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Abstract—This paper considers the problem of error in
variables identification for switched affine models. Since it
is well known that this problem is generically NP hard,
several relaxations have been proposed in the literature.
However, while these approaches work well for low dimen-
sional systems with few subsystems, they scale poorly with
both the number of subsystems and their memory. To ad-
dress this difficulty, we propose a computationally efficient
alternative, based on embedding the data in the manifold
of positive semidefinite matrices, and using a manifold
metric there to perform the identification. Our main result
shows that, under dwell-time assumptions, the proposed
algorithm is convergent, in the sense that it is guaranteed
to identify the system for suitably low noise. In scenarios
with larger noise levels, we provide experimental results
showing that the proposed method outperforms existing
ones. The paper concludes by illustrating these results with
academic examples and a non-trivial application: action
video segmentation.

Index Terms—Error in Variables Identification, Switched
Systems, Spectral Clustering.

I. INTRODUCTION

S
Witched affine systems are important on their own,

since they arise in the context of a wide range of

application domains from fault-tolerant control to man-

ufacturing, and as a “poor man’s” model of non-linear

phenomena. Given their importance, substantial research

has been devoted to develop algorithms for stability

analysis and controller synthesis for switched systems

operating in different scenarios (see for instance [1]–

[3] and references therein). However, in many practical

scenarios, models of the system under consideration

are not available and must be obtained from a com-

bination of experimental data and a-priori information

before these analysis and synthesis tools can be applied.
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Identification of switched systems has been extensively

studied in the past decade, mainly in the context of

two different scenarios: (i) error-in-process models and

(ii) error-in-variables models. The first case has been

largely solved (see [4], [5] for a survey of earlier

results), proceeding along three different approaches:

optimization, algebraic, and clustering based methods.

Earlier optimization based methods, [6], [7] recast the

problem into an equivalent combinatorial optimization.

Later approaches include sparse optimization [8]–[11],

polynomial optimization [12]–[14], particle-swarm [15],

difference of convex functions programming [16], and

branch and bound [17] techniques. Notably, [18] estab-

lished that, if the goal is to find a hybrid system that

explains the observed data with the minimum number

of switches and the noise is bounded in the ℓ2 sense,

then the problem can be solved in polynomial time.

Algebraic based switched systems identification was first

proposed in [19], showing that, in the case of noiseless

data, the models can be recovered from a singular value

decomposition of the embedded data matrix, followed

by polynomial differentiation. While this method works

well for low noise level, performance degrades quickly

as this level increases. This issue was addressed in [20]–

[22] which proposed to denoise the data using total least

squares. The third class of methods, clustering based

approaches, exploits tools from machine learning, for

instance by first extracting relevant features and then

resorting to methods such as k-means to estimate the

discrete labels [23]–[29].

The case of error-in-variables models, where in-

put/output measurements are corrupted by noise (and the

related output estimation problem where only the outputs

are affected by noise) is considerably less developed.

Since in this case the problem is known to be NP

hard, most existing methods are based upon convex

relaxations of the original non-convex problem. Open

issues are related to the computational complexity of

the approaches and the quality of the identified models.

Specifically, [30]–[32] presented an approach based on



recasting the problem into a rank constrained semi-

definite program (SDP) using polynomial optimization

arguments. Relaxing the rank constraints using the well

known nuclear norm proxy for rank leads to a convex

problem. This approach has been empirically shown to

work well in a number of problems, but there are no

theoretical convergence guarantees due to the rank re-

laxation. Further, computational complexity scales com-

binatorially both with the number of subsystems and

their order, limiting the approach to systems consisting

of relatively few low order subsystems.

This paper considers the error-in-variables (EiV) sce-

nario. Our goal is to develop a method that addresses

the computational complexity noted above, while, at the

same time providing convergence guarantees, that is,

showing that the proposed method will indeed recover

the underlying system as the noise level approaches

zero. The main result of the paper is a computationally

efficient identification algorithm, based upon the idea

of embedding the experimental data in the manifold of

positive definite matrices and using a manifold metric to

identify time intervals guaranteed to contain no switches.

The key observation is the fact that the manifold distance

between data points generated by the same subsystem is

substantially smaller than the distance between points

corresponding to different subsystems. Thus, switches

can be detected by sharp increases in the manifold

distance, and segments where the same subsystem is

active can be identified by finding clusters where this

distance is small, a problem that can be efficiently solved

by recasting it into a graph cut form. Once the data is

segmented, a model of each subsystem can be obtained

by simply applying any EiV linear time invariant (LTI)

systems identification technique to each cluster. The

main theoretical result of the paper shows that, under

minimum dwell time assumptions, if the noise level is

below a threshold that depends on the subspace angle

between subsystems, then this approach is guaranteed

to produce the correct segmentation, and hence identify

the correct model, provided that each cluster contains

enough data to perform an LTI identification. Further,

contrary to existing methods, the computational com-

plexity of the proposed algorithm is mainly dominated

by the number of switches, not the number or the order

of the subsystems, and it scales linearly with the number

of data points. In scenarios with higher noise levels, the

theoretical convergence guarantees are lost, but extensive

numerical experience shows that the proposed method

consistently outperforms existing approaches in terms

of computational burden, with comparable identification

error.

These results are illustrated with two academic exam-

ples and a non-trivial practical one: activity segmentation

from time traces of the position of a person’s centroid. In

all cases the proposed algorithm achieves performance

comparable to the state of the art, while decreasing the

computational time by at least one order of magnitude.

The paper is organized as follows: Section II pro-

vides the notation, background material on Riemannian

metrics, and a statement of the problem. Section III

presents the proposed solution, along with the supporting

theory. Section IV illustrates these results with two

academic and a practical example. Finally, Section V

presents some concluding remarks. For ease of reading,

all technical proofs are provided in the Appendix.

A preliminary version of this paper was presented at

the 2018 CDC [33]. This version contains additional

theoretical results regarding bounds on the noise level,

complete proofs of all results and additional examples.

II. PRELIMINARIES

In this section, we introduce the notation used in

this paper, recall some needed background results on

Riemannian metrics and normalized cuts, and formally

introduce the problem under consideration.

A. Notation

R set of real numbers

Sn set of symmetric matrices in

R
n×n

Sn+(Sn++) manifold of positive-semidefinite

(-definite) matrices in Sn
x, (M) a vector in R

n (matrix in R
n×m)

MT transpose of matrix M

det(M) determinant of a square matrix M

N (M) null space of M

σmax(M) maximum singular value of M

σmin(M) smallest non-zero singular value

of M

σr(M) rth singular value of M

‖M‖2 2 norm of M, ‖M‖2 = σmax(M)
‖M‖∗ nuclear norm of M, ‖M‖∗ =

∑

σi(M)
‖M‖F Frobenius norm of M, ‖M‖2F =

∑

M2
ij

xi:j a sequence of scalars {xi, xi+1, · · · , xj}
Hr

x Hankel matrix with r rows asso-

ciated with a scalar sequence xi:j

Hr
x

.
=











xi xi+1 · · · xj−r+1

xi+1 xi+2 · · · xj−r+2

...
...

. . .
...

xi+r−1 xi+r · · · xj










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G Gram matrix associated with a

given Hankel matrix: G = HHT

Ĝ(ǫ) normalized, regularized Gram

matrix: Ĝ(ǫ) = G
‖G‖∗

+ ǫIr

B. The Jensen-Bregman Log-Det divergence

The key idea behind the approach proposed in this

paper is to embed data in Sn++, the manifold of positive

definite matrices, and use a suitable manifold distance

to compare systems and detect switches. The intrinsic

metric in Sn++, induced by the geodesic length along the

manifold curvature, is the Affine Invariant Riemannian

Metric (AIRM) [34], [35], defined as:

JR(X,Y)
.
= ‖ log

(

X− 1
2YX− 1

2

)

‖F
The main disadvantage of this metric is its high com-

putational cost. To circumvent this difficulty [36] intro-

duced a computationally effective surrogate, the Jensen-

Bregman Log-Det Divergence (JBLD) given by:

Jld(X,Y)
.
= log det

(

X+Y

2

)

− 1

2
log det (XY) (1)

Attractive properties of the JBLD include the facts that

(i) its square root is a geometry aware metric in Sn++

[37], [38], in the sense that any manifold curve has the

same length under the JBLD and AIRM distances, up

to a
√
2 factor, and (ii) its low computational burden,

compared against the AIRM.

