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Abstract—This paper considers the problem of error in
variables identification for switched affine models. Since it
is well known that this problem is generically NP hard,
several relaxations have been proposed in the literature.
However, while these approaches work well for low dimen-
sional systems with few subsystems, they scale poorly with
both the number of subsystems and their memory. To ad-
dress this difficulty, we propose a computationally efficient
alternative, based on embedding the data in the manifold
of positive semidefinite matrices, and using a manifold
metric there to perform the identification. Our main result
shows that, under dwell-time assumptions, the proposed
algorithm is convergent, in the sense that it is guaranteed
to identify the system for suitably low noise. In scenarios
with larger noise levels, we provide experimental results
showing that the proposed method outperforms existing
ones. The paper concludes by illustrating these results with
academic examples and a non-trivial application: action
video segmentation.

Index Terms—Error in Variables Identification, Switched
Systems, Spectral Clustering.

I. INTRODUCTION

Witched affine systems are important on their own,

since they arise in the context of a wide range of
application domains from fault-tolerant control to man-
ufacturing, and as a “poor man’s” model of non-linear
phenomena. Given their importance, substantial research
has been devoted to develop algorithms for stability
analysis and controller synthesis for switched systems
operating in different scenarios (see for instance [1]-
[3] and references therein). However, in many practical
scenarios, models of the system under consideration
are not available and must be obtained from a com-
bination of experimental data and a-priori information
before these analysis and synthesis tools can be applied.
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Identification of switched systems has been extensively
studied in the past decade, mainly in the context of
two different scenarios: (i) error-in-process models and
(i1) error-in-variables models. The first case has been
largely solved (see [4], [5] for a survey of earlier
results), proceeding along three different approaches:
optimization, algebraic, and clustering based methods.
Earlier optimization based methods, [6], [7] recast the
problem into an equivalent combinatorial optimization.
Later approaches include sparse optimization [8]—-[11],
polynomial optimization [12]-[14], particle-swarm [15],
difference of convex functions programming [16], and
branch and bound [17] techniques. Notably, [18] estab-
lished that, if the goal is to find a hybrid system that
explains the observed data with the minimum number
of switches and the noise is bounded in the ¢2 sense,
then the problem can be solved in polynomial time.
Algebraic based switched systems identification was first
proposed in [19], showing that, in the case of noiseless
data, the models can be recovered from a singular value
decomposition of the embedded data matrix, followed
by polynomial differentiation. While this method works
well for low noise level, performance degrades quickly
as this level increases. This issue was addressed in [20]—
[22] which proposed to denoise the data using total least
squares. The third class of methods, clustering based
approaches, exploits tools from machine learning, for
instance by first extracting relevant features and then
resorting to methods such as k-means to estimate the
discrete labels [23]-[29].

The case of error-in-variables models, where in-
put/output measurements are corrupted by noise (and the
related output estimation problem where only the outputs
are affected by noise) is considerably less developed.
Since in this case the problem is known to be NP
hard, most existing methods are based upon convex
relaxations of the original non-convex problem. Open
issues are related to the computational complexity of
the approaches and the quality of the identified models.
Specifically, [30]-[32] presented an approach based on



recasting the problem into a rank constrained semi-
definite program (SDP) using polynomial optimization
arguments. Relaxing the rank constraints using the well
known nuclear norm proxy for rank leads to a convex
problem. This approach has been empirically shown to
work well in a number of problems, but there are no
theoretical convergence guarantees due to the rank re-
laxation. Further, computational complexity scales com-
binatorially both with the number of subsystems and
their order, limiting the approach to systems consisting
of relatively few low order subsystems.

This paper considers the error-in-variables (EiV) sce-
nario. Our goal is to develop a method that addresses
the computational complexity noted above, while, at the
same time providing convergence guarantees, that is,
showing that the proposed method will indeed recover
the underlying system as the noise level approaches
zero. The main result of the paper is a computationally
efficient identification algorithm, based upon the idea
of embedding the experimental data in the manifold of
positive definite matrices and using a manifold metric to
identify time intervals guaranteed to contain no switches.
The key observation is the fact that the manifold distance
between data points generated by the same subsystem is
substantially smaller than the distance between points
corresponding to different subsystems. Thus, switches
can be detected by sharp increases in the manifold
distance, and segments where the same subsystem is
active can be identified by finding clusters where this
distance is small, a problem that can be efficiently solved
by recasting it into a graph cut form. Once the data is
segmented, a model of each subsystem can be obtained
by simply applying any EiV linear time invariant (LTT)
systems identification technique to each cluster. The
main theoretical result of the paper shows that, under
minimum dwell time assumptions, if the noise level is
below a threshold that depends on the subspace angle
between subsystems, then this approach is guaranteed
to produce the correct segmentation, and hence identify
the correct model, provided that each cluster contains
enough data to perform an LTI identification. Further,
contrary to existing methods, the computational com-
plexity of the proposed algorithm is mainly dominated
by the number of switches, not the number or the order
of the subsystems, and it scales linearly with the number
of data points. In scenarios with higher noise levels, the
theoretical convergence guarantees are lost, but extensive
numerical experience shows that the proposed method
consistently outperforms existing approaches in terms
of computational burden, with comparable identification
error.

These results are illustrated with two academic exam-

ples and a non-trivial practical one: activity segmentation
from time traces of the position of a person’s centroid. In
all cases the proposed algorithm achieves performance
comparable to the state of the art, while decreasing the
computational time by at least one order of magnitude.

The paper is organized as follows: Section II pro-
vides the notation, background material on Riemannian
metrics, and a statement of the problem. Section III
presents the proposed solution, along with the supporting
theory. Section IV illustrates these results with two
academic and a practical example. Finally, Section V
presents some concluding remarks. For ease of reading,
all technical proofs are provided in the Appendix.

A preliminary version of this paper was presented at
the 2018 CDC [33]. This version contains additional
theoretical results regarding bounds on the noise level,
complete proofs of all results and additional examples.

II. PRELIMINARIES

In this section, we introduce the notation used in
this paper, recall some needed background results on
Riemannian metrics and normalized cuts, and formally
introduce the problem under consideration.

