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Abstract—This letter presents a tractable framework for
data-driven synthesis of robustly safe control laws. Given
noisy experimental data and some priors about the struc-
ture of the system, the goal is to synthesize a state
feedback law such that the trajectories of the closed loop
system are guaranteed to avoid an unsafe set even in the
presence of unknown but bounded disturbances (process
noise). The main result of this letter shows that for polyno-
mial dynamics, this problem can be reduced to a tractable
convex optimization by combining elements from polyno-
mial optimization and the theorem of alternatives. This
optimization provides both a rational control law and a den-
sity function safety certificate. These results are illustrated
with numerical examples.

Index Terms—Data-driven control, safety, sum-of-
squares, robust control.

I. INTRODUCTION

T
HE GOAL of this letter is to develop a tractable

framework for data-driven synthesis of safe control laws

that are robust to unmeasurable, polytopic-bounded perturba-

tions during both data collection and execution. Specifically,

given experimental data generated by an unknown system and

some priors about its structure, the objective is to synthesize

a state feedback control law such that the trajectories of the

closed loop system starting in a given initial condition set X0

are guaranteed to avoid an unsafe set Xu, even in the pres-

ence of unknown but bounded disturbances. Our main result

shows that, for polynomial dynamics, the safe Data Driven

Control (DDC) problem can be posed as the feasibility of a

Sum of Squares (SOS) program. A substantial reduction in

the number of variables involved (and hence computational
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complexity) is achieved by exploiting the theorem of alterna-

tives, leading to a Semidefinite Program (SDP) that provides

both a density-function based control law and a robust safety

certificate.

Safety verification and synthesis of safe control laws have

been the subject of intense research during the past decade.

Level-set methods separate the initial and unsafe set by the

0-contour of a solved function. Barrier functions [1] are a

level-set method to certify the safety of trajectories, given

that the superlevel sets of the barrier function are invari-

ant. This superlevel invariance can be relaxed through slack

(class-K) conditions, while ensuring that the 0-level set is

invariant [2], [3]. The level-set certificate of stability may be

solved jointly with a safety-guaranteeing control policy u(·)

(Control Barrier Function (CBF)). When a barrier function is

given, the min-norm controller will ensure safety of trajecto-

ries, and can be found through quadratic programming [4].

Robustness of given barrier functions to disturbances may be

analyzed using input-to-state stability [5]. Barrier functions

and funnels [6], [7], [8] contain bilinearities when jointly

synthesizing controllers and barriers. An alternative level-set

certificate is Density functions [9], which are based on Dual

Lyapunov methods for stability [10]. Controllers and density

functions can be simultaneously solved in a convex manner.

In some systems, density functions may exist and provide

improved performance as compared to barrier functions [11].

We briefly compare against other methods of safety-

constrained control. Interval analyses, such as Mixed

Monotonicity [12], offer real-time performance at the expense

of conservatism in safe generation. Hamilton-Jacobi reachabil-

ity [13] performs forward and backward reachable set analysis

based on level sets of a differential games’ value function,

whose computation could require solving PDEs or neural net

approximations. Reinforcement Learning necessitates train-

ing and prior information of safety properties (e.g., Lipschitz

bounds on dynamics), and does not generally exploit physical

principles and model structure [14]. Learning-based methods

in [15], [16] require Lipschitz bounds on error and an ǫ-net

discretization.

DDC is a methodology that synthesizes control laws directly

from acquired system observations (with some priors) and

skips a system-identification/robust-synthesis pipeline [17].

Amongst the vast literature in DDC, the closest approaches

related to the present paper are those that pursue a set

membership approach, which seeks to find a controller that
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stabilizes the set of all plants compatible with the observed

data (the consistency set) [18], [19], [20], [21], [22], [23], [24].

These approaches provide a controller together with a stability

certificate, usually in the form of a common Lyapunov func-

tion. Further, the methods can be extended to provide worst

case performance bounds (e.g., the H2, H∞ or L∞ sense), over

the set of data-consistent plants. However, these approaches

cannot handle safety constraints beyond those expressed in

terms of these norms.

