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a b s t r a c t

In this paper, we propose a framework to solve the data-driven quadratic stabilization (DDQS) and
the data-driven linear quadratic regulator (DDLQR) problems for both continuous and discrete-time
systems. Given noisy input/state measurements and a few priors, we aim to find a state feedback
controller guaranteed to quadratically stabilize all systems compatible with the a-priori information
and the experimental data. In principle, finding such a controller is a non-convex robust optimization
problem. Our main result shows that, by exploiting duality, the problem can be recast into a convex,
albeit infinite-dimensional, functional Linear Program. To address the computational complexity
entailed in solving this problem, we show that a sequence of increasingly tight finite dimensional semi-
definite relaxations can be obtained using sum-of-squares and Putinar’s Positivstellensatz arguments.
Finally, we show that these arguments can also be used to find controllers that minimize a worst-case
(over all plants in the consistency set) closed-loop H2 cost. The effectiveness of the proposed algorithm
is illustrated through comparisons against existing data-driven methods that handle ℓ∞ bounded noise.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Robust control of uncertain systems has been well studied
during the past decades, resulting in efficient synthesis methods
that guarantee closed-loop stability of a set of plants, typically
described by a nominal plant and bounded uncertainty (see for
instance Sánchez Peña & Sznaier, 1998; Zhou & Doyle, 1998 and
references therein). The traditional design procedure is based on
first identifying a nominal plant along with an uncertainty de-
scription, using for instance control oriented identification meth-
ods (Chen & Gu, 2000), followed by a robust controller synthesis
step. However, this two-step approach is typically conservative,
since the worst-case uncertainty bounds obtained from the iden-
tification steps are usually not tight. Further, this intermediate
identification step can be computationally expensive. These diffi-
culties can be avoided by pursuing a data-driven control approach
where a controller is designed directly from the data. Indeed,
the recent work (De Persis & Tesi, 2019) showed that data-
dependent matrices can be used as a proxy for the system model

✩ This work was supported in part by U.S. National Science Foundation (NSF)

grants CNS–2038493 and CMMI–2208182; AFOSR, United States grant FA9550-

19-1-0005; and ONR, United States grant N00014-21-1-2431. The material in

this paper was partially presented at the 21st IFAC World Congress (IFAC 2020),

July 12–17, 2020, Berlin, Germany. This paper was recommended for publication

in revised form by Associate Editor Maria Prandini under the direction of Editor

Sophie Tarbouriech.
∗ Corresponding author.

E-mail addresses: dai.ti@northeastern.edu (T. Dai), msznaier@coe.neu.edu

(M. Sznaier).

when designing controllers, while Berberich, Scherer, and All-

göwer (2020), Bisoffi, De Persis, and Tesi (2022) and Vanwaarde,

Camlibel, and Mesbahi (2020) proposed procedures to design

robust controllers guaranteed to stabilize the set of all plants

compatible with noisy observations, under the assumption that

the measurement noise admits a multiplier based description.

The techniques described above work well for ℓ2 bounded

noise, but are not well suited for scenarios with ℓ∞ bounded

noise. The latter setting is more desirable than the ℓ2 norm in

many scenarios since it allows for considering noise bounds that

are independent of the measurement horizon (Berberich et al.,

2020). Thus, data can be added as it becomes available during

operation. In addition, these bounds arise naturally when consid-

ering discrete-time models that originate from the discretization

of a continuous-time system.

In principle, ℓ∞ noise can be handled using the Matrix Pos-

itivstellensatz introduced by Scherer and Hol (2006). However,

this approach scales as O(n2r ), where n and r denote the sys-

tem and relaxation order, respectively. Thus, it quickly becomes

intractable. Alternatively an approach based on the use of poly-

hedral control Lyapunov functions (PCLFs) was proposed in Dai

and Sznaier (2018a, 2018b). While this approach can handle

switching dynamics, this ability comes at the price of increased

computational complexity, directly tied to the number of faces

of the level sets of the PCLF. The present paper addresses this

difficulty by considering quadratic Lyapunov functions, combined

with the use of duality, leading to algorithms that scale as O(nr ),

with n and r , and linearly with respect to the number of data
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points. Specifically, its contributions are:

(1) Non-conservative necessary and sufficient conditions, both
for continuous and discrete-time plants, for the existence
of a state feedback controller that quadratically stabilizes
all plants in the consistency set, under ℓ∞ bounded mea-
surement noise.

(2) Continuous and discrete-time controller design methods
that optimize a bound of the worst-case closed-loop H2

norm over all plants in the consistency set. These methods
involve solving tractable semi-definite programs (SDPs).

(3) Extensive numerical comparisons against existing approa-
ches for different noise scenarios.

A preliminary version of this paper that only considered
quadratic stabilization of continuous-time systems was presented
in Dai and Sznaier (2020). The present version includes complete
proofs for both continuous and discrete-time plants, extends the
design process to optimize H2 performance, and presents exten-
sive comparisons vis-a-vis recently proposed data-driven control
methods. The remainder of this paper is organized as follows: In
Section 2, we state the problem under consideration and provide
some background results necessary to solve it. Section 3 for-
mulates the data-driven quadratic stabilization problem (DDQS)
and data-driven linear quadratic regulator problem (DDLQR).
Here we show that exploiting duality allows for recasting these
problems as infinite-dimensional Linear Programs (LPs). As a
follow-up to this result, we present a finite-dimensional semi-
definite programming (SDP) based relaxation. Section 4 discusses
in detail computational complexity and scaling issues. Section 5
compares the performance of the proposed approach against
existing methods. Finally, Section 6 summarizes our results. To
facilitate reading, all technical proofs are given in the Appendix.

