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1. Introduction

Robust control of uncertain systems has been well studied
during the past decades, resulting in efficient synthesis methods
that guarantee closed-loop stability of a set of plants, typically
described by a nominal plant and bounded uncertainty (see for
instance Sanchez Pefla & Sznaier, 1998; Zhou & Doyle, 1998 and
references therein). The traditional design procedure is based on
first identifying a nominal plant along with an uncertainty de-
scription, using for instance control oriented identification meth-
ods (Chen & Gu, 2000), followed by a robust controller synthesis
step. However, this two-step approach is typically conservative,
since the worst-case uncertainty bounds obtained from the iden-
tification steps are usually not tight. Further, this intermediate
identification step can be computationally expensive. These diffi-
culties can be avoided by pursuing a data-driven control approach
where a controller is designed directly from the data. Indeed,
the recent work (De Persis & Tesi, 2019) showed that data-
dependent matrices can be used as a proxy for the system model
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when designing controllers, while Berberich, Scherer, and All-
gower (2020), Bisoffi, De Persis, and Tesi (2022) and Vanwaarde,
Camlibel, and Mesbahi (2020) proposed procedures to design
robust controllers guaranteed to stabilize the set of all plants
compatible with noisy observations, under the assumption that
the measurement noise admits a multiplier based description.

The techniques described above work well for ¢, bounded
noise, but are not well suited for scenarios with ¢,, bounded
noise. The latter setting is more desirable than the ¢, norm in
many scenarios since it allows for considering noise bounds that
are independent of the measurement horizon (Berberich et al.,
2020). Thus, data can be added as it becomes available during
operation. In addition, these bounds arise naturally when consid-
ering discrete-time models that originate from the discretization
of a continuous-time system.

In principle, £, noise can be handled using the Matrix Pos-
itivstellensatz introduced by Scherer and Hol (2006). However,
this approach scales as O(n®"), where n and r denote the sys-
tem and relaxation order, respectively. Thus, it quickly becomes
intractable. Alternatively an approach based on the use of poly-
hedral control Lyapunov functions (PCLFs) was proposed in Dai
and Sznaier (2018a, 2018b). While this approach can handle
switching dynamics, this ability comes at the price of increased
computational complexity, directly tied to the number of faces
of the level sets of the PCLF. The present paper addresses this
difficulty by considering quadratic Lyapunov functions, combined
with the use of duality, leading to algorithms that scale as O(n"),
with n and r, and linearly with respect to the number of data
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points. Specifically, its contributions are:

(1) Non-conservative necessary and sufficient conditions, both
for continuous and discrete-time plants, for the existence
of a state feedback controller that quadratically stabilizes
all plants in the consistency set, under £, bounded mea-
surement noise.

(2) Continuous and discrete-time controller design methods

that optimize a bound of the worst-case closed-loop #H;

norm over all plants in the consistency set. These methods

involve solving tractable semi-definite programs (SDPs).

Extensive numerical comparisons against existing approa-

ches for different noise scenarios.

(3

=

A preliminary version of this paper that only considered
quadratic stabilization of continuous-time systems was presented
in Dai and Sznaier (2020). The present version includes complete
proofs for both continuous and discrete-time plants, extends the
design process to optimize H, performance, and presents exten-
sive comparisons vis-a-vis recently proposed data-driven control
methods. The remainder of this paper is organized as follows: In
Section 2, we state the problem under consideration and provide
some background results necessary to solve it. Section 3 for-
mulates the data-driven quadratic stabilization problem (DDQS)
and data-driven linear quadratic regulator problem (DDLQR).
Here we show that exploiting duality allows for recasting these
problems as infinite-dimensional Linear Programs (LPs). As a
follow-up to this result, we present a finite-dimensional semi-
definite programming (SDP) based relaxation. Section 4 discusses
in detail computational complexity and scaling issues. Section 5
compares the performance of the proposed approach against
existing methods. Finally, Section 6 summarizes our results. To
facilitate reading, all technical proofs are given in the Appendix.

2. Preliminaries
2.1. Notation

R and R" denote the real numbers and the real n-dimensional
vector space, respectively. x € R" is a vector and X € R™" is a
matrix. X > 0 indicates a positive semi-definite (PSD) matrix. X >
(>) 0is a matrix with positive (non-negative entries). Tr(X) is the
trace of the matrix. I and 0 denote the identity and zero matrices
of suitable size. 1 represents a matrix of 1s. R[x], denotes the
set of real polynomials of degree up to r in the indeterminate
x and R[x]™" denotes the set of m x n polynomial matrices.
X'[x]; denotes the sub-cone of R[x] formed by Sum-of-Squares
(SoS) polynomials of order up to 2r. A polynomial p(x) is SoS if
and only if there exists a vector of monomials of degree up to r,
vi(x) € R[x[, s = ("), and a matrix Q > 0 (The Gram matrix)

such that p(x) = v,(x)TQv,(x).
2.2. Background results

In this section we recall some background results and defini-
tions for ease of reference.