A. Notation

R set of real numbers

S" set of symmetric matrices in
R”LXTL

ST(St,) manifold of positive-semidefinite
(-definite) matrices in 8™

x, (M) a vector in R™ (matrix in R"™"*™)

M7T transpose of matrix M

det(M) determinant of a square matrix M

N (M) null space of M

Omax (M) maximum singular value of M

Omin(M) smallest non-zero singular value
of M

o (M) 7" singular value of M

[IM||2 2 norm of M, ||[M]|2 = omax(M)

[IM ||« nuclear norm of M, |[M]. =
> o(M)

M| F Frobenius norm of M, |M|% =
> M

X a sequence of scalars {x;, z;11," -

H, Hankel matrix with r rows asso-
ciated with a scalar sequence X;.;

Zi Tit1 Tj—rt1
Tit+1 Tit2 Lj—r+t2
HL= | . "
Titr—1 Lidr X



Gram matrix associated with a
given Hankel matrix: G = HH”

Gle) normalized, regularized Gram
matrix: G(e) = ﬁ + eI,

B. The Jensen-Bregman Log-Det divergence

The key idea behind the approach proposed in this
paper is to embed data in S7 , , the manifold of positive
definite matrices, and use a suitable manifold distance
to compare systems and detect switches. The intrinsic
metric in S, , induced by the geodesic length along the
manifold curvature, is the Affine Invariant Riemannian
Metric (AIRM) [34], [35], defined as:

Tr(X,Y) = ||log (X 2YX 1) |

The main disadvantage of this metric is its high com-
putational cost. To circumvent this difficulty [36] intro-
duced a computationally effective surrogate, the Jensen-
Bregman Log-Det Divergence (JBLD) given by:

X+Y

J1a(X,Y) = log det ( ) —%log det (XY) (1)
Attractive properties of the JBLD include the facts that
(i) its square root is a geometry aware metric in ST
[37], [38], in the sense that any manifold curve has the
same length under the JBLD and AIRM distances, up
to a v/2 factor, and (i) its low computational burden,
compared against the AIRM.

A potential difficulty is that (1) is only well defined
for matrices in S%, while this paper requires comparing
positive semi-definite matrices. The following result and
its corollaries extending the JBLD to &7, provide the
theoretical justification for the proposed method.

Theorem 1. Given X, Y, Ay, Ay € S, assume that
{dnk(%) = r and max{omas(Ax), Omaz(Av)} <
9, min{omin(Ax), Omin(Ay)} > 0. Then

) X+Y
nlogg + (F—7r)logd + 7‘log(amin(7jL ) +9)
_@kgWXW+WJX_ngWYh+W®
2 Ty Ty

<JauX+ A5, Y +Ay) <

nlogg + (7 —7)logd + rlog(0'5(”X”* +[Yll) + 7o
4 T
~ 5 Togloin(X) + )] = 7 loglowin(Y) + )]
2
where:
ry = rank(X), ry = rank(Y), and
= Tz +Ty
r = =T

2

)

Corollary 1.
lirr(l) Jua(X+eLY +€el) # o <= N(X) =N(Y)
e—

Corollary 2. Consider two rank v matrices X, Y € ST
with || X||s« = ||Y ||« = 1 and such that N'(X) = N(Y).
Then

Ju(X + e, Y + €I) < r[log(1 + re) — logr(a + €)]
Sfor any o < min{o,(X),0,.(Y)}.

The following result provides a bound on the smallest
non-zero singular value of % It will be used in
Section III-A to partition the data record into segments
generated by a single subsystem.

Theorem 2. Given X, Y < S} with rank(X)
rank(Y) = n — 1 and min{o,_1(X),0,-1(Y)} > g,
let nx and ny denote the corresponding (normalized)

null vectors. Then O'm,'n(X;Y) > o(1 - [nkny|) =0~

Corollary 3. Consider two matrices X, Y € S, n > 2,
with || X|l« = |[Y]|l« = 1, with rank(X) = n — 1 and
rank(Y) > n — 1 and such that N'(X) # N (Y). Then

1
Ju(X + e, Y + eI) > nlog(o* +¢) — %
14 (n—1)e
—(n—1log | >~ 2
(n )og[ — }

C. Spectral Clustering

Clustering algorithms seek to group a set of data
points into clusters according to a given similarity mea-
sure. Of particular interest to this paper are spectral
clustering techniques that solve the problem by recasting
it into a graph cut form and exploiting properties of the
eigen-decomposition of the associated Laplacian matrix.
Specifically, in this context the data is represented using
a similarity graph G = (V,£, W) where each node
Vi € V corresponds to a data point, £ is the set of edges
connecting these nodes, and each element W;; of the
symmetric weighting matrix W € R"*™ measures the
similarity between V; and V;, with W;; = 0 if there
is no edge connecting V; and V;, and W;; = 1. The
corresponding degree and Laplacian matrix are given by:

D = diag{dy,...,d,} where d; = » W
j (3)
L=D-W

It can be shown [39] that L € S7, and always has an
eigenvalue at zero. Moreover, the multiplicity of the zero
eigenvalue equals the number of connected components
in the graph and the corresponding eigenspace is spanned
by the indicator vectors of those components.



In cases where small perturbations (due for instance
to noise) render a disconnected graph connected, then
the number of close-to-zero eigenvalues indicates the
number of components (see for instance [39]), with the
corresponding eigenvectors characterizing each of the
clusters. In particular, the following two results will be
useful to provide quantitative results on the size of the
perturbations that can be tolerated while still recovering
the correct clustering.

Lemma 1. Consider a connected graph G = {V,E, W}
with n vertices. Assume that the non-zero elements of
W are bounded below by some w > 0. Then, the second
smallest eigenvalue of the associated graph Laplacian L
satisfies Ap—1(L) > nd;%, where diam(G) denotes
the diameter of the graph (e.g. the greatest distance
between any pair of vertices).

Lemma 2. Consider the graph Laplacian L correspond-
ing to a graph with ns connected components and a
perturbation L. Let V, and Vi denote the unitary
matrices whose columns are the eigenvectors associated
with the smallest ns eigenvalues of L and L. Then, there
exist a unitary matrix R such that |V, — ViR, <
2%,wher€ An—n,—1 denotes the smallest non-
zero eigenvalue of L.

D. Problem Statement

The goal of this paper is to develop a computation-
ally efficient algorithm for identifying Error-in-Variables
Switched ARX models (EIV-SARX) from experimental
input/output data and some a-priori information. Specif-
ically, we consider switched autoregressive exogenous
(SARX) systems of the form:

Ng np
g = ar(s)i—k + > br(st)l—r, na =1y (4)
k=1 k=1
consisting of ny subsystems, each defined by the vector
of model coefficients

m; = [—1a1(i)...an, (i) b1(i)...by,(i)] 1 <i<ng

In the sequel, we make the following assumptions:

A.1 Dwell time. Once the system (4) switches to a
given subsystem at some time T, it does not
switch again in the interval [Ts+1, Ts+Tgwen — 1],
with Typerr > 3ng + 2np + 1.

A2 DistinguiTshability. There exists some 8,,;, such
that Wﬁz]” < cos(Omin) < 1 for all k # j.

Assumption A.l allows for obtaining a computationally

tractable algorithm, by enabling the use of manifold

distances to determine whether two given data segments

can be considered behaviors of the same underlying
dynamics. While this dwell time constraint may restrict
the applicability of the method, it arises naturally in
many practical scenarios such as biological systems and
manufacturing. In these cases, the proposed method is
able to exploit this additional dwell time information to
substantially reduce the computational burden. Assump-
tion A.2 is needed to guarantee that the angle between
the subspaces spanned by the different subsystems is
large enough so that these systems can be unequivocally
identified from noisy data.