A potential difficulty is that (1) is only well defined

for matrices in Sn++ while this paper requires comparing

positive semi-definite matrices. The following result and

its corollaries extending the JBLD to Sn+, provide the

theoretical justification for the proposed method.

Theorem 1. Given X,Y,∆x,∆Y ∈ Sn+, assume that

rank(X+Y
2 ) = r and max{σmax(∆x), σmax(∆Y)} ≤

δ̄, min{σmin(∆x), σmin(∆Y)} ≥ δ. Then

n log
δ

δ̄
+ (r̄ − r) log δ + r log(σmin(

X+Y

2
) + δ)

− rx

2
log

(‖X‖∗ + rxδ̄)

rx
− ry

2
log

(‖Y‖∗ + ry δ̄)

ry

≤ Jld(X+∆x,Y +∆Y) ≤

n log
δ̄

δ
+ (r̄ − r) log δ̄ + r log(

0.5(‖X‖∗ + ‖Y‖∗) + rδ̄

r
)

− rx

2
log[σmin(X) + δ)]− ry

2
log[σmin(Y) + δ)]

(2)

where:

rx = rank(X), ry = rank(Y), and

r
.
=

rx+ry
2

Corollary 1.

lim
ǫ→0

Jld(X+ ǫI,Y + ǫI) 6=∞ ⇐⇒ N (X) = N (Y)

Corollary 2. Consider two rank r matrices X,Y ∈ Sn+
with ‖X‖∗ = ‖Y‖∗ = 1 and such that N (X) = N (Y).
Then

Jld(X+ ǫI,Y + ǫI) < r [log(1 + rǫ)− log r(σ + ǫ)]

for any σ ≤ min{σr(X), σr(Y)}.
The following result provides a bound on the smallest

non-zero singular value of X+Y
2 . It will be used in

Section III-A to partition the data record into segments

generated by a single subsystem.

Theorem 2. Given X,Y ∈ Sn+ with rank(X) =
rank(Y) = n − 1 and min{σn−1(X), σn−1(Y)} ≥ σ,

let nX and nY denote the corresponding (normalized)

null vectors. Then σmin(
X+Y

2 ) ≥ σ(1− |nT
XnY|) .

= σ∗.

Corollary 3. Consider two matrices X,Y ∈ Sn+, n ≥ 2,

with ‖X‖∗ = ‖Y‖∗ = 1, with rank(X) = n − 1 and

rank(Y) ≥ n− 1 and such that N (X) 6= N (Y). Then

Jld(X+ ǫI,Y + ǫI) > n log(σ∗ + ǫ)− log ǫ

2

− (n− 1) log

[

1 + (n− 1)ǫ

n− 1

]

C. Spectral Clustering

Clustering algorithms seek to group a set of data

points into clusters according to a given similarity mea-

sure. Of particular interest to this paper are spectral

clustering techniques that solve the problem by recasting

it into a graph cut form and exploiting properties of the

eigen-decomposition of the associated Laplacian matrix.

Specifically, in this context the data is represented using

a similarity graph G = (V, E ,W) where each node

Vi ∈ V corresponds to a data point, E is the set of edges

connecting these nodes, and each element Wij of the

symmetric weighting matrix W ∈ R
n×n measures the

similarity between Vi and Vj , with Wij = 0 if there

is no edge connecting Vi and Vj , and Wii = 1. The

corresponding degree and Laplacian matrix are given by:

D = diag{d1, . . . , dn} where di =
∑

j

Wij

L = D−W

(3)

It can be shown [39] that L ∈ Sn+, and always has an

eigenvalue at zero. Moreover, the multiplicity of the zero

eigenvalue equals the number of connected components

in the graph and the corresponding eigenspace is spanned

by the indicator vectors of those components.
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In cases where small perturbations (due for instance

to noise) render a disconnected graph connected, then

the number of close-to-zero eigenvalues indicates the

number of components (see for instance [39]), with the

corresponding eigenvectors characterizing each of the

clusters. In particular, the following two results will be

useful to provide quantitative results on the size of the

perturbations that can be tolerated while still recovering

the correct clustering.

Lemma 1. Consider a connected graph G = {V , E ,W}
with n vertices. Assume that the non-zero elements of

W are bounded below by some w > 0. Then, the second

smallest eigenvalue of the associated graph Laplacian L

satisfies λn−1(L) ≥ 4w
n·diam(G) , where diam(G) denotes

the diameter of the graph (e.g. the greatest distance

between any pair of vertices).

Lemma 2. Consider the graph Laplacian L correspond-

ing to a graph with ns connected components and a

perturbation L̃. Let V1 and Ṽ1 denote the unitary

matrices whose columns are the eigenvectors associated

with the smallest ns eigenvalues of L and L̃. Then, there

exist a unitary matrix R such that ‖V1 − Ṽ1R‖2 ≤
2 ‖L−L̃‖2

λn−ns−1(L) ,where λn−ns−1 denotes the smallest non-

zero eigenvalue of L.

D. Problem Statement

The goal of this paper is to develop a computation-

ally efficient algorithm for identifying Error-in-Variables

Switched ARX models (EIV-SARX) from experimental

input/output data and some a-priori information. Specif-

ically, we consider switched autoregressive exogenous

(SARX) systems of the form:

ỹt =

na
∑

k=1

ak(st)ỹt−k +

nb
∑

k=1

bk(st)ũt−k, na ≥ nb (4)

consisting of ns subsystems, each defined by the vector

of model coefficients

mi
.
=

[

−1 a1(i) . . . ana
(i) b1(i) . . . bnb

(i)
]

1 ≤ i ≤ ns

In the sequel, we make the following assumptions:

A.1 Dwell time. Once the system (4) switches to a

given subsystem at some time Ts, it does not

switch again in the interval [Ts+1, Ts+Tdwell−1],
with Tdwell ≥ 3na + 2nb + 1.

A.2 Distinguishability. There exists some θmin such

that
mT

k mj

‖mk‖‖mj‖ ≤ cos(θmin) < 1 for all k 6= j.

Assumption A.1 allows for obtaining a computationally

tractable algorithm, by enabling the use of manifold

distances to determine whether two given data segments

can be considered behaviors of the same underlying

dynamics. While this dwell time constraint may restrict

the applicability of the method, it arises naturally in

many practical scenarios such as biological systems and

manufacturing. In these cases, the proposed method is

able to exploit this additional dwell time information to

substantially reduce the computational burden. Assump-

tion A.2 is needed to guarantee that the angle between

the subspaces spanned by the different subsystems is

large enough so that these systems can be unequivocally

identified from noisy data.

Under these assumptions we are interested in solving:

Problem 1. Given: (a) a priori information consisting of

system orders (na, nb), dwell time Tdwell, and input and

measurement noise variances σ2
η, σ

2
ν; and (b) Np noise

corrupted input/output experimental data points {ut =

ũt + νt, yt = ỹt + ηt}Np

t=1}; find the minimum number of

subsystems ns, a switching sequence st ∈ [1, ns] and

ns vectors
[

aid,1(i) . . . aid,na
(i) bid,1(i) . . . bid,nb

(i)
]

such that

yt − ηt =

na
∑

k=1

aid,k(st)(yt−k − ηt−k)

+

nb
∑

k=1

bid,k(st)(ut−k − νt−k)

(5)

for some zero mean white noise sequences ηt, νt with

variances σ2
η, σ

2
ν .