Definition 1 (Khargonekar, Petersen, & Zhou, 1990). Consider an
uncertain system of the form 8&(t) = A&(t) with A € A, and
where §&(t) = &(t) for continuous-time and &&(t) = &(t 4+ 1) for
the discrete case. The system is said to be quadratically stable if
there exists Y > 0 such that, forany A € A, V = £'Y £isa
Lyapunov function, e.g. the following holds for continuous-time
systems

AY +YAT <0, VAc A (1)
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and
AYAT —Y <0, VAec A (2)

for the discrete-time case. Similarly, a system of the form §&(t) =
A&(t) + BE&(t), with uncertain A € A and B € B is said to
be quadratically stabilizable if a state feedback controller u =
K&(t) can be found such that the resulting closed-loop system is
quadratically stable for any pairs (A € A, B € B).

Strong Duality and the Weak Slater’s Conditions

The following result will play a key role in recasting the
data-driven quadratic stabilization problem into a tractable form.
Given n + 1 affine functions f;(x), consider the following (primal)
optimization problem:

*

p* = min f,(X) subject to:
X

fix)<0,i=1,...,n

The dual function associated with the primal problem is:

(primal)

g(w) = inffo(x) + Z uifi(x (3)
where p; are scalars (the Lagrange multipliers). In terms of g(.)
the dual problem is:

d* = maxg(u) (dual)
n>0

Lemma 1. If the primal problem is feasible then p* = d*.

The proof can be found in Boyd and Vandenberghe (2004),
Section 5.2.3.

Semialgebraic Optimization
A basic semialgebraic set K is defined by a finite collection of
polynomial inequalities:

K= {x|gi(x) e R[X],, =0,i=1...ng} (4)

The set K is said to be Archimedean if there exists a finite R and
SoS polynomials {o/(x) go such that

— [Ixl5 = o°(x) + Zo"(x)gi(x). 5)
i=1
A necessary and sufficient condition for a polynomial p(x) to be
positive over an Archimedean semialgebraic set K is given by
Putinar’s Positivstellensatz (P-satz) (Putinar, 1993), i.e. there exist
0, o'(x) € [x] such that

p(x) = 0°(x)+ Y _ o'(x)gi(x) (6)
i=1

The degree-2r tightening of this condition uses a bounded-degree
Putinar’s P-satz obtained when o°, o' are restricted to: o°(x) €
2[x]y, o'(X) € =[X] dg -
r=1=]
‘H, Control
Given an LTI system:

06 =A¢+Bu+tw

R!/2 0 u
oAl

the state feedback #, control problem seeks to find a control law
u = K& that minimizes the %, norm from the input w to the
output z. It is well known (see for instance Feron, Balakrishnan,
Boyd, & Ghaoui, 1992) that, this problem is equivalent to the
following SDP:

minimize y

Cly,Y,M,W) >0 )
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where W = R"/2MY~'M"R"/2 and C(-) is
Ci(y,Y,M, W) = —Tr(QY) — Tr(W) + y
Co(Y, M) = (Y, M) + 27(Y, M) + L(Y) + L,
£2(Y, M) = H;(AY + BM)H;

W  R'/’M ®)

Gs(Y, M, W) = [MTR1 n oy }
C(y,Y,M, W) = diag(Cy, C3, CG3)
and:
—H, =Hg=ILL=0,L, = —I (continuous-time) (9a)
or
H=[ 0 H;=[0 I

Y O -1 0 (discrete-time) (9b)
FRRISER

Later in Section 3.3 we will use these results to search for
data-driven robust #, controllers.

2.3. Problem statement

Throughout the paper, we consider the following controller
design problem:

Problem 1. Consider an LTI system:

5&(t) = A&(t) + Bu(t) + n(t) (10)

where A € R™", B € R™™ are unknown system matrices,
&(t) € R" and u(t) € R™ denote the state and input vectors, and
n(t) € R" denotes £, bounded noise,! with Il < €. Given
measurements 8&(ty), &(ty), u(ty), where k = 1, ..., ns; denotes
the sample index, the goal is to find a state feedback controller
u = K&(t) guaranteed to quadratically stabilize all pairs (A, B)
that could have generated the observed data.

Problem 2 (Robust #;). Find a control law u = KE&(t) that
minimizes the worst case, over all systems in the consistency set,
of the #H; cost y defined in (7)-(8).

The main result of this paper shows that the problems above
can be reformulated as SDPs.

2.4. Alternative characterization of the consistency set

Before proceeding to the main part of the paper, we present
an alternative characterization of the consistency set that will be
used to reduce Problems 1 and 2 to a tractable SDP. Note that each
measurement (5&(ty), &(t), u(ty)) yields 2n polytopic constraints
on the elements of (A, B):

A B |[&t) €l +0&(t) | .
LA —J[Mm = |e1—sg(n)| = * (1)
For reasons that will become clear below, we rewrite the con-
straints (11) in the following form:

Tr(AZ:, + BZ") < dix (12)

ik ik
where d; is the ith entry of the vector dy. This can be accom-
plished by defining 4nn; matrices Zﬁk and Z, having the data

, )
vector &(t;)(u(ty)) as their ith column and all loiher entries equal

to zero.
Z,=[... &0, .. ]

nxn
(13)
ng = [ ., uty), ..