Under these assumptions we are interested in solving:

Problem 1. Given: (a) a priori information consisting of
system orders (ng,ny), dwell time Tyyey, and input and
measurement noise variances af,, 03; and (b) Ny, noise
corrupted input/output experimental data points {u; =
U+ Ve, Y = Up + nt}?gl Y, find the minimum number of
subsystems ng, a switching sequence s; € [1,ns] and
ng vectors [aid,l(i) e Gidmg (1) biaa (%) .. bidm, (z)]
such that

Ta

Y — M = Z aid,k(st)(yt—k - 77t—k)
k:1”b )
+ Z big k(se)(Wi—k — Vi—k)
k=1

for some zero mean white noise sequences n,v; with

; 2 2
variances 0',,7, g,.

Note that the problem above becomes ill posed if the

input is not informative enough, for instance if there is
a pole/zero cancellation between a subsystem and the
input. Thus, to avoid this scenario in the sequel we make
the following additional assumption:
A.3: Data informativity. There exists some g such that,
for any time interval [k, k + h — 1] of length h > 2n, +
ny + 1 where a single system is active, o, 4n, (G) >
o > 0, where:

~ T

Nng+1 Ng+1
G. = Hﬂkzwh—l H?jk:kdrh—l
k — Hnb Hnb

Uko, :k+h—2 Uky ikt+h—2 (6)
& . Gy
G~ b

G|«

Here k, = k + ng — np and Hgb,HZ“Jr1 denote the
Hankel matrices with h—n,, columns and n;, n,+1 rows
respectively, corresponding to g, .k+h—2 and Yg.ktrn—1,
the input/output sequences to (4).

III. EIV-SARX IDENTIFICATION VIA JBLD BASED
SPECTRAL CLUSTERING

The main idea underlying the proposed method is
to partition the data into short segments guaranteed



not to contain switches and then group these segments
into subsets that have been generated by the same LTI
system. The later step is accomplished by recasting
the problem into a spectral clustering form, where the
distance between segments is computed using a manifold
distance between the dynamics associated with these
segments. Finally, the parameters of the subsystems are
recovered by performing a LTI systems identification
step on each cluster. A high level outline of the proposed
approach is provided in Algorithms 1 and 2 .

Algorithm 1 JBLD based switched system identification

Inputs: input sequence u € RN», output sequence
y € RN», system orders n, and n,, window size h
and regularization parameter e.
Step 1: Data Segmentation. Use Algorithm 2 to
partition the input and output sequences into segments
such that each segment is generated by a single LTI
system. The s segment of input and output are
denoted u, and yg, respectively.
Step 2: Spectral Clustering.
for s = 1 to # of segments do

H;* < Hankelize us with n, rows

Hp+*! « Hankelize y, with n, + 1 rows

e e

Hy || Hp
Gs(e) « H((;}ﬁ + €ln, 41
end for

Compute  the  similarity
e~ 0-5J1a(Gi(€),G;(€))

Gs<—{

matrix Wy =
Cluster labels z < spectral cluster on W
Step 3: Subsystem Identification.
for k = 1 to # of clusters do

Perform a Systems Identification on cluster zj
end for
Outputs: ay, by (parameters of each subsystem)

Next we provide the theoretical justification for the
proposed algorithm, by analyzing the properties of the
data segmentation and clustering steps.

A. Step 1: Data Segmentation and Switch Detection

The goal of this step, implemented in Algorithm 2, is
to segment the data into portions where only one sub-
system is active. Towards this goal, the algorithm builds
two sequences {7, } and {7}, such that actual switch
instants T; satisfy T, < T; < TZ*. Thus, the interval
[T;" +1,T;,, —1] contains no switches (equivalently, the
data yy,, k € [T;"+1,T;;, —1] must have been generated
by a single subsystem). The algorithm uses a sliding
window of size Tywerr — Mg — Np > h > 2ng +np + 1

Algorithm 2 JBLD based data segmentation

Inputs: input sequence u € RN», output sequence
y € RM», system orders n, and np, sliding window
size h, threshold and regularization parameters 7, €.
Step 1: Segmentation. Use a sliding window to
partition the input and output sequences into [N, —h+1
segments of length h. The i input and output seg-
ments are denoted by u;.;4+p—1 and yi.i4p—1.
Step 2: Build Gram matrix.
fori=1to N, —h+1do
Hﬁb7 < Hankelize U;4n, —n,:i+h—2 With ny rows.
H;?i+1 < Hankelize y;.;+x—1 with n, + 1 rows

ne+1 na+177
G «— Hy,i Hy,i
7 H™. H™.
R lé,z u,:
Gi(e) — HG:H* + el 1np+1

end for
Step 3: Search system switches.
T« 0, T« 0, T« 0,T"« 1
Gt 1 > forward search index
while j© < N, —h+1do
Jtegt+1
if Jia(Gr+(€), Gj+(€))>7 then
Tt T +h—1,T" + [T+ T+]
Jnigh <= T —ng —1, Jiow < T~ + Tawen — Na
J7 4 Jhigh > backward search index
while ;= > jjon do
if Jia(Gp+(e), G- (€)) < 7 then
T <77 +n,
else
T «+ [T* T*}
break
jT 7 -1
end if
end while
j+ Tt
end if
end while
Outputs: T+, T~

to find switches by detecting sharp increases in the
JBLD distance between Gram matrices corresponding
to adjacent segments. Specifically, given a regularization
parameter e, let Gk(e) denote the (normalized, regular-
ized) Gram matrix built from the data in the interval
[,k + h — 1], where h is the chosen window length:

Gk(e) = Gk + €I, (7)
where r = n, + ny + 1 and Gk is defined in (6). Next,
consider an increasing sequence {i} and define T;, = 0,
TO+ =1 and:



Ji = a'r’gmin { - Jld(GTt1(€)’G.i(5)) > 7—}

=T 41

T =4t +h-1

jhigh = Ti+ — Na — 17 jlow = Tzil + waell — Na (8)
ji = argmin {j : Jld(éj(e),GT+ (e)) < 7‘}
Jhigh 23> Jlow !
T = e

where 7 denotes a suitable threshold to be determined
later. As we show next, in the case of noiseless data,
the sequences 7 ,T;" bracket the actual switching
sequence. Before establishing a formal proof of this
result, below we illustrate the intuition behind it with a
simple example. Consider the following two models with

o« = np = 1 and dwell time Tye;p = 3ng+2np+1 = 6:

Yk+1 = Yk + Uk (system1)
Yk+1 = 22U (system?2)
and the following input/output sequences:
u(1:11)={0,-1,2,0,-1,1,2,0,-1,1,0},
y(1:12)={1,1,0,2,2,1,2,4,0,-2,2,0}.
The corresponding Hankel matrices, H?} =
(H )T (H,,) ] with h = 2n, +ny +1 =4 are
1 1 0] (1 0 2 02 2
Hi=1 0 2|,H,=|0 2 2/, H;=12 2 1],
0 -1 2 -1 2 0 2 0 -1
M2 1] 2 1 2 1 2 4
Hi=1[2 1 2|,H;=|1 2 4|, Hs= |2 4 0],
0 -1 1 -1 1 2 1 2 0
2 4 07 4 0 -2 0 -2 2
H;=1|4 0 —2|,Hs=|0 -2 2| ,Hy=|-2 2 0
2 0 —1] 0 -1 1 -1 1 0

Here the points in [1,6] were generated by system 1
and those in [9,12] were generated by system 2. Note that
since y7 and yg satisfy both models, they can be assigned
to either one. Applying the procedure outlined above' to
the corresponding Gram matrices yields j;" = 6, T, =
9, j; =6, T = 7. This correctly indicates that the
earliest possible switch happened at 7' = 7, and the latest
possible one at 7" = 9. Further, due to the dwell time
constraints, a second switch cannot happen until 75 =
T, + Tqwen = 13. Hence, the points in the intervals
[1,6] and [9,12] each belong to a single class. Since
this guarantees that Hg contains points from a single
system, it is rank deficient and thus j; in (8) is well
defined. Note in passing that the ambiguity in detecting
the switches arises from the fact that the subsystems in
this example are one-step indistinguishable [8].