2. Preliminaries

2.1. Notation

R and R
n denote the real numbers and the real n-dimensional

vector space, respectively. x ∈ R
n is a vector and X ∈ R

m×n is a
matrix. X ⪰ 0 indicates a positive semi-definite (PSD) matrix. X >
(≥) 0 is a matrix with positive (non-negative entries). Tr(X) is the
trace of the matrix. I and 0 denote the identity and zero matrices
of suitable size. 1 represents a matrix of 1s. R[x]r denotes the
set of real polynomials of degree up to r in the indeterminate
x and R[x]m×n denotes the set of m × n polynomial matrices.
Σ[x]r denotes the sub-cone of R[x] formed by Sum-of-Squares
(SoS) polynomials of order up to 2r . A polynomial p(x) is SoS if
and only if there exists a vector of monomials of degree up to r ,
vr (x) ∈ R[x]s, s =

(

n+r

r

)

, and a matrix Q ⪰ 0 (The Gram matrix)

such that p(x) = vr (x)
TQvr (x).

2.2. Background results

In this section we recall some background results and defini-
tions for ease of reference.

Definition 1 (Khargonekar, Petersen, & Zhou, 1990). Consider an
uncertain system of the form δξ(t) = Aξ(t) with A ∈ A, and
where δξ(t) = ξ̇(t) for continuous-time and δξ(t) = ξ(t + 1) for
the discrete case. The system is said to be quadratically stable if

there exists Y ≻ 0 such that, for any A ∈ A, V = ξTY−1ξ is a
Lyapunov function, e.g. the following holds for continuous-time
systems

AY + YAT ≺ 0, ∀A ∈ A (1)

and

AYAT − Y ≺ 0, ∀A ∈ A (2)

for the discrete-time case. Similarly, a system of the form δξ(t) =
Aξ(t) + Bξ(t), with uncertain A ∈ A and B ∈ B is said to
be quadratically stabilizable if a state feedback controller u =
Kξ(t) can be found such that the resulting closed-loop system is
quadratically stable for any pairs (A ∈ A,B ∈ B).

Strong Duality and the Weak Slater’s Conditions
The following result will play a key role in recasting the

data-driven quadratic stabilization problem into a tractable form.
Given n+ 1 affine functions fi(x), consider the following (primal)
optimization problem:

p∗ = min
x

fo(x) subject to:

fi(x) ≤ 0, i = 1, . . . , n
(primal)

The dual function associated with the primal problem is:

g(µ) = inf
x

fo(x) +

n
∑

i=1

µifi(x) (3)

where µi are scalars (the Lagrange multipliers). In terms of g(.)
the dual problem is:

d∗ = max
µ≥0

g(µ) (dual)

Lemma 1. If the primal problem is feasible then p∗ = d∗.

The proof can be found in Boyd and Vandenberghe (2004),
Section 5.2.3.

Semialgebraic Optimization
A basic semialgebraic set K is defined by a finite collection of

polynomial inequalities:

K = {x |gi(x) ∈ R[x]rg ≥ 0, i = 1 . . . ng} (4)

The set K is said to be Archimedean if there exists a finite R and
SoS polynomials {σ i(x)}

ng

i=0 such that

R2 − ∥x∥2
2 = σ o(x) +

ng
∑

i=1

σ i(x)gi(x). (5)

A necessary and sufficient condition for a polynomial p(x) to be
positive over an Archimedean semialgebraic set K is given by
Putinar’s Positivstellensatz (P-satz) (Putinar, 1993), i.e. there exist
σ o, σ i(x) ∈ Σ[x] such that

p(x) = σ o(x) +

ng
∑

i=1

σ i(x)gi(x) (6)

The degree-2r tightening of this condition uses a bounded-degree
Putinar’s P-satz obtained when σ o, σ i are restricted to: σ o(x) ∈
Σ[x]r , σ

i(x) ∈ Σ[x]
r−⌊

dg
2

⌋
.

H2 Control
Given an LTI system:

δξ = Aξ + Bu + w

z =

[

R1/2 0

0 Q1/2

][

u

ξ

]

the state feedback H2 control problem seeks to find a control law
u = Kξ that minimizes the H2 norm from the input w to the
output z. It is well known (see for instance Feron, Balakrishnan,
Boyd, & Ghaoui, 1992) that, this problem is equivalent to the
following SDP:

minimize γ

C(γ ,Y,M,W) ≻ 0
(7)

2
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where W
.
= R1/2MY−1MTR1/2 and C(·) is

C1(γ ,Y,M,W)
.
= −Tr(QY) − Tr(W) + γ

C2(Y,M)
.
= Ω(Y,M) +ΩT (Y,M) + L(Y) + Lo

Ω(Y,M) = HL(AY + BM)HR

C3(Y,M,W)
.
=

[

W R1/2M

MTR1/2 Y

]

C(γ ,Y,M,W)
.
= diag(C1, C2, C3)

(8)

and:

− HL = HR = I; L = 0, Lo = −I (continuous-time) (9a)

or

HL =
[

I 0
]T
,HR =

[

0 I
]

L(Y) =

[

Y 0

0 Y

]

, Lo =

[

−I 0

0 0

]

⎫

⎬

⎭

(discrete-time) (9b)

Later in Section 3.3 we will use these results to search for
data-driven robust H2 controllers.

2.3. Problem statement

Throughout the paper, we consider the following controller
design problem:

Problem 1. Consider an LTI system:

δξ(t) = Aξ(t) + Bu(t) + η(t) (10)

where A ∈ R
n×n, B ∈ R

n×m are unknown system matrices,
ξ(t) ∈ R

n and u(t) ∈ R
m denote the state and input vectors, and

η(t) ∈ R
n denotes ℓ∞ bounded noise,1 with ∥η∥∞ ≤ ϵ. Given

measurements δξ(tk), ξ(tk), u(tk), where k = 1, . . . , ns denotes
the sample index, the goal is to find a state feedback controller
u = Kξ(t) guaranteed to quadratically stabilize all pairs (A,B)
that could have generated the observed data.

