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Abstract— This paper presents a method to lower-bound
the distance of closest approach between points on an unsafe
set and points along system trajectories. Such a minimal
distance is a quantifiable and interpretable certificate of safety
of trajectories, as compared to prior art in barrier and density
methods which offers a binary indication of safety/unsafety.
The distance estimation problem is converted into a infinite-
dimensional linear program in occupation measures based
on existing work in peak estimation and optimal transport.
The moment-SOS hierarchy is used to obtain a sequence of
lower bounds obtained through solving semidefinite programs
in increasing size, and these lower bounds will converge to the
true minimal distance as the degree approaches infinity under
mild conditions (e.g. Lipschitz dynamics, compact sets).

I. INTRODUCTION

A trajectory x(t | xzp) lying in the space X C R"™ of
the dynamical system @(¢t) = f(¢,2(t)) starting from an
initial condition zo € X, is safe with respect to the closed
unsafe set X, if z(t | zo) ¢ X, for all times ¢ between
t = 0 and the time horizon ¢t = T'. The safety of trajectories
starting from Xy may be quantified by the distance of closest
approach given a distance function ¢(x,y) as,

P* = min c(z(t | zo),y)
t, zo,y
et = f(t',x), Yt €[0,T] 1
t e [O,T]7 xo € Xo, y € Xy.

The task of distance estimation will refer to solving Problem
(1), and distance bounding will mean to find a lower bound
p* < P* that is as tight as possible. A direct solution to (1)
in terms of optimizing over (¢, xo,y) is generically difficult
and non-convex. This paper will propose a reformulation
of (1) into a convex infinite-dimensional Linear Program
(LP) of nonnegative Borel measures based on the occupation
measure work in optimal control [1], [2], optimal transport
methods [3], [4], and peak estimation [5], [6]. The infinite-
dimensional LP will be truncated into a sequence of finite-
dimensional Semidefinite Programs (SDPs) in increasing
complexity through the moment-Sum of Squares (SOS)
hierarchy [7]. Prior work on verifying safety of trajectories
include barrier functions [8], [9] density functions [10],
forward-backward reachability [11], and interval analysis
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[12], [13], but these methods do not yield a measure of
proximity to the unsafe set. The work in [14] introduced the
concept of safety margins as a measurement of constraint
violation (computed through maximin peak estimation), but
safety margins are difficult to interpret and will scale as the
parameterization of the constraint set changes (even in the
same coordinate system). The distance of closest approach
is an intuitive geometric quantification of the safety of
trajectories.
Contributions of this paper include:

e An LP in measures to lower bound (1)

e A proof that bounds obtained from the moment-SOS
hierarchy will converge to P* as the degree approaches
infinity under mild conditions

o An extension to performing distance estimation for
systems with dynamic uncertainty

This paper has the following structure: Section II will
cover preliminaries such as notation, the moment-SOS hier-
archy, and occupation measure methods for peak estimation
and safety analysis. Section III will present and discuss an
infinite-dimensional LP in occupation measures to perform
the distance estimation task along with its Linear Matrix
Inequality (LMI) truncation. Section IV will demonstrate
effectiveness of this LMI method on examples of distance
estimation. Section V will briefly highlight extensions to
the distance estimation framework. Section VI will conclude
the paper. An extended version of this paper (including
detailed proofs, correlative sparsity, and certifying distance
of shapes) is available at https://arxiv.org/abs/
2110.14047 [15].

II. PRELIMINARIES
A. Acronyms/Initialisms

LMI Linear Matrix Inequality

LP  Linear Program

ODE Ordinary Differential Equation
PSD Positive Semidefinite

SDP Semidefinite Program

SOS Sum of Squares

B. Notation and Measure Theory

Let R™ be the n-dimensional Euclidean space and N be
the set of natural number multi-indices in n terms. The point-
set distance ¢(x,Y") given a metric ¢ and a set Y is defined as
minyey ¢(z,y). The set N7, for fixed positive integral d is
the finite set of multi-indices o where > | «; < d. The set
of polynomials with real coefficients in indeterminates x is
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R[], and a polynomial p(x) may be represented as p(z) =
> wenn Pat® =Y enn Pa [ [1mq 2 where a finite number
of the constant coefficients p, are nonzero. The degree of a
monomial is deg(z®) = |a| = DI, «, and the degree of a
polynomial is max,en» || such that p, # 0. A matrix @
is Positive Semidefinite (PSD) if its quadratic form satisfies
2TQxz = 0,Vx # 0, and this will be expressed by @ = 0.