ISince we are using noiseless data, we can take e = 0 and 7 = oo

Theorem 3. Suppose that assumptions A.1-A.3 hold,
and define Ty,(€) and Ty (€) as follows

Tin(€) =(ng + nyp) [log(1 + (ng + np)e)—
log ((na +ns)(a + €))]
Tub(€) =(ng +np + 1) log(c™ 4+ €) —loge 9

14 (ng +np)e

Ng + Ny
where o* = g[1 — co8(0min)]. Then, there exist € and
T such that Tip(€) < T < Tup(€). Further, the sequences
generated using (8) with these values satisfy T, <'T; <

Ti+, where T; denotes the actual switching instants.

— (ng + np) log

B. Step 2: Spectral Clustering

After T = Ug[T}", T, — 1], the set of all intervals
guaranteed to contain no switches, has been obtained, the
next step is to group these intervals into clusters, each
generated by a single subsystem. Note that in principle,
in the noiseless case, this can be accomplished by simply
selecting € and 7 as in Theorem 3 and, proceeding
pairwise, grouping together all segments (i,4) where
Jia(Gi(€),G;(€)) < 7. However, with an eye towards
handling noisy data, here we will pursue an alternative
approach, based on spectral clustering. Specifically, we
will consider a graph where the nodes consist of the
intervals [T,", T} 41 — 1] and where the edge connecting
two nodes has associated a weight W;:

W, = e—0-571a(Gi(e),G;(e)) (10)

As shown next, if € is suitably chosen, the graph Lapla-
cian corresponding to this matrix W has exactly ng
eigenvalues close to zero (in a sense to be precisely
defined next) and the corresponding eigenvectors are the
indicators of the clusters generated by each of the ng
subsystems.

Theorem 4. If € is selected such that Tu,(€) — T1p(€) >
2log & UAGR 1), where n, m, the graph
Laplactan corresponding to W defined in (10) has
exactly ng eigenvalues \; < 2(n, —1)e=057u() ywhere
ns is the minimum number of subsystems required to
explain the observed data.

C. Handling Noise

When the measured data is corrupted by noise, it is
not immediate whether the manifold distance can be
used to separate data originating from different systems,
since the corresponding Gramians G; are generically full
rank. As we show next, Theorem 3 still holds for noisy
data, provided that the input and measurement noises are
white, with suitable low variance.



Theorem 5. Assume that AI-A3 hold and the input and
output noises are white, with zero mean and variance
o2, O‘% and uncorrelated with the input/output sequences
{u,y}. Then, there exist some o, function only of
the problem data such that if max{o,,o,} < ouw,
Algorithm 1 recovers, with high probability, the correct

data segmentation.

D. Step 3: Subsystem Identification

After the switch detection and spectral clustering
steps, each cluster contains data segments generated
from a single subsystem. Thus, at this point, any LTT sys-
tem identification technique that handles EIV scenarios
can be used to recover the parameters that characterize
each subsystem, that is, finding a parameter vector 6;
and associated noise matrices satisfying:

Yi—-En U;—-F; bi1 — fix
Yig — EiQ Ui2 - Fi2 bi2 - fzz
= (11)
Yim - Ezm U'L'm - F’Lm bim fim
where
Yes,—1 Yez, -2 Yt3;—na
Yt Yes,—1 Yts,—na+1
Y, = i :
[ Yee,—1 Yte,—2 Ytg;—na
Mg —1 T =2 1Tty =na
M3, Mes, -1 Mg, —na+1
[Me, =1 Mg, =2 e Mg, —na |
Uts, -1 Utz —2 Uz, —ny,
Ugs, Ut —1 Ut —no+1
Uij = .
-utfj_l ut;j_2 Utfj—na
[Ves,—1 Vi, —2 Vi3 —na
Vs, Ves —1 Ptz —na+1
Fij -
-Vtijl I/tfifj—2 thj*na,
T
0, = [ai,l Qi big o bivnb}
btij = [ytfj Yi5;+1 ye ]
fr, = [mg, neg+ e,

where ¢ is the index of a subsystem, j indexes the discon-
nected segments generated by this subsystem, ¢7; and ¢7;

denoted the starting and ending times of the segment 7],
0; is the identified model of subsystem 4, and E;;, F;
are the (structured) noise terms. In this paper we solved
(11) using a simple regularized least squares approach
[40], since consistent numerical experience shows that
it is substantially faster than competing methods, with
comparable errors.

E. Step 4: Labeling ambiguous data points

While Step 3 above generates the solution to Problem
1, in many applications (e.g anomaly detection), it is
of interest to assign labels to all data points, including
the ambiguous ones not utilized for the identification.
This can be accomplished by searching each interval
[T, T,"] for the location that minimizes the simulation
error (note that under the dwell time constraints each
of these intervals is known to contain a single switch).
Specifically, assume that the data before T, was gen-
erated by the subsystem s; with parameters 6,,, and
the one after T,j by s with parameters 6,,. The best
estimate of the actual switch location is given by:

T—1 T’:r
T = argmin Z (0£¢j_yj)2+2(0£¢j_Yj)2
TG[T,;,T,:F*H J=T j=T
where
B T
G5 =11 Yjong Uj—1 - Ujny]

Once the estimate T of the switching time T} is
obtained, the data points in [T, ,T¢*" — 1] are labeled
s1, and those in [T¢*, T;}] are labeled as so.