Problem 2 (Robust H2). Find a control law u = Kξ(t) that
minimizes the worst case, over all systems in the consistency set,
of the H2 cost γ defined in (7)–(8).

The main result of this paper shows that the problems above
can be reformulated as SDPs.

2.4. Alternative characterization of the consistency set

Before proceeding to the main part of the paper, we present
an alternative characterization of the consistency set that will be
used to reduce Problems 1 and 2 to a tractable SDP. Note that each
measurement (δξ(tk), ξ(tk),u(tk)) yields 2n polytopic constraints
on the elements of (A,B):
[

A B

−A −B

][

ξ(tk)
u(tk)

]

≤

[

ϵ1 + δξ(tk)
ϵ1 − δξ(tk)

]

.
= dk (11)

For reasons that will become clear below, we rewrite the con-
straints (11) in the following form:

Tr(AZ
ξ

i,k + BZu
i,k) ≤ di,k (12)

where di,k is the ith entry of the vector dk. This can be accom-

plished by defining 4nns matrices Z
ξ

i,k and Zu
i,k having the data

vector ξ(tk)(u(tk)) as their ith column and all other entries equal
to zero.

Z
ξ

i,k =
[

. . . ,±ξ(tk), . . .
]

n×n

Zu
i,k =

[

. . . ,±u(tk), . . .
]

m×n

(13)

1 This noise arises for instance from numerical estimation of δξ (t) from

measurements of ξ (t).

For example, for a second-order system there are 8 matrices per
sample. In this case we have:

Z
ξ

1,k =

[

ξ1(tk) 0
ξ2(tk) 0

]

, Z
ξ

2,k =

[

0 ξ1(tk)
0 ξ2(tk)

]

,

Z
ξ

3,k =

[

−ξ1(tk) 0
−ξ2(tk) 0

]

, Z
ξ

4,k =

[

0 −ξ1(tk)
0 −ξ2(tk)

] (14)

with similar expressions for Zu
i,k.

3. DDQS and DDLQR

3.1. A necessary and sufficient condition for quadratic stabilization

In this section we show that Problem 1 can be recast as a
convex (albeit infinite-dimensional) optimization by exploiting
duality. It is well known that the control law K = MY−1

quadratically stabilizes the system (10) if and only if the following
Linear Matrix Inequality (LMI) in Y ≻ 0 and M is feasible:

Ω(A,B,M,Y) +ΩT (A,B,M,Y) + L(Y) ≻ 0 (15)

where Ω is defined in (8) and HL,HR, L are defined in (9). We
want this to hold for all (A,B) constrained by (12) leading to the
following version of Problem 1.

Problem 3. Find matrices Y ≻ 0 and M such that (15) holds for
all (A,B) that satisfy (12).

The next result shows that this problem is equivalent to an
optimization over positive polynomials.

Theorem 1. Problem 3 is feasible if and only if there exist matrices

Y ∈ R
n×n ≻ 0, M ∈ R

m×n and a polynomial matrix Υ(x) ∈
R[x]2ns×n > 0 in ∥x∥2 ≤ 1 such that the following conditions hold:

ΞΥ(x) = −2

[

Y

M

]

HRxx
THL (16a)

xTL(Y)x − Tr(DΥ(x)) > 0 for all ∥x∥2 ≤ 1 (16b)

where

Ξ
.
=

[

ξ(t1) . . . ξ(tns ) −ξ(t1) . . .− ξ(tns )
u(t1) . . .u(tns ) −u(t1) . . .− u(tns )

]

,

D
.
=
[

d+(t1) . . . d
+(tns ) d−(t1) . . . d

−(tns )
]

d+(tk)
.
= ϵ1 + δξ(tk), d

−(tk)
.
= ϵ1 − δξ(tk)

Proof. See Appendix A. □

3.2. A semi-definite reformulation

From Theorem 1 it follows that Problem 3 can be recast as an
infinite-dimensional functional Linear Program. Tractable, finite-
dimensional relaxations can be obtained by enforcing that each
entry of Υ(x) satisfies a Putinar’s P-satz associated with positivity
over the set (1 − xTx) ≥ 0:

Υi,k(x) = σ o
i,k(x) + σ 1

i,k(x)(1 − xTx) (17)

for some SoS polynomials σ o
i,k(x) ∈ Σr , σ

1
i,k(x) ∈ Σr−1. Thus,

one can formulate a sequence of relaxations of increasing order,
starting with r = 1, with σ o

i,k(x) = vTr (x)E
o
i,kvr (x) and σ 1

i,k(x) =

vTr−1(x)E
1
i,kvr−1(x).

Similarly, from (16b), we have

xTL(Y)x − Tr(DΥ(x)) = σ o(x) + σ 1(x)(1 − xTx) (18)

where σ o(x) = vTr (x)F
ovr (x) and σ 1(x) = vTr−1(x)F

1vr−1(x). By
equating the coefficients of the polynomial matrices on both

3
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sides, (16a) gives a linear constraint keq(E
o
i,k, E

1
i,k) = keq(Y,M),

and (18) introduces another linear constraint kineq(E
o
i,k, E

1
i,k,Y) =

kineq(F
o, F1). Algorithm 1 summarizes the SDP-based procedure to

solve (16):

Algorithm 1 DDQS

1: Given ns measurements ξ(tk),u(tk), δξ(tk) and a noise bound
ϵ, build data matrices Ξ ,D and decide performance matrices
Q,R.