The set of continuous functions on a space X is C'(X),
and its subset of functions with continuous k-th derivatives
is C*(X). The subcone of nonnegative continuous functions
C4(X) is dual to the set of nonnegative Borel measures
M (X) supported on X. An inner product (fy,p) =
Jx f+(x)du(x) is defined by Lebesgue integration for fi €
Ci(X), pe My (X ) and this inner product is generalized
to a duality pairing ( = [y f(x)du(x) between f €
C(X), pe Mi(X). The mass of a measure is (1, ), and
a probability measure has mass 1. The indicator function
I4(x) of aset A C X has value 0 when = ¢ A and value
1 when z € A, and the measure of A is u(A) = (Ia(z), 1.
The support of p is the set of ' € X where every open
neighborhood N (z’) has pu(N(z')) > 0. A rank-r atomic
measure is supported at r distinct points, and these support
points are called atoms. The Dirac delta d,, with pairing
(f,0,) = f(«') is a rank-1 atomic probability measure
supported only at x’.

The unique product measure p @ v € M4 (X X Y) given
e Mi(X), v e My(Y) satisfies VA € X, BeY :
(u®@v)(Ax B) = u(A)v(B). The projection map 7% : X X
Y — X performs 7((z,y)) = «. The marginalization opera-
tor 73, yields the z-marginal of a measure € M4 (X xY)
as (w(z),n(z,y)) = (w(z), 73n(r), Yw(z) € C(X). All
linear operators £ : X — Y have unique adjoint operators
LT Y* — X* such that (Lf pu) = (f,LTu), Vf €
C(X), p € My(X).

C. Moment-SOS Hierarchy

Refer to [7] for more detail about all aspects reviewed
in this subsection. An LP in a measure ;1 € M, (X) is a
convex optimization in terms of a cost p(x) € C(X), a set
of constraint functions a;(x) € C(X), and answer values b;

for j =1,..., Jmas of the form:
p'= sup (p,pu) (2a)
REM 4 (X)
(aj(x), 1) =b; Vi=1,..., Jmaz- (2b)

The a-moment of y € M (X) is the inner product m, =
(x®, ) for a multi-index o € N™. A measure y is bounded
if all of its moments m,, are bounded for |a| < oco. Sufficient
conditions for p to be bounded are that (1, u) is finite and
the set X is compact.

Assume for the remainder of this section that (p,a;) are
polynomials and that the set X is a basic semialgebraic set
X ={z € R" | gy(z) > 0 VE = 1,...,N.}, which
is a set formed by the intersection of a finite number of
polynomial inequality constraints where the degree of each
gk () is bounded. Let m = {m,, } ¢y be an infinite moment
sequence. Define M[Xm] = diag(M[m], {M[g;m]}}°,)

as a block-diagonal matrix comprising the moment matrix
M[m] and localizing matrices M[g,m],

M[m]@ﬁ = Ma+p M[gkm}(x,ﬁ = E’YGN" kyMo+ B4 -

There exists some measure ¢ € My (X) (called a repre-
senting measure associated with m) that agrees with mo-
ment sequence as m, = (x%, u) if the set X satisfies an
Archimedean condition and when My[Xm)] is PSD [16].
Appending a redundant ball constraint R? — ||z|? > 0 for
sufficiently large R to the inequality description of a compact
X will ensure that X satisfies this Archimedean property.
The degree-d truncation of a moment matrix My[m| for a
positive integer d is a finite dimensional matrix with size
("*+9) including moments only up to order 2d. The degree-d
LMI relaxation of the LP (2) is,

Pa= Max}_ . PaYa (3a)
M4(Xm) = 0 (3b)

Yoo Gjamy = b; Vi=1,...,m. (3c)

The sequence of upper bounds p; > pj., > ... = p*

will converge as limg_, p; = p* if X is Archimedean.
Given that the per-iteration complexity of an Interior Point
SDP solver in with a M affine constraints involving PSD
matrix constraint of size N is O(N3M + N2M?) [17] and
the moment-SOS hierarchy results in N = ("Zd) (with
M scaling in a polynomial manner based on (n,d)), the
computational cost of calculating p; from (3a) will therefore
increase rapidly as both n and d grow.

