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Abstract—This letter presents a tractable framework for
data-driven synthesis of robustly safe control laws. Given
noisy experimental data and some priors about the struc-
ture of the system, the goal is to synthesize a state
feedback law such that the trajectories of the closed loop
system are guaranteed to avoid an unsafe set even in the
presence of unknown but bounded disturbances (process
noise). The main result of this letter shows that for polyno-
mial dynamics, this problem can be reduced to a tractable
convex optimization by combining elements from polyno-
mial optimization and the theorem of alternatives. This
optimization provides both a rational control law and a den-
sity function safety certificate. These results are illustrated
with numerical examples.

Index Terms—Data-driven control, sum-of-

squares, robust control.

safety,

[. INTRODUCTION

HE GOAL of this letter is to develop a tractable

framework for data-driven synthesis of safe control laws
that are robust to unmeasurable, polytopic-bounded perturba-
tions during both data collection and execution. Specifically,
given experimental data generated by an unknown system and
some priors about its structure, the objective is to synthesize
a state feedback control law such that the trajectories of the
closed loop system starting in a given initial condition set Xj
are guaranteed to avoid an unsafe set A),, even in the pres-
ence of unknown but bounded disturbances. Our main result
shows that, for polynomial dynamics, the safe Data Driven
Control (DDC) problem can be posed as the feasibility of a
Sum of Squares (SOS) program. A substantial reduction in
the number of variables involved (and hence computational
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complexity) is achieved by exploiting the theorem of alterna-
tives, leading to a Semidefinite Program (SDP) that provides
both a density-function based control law and a robust safety
certificate.

Safety verification and synthesis of safe control laws have
been the subject of intense research during the past decade.
Level-set methods separate the initial and unsafe set by the
O-contour of a solved function. Barrier functions [1] are a
level-set method to certify the safety of trajectories, given
that the superlevel sets of the barrier function are invari-
ant. This superlevel invariance can be relaxed through slack
(class-K) conditions, while ensuring that the O-level set is
invariant [2], [3]. The level-set certificate of stability may be
solved jointly with a safety-guaranteeing control policy u(-)
(Control Barrier Function (CBF)). When a barrier function is
given, the min-norm controller will ensure safety of trajecto-
ries, and can be found through quadratic programming [4].
Robustness of given barrier functions to disturbances may be
analyzed using input-to-state stability [5]. Barrier functions
and funnels [6], [7], [8] contain bilinearities when jointly
synthesizing controllers and barriers. An alternative level-set
certificate is Density functions [9], which are based on Dual
Lyapunov methods for stability [10]. Controllers and density
functions can be simultaneously solved in a convex manner.
In some systems, density functions may exist and provide
improved performance as compared to barrier functions [11].

We briefly compare against other methods of safety-
constrained control. Interval analyses, such as Mixed
Monotonicity [12], offer real-time performance at the expense
of conservatism in safe generation. Hamilton-Jacobi reachabil-
ity [13] performs forward and backward reachable set analysis
based on level sets of a differential games’ value function,
whose computation could require solving PDEs or neural net
approximations. Reinforcement Learning necessitates train-
ing and prior information of safety properties (e.g., Lipschitz
bounds on dynamics), and does not generally exploit physical
principles and model structure [14]. Learning-based methods
in [15], [16] require Lipschitz bounds on error and an e-net
discretization.

DDC is a methodology that synthesizes control laws directly
from acquired system observations (with some priors) and
skips a system-identification/robust-synthesis pipeline [17].
Amongst the vast literature in DDC, the closest approaches
related to the present paper are those that pursue a set
membership approach, which seeks to find a controller that
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stabilizes the set of all plants compatible with the observed
data (the consistency set) [18], [19], [20], [21], [22], [23], [24].
These approaches provide a controller together with a stability
certificate, usually in the form of a common Lyapunov func-
tion. Further, the methods can be extended to provide worst
case performance bounds (e.g., the Hy, Hy, or Ly, sense), over
the set of data-consistent plants. However, these approaches
cannot handle safety constraints beyond those expressed in
terms of these norms.