2: Solve:
3: minimize 0
4: subject to

keq(E
o
i,k, E

1
i,k) = keq(Y,M) (19a)

kineq(E
o
i,k, E

1
i,k,Y) = kineq(F

o, F1) (19b)

Eo
i,k ⪰ 0, E1

i,k ⪰ 0 (19c)

Fo ⪰ 0, F1 ⪰ 0 (19d)

Y ≻ 0 (19e)

Remark 1. The algorithm above is a relaxation of the original

problem, in the following sense. Existence of a feasible solution

provides a certificate of quadratic stabilizability through the Lya-

punov function xTY−1x and associated controller K = MY−1.

On the other hand, infeasibility of the Algorithm for a given

relaxation order, does not rule out the existence of solutions to

Problem 1. While in principle Putinar’s P-satz guarantees that if

Problem 3 is feasible then there exist some finite r such that

the SDP associated with (16) is feasible, since the number of

variables scales combinatorially with r , in practice one is limited

to relatively low order relaxations. Nevertheless consistent nu-

merical experience shows that the relaxation r = 1 works well

in practice.

3.3. Achieving robust performance

Next, we show that the framework developed above can be

easily extended to minimize an upper bound of the worst case,

over the consistency set, of the closed-loop H2 norm. Specifically,

we are interested in solving:

Problem 4.

min
Y≻0,M,W

{

max
A,B

γ

}

subject to (8) and

di,k − Tr(AZx
i,k + BZu

i,k) ≥ 0

As we show next, this problem reduces to a convex optimiza-

tion problem over polynomials positive in ∥x∥2 ≤ 1.

Theorem 2. Problem 4 admits a solution with cost γ if and only

if there exist matrices Y ∈ R
n×n ≻ 0, M ∈ R

m×n,W ∈ R
m×m, and a

polynomial matrix Υ(x) ∈ R[x]2ns×n > 0 in ∥x∥2 ≤ 1 such that the

following conditions hold:

ΞΥ(x) = −2

[

Y

M

]

[

0 HR 0
]

xxT

[

0

HL

0

]

(20a)

(γ − Tr(QY) − Tr(W))
[

1 0 0
]

xxT

[

1
0

0

]

+ Tr

(

[

W R1/2M

MTR1/2 Y

]

[

0 0 In+m

]

xxT

[

0

0

In+m

])

+Tr

(

(L(Y) + Lo)
[

0 I 0
]

xxT

[

0

I

0

])

− Tr(DΥ(x)) > 0 (20b)

for all 1 − xTx ≥ 0

Proof. Given in Appendix B □

As before, enforcing Putinar’s P-satz on Υ(x) and (20b) and
collecting the coefficients of (20a) and (20b) in keq and kineq leads
to the following algorithm:

Algorithm 2 DDLQR

1: Given ns measurements ξ(tk),u(tk), δξ(tk) and a noise bound
ϵ, build data matrices Ξ ,D and decide performance matrices
Q,R.

2: Solve:
3: minimize γ

4: subject to

keq(E
o
i,k, E

1
i,k) = keq(Y,M) (21a)

kineq(E
o
i,k, E

1
i,k,Y,M,W, γ ) = kineq(F

o, F1) (21b)

Eo
i,k ⪰ 0, E1

i,k ⪰ 0 (21c)

Fo ⪰ 0, F1 ⪰ 0 (21d)

Y ≻ 0 (21e)

W ≻ 0 (21f)

4. Complexity analysis

In this section we analyze the computational complexity of the
proposed approach and compare it against existing techniques
that can also handle ℓ∞ bounded noise: Berberich et al. (2020),
Chesi (2010), De Oliveira, Bernussou, and Geromel (1999) and
Scherer and Hol (2006). The discussion is limited to the size of
the Gram matrices and the corresponding number of constraints
since they are the main source of computational complexity.

4.1. Discrete DDLQR

Given Υ(x) ∈ R[x]2ns×n, we have 2nns positive scalar polyno-
mials in an indeterminate x ∈ R

3n+m+1. Each polynomial contains
a Gram matrix Eo

i,k of size no =
(

ne+r

r

)

and a Gram matrix E1
i,k of

size n1 =
(

ne+r−1

r−1

)

where ne = 3n + m + 1. In total, the Gram

matrices introduce nns(n
2
o + n2

1 + n0 + n1) variables. These also
introduce 2nns PSD constraints of size no and 2nns PSD constraints
of size n1. Asymptotic complexity, given by the size of the largest
Gram matrix is roughly O(nr ).

Remark 2. Note that, due to the projections, x appears block-
wise quadratically in the right hand side of (20a) and in all terms
in (20b) except the last. For the case r = 1, this motivates
a new relaxation where Υ(x) is also taken to be a function of
these blocks, or, equivalently, its associated Gram matrices satisfy
E1
i,k = 0 and Eo

i,k is a block diagonal matrix:

Eo
i,k =

[

E1 0
E2n

0 En+m

]

(22)

4
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This relaxation involves only nns(5n
2 + m2 + 2nm + 3n + m)

variables, leading to a substantial reduction in computational
complexity.