D. Occupation Measures for Peak Estimation

The Ordinary Differential Equation (ODE) peak estimation
problem finds the maximum value of a function p(z) along
system trajectories,

P* = max 2(t) =

t )
e e o pla(t | o)

it z(t). (4
Optimizing trajectories of (4) may be represented by
(x5, by, zp,) that satisfies P* = p(zy) = p(z(t; | 25))-
Figure 1 performs a peak estimation problem in times ¢ €
[0, 5] for the Flow system from [8],

. X9

Trajectories starting from X = {z | (z1—1.5)%+x5 < 0.42}
in the black circle are drawn in cyan. The minimal vertical
coordinate min xo is P* = —0.5734, and its optimal trajec-
tory in dark blue takes place in zf; ~ (1.4889, —0.3998)
(blue circle), z; =~ (0.6767,—0.5734)) and time ¢; =~
1.6627.

ODE peak estimation may be solved through a primal-
dual pair of LPs. The measure LP in (10) involves an
occupation measure p € M ([0, 7] x X), an initial measure
po € M4 (Xo), a peak measure p, € M4 ([0,7] x X). The
occupation measure p(A x B) for A C [0,T], B C X given
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Fig. 1: Minimizing x5 on the Flow system (5)
a measure pg over initial conditions and a stopping time
t* €[0,T] is,

u(AxB)=/

[0,t*]x X0

Luxcs (2t | 20))) dt dpo(o).

(6)
Definition (6) may be interpreted that u(A x B) is the
average amount of time a trajectory with initial condition
drawn according o spends in the box A x B. The Lie
derivative along acODE dynamics & = f(¢,«) of a function
v € CH[0,T] x X) is,

Lro(t,x) =0w(t,x) + f(t,x) - Vyu(t,x). (7

The measures (fio, itp, pt) are connected by Liouville’s
Equation, Liouville’s equation expresses the constraint that
o is connected to p, by trajectories with dynamics f for
all test functions v € C1([0,T] x X),

<v(tax)’/ffp> = <v(0a x)’/JO> + <£f’l)(f,1’),ﬂ> )]
pp = 0o @ o + L’}N, 9

in which (9) is equivalent to (8) holding for all v. The
measure LP for peak estimation from [5] is,

p* = max (p(z), tp) (10a)
Hp = 80 @ 1o + Lhp (10b)
(L, p0) =1 (10c)
1y € M. ([0,T] x X) (10d)
to € M4 (Xo), (10e)

and its dual in terms of variables (v, ) is,
d*= min v (11a)

v(t,x),y

~v > v(0,z) Vz € Xo (11b)
Lv(t,z) <0 V(t,z) € [0,T) x X (11¢)
v(t,z) > p(x) V(t,z) € [0,T] x X. (11d)

Programs (10) and (11) satisfy strong duality with p* = d*
under mild conditions, and the bound p* > P* from (4) and
(10) will be tight when [0,7] x X is a compact set [1],
[5]. The moment-SOS hierarchy has been employed to find
a convergent sequence of upper bounds to program (10) [6].
Near-optimal trajectories may be localized through sublevel
sets [6] approximately recovered if the obtained moment
matrices obey rank conditions [14].

III. DISTANCE PROGRAM

A trajectory that achieves a minimal distance of closest
approach to X, (is an optimal solution to Program (1)) can
be represented by a tuple (z,, y* (), t+) as defined in Table
I below.

TABLE I: Representation of distance-minimizing trajectory

T point of closest approach on trajectory
Y point of closest approach on unsafe set
@y initial condition generating z;,

ty  time needed to travel from z to

¥ *T ¥

The relationship between these quantities for an optimal
trajectory of (1) is:

P* = c(ay; Xu) = ey, y") = cz(ty | 75),y7). (12)

Figure 2 plots a the result of an Ly distance estimation
problem between the Flow system (5) and the half-circle
unsafe set X, = {z € R? | 2% + (22 + 0.7)2 <
0.52, V/2/2(z1 + z2 — 0.7) < 0}. This distance of closest
Ly approach is 0.2831. The red curve marks the level set of
all points that are this optimal distance away from X,,. The
optimizing trajectory starts at x§ ~ (1.489,—0.3998) (blue
circle) and reaches a minimal distance at time t* ~ 0.6180 at
the point z; ~ (0, —0.2997) (blue star). The corresponding
closest point on X, is y* ~ (—0.2002,—0.4998) (blue
square).