Recent work on DDC under safety constraints includes [25],
[26], [27], [28]. The method in [25] performs iterative model
predictive control for a discrete-time system by constrain-
ing state trajectories to always lie in a sampled safe set
(using integer programming). The work in [26] uses con-
traction methods to form robust adaptive CBFs under a set
membership approach, but assumes that the input relation g(-)
is known. The approach in [27] uses a disturbance observer
to provide robust CBFs by separating known and unknown
dynamics. In our setting, we assume only prior knowledge of
the system model (polynomial up to a specified degree) and
cannot generally provide this separation. The work in [28] uses
polynomial matrix inequalities to enforce Nagumo invariance
certificates [29] for polynomial systems using data corrupted
by L,-bounded noise. However, the controller is designed to
only enforce nominal invariance and a degree of robustness is
achieved through a tuning parameter €, not directly related to
the perturbation w. Further, the computational scaling of the
Positive Semidefinite (PSD) matrices in the matrix SOS con-
straints suffers as the degree increases as compared to scalar
SOS constraints.

Our work involves continuous-time dynamics and inter-
pretable (density) certificates of robust safety. To the best
of our knowledge, our approach is the first DDC method
under safety constraints that simultaneously explicitly consid-
ers disturbances both during the data-collection and run-time
execution.

Contributions of this letter are,

« A DDC framework for density-based robust safe control.

« Tractable synthesis of robustly safe density functions by

exploiting the theorem of alternatives.

« Numerical examples demonstrating robustly safe control

on polynomial systems.

This letter has the following structure: Section II reviews
preliminaries such as density functions for safety, and SOS
polynomials. Section III performs data-driven synthesis of safe
controllers using density functions and SOS methods in the
case where polytopic-bounded disturbances are present both
during data collection and run time execution. Section IV
demonstrates the effectiveness of our approach on several
example systems. Section V concludes this letter.

Il. PRELIMINARIES

A. Notation
NG Set of n-tuples of real numbers
x,x, X Scalar, vector, matrix

1,0, 7 Vector/matrix of all s, Os, identity matrix
[l oo Loo-norm of vector x
X>0 X is positive semi-definite

® Kronecker product
vec(X) Vectorized matrix along columns: vec(X) =
XCG, DT, XC LT

p e C?  phas a continuous d” derivative
Vp Gradient of scalar function p
V.f Divergence of vector function f

B. Sum-of-Squares

We briefly review the concept of SOS polynomials and
certificates of nonnegativity [30]. A polynomial p € R[x]
is SOS (and hence nonnegative) if there exist polynomials
{qe € RIx]}f_, such that p(x) = Y 7_; qe()>.

The cone of SOS polynomials is ¥[x], and its up-to-degree
2d restriction is Xg4[x]. The cone X;[x] is semidefinite rep-
resentable as p(x) = v(x)TQv(x) where v(x) is the monomial
vector up to degree d and Q@ > 0 is the Gram matrix. A
sufficient condition for a polynomial p to be nonnegative
over the semialgebraic region {x | h;j(x) > 0, i = 1...N.}
is that there exists op,...,oy. € X[x] such that p(x) =
00 + Yoy oihi [311.

C. Level-Set-Based Safety Certification
Consider a continuous-time system of the form

x=f(x,w) (1)

where x € R”" is the state and w(-) € VW is a disturbance.
Further, assume that w(-) is such that the trajectories of (1) are
well defined for any initial condition xo € Ap. In the sequel,
we will denote these trajectories as x (¢, w, xp).

Definition 1: Given an initial condition set Xy € R” and
an unsafe set X, € R”", system (1) is W-robustly safe if,
for all ¢, all initial conditions xog € Xy and all w(-) € W,
x(t,w,xo) € Xy.

Typically, safety is certified through the use of barrier
functions, defined as:

Definition 2: A differentiable B(x) : R” — R is a robust
barrier function for (1) with respect to Xy and &, if

B(x) <0, Vx € Ay, Bx) >0, Vx € &, 2)
oB
af(x, w) <0, Yw € W whenever B(x) = 0. 3)

As shown for instance in [1], existence of a barrier func-
tion is a sufficient condition to certify safety. Note however
that the conditions above are non-convex, even when w = 0,
due to the constraint (3). For instance, in the case of polyno-
mial dynamics and semialgebraic Xy and A&, if B(x) is also
polynomial, this constraint can be enforced by introducing a
polynomial multiplier i(x) and imposing that

B
- g—xf(x, w) + h(x)B(x) € X[x] )