4.2. Comparison against Scherer’s matrix P-satz

The approach proposed in Scherer and Hol (2006) is perhaps
the closest existing technique to the approach proposed in this
paper, since both use SoS Techniques to impose positivity of a
polynomial matrix over a semi-algebraic set. However, as we
show here, the fact that we exploit the specific structure of the
polynomial matrices in a duality-based context leads to a sub-
stantial complexity reduction over a naive approach that treats
the DDLQR problem as a special case of Scherer and Hol (2006).
For completeness we begin by restating Theorem 1 in Scherer and
Hol (2006):

Theorem 3. If there exists some r > 0 and SoS polynomials ψi(x)
such that

r2 − ∥x∥2 = ψo(x) +

nc
∑

i=1

ψi(x)gi(x) (23)

then

H(x, y) ≻ 0 for all x ∈ K = {x | gi(x) ≥ 0} if and only if

H(x, y) = So(x) +

ng
∑

i=1

Si(x)gi(x) + ϵIp

for some p × p SoS matrices Si(x) and a scalar ϵ > 0

(24)

Recall that a p×pmatrix S(x) with polynomial entries is said to
be an SoS matrix if there exist a polynomial matrix L(x) such that
S(x) = LT (x)L(x). It can be shown that S(x) containing monomials
of order up to 2r is SoS if and only if it can be written as

S(x) = (vr (x) ⊗ Ip)
TZ(vr (x) ⊗ Ip), Z ⪰ 0 (25)

Consider the discrete-time LQR problem for a system with n

states and m control inputs. From (7), we have

C(A,B, γ ,Y,M,W) ≻ 0 for all

∥x(k + 1) − Ax(k) − Bu(k)∥∞ ≤ 1, k = 1 . . . ns

(26)

so for each time step we get 2n constraints on the entries of
a
.
= vec(A), b = vec(B), for a total of 2nns constraints. Using (24)

to recast this as an SoS program in a, b requires 1+2nns SoS ne×

ne polynomial matrices, in an indeterminate ζ =
[

aT bT
]T

of

dimension nζ
.
= n2+nm. Hence, from (25) it follows that the first

multiplier in (24) leads to a Gram matrix of size no =
(

nζ+r

nζ

)

ne and

the remaining 2nns to Gram matrices of size n1 =
(

nζ+r−1

nζ

)

ne. The

total number of variables for Gram matrices is given by
n2o+no

2
+

nns(n
2
1+n1) for no, n1 defined above. Thus, in this case Asymptotic

complexity, given by the size of the largest Gram matrix, is
roughly O(n2r ), compared to O(nr ) for our approach. Tables 1–
2 illustrate the scaling of the problem for different values of n

and r . As shown there, Scherer P-satz quickly leads to problems
beyond the capability of existing solvers, even when considering
low-order systems, short horizons and low-order relaxations (n =
5,m = 2, ns = 10, r = 1).

Remark 3. The computational complexity reduction achieved by
our approach stems from the following facts:

(a) In Scherer P-satz, the dimension of ambient space is the
number of entries in A,B which is O(n2). In contrast, our method
considers the ambient space in x which is O(n). This gap is
substantial when n is large.

Table 1

Scherer P-satz versus DDLQR, n = 2,m = 2, ns = 10, r = 1.

Scherer P-satz DDLQR

Dimension of ambient space 8 9

Number of Gram matrices 41 80

Dimension of Gram matrices 81, 9 10, 1

Number of variables 5121 2240

Table 2

Scherer P-satz versus DDLQR, n = 5,m = 2, ns = 10, r = 1.

Scherer P-satz DDLQR

Dimension of ambient space 35 18

Number of Gram matrices 101 200

Dimension of Gram matrices 648, 18 19, 1

Number of variables 227376 19100

(b) The size of the Gram matrix in Scherer P-satz is roughly
O(n2r ) compared to O(nr ) in our case.

Finally, consistent numerical experience indicates that, in most
cases, selecting r = 1 in our approach suffices to solve the
problem. Hence, we can apply the relaxation described in Re-
mark 2. Thus, the number of variables in Tables 1(2) decreases
from 2240(19100) to 800(8300). This structural benefit is not
seen in Scherer P-satz.

4.3. Multiplier-based techniques

Theorem 1 in Berberich et al. (2020) addresses the robust data-
driven control problem using a multiplier based description of
the noise (equation (23) in Berberich et al., 2020). This approach
requires a Gram matrix of size n+ns, hence only a small number
of variables. However, for ℓ∞ bounded noise, the number of
semidefinite constraints is 2nT which quickly becomes intractable.
For instance, for n = 2,m = 2, ns = 10, the number of constraints
is 106.

4.4. Vertex LMI-based techniques

Theorem 13 in Chesi (2010) states that a robust control law
can be found by enforcing an LMI at the vertices of the polytope
of the consistency set. Each of these LMIs leads to a Gram matrix
of size (2r + 1)ne . Similarly, De Oliveira et al. (1999) also require
enforcing the LMIs (8) at each vertex. In this case the size of
the Gram matrix is only ne. However, the worst-case number of
vertices of the consistency set grows combinatorially with nζ and
ns (Avis & Jordan, 2018). For instance, for n = 5,m = 2, ns = 10,
the upper bound of the number of vertices is 1.8 × 1015 given
by Eq. (2) in Avis and Jordan (2018). We randomly generated 10
trajectories and compute the number of vertices. On average, we
get 6.8 × 1012 vertices. This number is clearly beyond the ability
of existing SDP solvers.

5. Simulation results

In this section we investigate the performance of the pro-
posed algorithms, in the discrete-time case as a function of the
noise level and the number of samples used to determine the
consistency set. To benchmark the proposed approach against
existing techniques that handle ℓ∞ bounded noise, we compare
it with Berberich et al. (2020) and De Oliveira et al. (1999), where
robust DDC is directly addressed using LMI-based techniques,
and the SoS-based technique in Scherer and Hol (2006). These
comparisons show that while all approaches are able to solve the

5
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Table 3

Closed-loop H2 norm for different ϵ and ns = 20.

