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Certified Control Oriented Learning: A Robust
Predictor-Based Approach

Rajiv Singh and Mario Sznaier , Fellow, IEEE

Abstract—We present a novel approach to the problem of
learning the behavior of dynamical systems for the purpose
of robust control design. The approach is centered around
the derivation of stable predictors of potentially unstable
systems and using them to identify plant models that can
be ranked by their complexity (order) vs. empirical Nu-gap
value.

Index Terms—Identification for control, robust control.

I. INTRODUCTION

A
GOAL of system identification can be stated as one

of deriving a mathematical description of a dynamical

system that is no more complicated than what the application

demands. The derived model must of course be consistent with

both the system measurements as well as any prior knowl-

edge about its behavior and the disturbances. In this context,

the goal of control-oriented identification is to be able to cer-

tify that if the priors are correct, then a controller designed

using the identified plant will also stabilize the true, unknown

system.

It is well-known that stable, finite-horizon, predictors can

be posed even for unstable systems, a fact at the core of

the prediction error minimization (PEM) framework [1]. This

observation provides the inspiration for the line of approach

described in this letter. In short, we lean on the stability of

predictors to perform the identification of unstable systems.

In this letter, we discuss approaches to steer the identifi-

cation process toward control-friendliness, that is, trade-off

the open-loop closeness of the model’s response to the mea-

sured one for better closed-loop guarantees. The main tool

used for assessing this trade-off is the ν-gap metric that mea-

sures the closed-loop distance between systems: specifically,

if two systems are close in this metric, then there exists a

controller that simultaneously stabilizes both. As discussed in
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an earlier publication [2], this assessment cannot be done by

open-loop measures of the distance between plants.

Approaches that take into account the closed-loop objec-

tives such as the gap metric have been considered under

various settings earlier. Some are based on coprime factor

identification and typically either require the knowledge of

a stabilizing controller beforehand [3], [4], [5], [6], or rely on

relaxations that are hard to scale up [7]. Reference [8] mini-

mizes the uncertainty in the identified coprime factors subject

to robust stability constraints. However, a prior structure on

the transfer function is imposed essentially limiting the role

of gap-minimization to a gain K. Reference [2] proposed a

generalized interpolation-based approach. In the absence of

noise, this method leads to a semi-definite program. However,

in the presence of noise, retaining convexity requires using a

relaxation that leads to conservative bounds on the uncertainty.

Our objective is to identify a model Gid that is as close

as possible to the true system G0 in the gap metric while

respecting the uncertainty bounds prescribed on the measure-

ments. Since G0 is unknown, this can’t be achieved directly.

Instead, using the prior that the uncertainty bounds envelope

the response of G0, we can estimate the worst-case distance

between the true system and the identified model in the gap-

metric sense. This is represented by the chord P1 − P2 in

Figure 1 which denotes the distance between the stereographic

projections of two response values h1 and h2 in the complex

plane; see [9] for more details. Assuming h1 represents the true

plant response, the objective then is to find an optimal value

for h2 inside the disk of uncertainty. The standard approach

to identifying a stable model that guarantees adherence to the

prescribed bounds is using the interpolatory algorithms [10],

[11]. Our methodology leverages this approach for control-

oriented identification of potentially unstable systems without

requiring closed-loop experimentation. Our contributions are

as follows:

1) An ersatz scheme for estimating the Chebyshev center

of the consistency set in the ν-gap sense.

2) A method for the identification of a robust predictor that

can handle both time and frequency domain data.

3) An empirical analysis of the trade-offs between the com-

peting goals of minimizing the ν-gap and keeping the

order of the identified model low.

4) Illustration of the efficacy of the proposed approach on

a system that is not strongly stabilizable.
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Fig. 1. Stereographic projection and chordal distances. Corresponding
to a point h1 ∈ C, ∃ hmax

2
s.t. the chordal distance between their pro-

jections, P1 and Pmax
2

respectively, is maximized. N = (0, 0, 1) denotes
the “north pole” of the Riemann sphere, and C = (0, 0.0.5) its center. If
−h̄/|h̄|2 /∈ D(hm, ǫ), the Chebyshev center is the point hcc which bisects
the projections of the closest (h) and the farthest (h̄) points on the disk
(the dotted green line bisects the dashed cherry-colored line and meets
the complex plane at hcc ).