Recent work on DDC under safety constraints includes [25],

[26], [27], [28]. The method in [25] performs iterative model

predictive control for a discrete-time system by constrain-

ing state trajectories to always lie in a sampled safe set

(using integer programming). The work in [26] uses con-

traction methods to form robust adaptive CBFs under a set

membership approach, but assumes that the input relation g(·)

is known. The approach in [27] uses a disturbance observer

to provide robust CBFs by separating known and unknown

dynamics. In our setting, we assume only prior knowledge of

the system model (polynomial up to a specified degree) and

cannot generally provide this separation. The work in [28] uses

polynomial matrix inequalities to enforce Nagumo invariance

certificates [29] for polynomial systems using data corrupted

by L2-bounded noise. However, the controller is designed to

only enforce nominal invariance and a degree of robustness is

achieved through a tuning parameter ǫ, not directly related to

the perturbation w. Further, the computational scaling of the

Positive Semidefinite (PSD) matrices in the matrix SOS con-

straints suffers as the degree increases as compared to scalar

SOS constraints.

Our work involves continuous-time dynamics and inter-

pretable (density) certificates of robust safety. To the best

of our knowledge, our approach is the first DDC method

under safety constraints that simultaneously explicitly consid-

ers disturbances both during the data-collection and run-time

execution.

Contributions of this letter are,

• A DDC framework for density-based robust safe control.

• Tractable synthesis of robustly safe density functions by

exploiting the theorem of alternatives.

• Numerical examples demonstrating robustly safe control

on polynomial systems.

This letter has the following structure: Section II reviews

preliminaries such as density functions for safety, and SOS

polynomials. Section III performs data-driven synthesis of safe

controllers using density functions and SOS methods in the

case where polytopic-bounded disturbances are present both

during data collection and run time execution. Section IV

demonstrates the effectiveness of our approach on several

example systems. Section V concludes this letter.

II. PRELIMINARIES

A. Notation

R
n Set of n-tuples of real numbers

x, x, X Scalar, vector, matrix

1, 0, I Vector/matrix of all 1s, 0s, identity matrix

‖x‖∞ L∞-norm of vector x

X � 0 X is positive semi-definite

⊗ Kronecker product

vec(X) Vectorized matrix along columns: vec(X) =

[X( : , 1)T , . . . , X( : , n)T ]T

ρ ∈ Cd ρ has a continuous dth derivative

∇ρ Gradient of scalar function ρ

∇ · f Divergence of vector function f

B. Sum-of-Squares

We briefly review the concept of SOS polynomials and

certificates of nonnegativity [30]. A polynomial p ∈ R[x]

is SOS (and hence nonnegative) if there exist polynomials

{qℓ ∈ R[x]}L
ℓ=1 such that p(x) =

∑L
ℓ=1 qℓ(x)2.

The cone of SOS polynomials is �[x], and its up-to-degree

2d restriction is �d[x]. The cone �d[x] is semidefinite rep-

resentable as p(x) = v(x)TQv(x) where v(x) is the monomial

vector up to degree d and Q � 0 is the Gram matrix. A

sufficient condition for a polynomial p to be nonnegative

over the semialgebraic region {x | hi(x) ≥ 0, i = 1 . . . Nc}

is that there exists σ0, . . . , σNc ∈ �[x] such that p(x) =

σ0 +
∑Nc

i=1 σihi [31].

C. Level-Set-Based Safety Certification

Consider a continuous-time system of the form

ẋ = f (x, w) (1)

where x ∈ R
n is the state and w(·) ∈ W is a disturbance.

Further, assume that w(·) is such that the trajectories of (1) are

well defined for any initial condition x0 ∈ X0. In the sequel,

we will denote these trajectories as x(t, w, x0).

Definition 1: Given an initial condition set X0 ⊆ R
n and

an unsafe set Xu ⊆ R
n, system (1) is W-robustly safe if,

for all t, all initial conditions x0 ∈ X0 and all w(·) ∈ W ,

x(t, w, x0) �∈ Xu.