The condition above cannot be written as a single semi-definite
optimization due to the multiplication of the coefficients of
the two unknown polynomials, # and B. Possible relaxations
include choosing a fixed multiplier A, or simply dropping the
B(x) = 0 quantifier [2]. An alternative, convex approach based
on the use of densities was proposed in [9].
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Theorem 1 [9]: Given open sets Xy and &, ¥ = f(x) is
safe if there exists a scalar function p(x) € C ! such that
V- [p@)f(x)] >0, Vx e R"
px) >0, Vx € Xy, p(x) <0, Vx e &},

(5a)
(5b)

The advantage of this approach is that it leads to a convex
problem in p. On the other hand, imposing that the divergence
condition holds everywhere can be unnecessarily conservative.

The concepts above can be easily extended to the case
where the goal is to synthesize a control action that keeps
a system robustly safe by introducing the concept of robust
CBFs (RCBFs).

Definition 3: A function B(x) is an RCBF for the system
x = f(x,u,w) if there exists a control law u(x) such that
B(x) is a robust barrier function for the closed loop dynamics
x =f(x,ulx),w).

In principle, a CBF and associated control law can be found
by modifying (4) to

—%f(x, ux), w) + h(x)B(x) € X[x] (6)

Problem (6) is bilinear in the coefficients of B, u even when
restricted to polynomial dynamics and control laws and a fixed
multiplier A, necessitating the use of relaxations. On the other
hand, as shown in [9], the density based formulation can be
easily modified to lead to problems that are jointly convex in

p and ¥ = pu.

Il1. DATA-DRIVEN SAFE CONTROL
A. Problem Statement

The goal of this letter is to design a safe control law based
on (noisy) experimental measurements for unknown poly-
nomial systems where only minimal a-priori information is
available. Specifically, we consider single-input control affine
nonlinear systems of the form

X(1) = f(x) + go)u) +w(n) (N

where # € R is the control and the input w satisfying
vVt > 0: w(-) € W represents a bounded disturbance. We
further assume that there exists a set W such that W is
the class of signals that can switch arbitrarily quickly within
W, and that W admits a polytopic description of the form
W = {w: Ww < d,}. The only information available about
the ground-truth dynamics (7) is that they can be expressed as
linear combinations of functions ¢ : R” — R%, y : R" — R%
with

f(x) =F¢x); gx) =Gy (x) ®)

for some unknown system parameter matrices F € R"*% and
G € R"™%_ Qur training data D = {(Xy, X, Us)}s=,..;; cODSIst
of T derivative-state-input tuples sampled from the trajectories
of (7) under some bounded disturbance w € W, indexed by
the observations times 71 ...¢7. In this context, the problem
under consideration can be formally stated as:

Problem 1: Given a disturbance set description (W, d,,), T
training tuples D = {(xy, X5, Us)}s=1,..s;, and basic semialge-
braic sets Xp, X, find a state-feedback control law u(x) that
renders all closed-loop systems consistent with the observed
data and priors WW-robustly safe with respect to Xy and A,.

B. Model Based Safety

In order to solve Problem 1, in this section we first develop
a convex condition, less conservative than (5), that guarantees
robust controlled safety of a model of the form (7) assuming
that f(.) and g(.) are known.

Lemma 1: Assume that the set X, has a description:

Xy ={x:hix) >0, i=1...Nc}.

If there exist scalar functions p(x), ¥ (x) € C! such that:
@G) ulx) = % is well defined over the safe region p(x) > 0,
(ii) for all w(-) € W and initial condition xo € &p, the trajec-
tories of (7) are well defined, and (iii) the following conditions
hold:

V-[p@ @) +w)+ ¥ x)gx)] — p(x)hx) >0 (9a)
Vxc R andwe W

px) >0, Vx e Xy, p(x) <0, Vx € &, (9b)

where A = min;{h;(x)}, then the control law u(x) renders the
closed loop system robustly safe with respect to &j,.