II. PRELIMINARIES

A. Notation

G(z)
.=

∑∞
i=0 giz

i is a discrete-time transfer function that is

analytic inside the unit disk. H∞,ρ denotes space of functions

analytic inside the disk of radius ρ > 1, equipped with the

norm ‖G(z)‖∞,ρ
.= sup|z|<ρ |G(z)| (e.g., exponentially stable

systems with a stability margin of ρ − 1). Hκ
∞,ρ denotes the

κ-ball in H∞,ρ , e.g., Hκ
∞,ρ

.= {G ∈ H∞,ρ : ‖G‖∞,ρ ≤ κ}.
We will denote H∞,1 as simply H∞. The symbol “⊛” repre-

sents the convolution operator. Tg denotes the Toeplitz matrix

associated with the impulse response sequence, g(t), of G(z).

G(z)˜ denotes the conjugate of G(z): G(z)˜ .= GT(1/z). Finally,

νgap(G1, G2) denotes the ν−gap metric between plants G1 and

G2.

B. Predictor Model

Consider a linear model G̃(z) that aims to perform the

best prediction of the output of another, potentially unsta-

ble, linear system G(z) = Bp(z)/Ap(z) one step into the

future using all available measurements of G(z) up to a given

time instant t. Under a stochastic embedding framework, the

optimal predictor can be expressed in terms of the system’s

true and noise dynamics. For example, consider a Box-Jenkins

model structure where the data-generating system contains

additive colored noise so that ym(t) = Bp(q)/Ap(q)u(t) +
Cp(q)/Dp(q)e(t), where ym(t) is the noisy output generated

owing to the input u(t) and disturbance e(t), and q denotes

the backward shift operator. The optimal predictor (in the

prediction mean squared error (MSE) sense) is given by [1]:

ỹ(t) = Dp(q)Bp(q)

Cp(q)Ap(q)
u(t) + Cp(q) − Dp(q)

Cp(q)
ym(t) (1)

The predictor for a single-input single-output (SISO) system

is thus another system with one output ỹ(t) and two inputs

u(t), and ym(t). The fundamental assumption underlying the

PEM framework is that the predictor is stable. This implies

that Cp(q) is a stable polynomial and that the unstable roots

of Ap(q) are canceled by those of Dp(q). Succinctly, Eq. (1)

can be written as:

ỹ(t) = gu ⊛ u(t) + gym ⊛ ym(t) (2)

Ỹ(ω) = Hu(ω)U(ω) + HymYm(ω) (3)

where gu, and gym denote the impulse responses from u(t)

and ym(t), and Hu(ω), Hym(ω) the corresponding frequency

responses. Ỹ, U, Ym are the Fourier transforms of the corre-

sponding time-domain signals ỹ, u, and ym respectively. In this

letter, gu, gym , Hu(ω), and Hym(ω) are the primary design vari-

ables. Note that the true plant response can be obtained from

that of the predictor as follows:

H(ω) = Hu(ω)/(1 − Hym(ω)). (4)

C. Nu-Gap Metric and Robust Stabilizability

Given two SISO models G1(z), G2(z) with frequency

responses H1(e
jω) and H2(e

jω), the ν-gap between G1, G2 is

given by ([9], Theorem 17.6):

νgap(G1, G2) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

‖�(H1(e
jω), H2(e

jω))‖∞
if det((I + H2(e

jω)˜H1(e
jω)) �= 0 and

wno det(I + H2˜H1) + η(H1) − η(H2)

−η0(H2) = 0,

1 otherwise

(5)

where wno denotes the winding number, η(H) and η0(H)

denote the number of unstable and unit circle poles of G,

respectively, and where

�(H1(ω), H2(ω))
.= |H1(ω)−H2(ω)|√

1+|H1(ω)|2
√

1+|H2(ω)|2
(6)

The advantage of this expression is that it can be calculated

directly from the frequency response data. Given a controller

C that stabilizes a certain plant G1, define:

bopt = ‖
[

C

I

]

(I + G1C)−1
[

I G1

]

‖−1
∞

Then, if bopt > νgap(G1, G2) the controller C also stabilizes

G2 ([9, Th. 17.8]). We will exploit this result to ascertain

whether or not a controller designed using the identified model

is guaranteed to stabilize the actual plant.