Typically, safety is certified through the use of barrier

functions, defined as:

Definition 2: A differentiable B(x) : R
n → R is a robust

barrier function for (1) with respect to X0 and Xu if

B(x) ≤ 0, ∀x ∈ X0, B(x) > 0, ∀x ∈ Xu (2)

∂B

∂x
f (x, w) < 0, ∀w ∈ W whenever B(x) = 0. (3)

As shown for instance in [1], existence of a barrier func-

tion is a sufficient condition to certify safety. Note however

that the conditions above are non-convex, even when w ≡ 0,

due to the constraint (3). For instance, in the case of polyno-

mial dynamics and semialgebraic X0 and Xu, if B(x) is also

polynomial, this constraint can be enforced by introducing a

polynomial multiplier h(x) and imposing that

−
∂B

∂x
f (x, w) + h(x)B(x) ∈ �[x] (4)

The condition above cannot be written as a single semi-definite

optimization due to the multiplication of the coefficients of

the two unknown polynomials, h and B. Possible relaxations

include choosing a fixed multiplier h, or simply dropping the

B(x) = 0 quantifier [2]. An alternative, convex approach based

on the use of densities was proposed in [9].
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Theorem 1 [9]: Given open sets X0 and Xu, ẋ = f (x) is

safe if there exists a scalar function ρ(x) ∈ C1 such that

∇ · [ρ(x)f (x)] > 0, ∀x ∈ R
n (5a)

ρ(x) > 0, ∀x ∈ X0, ρ(x) ≤ 0, ∀x ∈ Xu (5b)

The advantage of this approach is that it leads to a convex

problem in ρ. On the other hand, imposing that the divergence

condition holds everywhere can be unnecessarily conservative.

The concepts above can be easily extended to the case

where the goal is to synthesize a control action that keeps

a system robustly safe by introducing the concept of robust

CBFs (RCBFs).

Definition 3: A function B(x) is an RCBF for the system

ẋ = f (x, u, w) if there exists a control law u(x) such that

B(x) is a robust barrier function for the closed loop dynamics

ẋ = f (x, u(x), w).

In principle, a CBF and associated control law can be found

by modifying (4) to

−
∂B

∂x
f (x, u(x), w) + h(x)B(x) ∈ �[x] (6)

Problem (6) is bilinear in the coefficients of B, u even when

restricted to polynomial dynamics and control laws and a fixed

multiplier h, necessitating the use of relaxations. On the other

hand, as shown in [9], the density based formulation can be

easily modified to lead to problems that are jointly convex in

ρ and ψ
.
= ρu.

III. DATA-DRIVEN SAFE CONTROL

A. Problem Statement

The goal of this letter is to design a safe control law based

on (noisy) experimental measurements for unknown poly-

nomial systems where only minimal a-priori information is

available. Specifically, we consider single-input control affine

nonlinear systems of the form

ẋ(t) = f (x) + g(x)u(t) + w(t) (7)

where u ∈ R is the control and the input w satisfying

∀t ≥ 0: w(·) ∈ W represents a bounded disturbance. We

further assume that there exists a set W such that W is

the class of signals that can switch arbitrarily quickly within

W, and that W admits a polytopic description of the form

W
.
= {w : Ww ≤ dw}. The only information available about

the ground-truth dynamics (7) is that they can be expressed as

linear combinations of functions φ : Rn → R
df , γ : Rn → R

dg

with

f (x) = Fφ(x); g(x) = Gγ (x) (8)

for some unknown system parameter matrices F ∈ R
n×df and

G ∈ R
n×dg . Our training data D = {(ẋs, xs, us)}s=t1...tT consist

of T derivative-state-input tuples sampled from the trajectories

of (7) under some bounded disturbance w ∈ W, indexed by

the observations times t1 . . . tT . In this context, the problem

under consideration can be formally stated as:

Problem 1: Given a disturbance set description (W, dw), T

training tuples D = {(ẋs, xs, us)}s=t1...tT , and basic semialge-

braic sets X0, Xu, find a state-feedback control law u(x) that

renders all closed-loop systems consistent with the observed

data and priors W-robustly safe with respect to X0 and Xu.

B. Model Based Safety

In order to solve Problem 1, in this section we first develop

a convex condition, less conservative than (5), that guarantees

robust controlled safety of a model of the form (7) assuming

that f (.) and g(.) are known.

