;, i=1,...,Ny
where
@ i {gu, gymyHu,Hyma K17 K2} (14)

1y = Hec@)(1 — Hy, @) - Hy ()|
’ |Hy(wi)|* + |1 — Hy,, (@)
2.8y, € RV, H, Hy,, €CM, ki, k2 e RF

(15)

Here (15) uses (4) and (6) to minimize the gap between
the identified plant and H,., while A > O trades off the small
Veap Objective against the low order objective for Gjy. The
constraints enforce that Gj; is in the consistency set.

Proof: Follows from combining (4) and (6)-(8) with the
properties of Loewner matrices. |

1) Convex Relaxations: We use nuclear norm as a convex
relaxation of the matrix rank and further use reweighted trace
heuristics to reduce the conservatism introduced by this relax-
ation [14]. The rational terms in the objective (\i/i) and the
frequency domain noise constraint (the last one) can be con-
vexified by using a Sanathanan-Koerner (SK)-type iterative
approach wherein a non-convex objective min, p |h — b/al is
replaced by the convex objective ming, g, |(hax — bi)/ak—1l
for kth iteration [15]. This leads to the following convex

Algorithm 1 Minimization Approach for Problem 1
1: Inputs:
Data: u(?), y,(¢), Hy(w) samples
Priors: p, €r(w), €:(1), 8;’””, 6}”"’
2: Initialize:
k=0 > iter counter
Weights: Wf,o), W}O) (e.g., using PEM)

(0) (0) 0) 0)
Wu,l = Wu,Z = Wy,l = Wy,Z =1
n=1e3, eg=1e—4 '

3: while 6, > & | & > 6}"”’ do

4: k<—k+1

5. O « argmin (©K)
6
7
8

> Eq. (16)
Wi — [ 4 11— B
Wl < |1 - HOP
L WA < Ut el
o W« +eD™!
10: end while
11: Use Algorithm 1.2 in (13) to find Gig

>x=1,2

minimization problem (for a single iteration k):
e® J(@(k))
Minimize
subject to Z(H,Ek), gg‘), p,k1)=0
ZHYP, 8P, p,x2)= 0
5) — gL () ® u) — gL (1) ® ym ()| < &)

k
|H(ep) (1 = HE (@) — H (@) 2 < e} ()W}
|Hee(0)(1 — HY (0p)) — HP (o) P< 6O WP
t=1,....,N, i=1,....Ny

where  J(©W) =5 43 <TY(W$1_ DUy + v Vo)

TV ) + Tr(wjf‘;”n))

it - a1 WP, (16)

&(1)=(1-gP®) ®e): U1, Up, Y1, Y2 > 0
O® = (50, g® . g® HP HP U\, Uy, 11, V2.1, K2)

The weights Wfkk) € RV are updated in the outer iterative
loop. n is the penalty associated with a regularization term
that is added to keep the changes over the iterations relatively
small. The complete algorithm is summarized in Algorithm 1.

Step 10 of Algorithm 1 yields a candidate identified
frequency response H;y, The last step obtains a state-space
realization, Gjg, of this response by imposing a cut-off thresh-
old on the singular values of the Loewner matrix L(H,g).

2) Other Numerical Aspects: The domain mapping and the
linear matrix inequality (LMI) rescaling arguments made
in [2] (Section IV-A4) a&)ply here as well. In particular, the
feasibility matrices Z(H", ...), Z(H®,...) of (11) become
ill-conditioned as p increases and necessitate the use of both
of these techniques.

Remark 2: The output 8, of Algorithm 1 is a valid vg,p
only if the winding number condition in (5) holds. This can be
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Fig. 2. Measured FRF with uncertainty bounds. The green curve shows
the true plant (Oracle) response.
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= = =¢; bounds
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-8

Fig. 3.
bounds.

Measured chirp signal response with prescribed uncertainty

checked numerically by first estimating the number of unstable
poles of H, from its Bode plot and then plotting det(l +
Hi; Hy,). In the absence of such knowledge, the most feasible
candidate must be determined by trying out all the candidates
and picking the one with the largest stability margin (bgp).
The chances of finding a plant model with a verifiable vg,p
can be improved by generating a set of results corresponding
to multiple orders, all corresponding to similar singular values
near the cut-off threshold.

IV. EXAMPLE: NON-STRONGLY-STABILIZABLE PLANT

Consider the non-strongly stabilizable plant G(z) = 0.1(z —
1.1)/(z — 0.95)(z — 1.2), used previously in [2] to analyze a
coprime factor identification approach. The data is collected
by simulating the plant in an open-loop setting using band-
limited random and chirp profiles. The measured responses are
corrupted by additive noise. The random input response is used
for deriving an empirical estimate of the frequency response
with the Hann window. 33 samples of the frequency response
and 50 samples of the chirp signal time-domain response are
used for identification. These responses along with their prior
uncertainty bounds are shown in Figures 2 and 3. The stability
radius prior is taken to be p = 1.01.