ϵ 0.2 0.4 0.6 0.8

Cclp 6.6815 6.8581 7.2067 7.6362

γ 7.8605 9.6386 11.6791 15.2135

Table 4

Closed-loop H2 norm for different ns and ϵ = 0.4.

ns 10 20 30 40

Cclp 7.4863 6.8581 6.7154 6.6672

γ 16.5077 9.6386 8.2640 7.8898

robust DDLQR problem for low-order systems and short horizons,
only our approach has the capability to handle moderately sized
problems. Finally, we compare our approach with Model-Based
Control (MBC) and provide a way to incorporate the partial infor-
mation. All simulations in the paper were run on a MacBook with
a processor 2.2 GHz 6-core Intel Core i7. Codes are implemented
using (MATLAB, 2020) and the optimization problems are solved
using a combination of YALMIP (Löfberg, 2004) and the (MOSEK,
2019) SDP solver.

5.1. Monte Carlo experiments

In this section we use Monte Carlo experiments to analyze the
effects of the noise level ϵ and number of samples ns. We consider
the discrete-time case using data generated by the model

A =

[

0.4285 −0.4298
0.4018 1.3036

]

, B =

[

−0.7826 0.7731
−0.5110 0.0339

]

(27)

This system, generated with the randn command in MATLAB,
has eigenvalues (0.7291, 1.003). In all instances for simplicity we
consider the lowest order relaxation, with r = 1, that is, the
functions Υi,k(.) are second order positive polynomials. As shown
below, even this simple relaxation performs well, specially in the
case of moderate noise levels.

5.1.1. Discrete-time LQR

We fixed ns = 20 and used Algorithm 2 to design a robust
LQR controller. To analyze the performance of the system as a
function of noise, ϵ was selected from [0.2, 0.4, 0.6, 0.8]. If the
resulting controller stabilized the system, we computed Cclp and
γ . The median of Cclp and γ (over 50 runs) are shown in Table 3.
For benchmark purposes, we also solved (7) and obtained the
ground truth γ0 = 6.5863. One should note that γ0 ≤ Cclp ≤ γ

and equality holds only if data is clean.
Next, we fix ϵ = 0.4 and compute the H2 norm for different

ns. We run the experiment 50 times and compute the median of
Cclp and γ (Table 4):

As expected, Cclp and the worst-case performance bound γ
approach the optimal, noiseless performance as ϵ decreases and
ns increases.

5.2. Comparison with existing methods

Following the discussion in Section 4, we provide simulation
results to illustrate the advantages of our approach over existing
ones. Table 5 shows a simulation result for system (27) with
ϵ = 0.05 and ns = 6. Time is averaged over 50 runs. In this
case, all methods were able to find a LQR controller with good
performance. Further, it should come with no surprise that our
approach and Scherer and Hol (2006) have the same Cclp and γ

Table 5

H2 norm of the closed-loop system (ϵ = 0.05, ns = 6).

Cclp γ t (s)

Algorithm 2 6.6915 8.1877 1.0018

Algorithm 2 with (22) 6.6915 8.1877 0.8574

Algorithm 2 with r = 2 6.6915 8.1875 231.1249

Berberich et al. (2020) 6.6696 8.0247 4.8118

Scherer and Hol (2006) 6.6915 8.1877 6.2675

De Oliveira et al. (1999) 6.6655 7.9370 2.4698

since both are SoS-based. However, our duality-based approach
is substantially faster. Indeed, using the relaxation outlined in
Remark 2 yields almost an order of magnitude reduction in com-
putational time while maintaining the same performance. For
completeness, we also present the result for the relaxation r = 2.
This relaxation leads to virtually the same performance but is
200 times slower. On the other hand, Scherer and Hol (2006)
with r = 2 introduce 161919 variables and cannot be solved by
existing SDP solvers.

To further illustrate the advantages of our approach in terms
of computational complexity and scaling, consider the following
discrete-time unstable system:

A =

⎡

⎢

⎢

⎢

⎣

−0.1660 −0.8153 −0.1616 0.3409 0.6015
0.4406 −0.6275 0.3704 −0.1654 0.9365

−0.9998 −0.3089 −0.5911 0.1174 −0.3732
−0.3953 −0.2065 0.7562 −0.7192 0.3846
−0.7065 0.0776 −0.9452 −0.6038 0.7528

⎤

⎥

⎥

⎥

⎦

B =

[

1.7892 0.1701 0.0781 0.3397 1.7563
0.1967 0.8422 1.9158 1.0663 1.3838

]T

(28)

For ns = 10, ϵ = 0.05, Algorithm 2 with (22) leads, in 9.5653 s,
to a robust controller with H2 performance Cclp = 15.4443, γ =
18.7818 and ground truth γ0 = 15.1617. Existing approaches
cannot handle a problem of this size. Specifically, Berberich et al.
(2020) introduce 1015 SDP constraints, Scherer and Hol (2006)
introduces 227376 variables and De Oliveira et al. (1999) lead to
around 6.8 × 1012 vertices.

5.3. Robust MBC versus robust DDC

Here we provide a short discussion of the advantages of robust
DDC compared with robust MBC. Consider the discrete system
(27), with ns = 10, ϵ = 0.05. To design a robust MBC, we first
obtained a nominal model using least squares. Then the uncer-
tainty set was selected as a circle centered at the nominal model
covering the consistency set. This choice is reasonable since we
aim to find a robust controller and we do not have information
to shrink this set. Designing a robust MBC using Scherer’s P-satz
yields Cclp = 6.6799, γ = 8.4589. On the other hand, Algorithm
2 leads to Cclp = 6.6013, γ = 7.0531. This is expected, since
the robust DDC yields the tightest uncertainty description, while
covering the uncertainty with a ball is typically conservative. It
is also worth pointing out that, in many scenarios the number
of samples required to find a data-driven controller is less than
that for system identification (Van Waarde, Eising, Trentelman,
& Camlibel, 2020). For instance, identifying (28) requires at least
7 samples while finding a data-driven controller only requires 6
samples.