D. Generalized Interpolation Framework for Robust
Identification

The generalized interpolation framework, as established

in [10], [11] and further used in [12] for finding the minimal

order interpolant, generalizes the Nevanlinna-Pick interpola-

tion conditions to incorporate time-domain data. The main

result in [10] shows that the problem of finding a function

in Hκ
∞,ρ that interpolates given time- and frequency-domain

measurements can be reduced to a semidefinite program

(SDP). For our current purpose, it suffices to recall that a

rational interpolant G(z) exists if and only if the following

Authorized licensed use limited to: Northeastern University. Downloaded on August 27,2023 at 12:48:52 UTC from IEEE Xplore.  Restrictions apply. 



SINGH AND SZNAIER: CERTIFIED CONTROL ORIENTED LEARNING: A ROBUST PREDICTOR-BASED APPROACH 2313

Hermitian matrix Z(H, g, ρ, κ) is positive semidefinite:

Z(H, g, ρ, κ)
.=

[

M−1
0

1
κ

X
1
κ

XT M0

]

� 0

|H(ωi) − Hm(ωi)| ≤ ǫf , i = 1, 2, . . . , Nf

|ym(t) − g(t) ⊛ u(t)| ≤ ǫt, t = 1, 2, . . . , Nt (7)

where g denotes the impulse response vector of G(z) and

H(ω) its frequency response. (ym, u), and Hm(ωi) are the

corresponding noisy measurements. The matrices M0, X are

defined as:

M0 =
[

Q S0R−2

R−2SH
0 R−2

]

, X =
[

H 0

0 Tg

]

R = diag([1, ρ, ρ2, . . . , ρNt−1])

Q =
[

ρ2

ρ2−zizj

]

ij
, zi = ejωiT , i, j = 1, 2, . . . , Nt

S0 = [z
j
i]ij, i = 1, 2, . . . , Nf , j = 1, 2, . . . , Nf

H = diag([H(ω1), H(ω2), . . . , H(ωNf
)]) (8)

E. Rank Revealing Properties of the Loewner Matrices

Loewner matrices are presented in the context of Lagrange

interpolants of rational functions in [13]. Their use for system

identification within the generalized interpolation framework

is further described in [12]. For the current work, we lean on

the rank of an almost square Loewner matrix L(HNf ,ω) that

is composed of frequency response vector HNf computed over

Nf points on the unit circle zi = ejωi ,ω
.= (ω1, . . . , ωNf

). If

rank(L) = n, n < Nf /2, and all possible n-by-n Loewner sub-

matrices formed using (HNf ,ω) are full-rank, then there exists

a unique transfer function corresponding to this data (see [13,

Th. 1.2]).

III. IDENTIFICATION OF CONTROLS-FRIENDLY

PREDICTORS

This section presents the main ideas of this letter.

A. Robust Prediction Using Generalized Interpolation

For robust prediction, we need that prediction errors e(t) =
ym(t) − ỹ(t) are bounded in the worst-case sense, that is,

|e(t)| ≤ ǫt(t),∀t. This is achieved by using the generalized

interpolation formulation.

Lemma 1: Given Nt time-domain samples of input/output

data (u(t), ym(t)) and Nf frequency response samples Hm(ejω),

with the following apriori measurement error bounds:

|ym(t) − y(t)| ≤ ǫt(t),∀t = 1, 2, . . . , Nt (9)

|Hm(ωi) − H(ωi)| ≤ ǫf (ωi),∀i = 1, 2, . . . , Nf (10)

there exists a set of stable predictors for the plant G(z)

provided the following feasibility conditions are met:

Z(Hu, gu, ρ, κ1) � 0

Z(Hym , gym , ρ, κ2) � 0

|y(t) − g(t) ⊛ u(t)| ≤ ǫt(t), t = 1, 2, . . . , Nt

|H(ωi) − Hm(ωi)| ≤ ǫf (ωi), i = 1, 2, . . . , Nf (11)

Proof: See Theorem 3, and proof therein, in [11].