Lemma 1: Assume that the set Xu has a description:

Xu
.
= {x : hi(x) ≥ 0, i = 1 . . . Nc}.

If there exist scalar functions ρ(x), ψ(x) ∈ C1 such that:

(i) u(x)
.
=

ψ(x)
ρ(x)

is well defined over the safe region ρ(x) ≥ 0,

(ii) for all w(·) ∈ W and initial condition x0 ∈ X0, the trajec-

tories of (7) are well defined, and (iii) the following conditions

hold:

∇ · [ρ(x)(f (x) + w) + ψ(x)g(x)] − ρ(x)h(x) > 0 (9a)

∀x ∈ R
n and w ∈ W

ρ(x) ≥ 0, ∀x ∈ X0, ρ(x) < 0, ∀x ∈ Xu (9b)

where h
.
= mini{hi(x)}, then the control law u(x) renders the

closed loop system robustly safe with respect to Xu.

Proof: Since by assumption ρ,ψ ∈ C1 and u is well defined

when ρ ≥ 0 by condition (i), (9a) is equivalent to (omit x):

∂ρ

∂x
(f + gu + w) + ρ(∇ · (f + gu) − h) > 0 (10)

where we used the fact that ψ = ρu. Hence, for all w ∈ W,

dρ

dt
+ ρ(∇ · (f + gu) − h) > 0

along the closed loop trajectories, which implies that
dρ
dt

> 0

when ρ[x(t)] = 0. Assume that there exists a trajectory

x(t | x0, wp(·)) that starts at x0 ∈ X0 and such that

x(T | x0, wp(·)) ∈ Xu. By continuity, there exists some

0 < t1 < T and some dt such that ρ(t1) = 0 and ρ(t) < 0

for all t ∈ [t1, t1 + dt]. However, this contradicts the fact that
dρ
dt

|t=t1 > 0.

Remark 1: Since mini{hi(x)} has a semialgebraic represen-

tation by [32, Lemma 3], finding polynomial functions ρ and

ψ reduces to SOS optimization via standard arguments.

Remark 2: Problem (9) is an infinite-dimensional Linear

Program (LP) in the values of (ρ, ψ) at each x, possessing

both strict and non-strict inequality constraints. When com-

pared against (6), this formulation has two advantages: (i) it

avoids using an arbitrary, fixed multiplier h(x), and (ii) it leads

to jointly convex (in ρ and ψ) optimization problems for safe

control synthesis. On the other hand, (9), while retaining the

desirable convexity properties of (5), is less conservative: since

the second term in (9a) is nonnegative over the safe region, it

does not require the first term to be positive everywhere, as

is the case with (5). Note that any feasible solution to (5) is

also feasible for (9).

C. Safe Data Driven Control

This section presents the main result of this letter: a

tractable, convex reformulation of Problem 1. We begin by

presenting a tractable characterization of all systems that could

have generated the observed data.

Given training data D = {(ẋs, xs, us)}s=t1...tT and the

uncertainty description (W, dw), the consistency set C, which
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contains all systems that are consistent with the data is defined,

under the restrictions f (x) = Fφ(x) and g(x) = Gγ (x), as:

C
.
=

{

f , g : W
[

ẋs − f (xs) − g(xs)us

]

≤ dw, s = t1 . . . tT
}

. (11)

Exploiting the property of the Kronecker product

vec(PXQ) = (QT ⊗ P)vec(X),

with f = vec(FT), g = vec(GT) leads to an equivalent

representation of (11)

C =

{

f , g :
[

A B
]

[

f

g

]

≤ ξ − 1 ⊗ dw

}

(12)

using the matrix blocks (with f (xs) = vec(φ(xs)
TFT))

A
.
=

⎡

⎢

⎣

W ⊗ φT(t1)

...

W ⊗ φT(tT)

⎤

⎥

⎦
, B

.
=

⎡

⎢

⎣

W ⊗ ut1γ
T(t1)

...

W ⊗ utT γ T(tT)

⎤

⎥

⎦
, ξ

.
=

⎡

⎢

⎣

Wẋ(t1)

...