Proof: Since by assumption p, ¥ € C! and u is well defined
when p > 0 by condition (i), (9a) is equivalent to (omit x):

g—i(f+gu+W)+p(V~(f+gu)—h)>0 (10)

where we used the fact that ¢ = pu. Hence, for all w € W,

d
d—’;+p(v-(f+gu)—h)>o

along the closed loop trajectories, which implies that ‘;—’; > 0
when p[x()] = 0. Assume that there exists a trajectory
x(t | xo,wp()) that starts at xo € Ap and such that
x(T | xo,wp(-)) € A, By continuity, there exists some
0 < t; < T and some dt such that p(z;) = 0 and p(t) < O
for all r € [t1, t; + dt]. However, this contradicts the fact that
dp
=t > 0. ]
Remark 1: Since min;{h;(x)} has a semialgebraic represen-
tation by [32, Lemma 3], finding polynomial functions p and
Y reduces to SOS optimization via standard arguments.
Remark 2: Problem (9) is an infinite-dimensional Linear
Program (LP) in the values of (p, ¥) at each x, possessing
both strict and non-strict inequality constraints. When com-
pared against (6), this formulation has two advantages: (i) it
avoids using an arbitrary, fixed multiplier 4(x), and (ii) it leads
to jointly convex (in p and ) optimization problems for safe
control synthesis. On the other hand, (9), while retaining the
desirable convexity properties of (5), is less conservative: since
the second term in (9a) is nonnegative over the safe region, it
does not require the first term to be positive everywhere, as
is the case with (5). Note that any feasible solution to (5) is
also feasible for (9).

C. Safe Data Driven Control

This section presents the main result of this letter: a
tractable, convex reformulation of Problem 1. We begin by
presenting a tractable characterization of all systems that could
have generated the observed data.

Given training data D = {(X;,Xs, Us)}s=s,..;; and the
uncertainty description (W, d,,), the consistency set C, which
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contains all systems that are consistent with the data is defined,
under the restrictions f(x) = F¢(x) and g(x) = Gy (x), as:

C={f.g: Wiy —f(x) — gxpus] <dy,s=11...17}. (11)
Exploiting the property of the Kronecker product
vec(PXQ) = (@ ® P)vec(X),

with f = Vec(FT), g = vec(GT) leads to an equivalent
representation of (11)

C={f,g:[A B][£:|§§—l®dw} (12)
using the matrix blocks (with f(x;) = vec(¢(x;)'F Ty
W' ) W& u,y (1) Wi(t1)
A= : B = : &= :
W e’ () W Q u,yT (tr) Wi(tr)
(13)

Combining this description with the polytopic description
of the disturbances leads to an augmented consistency set
describing the set of all possible plants and disturbances:

w

. A B o]|f
Pr=afgw:lo o wll®

It follows that a pair (p(x), ¥ (x)) solves Problem 1 if

V- [p)f @) + ¥ (0)gx) + p)w] — p(x)h(x) > 0

holds for all x and all (f,g,w) € P;. In principle,
this condition can be reduced to an SOS optimization
over the coefficients of p,y¥ by a straight application
of Putinar’s Positivstellensatz [31]. However, this approach
quickly becomes intractable. As we show next, computational
complexity can be substantially reduced by exploiting duality.

For a given pair (p, ), consider the set of all systems of the
form (7) that are rendered safe by the control action u = 2,
along with the corresponding admissible perturbations, that is,
the set of all (f, g, w) such that (15) holds for all x € R". For
each x, this set is a polytope of the form:

V- Ipd, @DV [f
V-, @ yHDT | | g| < —ph
(Vo) w

15)

Pr=3f.gw: —

(16)

where the divergence operator is applied column-wise to the
matrix. The term V - [p(x)I, ® ¢(x)7)]f may be interpreted
as V - vec(p(@)p(®)TFT) = V - [p(x)f (x)].

It follows that (15) holds for all admissible disturbances
w e W (w(-) € W) and all plants in the consistency C set if
and only if P; € P,. This inclusion can be enforced through
duality as follows:

Lemma 2: Assume that the data and priors are consistent
(e.g., C # ). Then P; C P, if there exists a vector function
y(x) > 0,y(x) € R¥T+2% gych that the following functional
set of affine constraints is feasible:

y )N = r(x) and y" (x)e < —p(x)h(x) (17)

where
. |A B 0 . |§-1®d,
velo b wl e[
ree) =—[V-[p,®¢")1 V- [yT, @y Vp] (18)

Proof: From [33, Sec. 5.8.1] it follows that the systems of
inequalities

~1lf . YN —pur=0
[—r] gl < [,oh} and yTe + jph < 0
w y=20, u=0

19)

are (weak) alternatives. Thus, feasibility of the right set of
inequalities in (19), implies that the left inequalities are infea-
sible. Further, since C # ¢ and u > 0, we can take u = 1
without loss of generality. Hence, if (17) holds, a triple
(f,g,w) € Py if and only if [f7 g7 wl'|r" < —ph, that is
fsg,w) € Pa. u

Remark 3: If Py is compact, then (19) are strong alterna-
tives and (17) are necessary and sufficient for P; C Ps.