']mxn

1 This noise arises for instance from numerical estimation of 8&(t) from
measurements of &(t).
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For example, for a second-order system there are 8 matrices per
sample. In this case we have:

ZE — E1 (tk) 0 ZE — 0 Sl(tIC)

LT E() 07 T2k 0 &)’ (14)
2 |5 0 e |0 —&i(t)

3.k —&(t) 0774k T |0 —&(t)

with similar expressions for Z;fk.
3. DDQS and DDLQR
3.1. A necessary and sufficient condition for quadratic stabilization

In this section we show that Problem 1 can be recast as a
convex (albeit infinite-dimensional) optimization by exploiting
duality. It is well known that the control law K = MY™!
quadratically stabilizes the system (10) if and only if the following
Linear Matrix Inequality (LMI) in Y > 0 and M is feasible:

Q(A,B,M,Y)+ 27(A,B,M,Y) + L(Y) > 0 (15)

where §2 is defined in (8) and Hj, Hg, L are defined in (9). We
want this to hold for all (A, B) constrained by (12) leading to the
following version of Problem 1.

Problem 3. Find matrices Y > 0 and M such that (15) holds for
all (A, B) that satisfy (12).

The next result shows that this problem is equivalent to an
optimization over positive polynomials.

Theorem 1. Problem 3 is feasible if and only if there exist matrices
Y € R™™ = 0, M € R™" and a polynomial matrix Y(X) €
R[X]*™*" > 0 in ||X||> < 1 such that the following conditions hold:

EY(X) = —2 [l\ﬂ Hexx"H; (16a)
x'L(Y)X — Tr(DY(X)) > 0 for all x|, < 1 (16b)

u(ty)...u(ty) —u(ty)...—u(ty)
dr(ty)...d"(ty,) d(t1)...d (t, )]
1+ 88(t), d™(t) = €1 — 8§(tx)

Ei[anyua%) —am”.—a%q7

D=
dr(t) =

N

Proof. See Appendix A. O
3.2. A semi-definite reformulation

From Theorem 1 it follows that Problem 3 can be recast as an
infinite-dimensional functional Linear Program. Tractable, finite-
dimensional relaxations can be obtained by enforcing that each
entry of Y(x) satisfies a Putinar’s P-satz associated with positivity
over the set (1 —x'x) > 0:

Tik(X) = 03(X) + 07, ()(1 — x'x) (17)

for some SoS polynomials o, (x) € Er,ai}k(x) € X,_1. Thus,
one can formulate a sequence of relaxations of increasing order,
stTarting :Nith r = 1, with 6/(x) = v/(X)E?,v,(x) and o}, (x) =
"r—1§X)Fi,k"r71(x)-

Similarly, from (16b), we have

X'L(Y)x — Tr(DY (X)) = 0°(X) + o ' (x)(1 — x'X) (18)

where 0°(x) = vI(X)F°v,(x) and o '(x) = v_,(X)F'v,_4(x). By
equating the coefficients of the polynomial matrices on both
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sides, (16a) gives a linear constraint keq(Eﬁk, F‘i1,k) = Ke(Y, M),
and (18) introduces another linear constraint Kiyeq(Ef ., El{ oY) =
Kineq(F°, F'). Algorithm 1 summarizes the SDP-based procedure to
solve (16):

Algorithm 1 DDQS

1: Given ng measurements &(ty), u(ty), 6&(tx) and a noise bound
€, build data matrices &, D and decide performance matrices

QR
2: Solve:
3: minimize 0
4: subject to
Keq(E7 ., Ef ) = Keg(Y, M) (19a)
Kineq(EY i B 1. Y) = Kineg(F°, F') (19b)
E), = 0.E}, = 0 (190)
F>~0,F =0 (19d)
Y>0 (19)

Remark 1. The algorithm above is a relaxation of the original
problem, in the following sense. Existence of a feasible solution
provides a certificate of quadratic stabilizability through the Lya-
punov function x’Y~!x and associated controller K = MY~
On the other hand, infeasibility of the Algorithm for a given
relaxation order, does not rule out the existence of solutions to
Problem 1. While in principle Putinar’s P-satz guarantees that if
Problem 3 is feasible then there exist some finite r such that
the SDP associated with (16) is feasible, since the number of
variables scales combinatorially with r, in practice one is limited
to relatively low order relaxations. Nevertheless consistent nu-
merical experience shows that the relaxation r = 1 works well
in practice.