Note that the problem above becomes ill posed if the

input is not informative enough, for instance if there is

a pole/zero cancellation between a subsystem and the

input. Thus, to avoid this scenario in the sequel we make

the following additional assumption:

A.3: Data informativity. There exists some σ such that,

for any time interval [k, k+ h− 1] of length h ≥ 2na +
nb + 1 where a single system is active, σna+nb

(Ĝk) ≥
σ > 0, where:

Gk
.
=

[

Hna+1
ỹk:k+h−1

H
nb

ũku:k+h−2

][

H̃na+1
ỹk:k+h−1

H
nb

ũku:k+h−2

]T

Ĝk
.
=

Gk

‖Gk‖∗

(6)

Here ku = k + na − nb and H
nb

ũ ,Hna+1
ỹ denote the

Hankel matrices with h−na columns and nb, na+1 rows

respectively, corresponding to ũku:k+h−2 and ỹk:k+h−1,

the input/output sequences to (4).

III. EIV-SARX IDENTIFICATION VIA JBLD BASED

SPECTRAL CLUSTERING

The main idea underlying the proposed method is

to partition the data into short segments guaranteed
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not to contain switches and then group these segments

into subsets that have been generated by the same LTI

system. The later step is accomplished by recasting

the problem into a spectral clustering form, where the

distance between segments is computed using a manifold

distance between the dynamics associated with these

segments. Finally, the parameters of the subsystems are

recovered by performing a LTI systems identification

step on each cluster. A high level outline of the proposed

approach is provided in Algorithms 1 and 2 .

Algorithm 1 JBLD based switched system identification

Inputs: input sequence u ∈ R
Np , output sequence

y ∈ R
Np , system orders na and nb, window size h

and regularization parameter ǫ.

Step 1: Data Segmentation. Use Algorithm 2 to

partition the input and output sequences into segments

such that each segment is generated by a single LTI

system. The sth segment of input and output are

denoted us and ys, respectively.

Step 2: Spectral Clustering.

for s = 1 to # of segments do

Hnb
us
← Hankelize us with nb rows

Hna+1
ys

← Hankelize ys with na + 1 rows

Gs ←
[

Hna+1
ys

Hnb
us

] [

Hna+1
ys

Hnb
us

]T

Ĝs(ǫ)← Gs

‖Gs‖∗
+ ǫIna+nb+1

end for

Compute the similarity matrix Wij =

e−0.5Jld(Ĝi(ǫ),Ĝj(ǫ))

Cluster labels z← spectral cluster on W

Step 3: Subsystem Identification.

for k = 1 to # of clusters do

Perform a Systems Identification on cluster zk
end for

Outputs: ak,bk (parameters of each subsystem)

Next we provide the theoretical justification for the

proposed algorithm, by analyzing the properties of the

data segmentation and clustering steps.

A. Step 1: Data Segmentation and Switch Detection

The goal of this step, implemented in Algorithm 2, is

to segment the data into portions where only one sub-

system is active. Towards this goal, the algorithm builds

two sequences {T−
i } and {T+

i }, such that actual switch

instants Ti satisfy T−
i ≤ Ti ≤ T+

i . Thus, the interval

[T+
i +1, T−

i+1−1] contains no switches (equivalently, the

data yk, k ∈ [T+
i +1, T−

i+1−1] must have been generated

by a single subsystem). The algorithm uses a sliding

window of size Tdwell − na − nb ≥ h ≥ 2na + nb + 1

Algorithm 2 JBLD based data segmentation

Inputs: input sequence u ∈ R
Np , output sequence

y ∈ R
Np , system orders na and nb, sliding window

size h, threshold and regularization parameters τ, ǫ.

Step 1: Segmentation. Use a sliding window to

partition the input and output sequences into Np−h+1
segments of length h. The ith input and output seg-

ments are denoted by ui:i+h−1 and yi:i+h−1.

Step 2: Build Gram matrix.

for i = 1 to Np − h+ 1 do

H
nb

u,i ← Hankelize ui+na−nb:i+h−2 with nb rows.

Hna+1
y,i ← Hankelize yi:i+h−1 with na + 1 rows

Gi ←
[

Hna+1
y,i

H
nb

u,i

] [

Hna+1
y,i

H
nb

u,i

]T

Ĝi(ǫ)← Gi

‖Gi‖∗
+ ǫIna+nb+1

end for

Step 3: Search system switches.

T+ ← ∅,T− ← ∅, T− ← 0, T+ ← 1
j+ ← 1 ⊲ forward search index

while j+ < Np − h+ 1 do

j+ ← j+ + 1
if Jld(ĜT+(ǫ), Ĝj+(ǫ))>τ then

T+ ← j+ + h− 1, T+ ←
[

T+ T+
]

jhigh ← T+−na− 1, jlow ← T−+Tdwell−na

j− ← jhigh ⊲ backward search index

while j− ≥ jlow do

if Jld(ĜT+(ǫ), Ĝj−(ǫ)) < τ then

T− ← j− + na

else

T− ←
[

T− T−]

break

j− ← j− − 1
end if

end while

j+ ← T+

end if

end while

Outputs: T+, T−

to find switches by detecting sharp increases in the

JBLD distance between Gram matrices corresponding

to adjacent segments. Specifically, given a regularization

parameter ǫ, let Ĝk(ǫ) denote the (normalized, regular-

ized) Gram matrix built from the data in the interval

[k, k + h− 1], where h is the chosen window length:

Ĝk(ǫ) = Ĝk + ǫIr (7)

where r
.
= na + nb + 1 and Ĝk is defined in (6). Next,

consider an increasing sequence {i} and define T−
0 = 0,

T+
0 = 1 and:

5



j
+

i = argmin
j≥T

+
i−1+1

{

j : Jld(ĜT
+
i−1

(ǫ), Ĝj(ǫ)) ≥ τ
}

T
+

i = j
+

i + h− 1

jhigh = T
+

i − na − 1; jlow = T
−
i−1 + Tdwell − na

j
−
i = argmin

jhigh≥j≥jlow

{

j : Jld(Ĝj(ǫ), ĜT
+
i
(ǫ)) < τ

}

T
−
i = j

−
i + na

(8)

where τ denotes a suitable threshold to be determined

later. As we show next, in the case of noiseless data,

the sequences T−
i , T+

i bracket the actual switching

sequence. Before establishing a formal proof of this

result, below we illustrate the intuition behind it with a

simple example. Consider the following two models with

na = nb = 1 and dwell time Tdwell = 3na+2nb+1 = 6:

yk+1 = yk + uk (system1)

yk+1 = 2uk (system2)

and the following input/output sequences:

u(1:11)={0,-1,2,0,-1,1,2,0,-1,1,0},
y(1:12)={1,1,0,2,2,1,2,4,0,-2,2,0}.
The corresponding Hankel matrices, H3

i =
[

(H2
y,i)

T (H1
u,i)

T
]T

with h = 2na + nb + 1 = 4 are

H1 =





1 1 0
1 0 2
0 −1 2



,H2 =





1 0 2
0 2 2
−1 2 0



,H3 =





0 2 2
2 2 1
2 0 −1



,

H4 =





2 2 1
2 1 2
0 −1 1



,H5 =





2 1 2
1 2 4
−1 1 2



,H6 =





1 2 4
2 4 0
1 2 0



,

H7 =





2 4 0
4 0 −2
2 0 −1



,H8 =





4 0 −2
0 −2 2
0 −1 1



,H9 =





0 −2 2
−2 2 0
−1 1 0





Here the points in [1,6] were generated by system 1

and those in [9,12] were generated by system 2. Note that

since y7 and y8 satisfy both models, they can be assigned

to either one. Applying the procedure outlined above1 to

the corresponding Gram matrices yields j+1 = 6, T+
1 =

9, j−1 = 6, T−
1 = 7. This correctly indicates that the

earliest possible switch happened at T = 7, and the latest

possible one at T = 9. Further, due to the dwell time

constraints, a second switch cannot happen until T2 =
T−
1 + Tdwell = 13. Hence, the points in the intervals

[1, 6] and [9, 12] each belong to a single class. Since

this guarantees that H9 contains points from a single

system, it is rank deficient and thus j−1 in (8) is well

defined. Note in passing that the ambiguity in detecting

the switches arises from the fact that the subsystems in

this example are one-step indistinguishable [8].