Remark 4: Proceeding as in [19, Th. 2], it can be shown
that if ¢(x), y(x) are continuous functions, then y(x) can be
chosen to be continuous.

The observations above lead to our main result:

Theorem 2: A sufficient condition for the existence of a
state-feedback control law u(x) such that all systems in the
consistency set C are rendered robustly safe, is that there exists
a continuous vector function y(x) > 0 and functions p € C 1
¥ € C! such that

Yy @N = r(x), Vx e R" (20a)
yT(x)e < —p@)h(x), Vx e R" (20b)
Y ()| < —p@)h(x), Vx € R" (20c)
px) >0, Vx € & (20d)
px) <0, Vx e &), (20e)
The corresponding control law is given by u(x) = %.

Proof: The proof follows from the fact that from
Lemma 2, (20a) and (20b) guarantee that (15) holds for all
plants in C and all admissible disturbances w(-) € WW. Hence
the conditions in Lemma 1 hold for all plants that could have
generated the observed data. |

Remark 5: Constraint (20c) is a convex tightening of the
condition that ¢ = 0 when p = 0 in the safe zone p(x) > 0.
This ensures satisfaction of Assumption (i) in Lemma 1.

D. Sum-of-Squares Safety Program

In order to solve the infinite-dimensional Problem (20) in
a tractable manner, we restrict the variables p, ¥,y to be
polynomials. Under this polynomial restriction, the extracted
controller u(x) = vy (x)/p(x) is then a rational function.

Let Xy = {x: k(x) > 0} and X, = {x: h(x) > 0} denote
the initial condition and unsafe sets, respectively. Algorithm 1
is SOS-based finite-degree tightening of (20) for robustly safe
control. Successful execution of Algorithm 1 is sufficient for
finding a robustly safe control law.
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Algorithm 1: Data-Driven Safe Control Design

Input: sample data D, and degrees df, dg, d,, dy
Let 2d; > max{dy +d,, dy + dy }, 2d, > max{d,, dy }
Solve: the feasibility problem with ¢y, ¢ > 0

coeffyWIN —r) =0 A.1)
—ph—yTe —cy, Vi:y; € Tglx] (A.2)
—ph— Y, —ph+ ¢ € Eg)[x] (A.3)
p— 581k, —p —s2h — 2 € Xy, [x] (A4)
S1, §2 € Xg,[x] (A.5)

Output: the safe control law u = 1/p or a certificate of
infeasibility at degree (d, d»)

Example 1 open-loop no process noise Example 1 robust with process noise

p=0
—x0
—Xu
x(t)

—x0
—Xu
div

(b) robust closed-loop

(a) open-loop

Fig. 1. Flow (21) simulations for Example 1.

E. Computational Complexity Analysis

A straightforward application of Putinar’s Positivstellensatz
to solve (15) requires considering polynomials in the indeter-
minates (x, f, g, w) with a total dimension d,, = dy + dg + 2n.
Thus, for an SOS relaxation of order d,, the total number
of variables (hence the maximal size of Gram matrices) in
the optimization is (d'";:dp). In contrast, by exploiting dual-
itzy, Algorithm 1 only requires Gram matrices of maximal size
( Zf’). In the case where (f, g, p, ¥) are all defined by degree
2 polynomials (df = d, = 6), the maximal Gram matrix size
d, = 3 drops from (139) =969 to (g) = 10.

IV. NUMERICAL EXAMPLES

The proposed algorithm is tested on a pair of exam-
ples. Both experiments are implemented in MATLAB 2020b
with Yalmip [34] and solved by Mosek [35]. Code to
generate experiments and plots is publicly available at
https://github.com/J-mzz/ddc-safety.