Fig. 2: Flow system trajectories remain at least an Ly bound
of 0.2831 away from X,

A. Assumptions

The assumptions placed on distance program (1) are,

Al T is finite and the set X is compact

A2 The dynamics function f (¢, z) is Lipschitz

A3 The cost ¢(z,y) is a member of C°(X x X,,).

A4 Any trajectory with z(t | xg) ¢ X for g € Xg C
X, t €[0,T] also satisfies z(t' | zg) & X Vt' € [t,T)]
(non-return)

B. Measure Program

Theorem 3.1: The following infinite-dimensional LP in
measure variables (uo, fp, i, 1) Will lower bound Program
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(1) under assumptions A1-A4,

p" = inf (c(z,y),n) (13a)
TN = T flp (13b)
fip = 80 @ o+ Lyp (13¢)
(1, p0) = 1 (130
neMi(X xXy,) (13e)
tip, € My([0,T] x X) (13f)
po € M (Xo). (13g)

Proof: Assume that (7, y*, x(,t5) is a representation
of an optimal trajectory satisfying relation (12). Rank-one
atomic probability measures pj = Op=zz. Hy, = Ot=t5 ®
635:1;;, and n* = 51295; ®0y—y~ may be constructed from this
trajectory. An occupation measure p* which is the unique
measure satisfying (v(t,z), u*) = fotp v(t,x*(t | x§))dt for
all v(t,x) € C(]0,T] x X) may also be formed. The mea-
sures (f16, piy, 1, m*) are a feasible solution to constraints
(13b)-(13g) with an objective (c,n*) = c(zy,y*) = P*. It
follows that p* is a lower bound on the feasible P*. |

Lemma 3.2: When Al-A4 are satisfied, all measures will
have finite mass.

Proof: Constraint (13d) clamps (1, o) = 1, which
imposes through constraint (13c) with v(t,z) = 1 that
(1, up) = (1, wo) = 1. Similarly, constraint (13c) (v(t,z) =
1) requires (1,7m) = (1, u,) = 1 with w(z) = 1. Lastly, p
will have bounded mass (1, ) = (t, 1p) < T by constraint
(13¢) with v(t,z) = t. n

C. Function Program
A Lagrangian .Z associated with problem (13) possesses
dual variables v(t,z) € C([0, T|x X), w(z) € C(X),y€R
corresponding to constraints (13b)-(13d),
Z = <C($>y)’77>+ <U(ﬁam)750®/L0+£}M_Mp> (14)
+ <w(x)77r;£up - W;m + 7(1 - <17M0>)

The dual program as obtained by taking a saddle point of
the Lagrangian (14),

d* = sup inf po, pp, p, L (15a)
>y,

= sup v (15b)
YER

v(0,2) >~ Vo € Xo (15¢)

c(z,y) > w(x) V(z,y) € X x X,, (15d)

w(z) > v(t,x) V(t,z) € [0,T] x X (15e)

Lyv(t,z) >0 V(t,z) € [0,T] x X (15f)

w € C(X) (15g)

ve CH[0,T] x X) (15h)

Theorem 3.3: Problems (13) and (15) are dual to each
other, and satisfy strong duality with p* = d* when assump-
tions Al1-A4 hold. Additionally, the infimum is attained.

Proof: A proof of strong duality and attainment is given
in Appendix A the extended version of this paper [15] based
on arguments from Theorem 2.6 of [18]. |

Theorem 3.4: The solution d* from (15) is equal to P*
from (1) if assumptions Al1-A4 are satisfied.

Proof: This equality will be demonstrated by proving
that P* — § < d* < P* for every § > 0, with d*. Strong
duality (Theorem 3.3) imposes that p* = d* with p* < P*
(Theorem 3.1). This implies that d* < P*.