1Since we are using noiseless data, we can take ǫ = 0 and τ = ∞

Theorem 3. Suppose that assumptions A.1–A.3 hold,

and define τlb(ǫ) and τub(ǫ) as follows

τlb(ǫ)
.
=(na + nb) [log(1 + (na + nb)ǫ)−

log ((na + nb)(σ + ǫ))]

τub(ǫ)
.
=(na + nb + 1) log(σ∗ + ǫ)− log ǫ

− (na + nb) log
1 + (na + nb)ǫ

na + nb

(9)

where σ∗ .
= σ[1 − cos(θmin)]. Then, there exist ǫ and

τ such that τlb(ǫ) < τ < τub(ǫ). Further, the sequences

generated using (8) with these values satisfy T−
i ≤ Ti ≤

T+
i , where Ti denotes the actual switching instants.

B. Step 2: Spectral Clustering

After I .
= ∪k[T+

k , T−
k+1 − 1], the set of all intervals

guaranteed to contain no switches, has been obtained, the

next step is to group these intervals into clusters, each

generated by a single subsystem. Note that in principle,

in the noiseless case, this can be accomplished by simply

selecting ǫ and τ as in Theorem 3 and, proceeding

pairwise, grouping together all segments (i, j) where

Jld(Ĝi(ǫ), Ĝj(ǫ)) ≤ τ . However, with an eye towards

handling noisy data, here we will pursue an alternative

approach, based on spectral clustering. Specifically, we

will consider a graph where the nodes consist of the

intervals [T+
k , T−

k+1− 1] and where the edge connecting

two nodes has associated a weight Wij :

Wij = e−0.5Jld(Ĝi(ǫ),Ĝj(ǫ)) (10)

As shown next, if ǫ is suitably chosen, the graph Lapla-

cian corresponding to this matrix W has exactly ns

eigenvalues close to zero (in a sense to be precisely

defined next) and the corresponding eigenvectors are the

indicators of the clusters generated by each of the ns

subsystems.

Theorem 4. If ǫ is selected such that τub(ǫ)− τlb(ǫ) >

2 log
n2
o(no−1)

2 , where no
.
=

Np

3na+2nb+1 , the graph

Laplacian corresponding to W defined in (10) has

exactly ns eigenvalues λi ≤ 2(no− 1)e−0.5τub(ǫ), where

ns is the minimum number of subsystems required to

explain the observed data.

C. Handling Noise

When the measured data is corrupted by noise, it is

not immediate whether the manifold distance can be

used to separate data originating from different systems,

since the corresponding Gramians Gi are generically full

rank. As we show next, Theorem 3 still holds for noisy

data, provided that the input and measurement noises are

white, with suitable low variance.
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Theorem 5. Assume that A1-A3 hold and the input and

output noises are white, with zero mean and variance

σ2
ν , σ

2
η and uncorrelated with the input/output sequences

{u, y}. Then, there exist some σub function only of

the problem data such that if max{σν , ση} ≤ σub,

Algorithm 1 recovers, with high probability, the correct

data segmentation.

D. Step 3: Subsystem Identification

After the switch detection and spectral clustering

steps, each cluster contains data segments generated

from a single subsystem. Thus, at this point, any LTI sys-

tem identification technique that handles EIV scenarios

can be used to recover the parameters that characterize

each subsystem, that is, finding a parameter vector θi
and associated noise matrices satisfying:










Yi1 −Ei1 Ui1 − Fi1

Yi2 −Ei2 Ui2 − Fi2

...
...

Yim −Eim Uim − Fim











θi =











bi1 − fi1
bi2 − fi2

...

bim − fim











(11)

where

Yij =











yts
ij
−1 yts

ij
−2 · · · yts

ij
−na

yts
ij

yts
ij
−1 · · · yts

ij
−na+1

...
...

. . .
...

yte
ij
−1 yte

ij
−2 · · · yte

ij
−na











Eij =











ηts
ij
−1 ηts

ij
−2 · · · ηts

ij
−na

ηts
ij

ηts
ij
−1 · · · ηts

ij
−na+1

...
...

. . .
...

ηte
ij
−1 ηte

ij
−2 · · · ηte

ij
−na











Uij =











uts
ij
−1 uts

ij
−2 · · · uts

ij
−nb

uts
ij

uts
ij
−1 · · · uts

ij
−na+1

...
...

. . .
...

ute
ij
−1 ute

ij
−2 · · · ute

ij
−na











Fij =











νts
ij
−1 νts

ij
−2 · · · νts

ij
−na

νts
ij

νts
ij
−1 · · · νts

ij
−na+1

...
...

. . .
...

νte
ij
−1 νte

ij
−2 · · · νte

ij
−na











θi =
[

ai,1 · · · ai,na
bi,1 · · · bi,nb

]T

btij =
[

yts
ij

yts
ij
+1 · · · yte

ij

]T

ftij =
[

ηts
ij

ηts
ij
+1 · · · ηte

ij

]T

where i is the index of a subsystem, j indexes the discon-

nected segments generated by this subsystem, tsij and teij

denoted the starting and ending times of the segment ij,

θi is the identified model of subsystem i, and Eij ,Fij

are the (structured) noise terms. In this paper we solved

(11) using a simple regularized least squares approach

[40], since consistent numerical experience shows that

it is substantially faster than competing methods, with

comparable errors.

E. Step 4: Labeling ambiguous data points

While Step 3 above generates the solution to Problem

1, in many applications (e.g anomaly detection), it is

of interest to assign labels to all data points, including

the ambiguous ones not utilized for the identification.

This can be accomplished by searching each interval

[T−
k , T+

k ] for the location that minimizes the simulation

error (note that under the dwell time constraints each

of these intervals is known to contain a single switch).

Specifically, assume that the data before T−
k was gen-

erated by the subsystem s1 with parameters θs1 , and

the one after T+
k by s2 with parameters θs2 . The best

estimate of the actual switch location is given by:

T est
k = argmin

τ∈[T−
k
,T

+
k
−1]

τ−1
∑

j=T
−
k

(θT
s1
φj−yj)

2+

T
+
k

∑

j=τ

(θT
s2
φj−yj)

2

where

φj = [yj−1 · · · yj−na
uj−1 · · · uj−nb

]T

Once the estimate T est
k of the switching time Tk is

obtained, the data points in [T−
k , T est

k − 1] are labeled

s1, and those in [T est
k , T+

k ] are labeled as s2.

IV. EXPERIMENTS

In this section we illustrate the advantages of the

proposed method with two academic and one practical

examples. Applying Algorithms 1 and 2 requires select-

ing the parameters h, ǫ and τ . In general, h should be

as small as possible, to produce the smallest [T−, T+]
intervals that contain the switches, leading to more

accurate estimates of the model. Thus, for the noiseless

case h = 2na + nb + 1. However, for noisy data, using

larger values of h leads to Gram matrices less sensitive

to noise. So in these scenarios, it is beneficial to use

h > 2na+nb+1, with higher h values corresponding to

higher noise levels. In principle, determining the range

of values for ǫ in Theorem 3 so that τlb(ǫ) < τub(ǫ),
requires knowledge of the parameter σ, which essentially

quantifies the informativity of the data and the observ-

ability of the system. An estimate of σ can be obtained

by considering the data in [1, Tdwell − 1], since this data

has been generated by a single system. In addition, for
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many practical examples (such as the activity recognition

one discussed below), data-sets with sample clips of the

activity may be available and can be used to estimate a

lower bound of σ over the data-set. Note that since σ

appears inside a log, the bounds (9) are relatively robust

to errors in its estimation. Given {σ2
ν , σ

2
η}, the regular-

ization parameter ǫ can be obtained from the proof of

Theorem 5. However, consistent numerical experience

shows that the proposed algorithm is largely insensitive

to the value of ǫ, since most of the regularization effect is

provided directly by the noise. Once the range of values

for τ has been estimated from Theorem 3, its final value

can be chosen using cross-validation.