6. Conclusions

This paper proposes a data-driven framework for quadratic
stabilization and robust H2 control of unknown continuous/

6
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discrete LTI systems. Our main result shows that using duality

these problems can be recast as infinite dimensional LPs. In

turn, these LPs can be relaxed to a convergent sequence of

finite-dimensional SDPs, through the use of Putinar’s Positivstel-

lensatz. When compared with existing SoS-based approaches, the

use of duality leads to a substantial reduction in computational

complexity and asymptotic scaling. For an nth order system

and relaxation order r , the approach in Scherer and Hol (2006)

scales as O(n2r ), while our approach scales as O(nr ). Further, the

computational complexity of our approach grows linearly with

the number of samples. For comparison LMI-based approaches

based on either a multiplier description of the noise (Berberich

et al., 2020) or enforcing LMIs at the vertices of the consistency

set (Chesi, 2010; De Oliveira et al., 1999) scale exponentially

with the number of samples and thus become impractical beyond

some toy problems.

Appendix A. Proof of Theorem 1

In order to prove this theorem, we need the following prelim-

inary results:

Lemma 2. Given a fixed x and fixed matrices Y ∈ R
n×n,M ∈

R
m×n,HL,HR, consider the following feasibility problem in (A,B):

f (A,B)
.
=xT [HL(AY + BM)HR

+ (HL(AY + BM)HR)
T + L(Y)

]

x ≤ 0 (A.1)

Tr(AZx
i,k + BZu

i,k) ≤ di,k (A.2)

where L(.),HL,HR are defined in (9). If the consistency set in Prob-

lem 1 is not empty, then (A.1)–(A.2) is infeasible if and only if there

exists a 2ns × n positive matrix Υ(x,Y,M) such that (16a)–(16b)

hold.

Proof. We will establish this result by exploiting strong duality.

Consider the related minimization problem:

p∗ = min
A,B

f (A,B) subject to (A.2) (A.3)

The Lagrangian corresponding to (A.3) is:

L(A,B, µ) = 2xTHL(AY + BM)HRx + xTL(Y)x

+

ns
∑

k=1

2n
∑

i=1

µi,k(Tr(AZ
x
i,k + BZu

i,k) − di,k) =

xTL(Y)x + Tr

(

A(2YHRxx
THL +

ns
∑

k=1

2n
∑

i=1

µi,kZ
x
i,k)

+B(2MHRxx
THL +

ns
∑

k=1

2n
∑

i=1

µi,kZ
u
i,k)

)

−

ns
∑

k=1

2n
∑

i=1

µi,kdi,k

where µi,k ≥ 0 are the Lagrange multipliers and we omit its

dependence on (x,Y,M) for space reason (similarly for Υ). The

dual function is given:

g(µ) = inf
A,B

L(A,B, µ) = xTL(Y)x −

ns
∑

k=1

2n
∑

i=1

µi,kdi,k

if 2YHRxx
THL +

ns
∑

k=1

2n
∑

i=1

µi,kZ
x
i,k = 0

2MHRxx
THL +

ns
∑

k=1

2n
∑

i=1

µi,kZ
u
i,k = 0

g(µ) = − ∞ otherwise

Collecting the Lagrange multipliers µi,k in a matrix Υ, reshaping
this matrix conformally to D and Ξ and using the explicit ex-
pressions for Zx

i,k, Z
u
i,k, leads, after some algebra, to an equivalent

compact form:

g(Υ) = inf
A,B

L(A,B,Υ) =

⎧

⎨

⎩

xTL(Y)x − Tr(DΥ)

if (16a) holds

−∞ otherwise

Hence the dual problem of (A.3) is given by:

d∗ = max
Υi,j≥0

xTL(Y)x − Tr(DΥ)

subject to (16a)
(A.4)

If the consistency set is not empty, then (A.2) is feasible (since
the actual system satisfies these inequalities). Since all the in-
equalities involved are affine in (A,B) it follows from the weak
Slater’s conditions that strong duality holds and p∗ = d∗. Thus, if
(A.1)–(A.2) is feasible, p∗ ≤ 0, which implies that:

xTL(Y)x − Tr(DΥ) > 0, Υi,j ≥ 0 and (16a) (A.5)

is infeasible. On the other hand, if (A.5) is feasible, then p∗ > 0
and (A.1)–(A.2) is infeasible, i.e., (A.1)–(A.2) and (A.5) are strong
alternatives. The proof is completed by noting that (A.5) holds
for all x iff (16a)–(16b) hold for all ∥x∥2 ≤ 1, by simply rescal-
ing Υ with ∥x∥2. Hence (A.1)–(A.2) and (16a)–(16b) are strong
alternatives. □

Remark 4. Note that the subscripts i, k in µi,k do not correspond
to row/column indexes of the matrix Υ. For instance, with n =
2, ns = 2, according to the definitions in Theorem 1, we have

D =

[

d1,1 d1,2 d3,1 d3,2
d2,1 d2,2 d4,1 d4,2

]

(A.6)

while the corresponding Υ is

Υ =

[

µ1,1 µ1,2 µ3,1 µ3,2

µ2,1 µ2,2 µ4,1 µ4,2

]T

(A.7)

Lemma 3. Consider the functional feasibility problem (16a)–(16b).
If this problem is feasible for all x, ∥x∥2 ≤ 1, then it admits a

continuous solution Υ(x).