To address the lower bound P* —§ < d*, a feasible tuple
(7, v, w) for problem (15) must be generated with value v =
P* — §. By assumption A3, w may be chosen as the C°
function ¢(x; X,). A v may be constructed using Appendix
D of [6], in which a function W € C'([0,T] x X) may be
found satisfying the following equations (D.2 and D.3 from
citefantuzzi2020bounding with a minimization objective)

LiW(t,x) > —6/(5T) Y(t,z) € [0,T] x X (16a)
w(z) > W(t,xz) —(2/5)0 V(t,z) €]0,T] x X (16b)
W(O, ;v) >y Vo € Xy (16c¢)
v > P* — (2/5)s. (16d)

v may be chosen using W as,
v(t,z) = W(t,xz) — (2/5)6 — §/(5T)(T — t). 17)

The functon W is constructing using the trajectory flow map
for dynamics f (Lemma D.2 of [6]), producing a valid tuple
(v, v, w) for (15) with v = P*—4¢ and proving that P*—¢§ <
d* < P*. ]

Remark 1: A chain of lower bounds may be found
v(t,z) < w(x) < ¢(x; X,) holding V(¢t,z) € [0,T] x X
for all V(¢,z) € [0,T] x X.

D. LMI Program

The moment-SOS hierarchy may be used to approximate
program (13) from below in the case where f(t,z) and
¢(t,z) are polynomial and the sets (Xy, X, X,) each are
basic semialgebraic and Archimedean. Assume that these
sets may be described by a finite number of bounded-degree
polynomial inequality constraints,

Xo={z eR" | gl(x) >0, Vk=1,..., No}
X={zecR"|gX(x)>0, Vk=1,...,Nx}
X,={reR"|g/(x) >0, Vk=1,..., Ny}

The polynomials g9(x), giX (z), g¥ (z) have bounded de-
grees dY, di,d respectively.

The Kronecker delta tensor J;; has a value of §;; = 1
when ¢ = j and §;; = 0 when 4 # j. Passing a test function
v(t,z) = x°t? for multi-index powers a € N”, 3 € N into
the Liouville equation (13c) yields the relation,

(2%, po)dgo + (Ly(t7), p) — (2%, pp) = 0. (18)

Let (m°, m?, m, m") be a sequence of moments of the
measures (fio, iy, 14, 7). The operation Liou,s(m®, m?, m)
may be understood as the induced relation in moment se-
quences inspired by (18). Define the dynamics degree d as
d = d—1+[deg(f)/2]. The application of the moment-SOS
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hierarchy on the measure program (13) yields the following
LMI in each degree d,

Py =min Zow CanyMy.,. (19a)
m/, =m’, Va € N2, (19b)
Liougs(m®, m?, m) =0  V(a,8) € NZL;  (19)
mJ =1 (19d)
My (Xom?) > (19¢)
M(([0,T] x X)mp) 0 (19f)
M;(([0, 7] x X)m) = 0 (19g)
My((X % X,)m") = 0. (19h)

Theorem 3.5: The sequence of lower bounds of program
(19) will converge to (1) as limg, o pj; = p* = d* under as-
sumptions A1-A4 and if (X, X, X,,) are each Archimedean.

Proof: This result holds through the use of Lemma 3.2,
the Archimedean assumption, and Corollary 8 of [19]. W

Table II lists the sizes of the moment matrices (PSD matrix
constraints) that appear in the LMI (19). The largest PSD
constraint is Mg[m”] > 0 with matrix size (2";d), except
in cases where the dynamics f have a very high polynomial
degree. Computational complexity of the LMI problem (19)
therefore rises in a polynomial manner as n increases for
each fixed degree d.

TABLE II: Dimension of Moment Matrices in (19)

Moment  Mg(m®)  Mgy(mP) Mz(m)  Mg(m7)

N 1 B G B G A R G

IV. NUMERICAL EXAMPLES

Code to generate examples is available at https://
github.com/jarmill/distance. Dependencies in-
clude Gloptipoly [20], YALMIP [21], and Mosek [22].
All examples will feature an Lo distance objective unless
indiciated otherwise. The returned bounds are the estimated
Lo norms, which are the square roots of the LMI outputs.