B. Chebyshev Center Approximation

Given measurements Hm(ω) and the corresponding uncer-

tainty bound ǫω over a grid of ω values, what is the most

desirable location of the identified plant response Hid(ω)? The

ersatz proposed here aims to answer this question.

Let D(hm, ǫ)
.= { z ∈ C | |z−hm|2 ≤ ǫ2 } denote the disk of

uncertainty of radius ǫ centered at hm for the measurement at

a given frequency. Suppose h1, h2 are two feasible points with

stereographic projections P1, P2 on the Riemann sphere (that

is the intersection of the sphere and the lines connecting hi to

the north pole N
.= (0, 0, 1)). The explicit expression for Pi

in a coordinate system where the x − y plane is the complex

plane is given by:

Pi =
(

Re(hi)

1 + |hi|2
,

Im(hi)

1 + |hi|2
,

|hi|2)
1 + |hi|2

)

, i = 1, 2. (12)

Then, �(h1(ω), h2(ω)) defined in (6) is precisely the

chordal distance between the projections P1, P2. To esti-

mate the Chebyshev center of the uncertainty set D(hm, ǫ),

in the gap metric sense, we need to find the points h1, h2 ∈
D(hm, ǫ) such that their corresponding stereographical projec-

tions maximize the chordal distance. To this effect, consider

a fixed point h1 ∈ D(hm, ǫ) and maximize �(h1(ω), h2(ω))

w.r.t. h2. Tedious algebra shows that the unconstrained maxi-

mum is achieved for hmax
2 = −h1/|h1|2, with the correspond-

ing �(h1(ω), hmax
2 (ω)) = 1. Geometrically, this corresponds to

the case where the chord P1, Pmax
2 passes through the sphere’s

center and hence has length 1 (see Figure 1). This observation

leads to the following two cases:

B.1. hmax
2 ∈ D: This corresponds to the situation where the

uncertainty ǫ in a measurement is high relative to its

magnitude |hm|. In this case, D contains the origin, and

the chordal distance is maximized by pairs of points con-

tained in the disk such that the chords connecting their

projections all pass through the sphere’s center. Hence

the best guess for the Chebyshev center is hcc = 0. This

choice supports the commonly known closed-loop objec-

tive of small gain at frequencies where the open-loop

uncertainty is large.

B.2. hmax
2 /∈ D: This is the more common scenario and is the

main focus here. In this case, setting h2 = αhmax
2 , 0 ≤

α < 1, shows that � is maximized by taking h1 = h̄,

the farthest point in D from the origin, and h2 =
¯
h, its

diametrically opposed point in D. This suggests approxi-

mating the Chebyshev center by the point corresponding

to the mid-point of the stereographic projections of h̄

and
¯
h:

hcc = (1 − γ )h̄ + γ
¯
h, γ = 1 + |h̄|2

2 + |h̄|2 + |
¯
h|2

(13)

Remark 1: Note that while hcc is inside the uncertainty

disk by construction, it may not belong to the consistency

set, since there is no guarantee that there exists a function in

Hκ
∞,ρ that interpolates these data points. Thus, one may not be

able to use hcc directly as the identified plant. Further, when

computing hcc we did not impose the winding number con-

dition. Thus hcc is only an approximation (ersatz) to the true

center.
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C. Main Algorithm

Let H
Nf
cc denote the Nf -long reference response vector

obtained by using the Chebyshev center ersatz (Section III-B).

The ersatz indicates that the identification goal should be to

stay as close as possible to Hcc, at all frequencies, in the gap-

metric sense. In the best-case scenario, with no priors other

than that the unknown system is linear time-invariant (LTI) and

that there are no restrictions on the model order, the identified

model response can match Hcc arbitrarily well. However, doing

so implicitly assumes no additional priors regarding (or pref-

erence for) lower-order models, which is often not the case.