Example 1: Consider the Flow system [9] with

f=[x —x+ix-x] ¢g=[0: 1]
The initial and unsafe sets are the (union of) disks:
Xo=1{x] 025—x2 — (xa+3)> =0},
X,={x| hi(®) =0.16 — (xi + 1)> = (o + 1? > 0,
OR hy(x) = 0.16 — (x; + 1) — (x2 — 1)? > 0}

2

Results of the control design for Example 1 are shown in
Fig. 1 and 2. In each figure, 30 trajectories (blue curves)

Exaample 1 nonrobust with process noise Exoample 1 nonrobust with process noise

(b) with process noise

(a) no process noise

Fig. 2. Safe controllers synthesized without process noise may be
unsafe when process noise is applied.

start from within the initial set Xy (black circle). The unsafe
set X, is the pair of red disks, implemented as h(x) =
—h1(x)hy(x) = 0. Some of the open-loop trajectories in
Fig. 1(a) enter the unsafe set A, when starting in Aj.

The prior knowledge of the system model is that f is a
two-dimensional cubic polynomial vector with f(0) = 0 and
that g is a two-dimensional constant vector, where the cubic
polynomials in f and the constant terms in g are both unknown.
80 datapoints were collected and used to design a robustly
safe controller under a disturbance with ||w] . < 2, yielding
a polytope P, from (14) with 22 dimensions (dimf,g,w =
18,2,2) and 324 faces (91 of the faces P, are nonredun-
dant [36]). Algorithm 1 was used to find p, ¥ € Rlx]<4,
yielding 99 Gram matrices of maximal size (§) = 15 and the
rational control law u = ¥/ p. Fig. 1(b) plots trajectories asso-
ciated with this safe control law, and also features the p = 0
level set in green.

Fig. 2 highlights the importance of robustness in execu-
tion as well as in data-collection. The controller in Fig. 2
was computed with the same noisy training data as in Fig. 1
but assuming no run time disturbances. Fig. 2(a) shows that
the control is safe under disturbance-free trajectory execution.
Fig. 2(b) is zoomed into the lower red disk, and demonstrates
that some controlled trajectories pass through the p = 0 con-
tour and enter X, when a disturbance with ||w] < 2 is
applied in execution (trajectories are terminated when u > 10%,
which is caused by numerical issues and stiffness near the
o = 0 contour).

To summarize this example, p > 0 is an invariant set for
all consistent systems under a disturbance w when the robust
controller is applied. The level set p = 0 separates initial
set Xy and unsafe set X,. Uncontrolled (Fig. 1(a)) and non-
robustly-safe (Fig. 2(b)) trajectories may enter X,.

Example 2: Consider the Twist system with [37]:

—2.5x1 + X3 — 0.5x3 + 2x3 + 2x3 0
f=|—x1+15x+0.5x3 — 2x; — 2x§ .g=10](22)
1.5x +2.5x — 2x3 — 2x] — 2x3 1

The initial and unsafe sets are the spheres:

Xo = {x]0.01 — (x1 +0.5)% — 22 — 22 > 0},
X, = {x0.01 — (v +0.1)> =& — 2 > 0}
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Example 2 open-loop no process noise

Example 2 robust with process noise

(a) open-loop (b) robust closed-loop

Fig. 3. Twist (22) simulations for Example 2.

Results for Example 2 are shown in Fig. 3 with the initial
set Xy (black sphere), the unsafe set &, (red sphere) and 30
trajectories (blue curves). The open-loop system is unsafe as
shown in Fig. 3(a). A prior knowledge of the system model
is that f is a three-dimensional cubic polynomial vector with
f(0) = 0 and that g is a three-dimensional constant vector. 80
datapoints were collected and used to design a robust safe con-
troller under a disturbance with ||w| o < 1, yielding a polytope
P> with 63 dimensions (dim[f, g, w] = 38, 3, 3) and 304 faces
(all nonredundant). Using Algorithm 1 to find p, ¢ € R[x]<4
yields a rational control law u = ¥/p. Fig. 3(b) features the
p = 0 level set surface in green.

V. CONCLUSION

This letter uses density functions to find provably safe
controllers for systems whose data-observations and execu-
tions are both corrupted by L.,-bounded noise. The output of
Algorithm 1 (if successful) is a rational controller u, along
with a density certificate p that guarantees robust safety
of all trajectories starting in the initial set. Future work
involves steering safe trajectories to a destination set, adding
performance objectives, and extension to other noise and
disturbance models (e.g., Ly or semidefinite bounded signals).
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