3.3. Achieving robust performance

Next, we show that the framework developed above can be
easily extended to minimize an upper bound of the worst case,
over the consistency set, of the closed-loop #, norm. Specifically,
we are interested in solving:

Problem 4.

min {maxy} subject to (8) and
Y>0,M,W AB
dix — Tr(AZ;ik + Bfok) >0

As we show next, this problem reduces to a convex optimiza-
tion problem over polynomials positive in ||x||; < 1.

Theorem 2. Problem 4 admits a solution with cost y if and only
if there exist matrices Y € R™" = 0, M € R™" W € R™™ and a
polynomial matrix Y(x) € R[X]***" > 0 in ||x|| < 1 such that the
following conditions hold:

Y 0
=EY(X) = -2 [M] [0 Hy 0] xx! {l:;]

(20a)

1
(y —Tr(QY) — Tr(W))[1 0 0] xx' {o}
0
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0
W  R’M
+ Tr ([MTRl/Z Y ] [0 0 ln+m] XXT |: 0 i|>

In+m
0
+Tr ((L(Y)+L,,)[o I 0]xx' |:l:|> —Tr(DY(x)) > 0  (20b)
0

forall1—x"x >0

Proof. Given in Appendix B O

As before, enforcing Putinar’s P-satz on Y(x) and (20b) and
collecting the coefficients of (20a) and (20b) in Keq and Ki,eq leads
to the following algorithm:

Algorithm 2 DDLQR

1: Given ng measurements &(ty), u(ty), 6&(tx) and a noise bound
¢, build data matrices =, D and decide performance matrices

QR
2: Solve:
3: minimize y
4 subject to
keq(E?,k’ Eil,k) = keq(Y’ M) (21&)
ki”e‘J(Eﬁk’ Ei],k’ Y. M, W, )/) = kineq(Foy F1) (Z]b)
2 = 0,E =0 (21¢)
F° >~ 0,F >0 (21d)
Y>>0 (21e)
W0 (21f)

4. Complexity analysis

In this section we analyze the computational complexity of the
proposed approach and compare it against existing techniques
that can also handle ¢, bounded noise: Berberich et al. (2020),
Chesi (2010), De Oliveira, Bernussou, and Geromel (1999) and
Scherer and Hol (2006). The discussion is limited to the size of
the Gram matrices and the corresponding number of constraints
since they are the main source of computational complexity.

4.1. Discrete DDLQR

Given Y(x) € R[x]*®*", we have 2nn, positive scalar polyno-
mials in an indeterminate x € R***™*+!, Each polynomial contains
a Gram matrix E{,, of size n, = ("") and a Gram matrix E], of

;
size n; = ("e:rffl) where n, = 3n + m + 1. In total, the Gram

matrices introduce nny(n? + n? + ng + ny) variables. These also
introduce 2nng PSD constraints of size n, and 2nng PSD constraints
of size ny. Asymptotic complexity, given by the size of the largest
Gram matrix is roughly O(n").

Remark 2. Note that, due to the projections, x appears block-
wise quadratically in the right hand side of (20a) and in all terms
in (20b) except the last. For the case r = 1, this motivates
a new relaxation where Y(x) is also taken to be a function of
these blocks, or, equivalently, its associated Gram matrices satisfy
E;k =0 and E}, is a block diagonal matrix:

E; 0
E), = En (22)
0 Enim
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This relaxation involves only nny(5n®> + m? + 2nm + 3n + m)
variables, leading to a substantial reduction in computational
complexity.

4.2. Comparison against Scherer’s matrix P-satz

The approach proposed in Scherer and Hol (2006) is perhaps
the closest existing technique to the approach proposed in this
paper, since both use SoS Techniques to impose positivity of a
polynomial matrix over a semi-algebraic set. However, as we
show here, the fact that we exploit the specific structure of the
polynomial matrices in a duality-based context leads to a sub-
stantial complexity reduction over a naive approach that treats
the DDLQR problem as a special case of Scherer and Hol (2006).
For completeness we begin by restating Theorem 1 in Scherer and
Hol (2006):

Theorem 3. If there exists some r > 0 and SoS polynomials v;(X)
such that
ne
2 — X = Yo + Y i(x)gi(x) (23)
i=1
then

H(x,y) > 0 for all x € K = {x | gi(x) > 0} if and only if

HX, ) = So(X) + Y _ SiX)gi(X) + I, (24)
i=1

for some p x p SoS matrices S;(X) and a scalar ¢ > 0

Recall that a pxp matrix S(x) with polynomial entries is said to
be an SoS matrix if there exist a polynomial matrix L(x) such that
S(x) = LT(x)L(x). It can be shown that S(x) containing monomials
of order up to 2r is SoS if and only if it can be written as

S(x) = (v;() @ ) Z(v,(x) ® L), Z> 0 (25)

Consider the discrete-time LQR problem for a system with n
states and m control inputs. From (7), we have