From an H∞-synthesis perspective, it is desirable to keep

the plant model order low since the plant order is reflected

in the designed compensator order. Thus there is a trade-off

between the choice of model order and the achievable gap

in the worst case. The following problem statement quantifies

this trade-off.

Problem 1: Given noisy time- and frequency-domain mea-

surements, determine the closest stable predictor to Hcc, in

the νgap metric, such that the corresponding plant is (a) in the

consistency set, (b) has low order, and (c) satisfies (9)-(10).

Proposition 1: Let g
Nt

id denote the Nt-long impulse response

vector, and H
Nf

id the Nf -long frequency response vector of the

plant to be identified Gid. The estimates are obtained as a

solution to the following optimization problem:

�
Minimize

max
i

(�̂i(Hu, Hym , ωi))

+ λ

(

rank(L(Hu)) + rank(L(Hym))

)

subject to Z(Hu, gu, ρ, κ1)� 0

Z(Hy, gy, ρ, κ2)� 0

|y(t) − g(t) ⊛ u(t)|≤ ǫt(t)

|Hm(ωi)(1 − Hym(ωi)) − Hu(ωi)|
|1 − Hym(ωi)|

≤ ǫf (ωi)

t = 1, . . . , Nt, i = 1, . . . , Nf

where

�
.= {gu, gym , Hu, Hym , κ1, κ2} (14)

�̂i(·) = |Hcc(ωi)(1 − Hym(ωi)) − Hu(ωi)|2
|Hu(ωi)|2 + |1 − Hym(ωi)|2

(15)

gu, gym ∈ R
Nt , Hu, Hym ∈ C

Nf , κ1, κ2 ∈ R
+

Here (15) uses (4) and (6) to minimize the gap between

the identified plant and Hcc, while λ ≥ 0 trades off the small

νgap objective against the low order objective for Gid. The

constraints enforce that Gid is in the consistency set.

Proof: Follows from combining (4) and (6)-(8) with the

properties of Loewner matrices.

1) Convex Relaxations: We use nuclear norm as a convex

relaxation of the matrix rank and further use reweighted trace

heuristics to reduce the conservatism introduced by this relax-

ation [14]. The rational terms in the objective (�̂i) and the

frequency domain noise constraint (the last one) can be con-

vexified by using a Sanathanan-Koerner (SK)-type iterative

approach wherein a non-convex objective mina,b |h − b/a| is

replaced by the convex objective minak,ak
|(hak − bk)/ak−1|

for kth iteration [15]. This leads to the following convex

Algorithm 1 Minimization Approach for Problem 1

1: Inputs:

Data: u(t), ym(t), Hm(ω) samples

Priors: ρ, ǫf (ω), ǫt(t), δ
min
ν , δmin

f
2: Initialize:

k = 0 ⊲ iter counter

Weights: W
(0)
ν ,W

(0)
f (e.g., using PEM)

W
(0)
u,1 = W

(0)
u,2 = W

(0)
y,1 = W

(0)
y,2 = I

η = 1e3, ǫ0 = 1e − 4
3: while δν > δmin

ν | δf > δmin
f do

4: k ← k + 1

5: �k ← argminJ(�(k)) ⊲ Eq. (16)

6: W
(k)
ν ← |H(k)

u |2 + |1 − H
(k)
y |2

7: W
(k)
f ← |1 − H

(k)
y |2

8: W
(k)
u,∗ ← (U∗ + ǫ0I)−1 ⊲ ∗ = 1, 2

9: W
(k)
y,∗ ← (Y∗ + ǫ0I)−1

10: end while

11: Use Algorithm 1.2 in (13) to find Gid

minimization problem (for a single iteration k):

�(k)

Minimize
J(�(k))

subject to Z(H(k)
u , g(k)

u , ρ, κ1)� 0

Z(H(k)
y , g(k)

y , ρ, κ2)� 0

|ỹ(t) − g(k)
u (t) ⊛ u(t) − g(k)

y (t) ⊛ ym(t)|≤ ǫ̃t(t)

|Hm(ωi)(1 − H(k)
ym

(ωi)) − H(k)
u (ωi)|2≤ ǫ2

f (ωi)W
(k)
f

|Hcc(ωi)(1 − H(k)
ym

(ωi)) − H(k)
u (ωi)|2≤ δ(k)