IV. EXPERIMENTS

In this section we illustrate the advantages of the
proposed method with two academic and one practical
examples. Applying Algorithms 1 and 2 requires select-
ing the parameters h,e and 7. In general, h should be
as small as possible, to produce the smallest [T, 7]
intervals that contain the switches, leading to more
accurate estimates of the model. Thus, for the noiseless
case h = 2n, + n, + 1. However, for noisy data, using
larger values of h leads to Gram matrices less sensitive
to noise. So in these scenarios, it is beneficial to use
h > 2n,+np + 1, with higher h values corresponding to
higher noise levels. In principle, determining the range
of values for € in Theorem 3 so that 75(e) < Tyup(€),
requires knowledge of the parameter ¢, which essentially
quantifies the informativity of the data and the observ-
ability of the system. An estimate of ¢ can be obtained
by considering the data in [1, Tywen — 1], since this data
has been generated by a single system. In addition, for



many practical examples (such as the activity recognition
one discussed below), data-sets with sample clips of the
activity may be available and can be used to estimate a
lower bound of o over the data-set. Note that since o
appears inside a log, the bounds (9) are relatively robust
to errors in its estimation. Given {07,072}, the regular-
ization parameter € can be obtained from the proof of
Theorem 5. However, consistent numerical experience
shows that the proposed algorithm is largely insensitive
to the value of ¢, since most of the regularization effect is
provided directly by the noise. Once the range of values
for 7 has been estimated from Theorem 3, its final value
can be chosen using cross-validation.

A. Academic Example 1

In this example we consider a system composed
of three second-order subsystems with n, = 2 and
np = 2. The corresponding models are given by 4, =

0, [gtfl Yt—2  Ut—1 ﬂtfz] , with

6, =[-0.1 042 —0.55 0.08]  (Subsysteml)
0, =[1.55 —058 —210 0.96] (Subsystem?)
05=[1 —024 —065 030  (Subsystem3)

We randomly generated the switch locations and thus
the vector s, discarding those realizations that did not
satisfy the dwell time constraint 7y,,¢;; > 30. The system
was excited by a Gaussian random input u corrupted
by zero-mean Gaussian noise v with standard deviation
1. Without loss of generality, initial conditions were set
to g1 = 5,yY2 = 5, and in each time ¢ > 3, we used
the model parameter 6,, to generate the corresponding
output g;, t € [3,600]. Finally, these values were
corrupted with Gaussian noise with standard deviation 7.
Table II shows the results of experiments with 7 taking
values 0.1, 0.15, 0.2, and 0.3.

1) Switch detection: First, we evaluate the perfor-
mance of the switch detection module in terms of recall,
precision and [} score [41] defined as:

TP

_ TP s
Recall = 5 TEN P;e_cmon = TPiFD and
F1 — 2 X Recall X Precision

Recall4-Precision

Here T'P stands for the total number of true positive
detections (e.g. correctly detected switches); F'P stands
for the total number of false positives (e.g. switches
detected where there are none), and F'IN stands for the
total number of false negatives (e.g. switches that have
not been detected). Ideally, the goal is to have Precision,
Recall and F1 close to 1.

A comparison of the performance of different ap-
proaches over 100 random experiments is shown in Table
I. Here the first 300 input/output data points (out of

a total of 600) were used for identification and the
entire sequence for validation. For this problem, we used
h =10 > 2n, +np + 1 and estimated an initial value of
7 in the range [1.6, 3.6] using Theorem 3 for different
noise levels. Finally, we used cross-validation to set
7 = 2. For benchmarking purposes we applied several
existing methods to this example, using the default
values provided by the authors, leading to the results
shown in Table I. As illustrated there, the proposed
method is both the fastest and the best performer in terms
of precision and F} scores, and the second best in terms
of recall.

2) SARX-EIV system identification: Next, we applied
the proposed method to identify the parameters of each
subsystem. To compare against existing methods, per-
formance was evaluated using five criteria: success rate,
parameter error, validation error, fitting accuracy, and
running time. Following [25] we evaluated the parameter
estimation error using a Normalized Mean Square Error
(NMSE), defined as

Ns

NMSE = - Z

n
S =1

16; — 6,3
6:/3

12)

To compute the validation error, we generated a simu-
lated output ¥ using the estimated parameters and ground
truth subsystem labels and compared the results against
the sequence y generated by the ground truth parameters
and switching sequence using the following criterion

19 =5l
n—"ng

VE (13)
where n is the length of y. Following [25], statistics of
the metrics were computed only on successful experi-
ments, defined as those where the validation error satis-
fied VE < 10@. Finally, the fitting of the simulated
sequence against y, the given data, was evaluated using
the FIT score defined as:

. 1y —yll2
ly — mean(y)|l

As shown in Table II, the proposed algorithm achieves
the smallest parameter errors and best fit to the data,
with the second best running time. In this example, the
fastest algorithm (k-LinReg, [25]) is up to two orders of
magnitude faster, but at the price of substantial increase
in the validation and parameter fit errors (up to a fourth-
fold increase). It is also worth noting that this algorithm
failed to identify a system in at least 25% of the runs
(that is, the algorithm identified a system with validation
error below an acceptable threshold only in 75% of the
experiments). This is due to the fact that it was designed
to handle the case of error—in—-model (EiM), as opposed

FIT = 1 (14)



TABLE I
ACADEMIC EXAMPLE 1: oy = 0.1, SWITCH DETECTION, RUN 100 TIMES RANDOMLY.

[ Methods | Recall [ Precision | Fi score | Time |
Min # of Switches [8] 32.67% 46.09% 0.3824 492.9s
Sum Of Norms [9] 66.53% 42.37% 0.5177 202.6s
DpSwitch [18] 55.25% 79.71% 0.6526 78.9s
Proposed 84.16% | 84.33% 0.8424 11.7s
TABLE II

ACADEMIC EXAMPLE 1, SYSTEM IDENTIFICATION AS A FUNCTION OF NOISE OVER 100 RANDOM RUNS. NMSE STANDS FOR NORMALIZED
MEAN SQUARE ERROR OF PARAMETERS; VE STANDS FOR VALIDATION ERROR.

[ Methods | noise std. dev. | Succ (%) | NMSE (10~1) | VE(10™%) [ FIT (%) [ Time (s) |

Lauerl1 [42] 0.1 91 6.1 +10.7 144+187 | 86.3%+7.6 137
0.15 89 79+134 17.74+18.6 | 825492 147

0.2 88 7.6+11.5 23.6+26.9 | 80.2+9.7 141

0.3 79 6.5+6.6 30.0+£28.5 | 76.0+£9.9 142

SON-EM [27] 0.1 99 1.8£49 29+£3.6 92+ 7.8 168
0.15 99 2.4+ 4.7 39440 89.4+ 7.7 190

0.2 100 3.8+6.3 52+5.1 86.0 £9.0 183

0.3 100 59+7.5 74+7.0 79.8 +£10.0 211

k-LinReg [25] 0.1 75 5.6 £ 14.8 14.0+33.4 | 88.6 £12.2 0.3
0.15 75 5.0 £12.0 13.44+26.5 | 86.34+9.3 0.3

0.2 71 6.2+12.1 1494223 | 85.0+7.2 0.4

0.3 71 5.1+8.0 19.04+26.0 | 80.84+7.2 0.4

Proposed 0.1 100 1.8E£21 19£18 934 £2.1 16.0
0.15 100 2.5+ 3.0 3.5+4.0 89.8+4.4 16.1

0.2 100 3.0+3.1 5.0+ 5.2 86.8 £ 5.0 16.3

0.3 100 6.1+8.0 82477 79.9 + 8.7 16.7

to error-in-variables, and thus, the bounds in [25] no
longer apply. Further, as shown there, even for the EiM
case, for a given number of points, the probability of
failure is proportional to 62(0'5%), so performance is
expected to degrade as ng increases.