A. Academic Example 1

In this example we consider a system composed

of three second-order subsystems with na = 2 and

nb = 2. The corresponding models are given by ỹt =

θst
[

ỹt−1 ỹt−2 ũt−1 ũt−2

]T
, with

θ1 =
[

−0.1 0.42 −0.55 0.08
]

(Subsystem1)

θ2 =
[

1.55 −0.58 −2.10 0.96
]

(Subsystem2)

θ3 =
[

1 −0.24 −0.65 0.30
]

(Subsystem3)

We randomly generated the switch locations and thus

the vector s, discarding those realizations that did not

satisfy the dwell time constraint Tdwell ≥ 30. The system

was excited by a Gaussian random input u corrupted

by zero-mean Gaussian noise ν with standard deviation

1. Without loss of generality, initial conditions were set

to ỹ1 = 5, ỹ2 = 5, and in each time t ≥ 3, we used

the model parameter θst to generate the corresponding

output ỹt, t ∈ [3, 600]. Finally, these values were

corrupted with Gaussian noise with standard deviation η.

Table II shows the results of experiments with η taking

values 0.1, 0.15, 0.2, and 0.3.

1) Switch detection: First, we evaluate the perfor-

mance of the switch detection module in terms of recall,

precision and F1 score [41] defined as:

Recall = TP
TP+FN

, Precision = TP
TP+FP

and

F1 = 2×Recall×Precision
Recall+Precision

Here TP stands for the total number of true positive

detections (e.g. correctly detected switches); FP stands

for the total number of false positives (e.g. switches

detected where there are none), and FN stands for the

total number of false negatives (e.g. switches that have

not been detected). Ideally, the goal is to have Precision,

Recall and F1 close to 1.

A comparison of the performance of different ap-

proaches over 100 random experiments is shown in Table

I. Here the first 300 input/output data points (out of

a total of 600) were used for identification and the

entire sequence for validation. For this problem, we used

h = 10 > 2na+nb+1 and estimated an initial value of

τ in the range [1.6, 3.6] using Theorem 3 for different

noise levels. Finally, we used cross-validation to set

τ = 2. For benchmarking purposes we applied several

existing methods to this example, using the default

values provided by the authors, leading to the results

shown in Table I. As illustrated there, the proposed

method is both the fastest and the best performer in terms

of precision and F1 scores, and the second best in terms

of recall.

2) SARX-EIV system identification: Next, we applied

the proposed method to identify the parameters of each

subsystem. To compare against existing methods, per-

formance was evaluated using five criteria: success rate,

parameter error, validation error, fitting accuracy, and

running time. Following [25] we evaluated the parameter

estimation error using a Normalized Mean Square Error

(NMSE), defined as

NMSE =
1

ns

ns
∑

i=1

‖θ̂i − θi‖22
‖θi‖22

(12)

To compute the validation error, we generated a simu-

lated output ŷ using the estimated parameters and ground

truth subsystem labels and compared the results against

the sequence ỹ generated by the ground truth parameters

and switching sequence using the following criterion

VE =
‖ŷ − ỹ‖2
n− na

(13)

where n is the length of ỹ. Following [25], statistics of

the metrics were computed only on successful experi-

ments, defined as those where the validation error satis-

fied VE ≤ 10‖ỹ‖2

n
. Finally, the fitting of the simulated

sequence against y, the given data, was evaluated using

the FIT score defined as:

FIT = 1− ‖ŷ − y‖2
‖y −mean(y)‖2

(14)

As shown in Table II, the proposed algorithm achieves

the smallest parameter errors and best fit to the data,

with the second best running time. In this example, the

fastest algorithm (k-LinReg, [25]) is up to two orders of

magnitude faster, but at the price of substantial increase

in the validation and parameter fit errors (up to a fourth-

fold increase). It is also worth noting that this algorithm

failed to identify a system in at least 25% of the runs

(that is, the algorithm identified a system with validation

error below an acceptable threshold only in 75% of the

experiments). This is due to the fact that it was designed

to handle the case of error–in–model (EiM), as opposed
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TABLE I
ACADEMIC EXAMPLE 1: ση = 0.1, SWITCH DETECTION, RUN 100 TIMES RANDOMLY.

Methods Recall Precision F1 score Time

Min # of Switches [8] 32.67% 46.09% 0.3824 492.9s
Sum Of Norms [9] 66.53% 42.37% 0.5177 202.6s

DpSwitch [18] 55.25% 79.71% 0.6526 78.9s
Proposed 84.16% 84.33% 0.8424 11.7s

TABLE II
ACADEMIC EXAMPLE 1, SYSTEM IDENTIFICATION AS A FUNCTION OF NOISE OVER 100 RANDOM RUNS. NMSE STANDS FOR NORMALIZED

MEAN SQUARE ERROR OF PARAMETERS; VE STANDS FOR VALIDATION ERROR.

Methods noise std. dev. Succ (%) NMSE (10−1) VE (10−2) FIT (%) Time (s)

Lauer11 [42] 0.1 91 6.1± 10.7 14.4± 18.7 86.3± 7.6 137
0.15 89 7.9± 13.4 17.7± 18.6 82.5± 9.2 147
0.2 88 7.6± 11.5 23.6± 26.9 80.2± 9.7 141
0.3 79 6.5± 6.6 30.0± 28.5 76.0± 9.9 142

SON-EM [27] 0.1 99 1.8± 4.9 2.9± 3.6 92± 7.8 168
0.15 99 2.4± 4.7 3.9± 4.0 89.4± 7.7 190
0.2 100 3.8± 6.3 5.2± 5.1 86.0± 9.0 183
0.3 100 5.9± 7.5 7.4± 7.0 79.8± 10.0 211

k-LinReg [25] 0.1 75 5.6± 14.8 14.0± 33.4 88.6± 12.2 0.3
0.15 75 5.0± 12.0 13.4± 26.5 86.3± 9.3 0.3
0.2 71 6.2± 12.1 14.9± 22.3 85.0± 7.2 0.4
0.3 71 5.1± 8.0 19.0± 26.0 80.8± 7.2 0.4

Proposed 0.1 100 1.8± 2.1 1.9± 1.8 93.4± 2.1 16.0
0.15 100 2.5± 3.0 3.5± 4.0 89.8± 4.4 16.1
0.2 100 3.0± 3.1 5.0± 5.2 86.8± 5.0 16.3
0.3 100 6.1± 8.0 8.2± 7.7 79.9± 8.7 16.7

to error-in-variables, and thus, the bounds in [25] no

longer apply. Further, as shown there, even for the EiM

case, for a given number of points, the probability of

failure is proportional to e2
(0.5ns)

, so performance is

expected to degrade as ns increases.

B. High Order Example

In this example we consider a system composed of

ns = 10 subsystems, each having na = nb = 10.

We randomly generated 5 sets of such systems, subject

to the constraint that the cosine of the angle between

subsystems should be less than 0.65, to guarantee well

separated systems. We excited the system with a pseudo-

random binary sequence of length 8000 generated using

Matlab’s command idinput, and created 20 random

switches, with a dwell time Tdwell ≥ 80. The first 4000

input/output pairs were used for identification and the

entire sequence for validation. In this case we used

h = 3na + 2nb + 1. An initial value of τ was estimated

to be in the range [3.4 8.1] using Theorem 3 and the

information on the noise variance, and the actual value

used, τ = 5, was fine-tuned by cross-validation, leading

to the results shown in Table III. As shown there, the

proposed approach achieves performance comparable to

SON-EM, but it is approximately 30 times faster. In this

example, k-LinReg performed very poorly, probably due

to the large number of subsystems, and [42], failed in

all instances, after running for more than 8270 seconds.