C(A,B,y,Y,M,W) > 0O for all
Ix(k+ 1) — Ax(k) —Bu(k)||lo < 1,k=1...n4
so for each time step we get 2n constraints on the entries of
a =vec(A), b = vec(B), for a total of 2nn, constraints. Using (24)
to recast this as an SoS program in a, b requires 1+ 2nng SoS n, x
ne polynomial matrices, in an indeterminate ¢ = [aT bT]T of

dimension n, = n% 4+ nm. Hence, from (25) it follows that the first
multiplier in (24) leads to a Gram matrix of size n, = (”f;”)ne and

(26)

the remaining 2nn, to Gram matrices of size n; = (”V;Z_l)ne. The

2
total number of variables for Gram matrices is given by @ +

nng(n3-+ny) for n,, ny defined above. Thus, in this case Asymptotic
complexity, given by the size of the largest Gram matrix, is
roughly ©(n®"), compared to ©(n") for our approach. Tables 1-
2 illustrate the scaling of the problem for different values of n
and r. As shown there, Scherer P-satz quickly leads to problems
beyond the capability of existing solvers, even when considering
low-order systems, short horizons and low-order relaxations (n =
5m=2,n,=10,r = 1).

Remark 3. The computational complexity reduction achieved by
our approach stems from the following facts:

(a) In Scherer P-satz, the dimension of ambient space is the
number of entries in A, B which is ©(n?). In contrast, our method
considers the ambient space in x which is O(n). This gap is
substantial when n is large.
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Table 1
Scherer P-satz versus DDLQR, n=2,m=2,n, = 10,r = 1.
Scherer P-satz DDLQR
Dimension of ambient space 8 9
Number of Gram matrices 41 80
Dimension of Gram matrices 81,9 10, 1
Number of variables 5121 2240
Table 2
Scherer P-satz versus DDLQR, n=5,m =2,n, = 10,r = 1.
Scherer P-satz DDLQR
Dimension of ambient space 35 18
Number of Gram matrices 101 200
Dimension of Gram matrices 648, 18 19, 1
Number of variables 227376 19100

(b) The size of the Gram matrix in Scherer P-satz is roughly
O(n?") compared to O(n") in our case.

Finally, consistent numerical experience indicates that, in most
cases, selecting r = 1 in our approach suffices to solve the
problem. Hence, we can apply the relaxation described in Re-
mark 2. Thus, the number of variables in Tables 1(2) decreases
from 2240(19100) to 800(8300). This structural benefit is not
seen in Scherer P-satz.

4.3. Multiplier-based techniques

Theorem 1 in Berberich et al. (2020) addresses the robust data-
driven control problem using a multiplier based description of
the noise (equation (23) in Berberich et al., 2020). This approach
requires a Gram matrix of size n+ n;, hence only a small number
of variables. However, for {,, bounded noise, the number of
semidefinite constraints is 2" which quickly becomes intractable.
For instance, forn = 2, m = 2, n, = 10, the number of constraints
is 106.

4.4. Vertex LMI-based techniques

Theorem 13 in Chesi (2010) states that a robust control law
can be found by enforcing an LMI at the vertices of the polytope
of the consistency set. Each of these LMIs leads to a Gram matrix
of size (2r + 1)™. Similarly, De Oliveira et al. (1999) also require
enforcing the LMIs (8) at each vertex. In this case the size of
the Gram matrix is only n.. However, the worst-case number of
vertices of the consistency set grows combinatorially with n, and
ns (Avis & Jordan, 2018). For instance, for n =5, m = 2, n; = 10,
the upper bound of the number of vertices is 1.8 x 10!% given
by Eq. (2) in Avis and Jordan (2018). We randomly generated 10
trajectories and compute the number of vertices. On average, we
get 6.8 x 10'? vertices. This number is clearly beyond the ability
of existing SDP solvers.

5. Simulation results

In this section we investigate the performance of the pro-
posed algorithms, in the discrete-time case as a function of the
noise level and the number of samples used to determine the
consistency set. To benchmark the proposed approach against
existing techniques that handle ¢., bounded noise, we compare
it with Berberich et al. (2020) and De Oliveira et al. (1999), where
robust DDC is directly addressed using LMI-based techniques,
and the SoS-based technique in Scherer and Hol (2006). These
comparisons show that while all approaches are able to solve the
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Table 3 Table 5
Closed-loop #, norm for different € and ns, = 20. #, norm of the closed-loop system (e = 0.05, ny = 6).
€ 0.2 0.4 0.6 0.8 Cap y t (s)
Cepp 6.6815 6.8581 7.2067 7.6362 Algorithm 2 6.6915 8.1877 1.0018
y 7.8605 9.6386 11.6791 15.2135 Algorithm 2 with (22) 6.6915 8.1877 0.8574
Algorithm 2 with r =2 6.6915 8.1875 231.1249
Berberich et al. (2020) 6.6696 8.0247 48118
Scherer and Hol (2006) 6.6915 8.1877 6.2675
De Oliveira et al. (1999) 6.6655 7.9370 2.4698
Table 4
Closed-loop #, norm for different ny and € = 0.4.
ng 10 20 30 40
Cap 7.4863 6.8581 6.7154 6.6672
4 16.5077 9.6386 8.2640 7.8898 since both are SoS-based. However, our duality-based approach