B. High Order Example

In this example we consider a system composed of
ng = 10 subsystems, each having n, np 10.
We randomly generated 5 sets of such systems, subject
to the constraint that the cosine of the angle between
subsystems should be less than 0.65, to guarantee well
separated systems. We excited the system with a pseudo-
random binary sequence of length 8000 generated using
Matlab’s command idinput, and created 20 random
switches, with a dwell time Tyyey > 80. The first 4000
input/output pairs were used for identification and the
entire sequence for validation. In this case we used
h = 3n, + 2np + 1. An initial value of 7 was estimated
to be in the range [3.4 8.1] using Theorem 3 and the
information on the noise variance, and the actual value
used, 7 = 5, was fine-tuned by cross-validation, leading
to the results shown in Table III. As shown there, the
proposed approach achieves performance comparable to
SON-EM, but it is approximately 30 times faster. In this

example, k-LinReg performed very poorly, probably due
to the large number of subsystems, and [42], failed in
all instances, after running for more than 8270 seconds.

C. Action Segmentation Example

In this section, we applied the proposed method to
real data from a computer vision action segmentation
problem. We recorded a video in our lab with the
following sequence of actions: (i) walking from right
to left, (ii) squatting and standing up, and (iii) resume
walking to the left. Sample frames from this video are
shown in Figure 1. The data used here consists of the y
coordinate of the centroid of the subject in each frame,
obtained using background subtraction. In this case, we
modeled the trajectory of the centroid as a no-input
switched system. The parameters we used are n, = 3,
ny =0, h =10, e = 107® and 7 = 2. The segmentation
obtained using the proposed method is shown in Figure
2, and a comparison of the proposed method against
existing techniques is given in Table IV. As shown there
the proposed method achieved the highest label identity
accuracy, 99.2%, with a modest computational burden.
As before, k-LinReg was the fastest method, but at the
price of a 60% decrease in label accuracy, yielding a
result only 10% better than a random choice of labels.



TABLE III
HIGH-ORDER ACADEMIC EXAMPLE, ng = 10,n; = 10,1 = 10, SYSTEM IDENTIFICATION RUN OVER 5 RANDOM SYSTEMS. NMSE
STANDS FOR NORMALIZED MEAN SQUARE ERROR OF PARAMETERS; VE STANDS FOR VALIDATION ERROR.

[ Methods [ noise std. dev. | Succ (%) | NMSE (10-1) [ VE(@10=%) | FIT (%) | Time (s) |
k-LinReg [25] 0.05 0 — — — 134
0.1 40 14.03 £1.2 1.58 £ 0.2 55.0 + 3.9 169.1
SON-EM [27] 0.05 100 413£1.9 0.99£0.29 | 86.93£13.9 379.7
0.1 100 4.02+£0.76 0.98+0.29 | 85.88+3.0 381.3
Proposed 0.05 100 4.56 £ 0.58 0.96 £0.28 | 88.59 & 4.47 137
0.1 100 4.65 £ 0.50 0.96 £0.26 | 85.04 4 4.47 12.9

o

AL L

Fig. 1. Top: Frames from a video of a subject walking and squatting.
Bottom: foreground blobs and the center of mass of the subject.

) System identity labels along time axis. Accuracy is 99.22%

¥ labol
> groundruth

System identity

120 140

Fig. 2. Action segment labels obtained using the proposed method.

TABLE IV
ACTION SEGMENTATION EXAMPLE: COMPARISON OF THE
PROPOSED APPROACH AGAINST OTHER METHODS. LABEL ACC
STANDS FOR LABEL ACCURACY.

[ Methods | Label acc (%) | FIT (%) | Time(s) |
Lauerll [42] 51.9 86.4 1.42
k-LinReg [25] 57.4 86.0 0.01

MinSubmodels [8] 65.1 75.3 2.71
SON-EM [27] 89.9 90.6 3.6
Proposed 99.2 90.6 0.2

V. CONCLUSIONS

Despite its practical relevance, identification of Error-
In-Variables SARX models is far from solved. In this
paper we propose an approach based upon firstly em-
bedding the data in the positive definite manifold using
regularized Gram matrices, and then segmenting it there
using graph cuts, where the weights of the edges are
given by the manifold distance between segments. Once
the data is segmented, the parameters of each subsystem
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can be extracted by any EIV LTI systems identification
method. Theoretical results are provided showing that
this approach is guaranteed to identify time intervals
where a single system is active, and to correctly clus-
ter all segments corresponding to the same underlying
dynamics, provided that the noise level is below a
given number related to the subspace angle between the
subspaces spanned by each subsystem. Further, in cases
where the number of subsystems is a-priori unknown, it
can be estimated from the eigenvalues of the Laplacian
of the associated graph. While for higher noise levels
these theoretical guarantees no longer hold, consistent
numerical experience shows that the method works well,
even for moderately large noise. As illustrated with
both academic and practical examples, the proposed
algorithm is computationally efficient and outperforms
most existing techniques in terms of the identification
error and computation time. An exception is the k-
LinReg algorithm that, for small ng, runs close to an
order of magnitude faster than the proposed algorithm,
but at the price of a similar increment in the identifi-
cation error, pointing out to the existence of a severe
computation time versus identification error trade-off.
Moreover, while the proposed algorithm is guaranteed,
under suitable conditions on the noise, to yield the
correct data segmentation and converge to the actual
system, no such guarantees exist for k-LinReg in the
case where both the output and input measurements are
corrupted by noise. Current research seeks to remove
the dwell time constraint by exploiting semi-algebraic
optimization tools.
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APPENDIX

Proof of Theorem 1

In order to prove the Theorem and its Corollaries, we
need the following preliminary result.

Lemma 3. For any X € SV with rank(X) = r, and
A € 87, the following inequality holds

Proof.
X+Al=[[MX+2) [T MX+4)
i=1 i=r+1

r
i=1

(Ui (X)r+ UmaI(A)) ) " O'maz(A>n_T

X[« + romax(A)

r

< (=

- < >Tamam(A>"T

where we used Weyl’s and the geometric-arithmetic
mean inequalities. O

Proof of Theorem 1, lower bound: Let A = %
Then

X+Y
=
X+Y

2

+a-

. X+Y
+a) [T M= +4)
i=r+1

> [Umin(
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X+Y

)_,'_é]rénfr

) gnfrm
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) STy
Thus
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Proof of the upper bound:

051X« + Y[«
r

2
X + Ax[ > 8" (omin(X) + )™
Y + Ay| > 8" (omin(Y) + )™

‘X+Y

—|—A’<(5n_T< )+r6)7'

Hence

JuX+ A, Y +Ay) < (n—r)logé — (n—7)logé
0.5(IX ]|« + Y [l+) + 76

+ rlog( . )
~ 5 Toglowin(X) + 8)] — 3 loglown(¥) +3] <

= S« Y ||« 5
nlogg+(f—r)log5+rlog(05(” ” +TH H )+r6)