A. Flow Moon

The Flow example in Figure 2 features a convex set X,,.
The unsafe set in Figure 3 is non-convex Moon-shaped set,
which is formed by the region inside the circle centered at
(0.4, —0.4) with radius 0.8 and outside the circle centered
at (0.6596,0.3989) with radius 1.16.

L, distance bounds for degrees 1 5 are Ly® =
[1.487 x 107%,2.433 x 107%,0.1501, 0.1592, 0.1592]. Figure
3 pictures the degree 5 LMI bound. A near-optimal trajec-
tory of zj ~ (1.489,-0.3998), z; ~ (1.113,-0.4956),
y* =~ (1.161,-0.6472) and ¢; ~ 0.1727 was recovered
because the moment matrices Ms(m"), Ms(mP),Ms(m™)
were rank-1 up to numerical accuracy.

Fig. 3: L2 bound of 0.1592

B. Twist

The three-state Twist dynamical system has parameter
matrices A and B,

l’z(t) = Zj Aijzj — B1J(4IL’§) — 3IIZJ)/2, (20)
-1 1 1 -1 0 -1
A=|-1 0 -1 B=1]0 1 1 Q21
0o 1 -2 1 1 0

Trajectories in Figure 4 begin in the gray sphere X = {z |
(1 +0.5)% + 23 + 22 < 0.2? and run until time T' = 5. The
unsafe set is the red half-sphere X, = {z | (x; — 0.25)% +
x% +I§ < 0.22, x3 < 0}. The red shell surrounding X, are
distance contours found through the degree-5 relaxation of
LMI program (19). The Lo distance in Figure 4a has bounds
L5 =10,0,0.0336,0.0425,0.0427], and the L, distance in
Figure 4b yields bounds L2 5 =10,0.0298, 0.0408, 0.0413].

(a) Lo bound of 0.0427 (b) L4 bound of 0.0411

Fig. 4: Twist system trajectories and degree-5 distance bound
sublevel sets (20)

V. EXTENSION TO DYNAMIC UNCERTAINTY

ODE Peak estimation problems were extended to systems
with uncertainty in [23], and this section will demonstrate
how distance estimation problems may be solved for systems
with uncertainty. Let h : [0,7] — H be a Borel measurable
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uncertainty process that may vary arbitrarily quickly in
time taking on values in a compact range H C R A
distance estimation problem involving dynamics with a time-
dependent uncertainty process h(t),

pP* :té?ig hc(x(t | 20, h(t)),y)
#(t') = f(t', 2, h(t')) V'€ 0,7] (p9
ht') € H vt' € [0, 7]

te[0,7], xo € Xo, y € Xu.

The optimal trajectory (g, z,,t5,y", h*(t)) achieving a
distance of P* in problem (22) has a unique occupation
measure representation i € My ([0,T] x X x H) of,

pnct (Bt b)) = [y (@l | @ ()b (1)),

valid for all o(t,z,h) € C([0,T] x X x H). A controlled
Liouville equation to replace (13c) Vv € C1([0,T] x X) is,

<U(t7x)nup> = <U(va)a ,u0> + <£f(t,ac,h)v(t7x)huh>~ (23)

An example of this uncertainty approach is in performing
distance estimation on the following corrupted flow system
with h(t) € [-0.25,0.25] vVt € [0,T],

T2

- 24
(=14 h)zy — a2 + 12} 24

i‘ =
The first five Lo distance bounds from the LMI relaxation are
Ly® =[5.125x107°,1.487x 10~*,0.1609, 0.1688, 0.1691].
Figure 5 visualizes sampled trajectories along with a L3 =
0.1691 distance contour.

Fig. 5: Flow (24) with time-dependent uncertainty has an
L5 bound of 0.1691

VI. CONCLUSION

An infinite-dimensional LP in measures was developed to
lower bound the distance of closest approach between points
along trajectories and points on the unsafe set. The optimal
value of this LP is arbitrarily close to the true minimal
distance under assumptions Al-AS5, and the moment-SOS
hierarchy will additionally converge as the degree d — oo
under a polynomial (and Archimedean) setting. Distance es-
timation changes the cost structure of the occupation measure

peak estimation problem, and can therefore be integrated
with complementary methods to treat dynamical uncertainty.
Future work involves exploiting problem structure to reduce
the cost of solving LMI relaxations and creating an optimal
control scheme to maximize the distance of closest approach.
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