robust DDLQR problem for low-order systems and short horizons,
only our approach has the capability to handle moderately sized
problems. Finally, we compare our approach with Model-Based
Control (MBC) and provide a way to incorporate the partial infor-
mation. All simulations in the paper were run on a MacBook with
a processor 2.2 GHz 6-core Intel Core i7. Codes are implemented
using (MATLAB, 2020) and the optimization problems are solved
using a combination of YALMIP (Lofberg, 2004) and the (MOSEK,
2019) SDP solver.

5.1. Monte Carlo experiments

In this section we use Monte Carlo experiments to analyze the
effects of the noise level € and number of samples n;. We consider
the discrete-time case using data generated by the model

A— [0.4285 —0.4298:|  B= [—0.7826 0.7731]

0.4018 1.3036 —0.5110 0.0339 (27)

This system, generated with the randn command in MATLAB,
has eigenvalues (0.7291, 1.003). In all instances for simplicity we
consider the lowest order relaxation, with r = 1, that is, the
functions Y;(.) are second order positive polynomials. As shown
below, even this simple relaxation performs well, specially in the
case of moderate noise levels.

5.1.1. Discrete-time LQR

We fixed n; = 20 and used Algorithm 2 to design a robust
LQR controller. To analyze the performance of the system as a
function of noise, ¢ was selected from [0.2, 0.4, 0.6, 0.8]. If the
resulting controller stabilized the system, we computed Cy, and
y. The median of Cg, and y (over 50 runs) are shown in Table 3.
For benchmark purposes, we also solved (7) and obtained the
ground truth yp = 6.5863. One should note that yy < Cqp < ¥
and equality holds only if data is clean.

Next, we fix ¢ = 0.4 and compute the #, norm for different
ns. We run the experiment 50 times and compute the median of
Cap and y (Table 4):

As expected, Cqp and the worst-case performance bound y
approach the optimal, noiseless performance as € decreases and
n, increases.

5.2. Comparison with existing methods

Following the discussion in Section 4, we provide simulation
results to illustrate the advantages of our approach over existing
ones. Table 5 shows a simulation result for system (27) with
€ = 0.05 and n; = 6. Time is averaged over 50 runs. In this
case, all methods were able to find a LQR controller with good
performance. Further, it should come with no surprise that our
approach and Scherer and Hol (2006) have the same Cg, and y

is substantially faster. Indeed, using the relaxation outlined in
Remark 2 yields almost an order of magnitude reduction in com-
putational time while maintaining the same performance. For
completeness, we also present the result for the relaxation r = 2.
This relaxation leads to virtually the same performance but is
200 times slower. On the other hand, Scherer and Hol (2006)
with r = 2 introduce 161919 variables and cannot be solved by
existing SDP solvers.

To further illustrate the advantages of our approach in terms
of computational complexity and scaling, consider the following
discrete-time unstable system:

—0.1660 —0.8153 —0.1616  0.3409 0.6015
0.4406 —0.6275 0.3704 —-0.1654 0.9365
A=| —09998 -0.3089 —-0.5911 0.1174 -0.3732
—0.3953 —-0.2065 0.7562 —0.7192  0.3846
—0.7065 0.0776 —0.9452 —-0.6038  0.7528
B— 1.7892 0.1701 0.0781 0.3397 1.7563]
~0.1967 0.8422 1.9158 1.0663 1.3838
(28)

For ny = 10, € = 0.05, Algorithm 2 with (22) leads, in 9.5653 s,
to a robust controller with #, performance Cy, = 15.4443, y =
18.7818 and ground truth yy = 15.1617. Existing approaches
cannot handle a problem of this size. Specifically, Berberich et al.
(2020) introduce 10> SDP constraints, Scherer and Hol (2006)
introduces 227 376 variables and De Oliveira et al. (1999) lead to
around 6.8 x 10'? vertices.

5.3. Robust MBC versus robust DDC

Here we provide a short discussion of the advantages of robust
DDC compared with robust MBC. Consider the discrete system
(27), with ng = 10, ¢ = 0.05. To design a robust MBC, we first
obtained a nominal model using least squares. Then the uncer-
tainty set was selected as a circle centered at the nominal model
covering the consistency set. This choice is reasonable since we
aim to find a robust controller and we do not have information
to shrink this set. Designing a robust MBC using Scherer’s P-satz
yields Cgp = 6.6799, y = 8.4589. On the other hand, Algorithm
2 leads to Cy, = 6.6013, y = 7.0531. This is expected, since
the robust DDC yields the tightest uncertainty description, while
covering the uncertainty with a ball is typically conservative. It
is also worth pointing out that, in many scenarios the number
of samples required to find a data-driven controller is less than
that for system identification (Van Waarde, Eising, Trentelman,
& Camlibel, 2020). For instance, identifying (28) requires at least
7 samples while finding a data-driven controller only requires 6
samples.