— = log[omn(X) + 8] — 22 loglomn(Y) + 4]

O
Proof of Corollary 1: Follows from Theorem 1 by setting
A = €I and noting that, due to term (7 — ) log d in (2),

1iH(1JJ1d(X+6I,Y+eI)7éoo = T =1 =
e—

rank(X) + rank(Y)
2
_ dim(N (X)) 4+ dim(N (Y))
2

rank(X +Y) =

dim(W(X) NN (Y)
— N(X) =N(Y)

O

Proof of Corollary 2: Follows from Theorem 1 by setting

Ax = Ay = €I and noting that in this case rank(X +
Y)=rand

r log

5 loglomn (X) + ] + glog[amin(Y) +¢ > rlog(o + )

O
Proof of Theorem 2: Consider the svd of X and Y

0] [UT
0| [nT
0] [UT
ol [+]
Let 0, = 0,—1(X) and 0, = 0,,—1(Y). From Weyl’s
inequality [43] we have that

DI
0
Ey
0

X = [U, n,] [

Tnin(X+Y) = 0,(X+Y) > 0,(0,U, UL +0,U,UT)

= on[(0y + 0y)I — oon,ng — Uynyng] >
(0'33 + Uy) - O'max(o'arn;cnf + Uynyng)

(16)



Next, note that the rank 2 matrix M = Jznznf +
oynyn] can be factored as M = LL" with L =
[Voen, /Tyny|. Thus,

Umax(M) = Umax<LLT) = Umax(LTL)

T
B Oz \/Tz0yn; 1,y
= ”maxq foro,nln, o, b (17)

- 1
=2 ;_Uy + 5\/(01 —oy)? +4o,0y(niny)?

Combining (16) and (17) yields:

it follows that the data in the interval 1,5 + h — 1]
cannot be explained by a single system of order n,.
Hence, a switch must have taken place no later than
T, = j +h — 1, and the earliest such a switch could
have happened is 7;" — n, — np. Thus, assuming a
dwell time Typeyp > 3ng + 2np + 1, the data in the
interval [T}, 77" + h — 1] must have been generated
by the same system, and hence the matrix GT+ con-
tains data from a single system. Moreover, no switches
could have taken place in [T}7 — n,,T;"]. Working

Og+oy 1
2 2
Finally, noting the the expression above is an increasing

function of 0,0, and setting 0, = o, = o leads to

Omin (X+Y) Z

omin(X +Y) >0 —0ay/(nfny)? =o(l - \n ny|)
O
Proof of Corollary 3. Set Ay = Ay = €el. By

1

hypothesis, r, =n—1,r, > n—1. Hence 7 <n — 3
and r = n (Since N(X) # N(Y)). From Theorem 1
we have that:
Ja(X 4+ €, Y +€I) > +(F — r) loge+
X+Y 1+(n—1
) +e) — (n—1)e

2 n—1
(14 rye) S _loge
Ty 2

14+ (n—1)e

n—1
2

110g (O min( log

%y log

+ nlog(c™ +¢)

(18)
where we used the fact that f(r) = (1+") is
increasing in r > 1 if e < 0.76. [

Proof of Lemma 1: Let e denote an eigenvector of L

associated with A\, (L) = 0. Then

—5 log

An—1(L) = HrnHiP1 xTLx = HIHHIP 5 Z Wij(zi — xj)
xTe=0 xTe= 0
L 4
Zw ”121(1”1111 (”Z): (=) 2 w" -diam(G)

where the last inequality follows from Theorem 4.2 in
[44] O

Proof of Theorem 3: The first statement follows from
the fact that, since o* > 0, lim._, 7u(€) = co, while
715(€) remains finite. To prove the second, consider the
trajectories that start at ¢ = 1. Due to the dwell time
constraint, all the data in [1, k] is generated by a single
system. Hence G is rank deficient. From Corollary 3
and Theorem 2, if Ji4(G1(€), G;(€)) < T < Tup(e), the
matrices G, C‘r share the same null space. Hence, the
data in the 1nterval [1,4;F+h — 2] can be explained by
a single model of orders (n,,np). At the same time,
since Jld(G1,éjl+) > 7 > 7p(€), from Corollary 2

\/(0’1» —o0y)? + 40,0, (nlny)

2
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now backwards from 7;" — n, — 1, consider the first
¢olumn of the matrix Hf Since ij and H - _, have
different null spaces, it follows that there is no single
system that could have generated the data in the interval
[j7 — 1,7y + h — 1], hence, taking into account the
previous switch, the earliest that a switch could have
happened is max{j; + nq,T,_; + wae”}z. The proof
is completed by induction, starting now from TfL and
repeating the reasoning above. [

Note that the dwell time constraint guarantees that

Tz'_ - thl Ti:l + Tawenr — Titl
Tt - (na + nb) + Twen — Titl

i—1
— (ng +np) >2n4+np+ 1

waell

v Iv

so even in the worst case, when all unreliable data
points have been discarded, the remaining intervals are
long enough to form the matrices G; and perform the
clustering step.

Proof of Lemma 2
Start by noting that

Vi = ViVIVi|y = [Vi = Vi + V(I - VIV,
> [Vi=Vifz = [[Vi(IT= VIV
> ||V = Va2 = [Vall2[[(T = VIVy)ll2
Hence, for any unitary R
Vi = ViR[l2 < [[Vi = ViV Vi[o+ (19)
IT-RTVIV,,
To bound the second term, let V7'V, = USV7 and

take R = UV, Then
IIT— RTVITV1||2 = ||T — S||2 = max(1 — cos6;)

R)ll

< maxsinf; = ||sin®(Vy, V,
(20)

2Since if for instance a switch happened at ts = Jji +ne—1,r1,

the first column of the Hankel matrix H . Tt satisfies mTr; = 0.
where mTH — = 0, and hence H _ and H. T

same null spdce contradicting the deﬁnmon of i .

would have the



where 6; are the principal angles between the subspaces
spanned by V; and V. Explicitly computing ||V —
VlR(VlR)TVl HQ yields

Vi - ViR(ViR) 'V, |} =
max o, {(V1 = ViVIV)T(V, =V, VIV))} =
max o {I — (V] V1)(V]IV)T}

= ||sin®(Vy, ViR)|2
(21)

Finally, from Davis-Kahan Theorem [45] we have that

: S |IL — Ll
OV, ViR)|: < 22
HSln ( 17 1 )”2 — )\nfnbfl(L) ( )
Combining (19)- (22) yields the desired bound. O]

Proof of Theorem 4: Start by considering an ideal graph
where Wideal —  if the data in the [T}, 7;;, — 1] and
[T;’,T;H — 1] was generated by different subsystems
and let £%°? denote its edge set. Since this graph is
disconnected, with ns connected components, it follows
that its associated Laplacian L*?¢* has exactly n eigen-
values at zero. Further, from Lemma 1 and Corollary
2, it follows that, for a given ¢, the smallest non-zero
eigenvalue of L% satisfies