Proof. Given fixed Y,M, collect all elements µi,k and di,k in the
matrices Υ,D and consider the following Linear Programming
problem in Υ̂(x), parametric in x:

J(x)
.
= min

Υ̂(x)

Tr(DΥ̂(x)) − xTL(Y)x subject to:

Υ̂i,j(x) ≥ 0 and (16a)

(A.8)

(A.5) is feasible if and only if the problem above is feasible, and
admits a solution set Υ̂(x) such that Tr(DΥ̂(x)) − xTL(Y)x < 0.
Define the set-valued mapping Υall(x)

.
= {Υ ∈ Υ̂ : Tr(DΥ) −

xTL(Y)x ≤ J(x)}. From Theorem 2.4 in Mangasarian and Shiau
(1987) establishing continuity of the solutions of linear programs
with respect to perturbations in the right hand side, it follows
that Υall(x) is lower semi-continuous. Consider now the mini-
mum selection

Υ(x)
.
= argmin

Υ∈Υall(x)

∥Υ∥F

Since YHRxx
THL and MHRxx

THL are bounded in ∥x∥2 ≤ 1, it
follows that the range ofΥ(.) is bounded. Hence, from Proposition
9.3.2 in Aubin and Frankowska (2009), it follows that the function
Υ(x) is continuous. The proof is completed by noting that, by
construction Υ(x) solves the original problem (16a)–(16b). □

7



T. Dai and M. Sznaier Automatica 153 (2023) 111041

Proof of Theorem 1. We will proceed as follows:

(1) Show that the matrix Υ(x,Y,M) can be taken to be inde-
pendent of Y and M.

(2) Show that if (16a)–(16b) are feasible, they admits a poly-
nomial solution Υ

p(x), with Υ
p

i,j(x) > 0.

Begin by noting that since the quadratic form

xT
[

Ω +ΩT+L(Y)
]

x

is homogeneous in x, (15) is equivalent to:

−xT
[

Ω +ΩT+L(Y)
]

x < 0; ∀x ̸= 0, ∥x∥2 ≤ 1

or, equivalently, infeasibility of

−xT
[

Ω +ΩT+L(Y)
]

x ≥ 0; ∀x ̸= 0, ∥x∥2 ≤ 1

From Lemma 2 we have that Problem 3 is feasible if there exist
matrices Y ≻ 0, M and Υ(x,Y,M)>0 such that (A.5) holds for
all ∥x∥2 ≤ 1. Since we are interested in finding just one pair
(Y,M), it follows that the vector functions Υ can be taken to be
independent of Y andM. To see this, assume that there exist some
Y∗,M∗, Υ̃(x,Y∗,M∗) such that (A.5) holds for all ∥x∥2 ≤ 1. Then,
setting Υ(x)

.
= Υ̃(x,Y∗,M∗) we have that (A.5) also holds for

Y = Y∗,M = M∗ and all ∥x∥2 ≤ 1.
Next, we will show that if the problem is feasible, it always

admits a polynomial solution Υ
p(x). Assume that Ξ has full row

rank and let N be a basis of its (right) null space. Denote by Υ
∗(.)

a feasible solution to (16a). Then Υ
∗(.) can always be written as

Υ
∗(x) = −2ΞT (ΞΞ

T )−1

[

Y

M

]

HRxx
THL + NZn(x)

for some continuous Zn(x). Since Zn(x) is continuous, from Stone–
Weierstrass theorem it follows that there exist a polynomial Zp(x)
such that ∥Zn(x) − Zp(x)∥∞ ≤ δ1 for all ∥x∥2 ≤ 1. Consider now
the following polynomial matrix

Υ
p(x) = −2ΞT (ΞΞ

T )−1

[

Y

M

]

HRxx
THL + NZp(x) + δ21 (A.9)

We will show that δ2 can always be chosen so that Υp(x) is also
a feasible solution of (A.5). Since Ξ1 = 0, then, by construction
Υ

p(x) satisfies (16a). To show that the elements of Υ
p can be

made positive by a suitable choice of δ2, note that

Υ
p(x) = Υ

∗(x) − N (Zn(x) − Zp(x)) + δ21

Hence

Υ
p

i,j(x) ≥ Υ
∗
i,j(x) − δ1∥N∥∞ + δ2 > 0 if δ2 > δ1∥N∥∞

Now, let δm
.
= max∥x∥2≤1 Tr(DΥ

∗(x)) − xTL(Y)x. Since Υ
∗ is a

feasible solution of (A.5), δm < 0. Thus

Tr(DΥp(x)) ≤Tr(DΥ∗(x)) + δ1

∑

i

∑

j

|DN |i,j

+ δ2

∑

i

∑

j

|Dij| < xTL(Y)x

if δ1 and δ2 are selected such that

δ1

∑

i

∑

j

|DT
N |i,j + δ2

∑

i

∑

j

|Dij| < |δm| (A.10)

It follows that the polynomial matrix Υ
p is also a feasible solution

to (A.5) □

Appendix B. Proof of Theorem 2

(Only a sketch given, due to space constraints). Given a fixed
x and fixed matrices Y ∈ R

n×n,M ∈ R
m×n,W ∈ R

n×n and a fixed

γ , it can be shown (using the same arguments used in the proof
of Lemma 2) that

xTC(γ ,Y,M,W,A,B)x ≤ 0 (B.1)

Tr(AZx
i,k + BZu

i,k) − di,k ≤ 0 (B.2)

and (20a)–(20b) are strong alternatives. The proof is completed
by noting that (20b) holds for all x iff it holds for all x with
∥x∥2 ≤ 1. Finally, the proof that the entries of Υ(x) are positive
polynomials follows along the same arguments used in the proof
of Theorem 1. □
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