Wẋ(tT)

⎤

⎥

⎦

(13)

Combining this description with the polytopic description

of the disturbances leads to an augmented consistency set

describing the set of all possible plants and disturbances:

P1
.
=

⎧

⎨

⎩

f , g, wp :

[

A B 0

0 0 W

]

⎡

⎣

f

g

w

⎤

⎦ ≤

[

ξ − 1 ⊗ dw

dw

]

⎫

⎬

⎭

(14)

It follows that a pair (ρ(x), ψ(x)) solves Problem 1 if

∇ · [ρ(x)f (x) + ψ(x)g(x) + ρ(x)w] − ρ(x)h(x) > 0 (15)

holds for all x and all (f , g, w) ∈ P1. In principle,

this condition can be reduced to an SOS optimization

over the coefficients of ρ,ψ by a straight application

of Putinar’s Positivstellensatz [31]. However, this approach

quickly becomes intractable. As we show next, computational

complexity can be substantially reduced by exploiting duality.

For a given pair (ρ, ψ), consider the set of all systems of the

form (7) that are rendered safe by the control action u =
ψ
ρ

,

along with the corresponding admissible perturbations, that is,

the set of all (f , g, w) such that (15) holds for all x ∈ R
n. For

each x, this set is a polytope of the form:

P2
.
=

⎧

⎪

⎨

⎪

⎩

f , g, w : −

⎡

⎣

(∇ · [ρ(In ⊗ φT)])T

(∇ · [ψ(In ⊗ γ T)])T

(∇ρ)T

⎤

⎦

T⎡

⎣

f

g

w

⎤

⎦ < −ρh

⎫

⎪

⎬

⎪

⎭

(16)

where the divergence operator is applied column-wise to the

matrix. The term ∇ · [ρ(x)(In ⊗ φ(x)T)]f may be interpreted

as ∇ · vec(ρ(x)φ(x)TFT) = ∇ · [ρ(x)f (x)].

It follows that (15) holds for all admissible disturbances

w ∈ W (w(·) ∈ W) and all plants in the consistency C set if

and only if P1 ⊆ P2. This inclusion can be enforced through

duality as follows:

Lemma 2: Assume that the data and priors are consistent

(e.g., C �= ∅). Then P1 ⊆ P2 if there exists a vector function

y(x) ≥ 0, y(x) ∈ R
2nT+2n such that the following functional

set of affine constraints is feasible:

yT(x)N = r(x) and yT(x)e < −ρ(x)h(x) (17)

where

N
.
=

[

A B 0

0 0 W

]

, e
.
=

[

ξ − 1 ⊗ dw

dw

]

,

r(x)
.
= −

[

∇ · [ρ(In ⊗ φT)] ∇ · [ψ(In ⊗ γ T)] ∇ρ
]

(18)

Proof: From [33, Sec. 5.8.1] it follows that the systems of

inequalities

[

N

−r

]

⎡

⎣

f

g

w

⎤

⎦ ≤

[

e

ρh

]

and

yTN − µr = 0

yTe + µρh < 0

y ≥ 0, µ ≥ 0

(19)

are (weak) alternatives. Thus, feasibility of the right set of

inequalities in (19), implies that the left inequalities are infea-

sible. Further, since C �= ∅ and µ > 0, we can take µ = 1

without loss of generality. Hence, if (17) holds, a triple

(f, g, w) ∈ P1 if and only if
[

f T gT wT
]

rT < −ρh, that is

(f, g, w) ∈ P2.

Remark 3: If P1 is compact, then (19) are strong alterna-

tives and (17) are necessary and sufficient for P1 ⊆ P2.

Remark 4: Proceeding as in [19, Th. 2], it can be shown

that if φ(x), γ (x) are continuous functions, then y(x) can be

chosen to be continuous.