ν W
(k)
ν

t = 1, . . . , Nt, i = 1, . . . , Nf

where J(�(k)) = δ(k)
ν + λ

(

Tr(W
(k−1)
u,1 U1) + Tr(W

(k−1)
u,2 U2)

Tr(W
(k−1)
y,1 Y1) + Tr(W

(k−1)
y,2 Y2)

)

+ η(

∥

∥

∥
|1 − H(k)

y (ω)| − W
(k)
f

∥

∥

∥

2

2
), (16)

ǫ̃t(t) = (1 − g(k)
y (t)) ⊛ ǫt(t); U1, U2, Y1, Y2 ≻ 0

�(k) = {δ(k)
ν , g(k)

u , g(k)
y , H(k)

u , H(k)
y , U1, U2, Y1, Y2, κ1, κ2}

The weights W
(k)
∗ ∈ R

Nf are updated in the outer iterative

loop. η is the penalty associated with a regularization term

that is added to keep the changes over the iterations relatively

small. The complete algorithm is summarized in Algorithm 1.

Step 10 of Algorithm 1 yields a candidate identified

frequency response Hid, The last step obtains a state-space

realization, Gid, of this response by imposing a cut-off thresh-

old on the singular values of the Loewner matrix L(Hid).

2) Other Numerical Aspects: The domain mapping and the

linear matrix inequality (LMI) rescaling arguments made

in [2] (Section IV-A4) apply here as well. In particular, the

feasibility matrices Z(H
(k)
u , . . .), Z(H

(k)
y , . . .) of (11) become

ill-conditioned as ρ increases and necessitate the use of both

of these techniques.

Remark 2: The output δν of Algorithm 1 is a valid νgap

only if the winding number condition in (5) holds. This can be
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Fig. 2. Measured FRF with uncertainty bounds. The green curve shows
the true plant (Oracle) response.

Fig. 3. Measured chirp signal response with prescribed uncertainty
bounds.

checked numerically by first estimating the number of unstable

poles of Hm from its Bode plot and then plotting det(1 +
Hid˜Hm). In the absence of such knowledge, the most feasible

candidate must be determined by trying out all the candidates

and picking the one with the largest stability margin (bopt).

The chances of finding a plant model with a verifiable νgap

can be improved by generating a set of results corresponding

to multiple orders, all corresponding to similar singular values

near the cut-off threshold.

IV. EXAMPLE: NON-STRONGLY-STABILIZABLE PLANT

Consider the non-strongly stabilizable plant G(z) = 0.1(z −
1.1)/(z − 0.95)(z − 1.2), used previously in [2] to analyze a

coprime factor identification approach. The data is collected

by simulating the plant in an open-loop setting using band-

limited random and chirp profiles. The measured responses are

corrupted by additive noise. The random input response is used

for deriving an empirical estimate of the frequency response

with the Hann window. 33 samples of the frequency response

and 50 samples of the chirp signal time-domain response are

used for identification. These responses along with their prior

uncertainty bounds are shown in Figures 2 and 3. The stability

radius prior is taken to be ρ = 1.01.

The (per-frequency) worst-case locations of the true and

identified plants are at the uncertainty limits, not unexpected

for measurements with relatively small uncertainty relative

to the response amplitude. The estimated Chebyshev center

(Eq. (13)) along with the worst-case limits (in the ν-gap sense)

is shown in Figure 4. Hcc stays close to measured values Hm.

Assuming that the true plant stays as far as possible from

the Chebyshev center at each frequency, the best achievable

gap is νgap(Hcc, Hworst) ≈ 0.121, where Hworst is the response

Fig. 4. Estimated Chebyshev center and worst-case νgap responses.
Red: Chebyshev center Hcc , Blue: Measured response Hm.