C. Action Segmentation Example

In this section, we applied the proposed method to

real data from a computer vision action segmentation

problem. We recorded a video in our lab with the

following sequence of actions: (i) walking from right

to left, (ii) squatting and standing up, and (iii) resume

walking to the left. Sample frames from this video are

shown in Figure 1. The data used here consists of the y

coordinate of the centroid of the subject in each frame,

obtained using background subtraction. In this case, we

modeled the trajectory of the centroid as a no-input

switched system. The parameters we used are na = 3,

nb = 0, h = 10, ǫ = 10−8 and τ = 2. The segmentation

obtained using the proposed method is shown in Figure

2, and a comparison of the proposed method against

existing techniques is given in Table IV. As shown there

the proposed method achieved the highest label identity

accuracy, 99.2%, with a modest computational burden.

As before, k-LinReg was the fastest method, but at the

price of a 60% decrease in label accuracy, yielding a

result only 10% better than a random choice of labels.
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TABLE III
HIGH-ORDER ACADEMIC EXAMPLE, na = 10, nb = 10, ns = 10, SYSTEM IDENTIFICATION RUN OVER 5 RANDOM SYSTEMS. NMSE

STANDS FOR NORMALIZED MEAN SQUARE ERROR OF PARAMETERS; VE STANDS FOR VALIDATION ERROR.

Methods noise std. dev. Succ (%) NMSE (10−1) VE (10−2) FIT (%) Time (s)

k-LinReg [25] 0.05 0 − − − 134
0.1 40 14.03± 1.2 1.58± 0.2 55.0± 3.9 169.1

SON-EM [27] 0.05 100 4.13± 1.9 0.99± 0.29 86.93± 13.9 379.7
0.1 100 4.02± 0.76 0.98± 0.29 85.88± 3.0 381.3

Proposed 0.05 100 4.56± 0.58 0.96± 0.28 88.59± 4.47 13.7
0.1 100 4.65± 0.50 0.96± 0.26 85.04± 4.47 12.9

Fig. 1. Top: Frames from a video of a subject walking and squatting.
Bottom: foreground blobs and the center of mass of the subject.

Fig. 2. Action segment labels obtained using the proposed method.

TABLE IV
ACTION SEGMENTATION EXAMPLE: COMPARISON OF THE

PROPOSED APPROACH AGAINST OTHER METHODS. LABEL ACC

STANDS FOR LABEL ACCURACY.

Methods Label acc (%) FIT (%) Time(s)

Lauer11 [42] 51.9 86.4 1.42
k-LinReg [25] 57.4 86.0 0.01

MinSubmodels [8] 65.1 75.3 2.71
SON-EM [27] 89.9 90.6 3.6

Proposed 99.2 90.6 0.2

V. CONCLUSIONS

Despite its practical relevance, identification of Error-

In-Variables SARX models is far from solved. In this

paper we propose an approach based upon firstly em-

bedding the data in the positive definite manifold using

regularized Gram matrices, and then segmenting it there

using graph cuts, where the weights of the edges are

given by the manifold distance between segments. Once

the data is segmented, the parameters of each subsystem

can be extracted by any EIV LTI systems identification

method. Theoretical results are provided showing that

this approach is guaranteed to identify time intervals

where a single system is active, and to correctly clus-

ter all segments corresponding to the same underlying

dynamics, provided that the noise level is below a

given number related to the subspace angle between the

subspaces spanned by each subsystem. Further, in cases

where the number of subsystems is a-priori unknown, it

can be estimated from the eigenvalues of the Laplacian

of the associated graph. While for higher noise levels

these theoretical guarantees no longer hold, consistent

numerical experience shows that the method works well,

even for moderately large noise. As illustrated with

both academic and practical examples, the proposed

algorithm is computationally efficient and outperforms

most existing techniques in terms of the identification

error and computation time. An exception is the k-

LinReg algorithm that, for small ns, runs close to an

order of magnitude faster than the proposed algorithm,

but at the price of a similar increment in the identifi-

cation error, pointing out to the existence of a severe

computation time versus identification error trade-off.

Moreover, while the proposed algorithm is guaranteed,

under suitable conditions on the noise, to yield the

correct data segmentation and converge to the actual

system, no such guarantees exist for k-LinReg in the

case where both the output and input measurements are

corrupted by noise. Current research seeks to remove

the dwell time constraint by exploiting semi-algebraic

optimization tools.
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Trecate, and René Vidal. Identification of hybrid systems a
tutorial. European journal of control, 13(2-3):242–260, 2007.

10



[5] Andrea Garulli, Simone Paoletti, and Antonio Vicino. A survey
on switched and piecewise affine system identification. IFAC

Proceedings Volumes, 45(16):344–355, 2012.
[6] Jacob Roll, Alberto Bemporad, and Lennart Ljung. Identification

of piecewise affine systems via mixed-integer programming.
Automatica, 40(1):37–50, 2004.

[7] A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino. A
bounded-error approach to piecewise affine system identification.
IEEE Transactions on Automatic Control, 50(10):1567–1580, Oct
2005.

[8] Necmiye Ozay, Mario Sznaier, Constantino M Lagoa, and Oc-
tavia I Camps. A sparsification approach to set membership
identification of switched affine systems. IEEE Transactions on

Automatic Control, 57(3):634–648, 2012.
[9] Henrik Ohlsson, Lennart Ljung, and Stephen Boyd. Segmentation

of arx-models using sum-of-norms regularization. Automatica,
46(6):1107–1111, 2010.

[10] Laurent Bako. Identification of switched linear systems via sparse
optimization. Automatica, 47(4):668–677, 2011.

[11] Fabien Lauer Van Luong Le and Gérard Bloch. Selective
l1 minimization for sparse recovery. IEEE Transactions on

Automatic Control, 59(11):3008–3013, 2014.
[12] Necmiye Ozay, Constantino Lagoa, and Mario Sznaier. Robust

identification of switched affine systems via moments-based
convex optimization. In Decision and Control, 2009 held jointly

with the 2009 28th Chinese Control Conference. CDC/CCC 2009.

Proceedings of the 48th IEEE Conference on, pages 4686–4691.
IEEE, 2009.

[13] Necmiye Ozay, Constantino Lagoa, and Mario Sznaier. Set
membership identification of switched linear systems with known
number of subsystems. Automatica, 51:180–191, 2015.

[14] Dario Piga and Roland Tóth. An sdp approach for l0-
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APPENDIX

Proof of Theorem 1

In order to prove the Theorem and its Corollaries, we

need the following preliminary result.

Lemma 3. For any X ∈ Sn+ with rank(X) = r, and

∆ ∈ Sn+, the following inequality holds

|X+∆| ≤
(‖X‖∗ + rσmax(∆)

r

)r

σmax(∆)n−r (15)

Proof.

|X+∆| =
r
∏

i=1

λi(X+∆)

n
∏

i=r+1

λi(X+∆)

≤
(∑r

i=1 (σi(X) + σmax(∆))

r

)r

σmax(∆)n−r

=

(‖X‖∗ + rσmax(∆)

r

)r

σmax(∆)n−r

where we used Weyl’s and the geometric-arithmetic

mean inequalities.

Proof of Theorem 1, lower bound: Let ∆
.
= ∆X+∆Y

2 .