The observations above lead to our main result:

Theorem 2: A sufficient condition for the existence of a

state-feedback control law u(x) such that all systems in the

consistency set C are rendered robustly safe, is that there exists

a continuous vector function y(x) ≥ 0 and functions ρ ∈ C1,

ψ ∈ C1 such that

yT(x)N = r(x), ∀x ∈ R
n (20a)

yT(x)e < −ρ(x)h(x), ∀x ∈ R
n (20b)

|ψ(x)| ≤ −ρ(x)h(x), ∀x ∈ R
n (20c)

ρ(x) ≥ 0, ∀x ∈ X0 (20d)

ρ(x) < 0, ∀x ∈ Xu (20e)

The corresponding control law is given by u(x) =
ψ(x)
ρ(x)

.

Proof: The proof follows from the fact that from

Lemma 2, (20a) and (20b) guarantee that (15) holds for all

plants in C and all admissible disturbances w(·) ∈ W . Hence

the conditions in Lemma 1 hold for all plants that could have

generated the observed data.

Remark 5: Constraint (20c) is a convex tightening of the

condition that ψ = 0 when ρ = 0 in the safe zone ρ(x) ≥ 0.

This ensures satisfaction of Assumption (i) in Lemma 1.

D. Sum-of-Squares Safety Program

In order to solve the infinite-dimensional Problem (20) in

a tractable manner, we restrict the variables ρ,ψ, y to be

polynomials. Under this polynomial restriction, the extracted

controller u(x) = ψ(x)/ρ(x) is then a rational function.

Let X0 = {x : k(x) ≥ 0} and Xu = {x : h(x) ≥ 0} denote

the initial condition and unsafe sets, respectively. Algorithm 1

is SOS-based finite-degree tightening of (20) for robustly safe

control. Successful execution of Algorithm 1 is sufficient for

finding a robustly safe control law.
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Algorithm 1: Data-Driven Safe Control Design

Input: sample data D, and degrees df , dg, dρ, dψ

Let 2d1 ≥ max
{

df + dρ, dg + dψ

}

, 2d2 ≥ max
{

dρ, dψ

}

Solve: the feasibility problem with c1, c2 > 0

coeffx(y
TN − r) = 0 (A.1)

−ρh − yTe − c1, ∀i : yi ∈ �d1
[x] (A.2)

−ρh − ψ, −ρh + ψ ∈ �d2
[x] (A.3)

ρ − s1k, −ρ − s2h − c2 ∈ �d2
[x] (A.4)

s1, s2 ∈ �d2
[x] (A.5)

Output: the safe control law u = ψ/ρ or a certificate of

infeasibility at degree (d1, d2)

Fig. 1. Flow (21) simulations for Example 1.

E. Computational Complexity Analysis

A straightforward application of Putinar’s Positivstellensatz

to solve (15) requires considering polynomials in the indeter-

minates (x, f , g, w) with a total dimension dp = df + dg + 2n.

Thus, for an SOS relaxation of order dr, the total number

of variables (hence the maximal size of Gram matrices) in

the optimization is
(dr+dp

dr

)

. In contrast, by exploiting dual-

ity, Algorithm 1 only requires Gram matrices of maximal size
(

2+dr

dr

)

. In the case where (f , g, ρ, ψ) are all defined by degree

2 polynomials (df = dg = 6), the maximal Gram matrix size

dr = 3 drops from
(

19
3

)

= 969 to
(

5
3

)

= 10.

IV. NUMERICAL EXAMPLES

The proposed algorithm is tested on a pair of exam-

ples. Both experiments are implemented in MATLAB 2020b

with Yalmip [34] and solved by Mosek [35]. Code to

generate experiments and plots is publicly available at

https://github.com/J-mzz/ddc-safety.

Example 1: Consider the Flow system [9] with

f =
[

x2; − x1 + 1
3

x3
1 − x2

]

, g =
[

0; 1
]

(21)

The initial and unsafe sets are the (union of) disks:

X0 = {x | 0.25 − x2
1 − (x2 + 3)2 ≥ 0},

Xu = {x | h1(x) = 0.16 − (x1 + 1)2 − (x2 + 1)2 ≥ 0,

OR h2(x) = 0.16 − (x1 + 1)2 − (x2 − 1)2 ≥ 0}

Results of the control design for Example 1 are shown in

Fig. 1 and 2. In each figure, 30 trajectories (blue curves)

Fig. 2. Safe controllers synthesized without process noise may be
unsafe when process noise is applied.

start from within the initial set X0 (black circle). The unsafe

set Xu is the pair of red disks, implemented as h(x) =

−h1(x)h2(x) ≥ 0. Some of the open-loop trajectories in

Fig. 1(a) enter the unsafe set Xu when starting in X0.