Fig. 5. νgap vs. λ. νcc is the chordal distance from the Chebyshev center
Hcc. ν0 is the chordal distance to the true (Oracle) system. “FRF” suffix
denotes empirical value computed only on the measurement frequency
points (using �̂), while “TF” suffix denotes the gap of the identified
transfer function.

corresponding to the boundary (the dotted black curves in

Figure 4). Here the true plant order is assumed to be unknown.

If we imposed a prior regarding the order, such as the true

order is as small as possible, it is likely to achieve a smaller

gap since then the true plant response must be a smoother

curve than Hworst and closer to Hcc.

To investigate the gap versus order trade-off, Algorithm 1

was run with λ values ranging from 0 to 1e4, leading to the

results shown in Figure 5. As expected, as λ is increased, the

number of significant singular values of the Loewner matri-

ces, and hence system order, drops, while the ν-gap measured

from the empirical Hcc (= maxi(�̂i)) increases (blue line).

On the other hand, the gap between the identified and true

plants, νgap(H0, Hid), decreases (orange line). This is due to

the fact that, for larger values of λ, the order of the iden-

tified model happens to be closer to the order of the true

plant.

The best result, νgap ≈ 0.0245, is obtained for ρ =
1.01, λ = 1e4, for the identified model:

Gid(z) = 0.113(z − 1.105)

(z − 1.235)(z − 0.949)
(17)

The Nyquist plot of 1 + H0˜Hid for this model is shown in

Figure 6 which reveals a winding number of zero.

Since Gid has 1 unstable pole, the winding number condi-

tion is satisfied. Indeed, the estimated value of νgap ≈ 0.0245

was verified using the gapmetric command of MATLAB R©

Robust Control ToolboxTM [16]. For the true plant, bopt =
0.072. This threshold is shown by a dotted black line in
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Fig. 6. Nyquist plot of 1 + H0˜Hid . There is no encirclement of z = 0.

Fig. 7. Frequency response of the best identified model (Hid , red)
compared against that of the true plant (H0, blue)) and the empirical
Chebyshev center used as fitting data (Hcc , red).

Figure 5. Hence it is possible to find identified models with

νgap < bopt for many λ values, provided a prior regarding the

highest permissible order is placed, which is roughly fourth-

order or smaller. Figure 7 compares the identified model’s

frequency response to the true plant response as well as to

the empirical Chebyshev center Hcc.

Some final comments regarding the computation time and

effectiveness:

• The estimation took 3 iterations of solving (16)

using CVX [17] (each iteration ∼ 7 minutes, run-

ning on a WIN64 PC with 3.6 GHz Intel processor,

64 GB RAM).

• A similar approach but based on coprime factorization

was reported earlier [2]. The reported νgap value was

0.041 for a given choice of the error bounds ǫt and ǫf .

The estimation took roughly half the amount of time as

one iteration of Algorithm 1. However, it did not attempt

to directly minimize the νgap or the order of the inter-

polant model and required ad hoc selection of the error

bounds.

• The traditional fit to the data under PEM approach

(which does not guarantee worst-case bounds) can be

obtained using the ssest command of MATLAB R©

System Identification ToolboxTM [18], under default set-

tings. This yields an 8th order model with 98% fit (in the

normalized root means square sense) but producing a gap

value of 1.

V. CONCLUSION

The ultimate goal of control-oriented identification is to

generate a model that can be used to synthesize a controller

guaranteed to meet given design specifications when combined

with the true, unknown plant. This problem is particularly

challenging when the unknown plant is open-loop unstable.

This letter addresses this scenario from a νgap perspective.

Leveraging the fact that predictors are stable even for unstable

plants allows for bringing to bear a generalized interpola-

tion framework to parameterize all candidate models in the

consistency set. This parameterization enables searching for

models that minimize a composite measure consisting of the

ν-gap w.r.t. an empirical Chebyshev center of the feasible

model set, and model order, allowing for trading off robust-

ness against model order. These results were illustrated with

a non-trivial scenario: identifying a non-strongly stabilizable

plant and guaranteeing closed-loop stability of the actual plant

using an H∞ controller designed with the identified model.
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