>\n _n > 670'57—”7(6)i
w s — n%}
The actual Laplacian obtained using (10) can be consid-

ered as a result of adding a Hermitian perturbation A to
Lideal L= Lideal + A where

Ai i — 670-5<]ld(éi(5)¢éj (6))
(,L'J)ggideal

0
Ai,j = {

6—0-5sz(@7‘,(€)7@1(5))
Note that by construction the smallest eigenvalue of A
is zero, since this matrix is also a graph Laplacian. Since
A;; < e~ 0-57us(¢) 3 Gershgorin disk’s argument shows
that the largest eigenvalue of A satisfies

if (Z,j) c gideal
otherwise

M (A) < 2(ny — 1)e” 05Tl (23)
Hence, from Weyl’s inequality we have that
Ao —i(L) < 2(ny — 1)e 057w (&) 4 =0, ... ng—1
M (L) > An, (L€l > 670.57“,(5)%
24

where we have used the facts that A is a graph Laplacian
(and hence its smallest singular value is 0). Finally note
that, due to Assumption A.1, n,, < = N,

P
3ng+2np+1
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where N, denotes the total number of data points. It
follows that if € is selected such that

2(”0 —1)
2

Tun(€) — Ty (€) > 2log 2 (25)

then ng is given by the number of eigenvalues of L
smaller than \(e) = 2(n, — 1)e~ 7« (¢)_ Finally, from
Lemma 2 combined with (24) there exists a unitary
R such that the eigenvectors corresponding to the ng
smallest eigenvalues of L and L‘¥°% satisfy:

||Videal - VR||2 S n?y(nw - 1)6_ (26)

It follows that if € is selected such that (25) holds, then
|Vijideat — VRi;| < 0.5 and thus the rows of V can be
rearranged to cluster the data (elements of the ;" cluster
correspond to those indexes where V; ; > 0.5). O

In order to prove Theorem 5 we need the following
concentration of measure results:

Tub(€)—T1p(€)
2

Lemma 4. [46]. Let {x; fvzl, x; € R", be a sequence
of sub-Gaussian i.i.d random vectors with zero mean and
covariance P. Then, with probability p > 1 — e~ V7"

N
1 T n
Hﬁz‘; xix; — Pz SC\/NHP||2 27

where ¢ and C' are universal constants.

Lemma 5. Consider two white Gaussian sequences of

length Ny, {ni}Ns and {v;}N* with variances ol

9 Hn“+1 Hna—i-l T

and o;, and define ¥ = Y Y . Then,
v HTVLa HlTlla

the following inequality holds with probability p >
1 — e cV2natl,

Jord B0
IX—h [ 8 012/1] Il < C(na + 1)\/2hmax{a$,al2,}

(28)
where h = Ny, — n,.

nk. h

2itna | Then, ¥ = Y ppl.
Viitno—1] = . i=1
The vectors p; are identically distributed but not inde-
pendent, due to the Hankel structure, and thus Lemma
4 cannot be applied to the entire sequence. On the other

hand, p; and p; are uncorrelated if |j —i| > n,. Hence

Proof. Let u;

o2 0

z-n % oI

o+l TaFr Tl
< z | Nt k(o 1)) +h(not1)

j=1 k=0

h o’ 0

_ n <

na+1{0 051]|_

2
onI

Clrna+ 1V |

0
21 H2



where the last inequality follows from Lemma 4. O

Proof of Theorem 5: For simplicity we assume ng, = ny,

but the proof holds in general, with minimal modi-
fications. Consider the model (5) and the associated
Gramian matrix built from the input/output sequences
in an interval of length h:

H
G_{ Z] [HI HT] =
H; +H
[ ’ Z] [H? +HI HT 4+ H]

= Gideal +M+ X

where we defined

Gideal = II:IIZ [Hg Hg]
e I R I
v u
. H
2 = g ED H]

Let G = Gigear + M, and note that, for any v €
N(Gigea;) we have that vIMv 0. Since, from
Assumption A3, JnaJr,}b(Gideal) > o, it follows that if
Omaz(M) < g, then G > 0 and N (Gjgear) = N(G).
2
From Lemma 5 we have that 3 = h G(")I 021
where, with high probability, ||A |, < (2na+11)/||A||2 <
2C(nq + 1)*v2h max{o?, 07 }. Thus, with high proba-
bility

G,
<1+
1G]

1%l
1G]l —

Cnoise max{o%, 012/}

Gl

where

(29)
Croise = 2(na + 1) [h+ Clna + 1)\@}

w(€) < Tuwp(€)} and o2,
. The proof follows now by applying Theorem

Let €nax = max{e
|G|+ €max
1 with X = ﬁ and A, = ﬁ and noting that the
effect of measurement noise is equivalent to having a
perturbation term ||Axl|l« < C"rél‘e Thus Algorithm 1
still produces, with high probabilty, the correct segmen-
tation provided that the noise is small enough so that

max{o?, 00} < oo, O

15

Mario Sznaier is currently the Dennis Pi-
card Chaired Professor at the Electrical and
Computer Engineering Department, North-
eastern University, Boston. Prior to joining
Northeastern University, Dr. Sznaier was a
Professor of Electrical Engineering at the
Pennsylvania State University and also held
visiting positions at the California Institute
of Technology. His research interest include
robust identification and control of hybrid
systems, robust optimization, and dynamical
vision. Dr. Sznaier is currently serving as an associate editor for the
journal Automatica. Additional recent service includes chair of the CSS
Technical Committee on Computational Aspects of Control System
Desig (2012-2016), General co-Chair of the 2016 MSC, Program Chair
of the 2017 CDC, CSS Executive Director (2007-2011) and member
of the CSS Board of Governors (2006-2014). He is a distinguished
member of the IEEE Control Systems Society and an IEEE Fellow.

Xikang Zhang is currently a software engi-
neer at Microsoft. Prior to joining Microsoft,
he received his Ph.D. degree in electrical
engineering from Northeastern University,
Boston. Prior to that, he received his M.E.
in Communication and Information System
from China University of Geosciences (Bei-
jing) and a B.E. degree in Information Engi-
neering from Zhejiang University. His main
research interests include computer vision,
control and machine learning. His main re-
search focus is activity recognition using dynamic system model. He
is also interested in the problems of tracking, person re-identification,
and switch system identification.

Octavia Camps Octavia Camps received a
B.S. degree in computer science and a B.S.
degree in electrical engineering from the Uni-
versidad de la Republica (Uruguay), and a
M.S. and a Ph.D. degree in electrical engi-
neering from the University of Washington.
Since 2006, she is a Professor in the Electri-
cal and Computer Engineering Department at
Northeastern University. From 1991 to 2006
she was a faculty of Electrical Engineering
and of Computer Science and Engineering
at The Pennsylvania State University. Prof. Camps was a visiting
researcher at the Computer Science Department at Boston University
during Spring 2013 and in 2000, she was a visiting faculty at the
California Institute of Technology and at the University of Southern
California. She is an associate editor of Computer Vision and Image
Understanding (CVIU) and IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI). Her main research interests include
dynamics-based computer vision and machine learning.