Then
∣

∣

∣

∣

X+Y

2
+∆

∣

∣

∣

∣

=

r
∏

i=1

λi(
X+Y

2
+∆)

n
∏

i=r+1

λi(
X+Y

2
+∆)

≥ [σmin(
X+Y

2
) + δ]rδn−r

|X+∆X| ≤
(‖X‖∗ + rxδ̄

rx

)rx

δ̄n−rx

|Y +∆Y| ≤
(‖Y‖∗ + ry δ̄

ry

)ry

δ̄n−ry

Thus

Jld(X+∆x,Y +∆Y) ≥ (n− r) log(δ)+

r log(σmin(
X+Y

2
+ δ)− (n− r) log δ̄

− rx

2
log

(‖X‖∗ + rxδ̄)

rx
− ry

2
log

(‖Y‖∗ + ry δ̄)

ry

≥ n log
δ

δ̄
+ (r̄ − r) log δ + r log[σmin(

X+Y

2
) + δ]

− rx

2
log

(‖X‖∗ + rxδ̄)

rx
− ry

2
log

(‖Y‖∗ + ry δ̄)

ry

Proof of the upper bound:

∣

∣

∣

∣

X+Y

2
+∆

∣

∣

∣

∣

≤ δ̄n−r

(

0.5(‖X‖∗ + ‖Y‖∗) + rδ̄

r

)r

|X+∆x| ≥ δn−rx(σmin(X) + δ)rx

|Y +∆Y| ≥ δn−ry (σmin(Y) + δ)ry

Hence

Jld(X+∆x,Y +∆Y) ≤ (n− r) log δ̄ − (n− r̄) log δ

+ r log(
0.5(‖X‖∗ + ‖Y‖∗) + rδ̄

r
)

− rx

2
log[σmin(X) + δ)]− ry

2
log[σmin(Y) + δ] ≤

n log
δ̄

δ
+ (r̄ − r) log δ̄ + r log(

0.5(‖X‖∗ + ‖Y‖∗) + rδ̄

r
)

− rx

2
log[σmin(X) + δ]− ry

2
log[σmin(Y) + δ]

Proof of Corollary 1: Follows from Theorem 1 by setting

∆ = ǫI and noting that, due to term (r̄− r) log δ in (2),

lim
ǫ→0

Jld(X+ ǫI,Y + ǫI) 6=∞ ⇐⇒ r = r ⇐⇒

rank(X+Y) =
rank(X) + rank(Y)

2
⇐⇒

dim(N (X) ∩N (Y) =
dim(N (X)) + dim(N (Y))

2
⇐⇒ N (X) = N (Y)

Proof of Corollary 2: Follows from Theorem 1 by setting

∆X = ∆Y = ǫI and noting that in this case rank(X+
Y) = r and

r

2
log[σmin(X) + ǫ] +

r

2
log[σmin(Y) + ǫ] ≥ r log(σ + ǫ)

Proof of Theorem 2: Consider the svd of X and Y

X =
[

Ux nx

]

[

Σx 0
0 0

] [

UT
x

nT
x

]

Y =
[

Uy ny

]

[

Σy 0
0 0

] [

UT
y

nT
y

]

Let σx = σn−1(X) and σy = σn−1(Y). From Weyl’s

inequality [43] we have that

σmin(X+Y) = σn(X+Y) ≥ σn(σxUxU
T
x + σyUyU

T
y )

= σn[(σx + σy)I− σxnxn
T
x − σynyn

T
y ] ≥

(σx + σy)− σmax(σxnxn
T
x + σynyn

T
y )

(16)
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Next, note that the rank 2 matrix M
.
= σxnxn

T
x +

σynyn
T
y can be factored as M = LLT with L

.
=

[√
σxnx

√
σyny

]

. Thus,

σmax(M) = σmax(LL
T ) = σmax(L

TL)

= σmax(

[

σx
√
σxσyn

T
xny√

σxσyn
T
xny σy

]

)

=
σx + σy

2
+

1

2

√

(σx − σy)2 + 4σxσy(nT
xny)2

(17)

Combining (16) and (17) yields:

σmin(X+Y) ≥ σx + σy

2
−1

2

√

(σx − σy)2 + 4σxσy(nT
xny)2

Finally, noting the the expression above is an increasing

function of σx, σy and setting σx = σy = σ leads to

σmin(X+Y) ≥ σ − σ

√

(nT
xny)2 = σ(1− |nT

xny|)

Proof of Corollary 3. Set ∆x = ∆Y = ǫI. By

hypothesis, rx = n − 1, ry ≥ n − 1. Hence r̄ ≤ n − 1
2

and r = n (Since N (X) 6= N (Y)). From Theorem 1

we have that:

Jld(X+ ǫI,Y + ǫI) ≥ +(r̄ − r) log ǫ+

n log(σmin(
X+Y

2
) + ǫ)− n− 1

2
log

1 + (n− 1)ǫ

n− 1

− ry

2
log

(1 + ryǫ)

ry
≥ − log ǫ

2
+ n log(σ∗ + ǫ)

− (n− 1) log
1 + (n− 1)ǫ

n− 1
(18)

where we used the fact that f(r)
.
= − r

2 log
(1+rǫ)

r
is

increasing in r ≥ 1 if ǫ < 0.76.

Proof of Lemma 1: Let e denote an eigenvector of L

associated with λn(L) = 0. Then

λn−1(L) = min
‖x‖=1

xT e=0

xTLx = min
‖x‖=1

xT e=0

1
2

∑

i,j

Wij(xi − xj)
2

≥ w min
‖x‖=1

xT e=0

∑

(i,j)∈E
(xi − xj)

2 ≥ w 4
n·diam(G)

where the last inequality follows from Theorem 4.2 in

[44]

Proof of Theorem 3: The first statement follows from

the fact that, since σ∗ > 0, limǫ→0 τub(ǫ) = ∞, while

τlb(ǫ) remains finite. To prove the second, consider the

trajectories that start at t = 1. Due to the dwell time

constraint, all the data in [1, h] is generated by a single

system. Hence Ĝ1 is rank deficient. From Corollary 3

and Theorem 2, if Jld(Ĝ1(ǫ), Ĝj(ǫ)) ≤ τ < τub(ǫ), the

matrices Ĝ1, Ĝj share the same null space. Hence, the

data in the interval [1, j+1 +h− 2] can be explained by

a single model of orders (na, nb). At the same time,

since Jld(Ĝ1, Ĝj
+
1
) ≥ τ > τlb(ǫ), from Corollary 2

it follows that the data in the interval [1, j+1 + h − 1]
cannot be explained by a single system of order na.

Hence, a switch must have taken place no later than

T+
1

.
= j+1 + h− 1, and the earliest such a switch could

have happened is T+
1 − na − nb. Thus, assuming a

dwell time Tdwell ≥ 3na + 2nb + 1, the data in the

interval [T+
1 , T+

1 + h − 1] must have been generated

by the same system, and hence the matrix GT
+
1

con-

tains data from a single system. Moreover, no switches

could have taken place in [T+
1 − na, T

+
1 ]. Working

now backwards from T+
1 − na − 1, consider the first

column of the matrix Hj
−
1

. Since Hj
−
1

and Hj
−
1 −1 have

different null spaces, it follows that there is no single

system that could have generated the data in the interval

[j−1 − 1, T+
1 + h − 1], hence, taking into account the

previous switch, the earliest that a switch could have

happened is max{j−1 + na, T
−
i−1 + Tdwell}2. The proof

is completed by induction, starting now from T+
i and

repeating the reasoning above.

Note that the dwell time constraint guarantees that

T−
i − T+

i−1 ≥ T−
i−1 + Tdwell − T+

i−1

≥ T+
i−1 − (na + nb) + Tdwell − T+

i−1

= Tdwell − (na + nb) ≥ 2na + nb + 1

so even in the worst case, when all unreliable data

points have been discarded, the remaining intervals are

long enough to form the matrices Gi and perform the

clustering step.

Proof of Lemma 2

Start by noting that

‖V1 − Ṽ1Ṽ
T
1 V1‖2 = ‖V1 − Ṽ1 + Ṽ1(I− ṼT

1 V1)‖2
≥ ‖V1 − Ṽ1‖2 − ‖Ṽ1(I− ṼT

1 V1)‖2
≥ ‖V1 − Ṽ1‖2 − ‖Ṽ1‖2‖(I− ṼT

1 V1)‖2
Hence, for any unitary R

‖V1 − Ṽ1R‖2 ≤ ‖V1 − Ṽ1Ṽ
T
1 V1‖2+

‖I−RT ṼT
1 V1‖2

(19)

To bound the second term, let ṼT
1 V1

.
= USVT and

take R = UVT . Then

‖I−RT ṼT
1 V1‖2 = ‖I− S‖2 = max

i
(1− cos θi)

≤ max
i

sin θi = ‖ sinΘ(V1, Ṽ1R)‖2
(20)

2Since if for instance a switch happened at ts
.
= j

−
1

+ na − 1, r1,

the first column of the Hankel matrix H
j
−
1 −1

satisfies m
T
r1 = 0.

where m
T
H

j
−
1

= 0, and hence H
j
−
1

and H
j
−
1 −1

would have the

same null space, contradicting the definition of j−.
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where θi are the principal angles between the subspaces

spanned by V1 and Ṽ1. Explicitly computing ‖V1 −
Ṽ1R(Ṽ1R)TV1‖2 yields

‖V1 − Ṽ1R(Ṽ1R)TV1‖22 =

max
i

σi{(V1 − Ṽ1Ṽ
T
1 V1)

T (V1 − Ṽ1Ṽ
T
1 V1)} =

max
i

σi{I− (VT
1 Ṽ1)(V

T
1 Ṽ1)

T }

= ‖ sinΘ(V1, Ṽ1R)‖22
(21)

Finally, from Davis-Kahan Theorem [45] we have that

‖ sinΘ(V1, Ṽ1R)‖2 ≤
‖L− L̃‖2

λn−ns−1(L)
(22)

Combining (19)- (22) yields the desired bound.