The (per-frequency) worst-case locations of the true and
identified plants are at the uncertainty limits, not unexpected
for measurements with relatively small uncertainty relative
to the response amplitude. The estimated Chebyshev center
(Eq. (13)) along with the worst-case limits (in the v-gap sense)
is shown in Figure 4. H,. stays close to measured values Hy,.

Assuming that the true plant stays as far as possible from
the Chebyshev center at each frequency, the best achievable
gap i8S Vgap (Hee, Hyorst) A 0.121, where Hyyorg is the response

Chebyshev Center and Worst-Case Bounds

T
Measured
Chebyshev center |-
swssssenns Worst case v-gap |

0.9 preesssmmmsmmmssssssmsssssss s,

08

Amplitude
o
3

0.6

0s : E
102 Frequency (rad/s) 107"

Fig. 4. Estimated Chebyshev center and worst-case vg,p responses.
Red: Chebyshev center Hec, Blue: Measured response Hpm.

0.14
0.12
0.1r

0.08 - b
2

2
&

0.06

0.04 - —e—v__ (FRF)
cc

e, (TF)

0.02 - - = =b__ threshold
opt

0 '
10° 10 107 10° 107 10
A

Fig. 5. vgap Vs. L. vcc is the chordal distance from the Chebyshev center
Hce. vg is the chordal distance to the true (Oracle) system. “FRF” suffix
denotes empirical value computed only on the measurement frequency
points (using W), while “TF” suffix denotes the gap of the identified
transfer function.

corresponding to the boundary (the dotted black curves in
Figure 4). Here the true plant order is assumed to be unknown.
If we imposed a prior regarding the order, such as the true
order is as small as possible, it is likely to achieve a smaller
gap since then the true plant response must be a smoother
curve than H,,,.; and closer to H..

To investigate the gap versus order trade-off, Algorithm 1
was run with A values ranging from O to le4, leading to the
results shown in Figure 5. As expected, as X is increased, the
number of significant singular values of the Loewner matri-
ces, and hence system order, drops, while the v-gap measured
from the empirical H.. (= max,-(\il,-)) increases (blue line).
On the other hand, the gap between the identified and true
plants, vgap(Ho, Hiq), decreases (orange line). This is due to
the fact that, for larger values of A, the order of the iden-
tified model happens to be closer to the order of the true
plant.

The best result, vg,, ~ 0.0245, is obtained for p =
1.01, A = le4, for the identified model:

0.113(z — 1.105)

Gid@) = 1235z = 0.949)

7)

The Nyquist plot of 1 + Hy H;4 for this model is shown in
Figure 6 which reveals a winding number of zero.

Since Gj4 has 1 unstable pole, the winding number condi-
tion is satisfied. Indeed, the estimated value of vg,, ~ 0.0245
was verified using the gapmetric command of MATLAB®
Robust Control Toolbox™ [16]. For the true plant, byp =
0.072. This threshold is shown by a dotted black line in
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Fig. 6. Nyquist plot of 1 + Hy Hj4. There is no encirclement of z = 0.
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Fig. 7. Frequency response of the best identified model (Hjq, red)

compared against that of the true plant (Hp, blue)) and the empirical
Chebyshev center used as fitting data (Hge, red).

Figure 5. Hence it is possible to find identified models with
Voap < bopy for many A values, provided a prior regarding the
highest permissible order is placed, which is roughly fourth-
order or smaller. Figure 7 compares the identified model’s
frequency response to the true plant response as well as to
the empirical Chebyshev center H,..

Some final comments regarding the computation time and

effectiveness:

o The estimation took 3 iterations of solving (16)
using CVX [17] (each iteration ~ 7 minutes, run-
ning on a WIN64 PC with 3.6 GHz Intel processor,
64 GB RAM).

o A similar approach but based on coprime factorization
was reported earlier [2]. The reported vg,, value was
0.041 for a given choice of the error bounds €; and €.
The estimation took roughly half the amount of time as
one iteration of Algorithm 1. However, it did not attempt
to directly minimize the vgap or the order of the inter-
polant model and required ad hoc selection of the error
bounds.

o The traditional fit to the data under PEM approach
(which does not guarantee worst-case bounds) can be
obtained using the ssest command of MATLAB®
System Identification Toolbox™ [18], under default set-
tings. This yields an 8th order model with 98% fit (in the
normalized root means square sense) but producing a gap
value of 1.

V. CONCLUSION

The ultimate goal of control-oriented identification is to
generate a model that can be used to synthesize a controller
guaranteed to meet given design specifications when combined
with the true, unknown plant. This problem is particularly
challenging when the unknown plant is open-loop unstable.
This letter addresses this scenario from a vg,, perspective.
Leveraging the fact that predictors are stable even for unstable
plants allows for bringing to bear a generalized interpola-
tion framework to parameterize all candidate models in the
consistency set. This parameterization enables searching for
models that minimize a composite measure consisting of the
v-gap w.r.t. an empirical Chebyshev center of the feasible
model set, and model order, allowing for trading off robust-
ness against model order. These results were illustrated with
a non-trivial scenario: identifying a non-strongly stabilizable
plant and guaranteeing closed-loop stability of the actual plant
using an Ho, controller designed with the identified model.
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