6. Conclusions

This paper proposes a data-driven framework for quadratic
stabilization and robust #; control of unknown continuous/
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discrete LTI systems. Our main result shows that using duality
these problems can be recast as infinite dimensional LPs. In
turn, these LPs can be relaxed to a convergent sequence of
finite-dimensional SDPs, through the use of Putinar’s Positivstel-
lensatz. When compared with existing SoS-based approaches, the
use of duality leads to a substantial reduction in computational
complexity and asymptotic scaling. For an nth order system
and relaxation order r, the approach in Scherer and Hol (2006)
scales as ©(n®"), while our approach scales as O(n"). Further, the
computational complexity of our approach grows linearly with
the number of samples. For comparison LMI-based approaches
based on either a multiplier description of the noise (Berberich
et al,, 2020) or enforcing LMIs at the vertices of the consistency
set (Chesi, 2010; De Oliveira et al., 1999) scale exponentially
with the number of samples and thus become impractical beyond
some toy problems.

Appendix A. Proof of Theorem 1

In order to prove this theorem, we need the following prelim-
inary results:

Lemma 2. Given a fixed x and fixed matrices Y € R™", M €
R™M H;, Hg, consider the following feasibility problem in (A, B):
f(A, B) =x' [H;(AY + BM)Hy
+ (Hy(AY +BM)Hp)" + L(Y)]x < 0
Tr(AZ;, + BZ},) < dix

ik ik

(A1)
(A2)

where L(.), Hy, Hg are defined in (9). If the consistency set in Prob-
lem 1 is not empty, then (A.1)-(A.2) is infeasible if and only if there
exists a 2ng x n positive matrix Y(x,Y, M) such that (16a)-(16b)
hold.

Proof. We will establish this result by exploiting strong duality.
Consider the related minimization problem:

p* = rRian(A, B) subject to (A.2) (A3)

The Lagrangian corresponding to (A.3) is:

L(A, B, i) = 2xTH,(AY + BM)Hgx + x"L(Y)x
ns 2n
+ Y wir(Te(AZY, +BZ},) — diy) =
k=1 i=1
ns 2n
x'L(Y)X + Tr (A(ZYHRxxTHL + Z Z 1ikZ )
k=1 i=1

ns  2n ng 2n
+B(2MHRXXTHL + Z Z l/«i,kz;{k)> — Z Z Mi,kdi,k

k=1 i=1 k=1 i=1

where u;r > 0 are the Lagrange multipliers and we omit its
dependence on (x, Y, M) for space reason (similarly for ). The
dual function is given:

ng 2n
g(u) =infL(A, B, j) =XLYIX = ) ) " pisi
k=1 i=1
ng  2n
if ZYHRXXTHL + Z Z Miv"z;(,k =0
k=1 i=1
ng  2n
ZMHRXXTHL + Z Z M,-,kZ,.“,k =0
k=1 i=1
g(u) = — oo otherwise

Automatica 153 (2023) 111041

Collecting the Lagrange multipliers u; in a matrix Y, reshaping
this matrix conformally to D and = and using the explicit ex-
pressions for Z{ 1 Zi'}» leads, after some algebra, to an equivalent
compact form:

X'L(Y)x — Tr(DY)
g(r)= i\anL(A’ B, T) = {if (16a) holds

' —oo0 otherwise

Hence the dual problem of (A.3) is given by:

d* = max X'L(Y)x — Tr(DY)
’I‘iyjzo

subject to (16a)

(A4)

If the consistency set is not empty, then (A.2) is feasible (since
the actual system satisfies these inequalities). Since all the in-
equalities involved are affine in (A, B) it follows from the weak
Slater’s conditions that strong duality holds and p* = d*. Thus, if
(A.1)-(A.2) is feasible, p* < 0, which implies that:

x"L(Y)x — Tre(DY) > 0, Y;; > 0 and (16a) (A5)

is infeasible. On the other hand, if (A.5) is feasible, then p* > 0
and (A.1)-(A.2) is infeasible, i.e., (A.1)-(A.2) and (A.5) are strong
alternatives. The proof is completed by noting that (A.5) holds
for all x iff (16a)-(16b) hold for all ||x|]; < 1, by simply rescal-
ing Y with ||x]||,. Hence (A.1)-(A.2) and (16a)-(16b) are strong
alternatives. 0O

Remark 4. Note that the subscripts i, k in ; x do not correspond
to row/column indexes of the matrix Y. For instance, with n =
2, ny = 2, according to the definitions in Theorem 1, we have

din dip d3q dsp
D= ’ ' ' ’ A.6
|:d2,1 dyy day das (A8)
while the corresponding Y is
T
_ |:IL1,1 K12 M3 M3,2:| (A7)
M2,1 M22 M4 K42

Lemma 3. Consider the functional feasibility problem (16a)-(16b).
If this problem is feasible for all X, ||X|l, < 1, then it admits a
continuous solution Y(X).