Proof of Theorem 4: Start by considering an ideal graph

where Wideal
i,j = 0 if the data in the [T+

i , T−
i+1 − 1] and

[T+
j , T−

j+1 − 1] was generated by different subsystems

and let E ideal denote its edge set. Since this graph is

disconnected, with ns connected components, it follows

that its associated Laplacian Lideal has exactly ns eigen-

values at zero. Further, from Lemma 1 and Corollary

2, it follows that, for a given ǫ, the smallest non-zero

eigenvalue of Lideal satisfies

λnw−ns
≥ e−0.5τlb(ǫ)

4

n2
w

The actual Laplacian obtained using (10) can be consid-

ered as a result of adding a Hermitian perturbation ∆ to

Lideal, L = Lideal +∆ where

∆i,i =
∑

(i,j) 6∈Eideal

e−0.5Jld(Ĝi(ǫ),Ĝj(ǫ))

∆i,j =

{

0 if (i, j) ∈ E ideal
e−0.5Jld(Ĝi(ǫ),Ĝj(ǫ)) otherwise

Note that by construction the smallest eigenvalue of ∆

is zero, since this matrix is also a graph Laplacian. Since

∆i,j ≤ e−0.5τub(ǫ), a Gershgorin disk’s argument shows

that the largest eigenvalue of ∆ satisfies

λ1(∆) ≤ 2(nw − 1)e−0.5τub(ǫ) (23)

Hence, from Weyl’s inequality we have that

λnw−i(L) ≤ 2(nw − 1)e−0.5τub(ǫ), i = 0, . . . , ns − 1

λnw−ns
(L) ≥ λnw−ns

(Lideal) ≥ e−0.5τlb(ǫ)
4

n2
w

(24)

where we have used the facts that ∆ is a graph Laplacian

(and hence its smallest singular value is 0). Finally note

that, due to Assumption A.1, nw ≤ Np

3na+2nb+1

.
= no,

where Np denotes the total number of data points. It

follows that if ǫ is selected such that

τub(ǫ)− τlb(ǫ) > 2 log
n2
o(no − 1)

2
(25)

then ns is given by the number of eigenvalues of L

smaller than λ(ǫ)
.
= 2(no − 1)e−0.5τub(ǫ). Finally, from

Lemma 2 combined with (24) there exists a unitary

R such that the eigenvectors corresponding to the ns

smallest eigenvalues of L and Lideal satisfy:

‖Videal −VR‖2 ≤ n2
w(nw − 1)e−

τub(ǫ)−τlb(ǫ)

2 (26)

It follows that if ǫ is selected such that (25) holds, then

|Vij,ideal−VRij | < 0.5 and thus the rows of V can be

rearranged to cluster the data (elements of the jth cluster

correspond to those indexes where Vi,j > 0.5).

In order to prove Theorem 5 we need the following

concentration of measure results:

Lemma 4. [46]. Let {xi}Ni=1, xi ∈ R
n, be a sequence

of sub-Gaussian i.i.d random vectors with zero mean and

covariance P. Then, with probability p ≥ 1− e−c
√
n

‖ 1
N

N
∑

i=1

xix
T
i −P‖2 ≤ C

√

n

N
‖P‖2 (27)

where c and C are universal constants.

Lemma 5. Consider two white Gaussian sequences of

length Nw, {ηi}Nw

i=1 and {νi}Nw

i=1 with variances σ2
η

and σ2
ν and define Σ

.
=

[

Hna+1
η

Hna
ν

] [

Hna+1
η

Hna
ν

]T

. Then,

the following inequality holds with probability p ≥
1− e−c

√
2na+1:

‖Σ− h

[

σ2
ηI 0

0 σ2
νI

]

‖2 ≤ C(na + 1)
√
2hmax{σ2

η, σ
2
ν}

(28)

where h = Nw − na.

Proof. Let µi
.
=

[

ηTi:i+na

νTi:i+na−1

]

. Then, Σ =
h
∑

i=1

µiµ
T
i .

The vectors µi are identically distributed but not inde-

pendent, due to the Hankel structure, and thus Lemma

4 cannot be applied to the entire sequence. On the other

hand, µi and µj are uncorrelated if |j− i| > na. Hence

‖Σ− h

[

σ2
ηI 0

0 σ2
νI

]

‖2

≤
na+1
∑

j=1

‖
h

na+1−1
∑

k=0

ηj+k(na+1)η
T
j+k(na+1)

− h

na + 1

[

σ2
ηI 0

0 σ2
νI

]

‖ ≤

C(na + 1)
√
2h‖

[

σ2
ηI 0

0 σ2
νI

]

‖2
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where the last inequality follows from Lemma 4.

Proof of Theorem 5: For simplicity we assume na = nb

but the proof holds in general, with minimal modi-

fications. Consider the model (5) and the associated

Gramian matrix built from the input/output sequences

in an interval of length h:

G =

[

Hy

Hu

]

[

HT
y HT

u

]

=

[

Hỹ +Hη

Hũ +Hν

]

[

HT
ỹ +HT

η HT
ũ +HT

ν

]

= Gideal +M+Σ

where we defined

Gideal
.
=

[

Hỹ

Hũ

]

[

HT
ỹ HT

ũ

]

M
.
=

[

Hη

Hν

]

[

HT
ỹ HT

ũ

]

+

[

Hỹ

Hũ

]

[

HT
η HT

ν

]

Σ
.
=

[

Hη

Hν

]

[

HT
η HT

ν

]

Let Ĝ
.
= Gideal + M, and note that, for any v ∈

N (Gideal) we have that vTMv = 0. Since, from

Assumption A3, σna+nb
(Gideal) ≥ σ, it follows that if

σmax(M) ≤ σ, then Ĝ � 0 and N (Gideal) = N (Ĝ).

From Lemma 5 we have that Σ = h

[

σ2
ηI 0

0 σ2
νI

]

+∆,

where, with high probability, ‖∆‖∗ ≤ (2na+1)‖∆‖2 ≤
2C(na + 1)2

√
2hmax{σ2

η, σ
2
ν}. Thus, with high proba-

bility

|Ĝ‖∗
‖G‖∗

≤ 1 +
‖Σ‖∗
‖G‖∗

≤ +
Cnoise max{σ2

η, σ
2
ν}

‖G‖∗
where

(29)

Cnoise
.
= 2(na + 1)

[

h+ C(na + 1)
√
2h

]

Let ǫmax
.
= max{ǫ : τlb(ǫ) < τub(ǫ)} and σ2

ub =
‖G‖∗ǫmax

Cnoise
. The proof follows now by applying Theorem

1 with X = Ĝ
‖G‖∗

and ∆x = Σ
‖G‖∗

and noting that the

effect of measurement noise is equivalent to having a

perturbation term ‖∆x‖∗ ≤ Cnoise

‖G‖∗
. Thus Algorithm 1

still produces, with high probabilty, the correct segmen-

tation provided that the noise is small enough so that

max{σ2
η, σ

2
ν} ≤ σ2

ub.
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