The prior knowledge of the system model is that f is a

two-dimensional cubic polynomial vector with f (0) = 0 and

that g is a two-dimensional constant vector, where the cubic

polynomials in f and the constant terms in g are both unknown.

80 datapoints were collected and used to design a robustly

safe controller under a disturbance with ‖w‖∞ ≤ 2, yielding

a polytope P2 from (14) with 22 dimensions (dimf , g, w =

18, 2, 2) and 324 faces (91 of the faces P2 are nonredun-

dant [36]). Algorithm 1 was used to find ρ,ψ ∈ R[x]≤4,

yielding 99 Gram matrices of maximal size
(

6
4

)

= 15 and the

rational control law u = ψ/ρ. Fig. 1(b) plots trajectories asso-

ciated with this safe control law, and also features the ρ = 0

level set in green.

Fig. 2 highlights the importance of robustness in execu-

tion as well as in data-collection. The controller in Fig. 2

was computed with the same noisy training data as in Fig. 1

but assuming no run time disturbances. Fig. 2(a) shows that

the control is safe under disturbance-free trajectory execution.

Fig. 2(b) is zoomed into the lower red disk, and demonstrates

that some controlled trajectories pass through the ρ = 0 con-

tour and enter Xu when a disturbance with ‖w‖∞ ≤ 2 is

applied in execution (trajectories are terminated when u ≥ 104,

which is caused by numerical issues and stiffness near the

ρ = 0 contour).

To summarize this example, ρ ≥ 0 is an invariant set for

all consistent systems under a disturbance w when the robust

controller is applied. The level set ρ = 0 separates initial

set X0 and unsafe set Xu. Uncontrolled (Fig. 1(a)) and non-

robustly-safe (Fig. 2(b)) trajectories may enter Xu.

Example 2: Consider the Twist system with [37]:

f =

⎡

⎣

−2.5x1 + x2 − 0.5x3 + 2x3
1 + 2x3

3

−x1 + 1.5x2 + 0.5x3 − 2x3
2 − 2x3

3

1.5x1 + 2.5x2 − 2x3 − 2x3
1 − 2x3

2

⎤

⎦, g =

⎡

⎣

0

0

1

⎤

⎦ (22)

The initial and unsafe sets are the spheres:

X0 = {x | 0.01 − (x1 + 0.5)2 − x2
2 − x2

3 ≥ 0},

Xu = {x | 0.01 − (x1 + 0.1)2 − x2
2 − x2

3 ≥ 0}
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Fig. 3. Twist (22) simulations for Example 2.

Results for Example 2 are shown in Fig. 3 with the initial

set X0 (black sphere), the unsafe set Xu (red sphere) and 30

trajectories (blue curves). The open-loop system is unsafe as

shown in Fig. 3(a). A prior knowledge of the system model

is that f is a three-dimensional cubic polynomial vector with

f (0) = 0 and that g is a three-dimensional constant vector. 80

datapoints were collected and used to design a robust safe con-

troller under a disturbance with ‖w‖∞ ≤ 1, yielding a polytope

P2 with 63 dimensions (dim[f , g, w] = 38, 3, 3) and 304 faces

(all nonredundant). Using Algorithm 1 to find ρ,ψ ∈ R[x]≤4

yields a rational control law u = ψ/ρ. Fig. 3(b) features the

ρ = 0 level set surface in green.

V. CONCLUSION

This letter uses density functions to find provably safe

controllers for systems whose data-observations and execu-

tions are both corrupted by L∞-bounded noise. The output of

Algorithm 1 (if successful) is a rational controller u, along

with a density certificate ρ that guarantees robust safety

of all trajectories starting in the initial set. Future work

involves steering safe trajectories to a destination set, adding

performance objectives, and extension to other noise and

disturbance models (e.g., L2 or semidefinite bounded signals).
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