Proof. Given fixed Y, M, collect all elements u;; and d; in the
matrices Y, D and consider the following Linear Programming
problem in Y(x), parametric in x:

J(x) = min Tr(DY(x)) — X" L(Y)x subject to:
T (A.8)
Y;(x) > 0 and (16a)

(A.5) is feasible if and only if the problem above is feasible, and
admits a solution set Y(x) such that Tr(DY(x)) — x'L(Y)x < 0.
Define the set-valued mapping Ya(x) = {Y € T:Tr(DY) —
x'L(Y)x < J(x)}. From Theorem 2.4 in Mangasarian and Shiau
(1987) establishing continuity of the solutions of linear programs
with respect to perturbations in the right hand side, it follows
that Y,;(x) is lower semi-continuous. Consider now the mini-
mum selection

Y(x) = argmin | Y||F

TeXa(x)
Since YHrxx"H; and MHixx"H; are bounded in |X|; < 1, it
follows that the range of Y(.) is bounded. Hence, from Proposition
9.3.2 in Aubin and Frankowska (2009), it follows that the function
Y(x) is continuous. The proof is completed by noting that, by
construction Y (x) solves the original problem (16a)-(16b). O
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Proof of Theorem 1. We will proceed as follows:

(1) Show that the matrix Y(x, Y, M) can be taken to be inde-
pendent of Y and M.

(2) Show that if (16a)-(16b) are feasible, they admits a poly-
nomial solution YP(x), with ¥} ,(x) > 0.

Begin by noting that since the quadratic form
x'[2+eT+uY)]x
is homogeneous in X, (15) is equivalent to:
—x" [2 + 2T+LY)]x < 0; VX £ 0, [|X[|]> < 1
or, equivalently, infeasibility of
X' [2 + 2THLY)]x = 0; Vx # 0, x|l < 1

From Lemma 2 we have that Problem 3 is feasible if there exist
matrices Y > 0, M and Y (X, Y, M)>0 such that (A.5) holds for
all ||x|]l; < 1. Since we are interested in finding just one pair
(Y, M), it follows that the vector functions Y can be taken to be
independent of Y and M. To see this, assume that there exist some
Y*, M*, Y(x, Y*, M*) such that (A.5) holds for all ||x|| < 1. Then,
setting Y(x) = Y(x, Y*, M*) we have that (A.5) also holds for
Y=Y*M=M*and all |x]; < 1.

Next, we will show that if the problem is feasible, it always
admits a polynomial solution YP(x). Assume that = has full row
rank and let A/ be a basis of its (right) null space. Denote by Y*(.)
a feasible solution to (16a). Then Y*(.) can always be written as

Y
T*x) = —2="(2=")"! [M] Hirxx H; + NZy(X)

for some continuous Z,(x). Since Z,(x) is continuous, from Stone-
Weierstrass theorem it follows that there exist a polynomial Z,(x)
such that ||Z,(X) — Z,(X)|lcc < 81 for all ||x||; < 1. Consider now
the following polynomial matrix

TP(x) = —2="(2=")"! [nﬂ Hexx"H + NZy(x) + 8,1 (A9)

We will show that §; can always be chosen so that Y?(x) is also
a feasible solution of (A.5). Since 1 = 0, then, by construction
YP(x) satisfies (16a). To show that the elements of YP can be
made positive by a suitable choice of §,, note that

Y(%) = T(%) — M(Zu(X) — Zy(x) + 5,1
Hence
Y2 (X) = L0) = 811Vl + 82 > 0f 8 > 81|\l

Now, let 8, = maxxy,<1 Tr(DY*(x)) — X' L(Y)x. Since T* is a
feasible solution of (A.5), §;; < 0. Thus

Tr(DY?(x)) <TH(DY*(X)) + 61 Y > [DN;;
i

+8 ) Y Dyl < x'L(Y)x
i
if 81 and &, are selected such that

81 D I +8 Y ) Dyl < [8ml
i Jj i Jj

It follows that the polynomial matrix Y? is also a feasible solution
to (A5) O

(A.10)

Appendix B. Proof of Theorem 2

(Only a sketch given, due to space constraints). Given a fixed
x and fixed matrices Y € R™" M € R™" W € R™" and a fixed
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y, it can be shown (using the same arguments used in the proof
of Lemma 2) that

x'C(y,Y,M,W, A, B)x <0 (B.1)
Tr(AZ}, + BZ},) — di). <0 (B.2)

and (20a)-(20b) are strong alternatives. The proof is completed
by noting that (20b) holds for all x iff it holds for all x with
Ix|l2 < 1. Finally, the proof that the entries of Y(x) are positive
polynomials follows along the same arguments used in the proof
of Theorem 1. O
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