2022 IEEE Frontiers in Education Conference (FIE) | 978-1-6654-6244-0/22/$31.00 ©2022 IEEE | DOI: 10.1109/FIE56618.2022.9962569

Using a Functional Board Game Language to Teach
Middle School Programming

Jennifer Parham-Mocello
School of EECS
Oregon State University
Corvallis, USA
parhammj @oregonstate.edu

Martin Erwig
School of EECS
Oregon State University
Corvallis, USA
erwig @oregonstate.edu

Jason Weber
School of EECS
Oregon State University
Corvallis, USA
webejaso @oregonstate.edu

Abstract—TIn this work (a full paper on an innovative practice),
we report on middle school students’ experiences while learning
a new text-based, functional domain-specific teaching language
for programming well-known, simple physical games, such as
tossing a coin to see who goes first or playing Tic-Tac-Toe. Based
on students’ responses after taking an 18-week, 7th grade elective,
we find that the majority of the students like learning the new
language because it is not block-based, it is not complicated, and
it is in the domain of games. However, we also find that there are
some students who say programming is what they like the least
about the class, and the majority of the students report that they
struggle the most with writing the syntax. Overall, the majority
of students like the curriculum, language, and using games as a
way to explain CS concepts and teach programming. Even though
learning a text-based, functional programming language may be
difficult for middle-school students, these results show that the
domain-specific teaching language is an effective teaching vehicle
at the middle school level.

Index Terms—computer science, domain-specific languages,
middle-school education, programming

I. INTRODUCTION

We developed a curriculum for introducing computer sci-
ence (CS) based on identifying computing concepts in simple
non-electronic games, which we refer to as the ChildsPlay
approach. Our approach is similar to the approaches taken in
CS For Fun (CS4FN), the Teaching London Computing, and
CTArcade [1]-[3], which also employ physical games to teach
CS concepts, but it differs in a fundamental way: Instead of
focusing on the strategy for winning games or playing against
the computer, we use games without the use of a computer
as a model to help students understand CS concepts, such as
representation, algorithm, and computation before introducing
programming (see Figure 1).

One major goal of the ChildsPlay approach is to debunk
negative perceptions of CS by demonstrating to students that
understanding basic concepts of computer science is as easy

This work is supported by the National Science Foundation, #1923628.

Aiden Nelson
School of EECS
Oregon State University
Corvallis, USA
nelsonai @oregonstate.edu

Margaret Niess
College of Education
Oregon State University
Corvallis, USA
niessm @ oregonstate.edu

Garrett Berliner
School of EECS
Oregon State University
Corvallis, USA
berlineg @oregonstate.edu

S \@ 0-Q
S [o]oT] L
Y SN P A O’\.8/~©
Objects and Story Playing
Repr i Comp
B l
o
£Z SN = A\
= =2
Instructions/Rules Player
Algorithm Computer

Fig. 1. Connections made between physical games and CS

as playing games. We believe choosing games that are well-
known for being simple, such as Nim or Tic-Tac-Toe, makes
CS more widely accessible for teachers and students.

In this innovative practice report, we discuss the program-
ming curriculum in the ChildsPlay approach, which introduces
a new text-based, functional programming language called
BoGL (short for Board Game Language) after introducing CS
concepts using simple, non-electronic games. A current 8th
grade mathematics teacher pilots the programming curriculum
in a new 7th grade CS elective, and we use the students’
assessment and survey responses as insights into the students’
experiences with this new curriculum and understanding of
the language. More specifically, we address the following two
research questions.

1) What are students’ understandings about the BoGL syn-
tax for user-defined types, functions, and if-then-else
expressions after learning about them in the programming
curriculum?

2) What do students like, dislike, learn, and struggle with in
the programming curriculum?

The rest of the paper is structured as follows. First, we
describe the motivation and related work behind developing
the programming curriculum of the ChildsPlay approach in
Section II. Then, we describe the curriculum in more detail in
Section III, and we report on how the teachers implemented

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 27,2023 at 14:42:01 UTC from IEEE Xplore. Restrictions apply.

the curriculum and the data collected in Section IV. In Section
V, we provide the student understandings and experiences
with the curriculum, and finally, we present conclusions and
directions for future work in Section VI.

II. MOTIVATION AND RELATED WORK

Playing games helps develop problem-solving skills and
creativity, which are fundamental to computational thinking
[4]-[6]. Thus, it is not surprising that games have a long
tradition as learning tools in education, especially in the
form of gamification, which is the idea of representing a
learning process as playing a game [7]. While studies have
shown that playing board games improves math skills in
elementary school students [8] and involves computational
thinking activities [9]-[12], simply playing games does not
increase one’s computational thinking skills, unless guided
instruction about the skills is given [13]. Our approach goes
beyond just playing games by teaching core CS concepts using
simple, physical games for explaining computation.

Several new board and card games have been invented
specifically to teach computational thinking (CT), such as
RaBit EscAPE (ages 6-10), Cubetto (ages 3-6), and Crabs
and Turtles (ages 8-9) [14]-[16], but new games present two
disadvantages. First, the rules in new games might not be
simple enough and create unnecessary extraneous cognitive
load on the learner, taking away cognitive resources from
the learning of the computational concepts. Second, schools,
kids, and families might not have access to the new games.
We believe using existing physical games well-known for
being simple broadens participation and shifts the focus to
the computational concepts being taught.

The idea of using simple, physical games to explain com-
putational concepts is not new [3], [17], [18], and researchers
understand that playing games unsupported by an appropriate
framework may be ineffective at teaching the computational
concepts [13]. Researchers in the CS4FN and Teaching Lon-
don Computing projects have shown that the use of games with
well-developed lesson plans are effective for teaching specific
computational concepts [1], [2], and Lee et al. have shown that
their educational software called CTArcade enables children to
articulate CT-related thinking patterns while playing Tic-Tac-
Toe and Connect Four [3].

We do not use CTArcade, because we want students to
play games with their peers to promote social interaction
and communication, and we want students and teachers to
practice concepts learned in one game by identifying them
in other games, which would have to be first implemented in
CTArcade. Our approach fits into the landscape of game-based
CT teaching approaches by using existing, physical games
well-known for being simple, instead of new ones.

CS Unplugged [19], [20] has been shown to broaden
participation [21], and several studies have demonstrated that
unplugged activities, such as games, puzzles, and storytelling,
can be a viable alternative to traditional programming activities
for teaching introductory computational skills and algorithms
[20], [22]-[28]. Supporting studies have shown the positive

impacts unplugged activities have on students’ perspectives
of, engagement in, and motivation to study CS [27], [29]-
[32]. For these reasons, we also avoid the use of technology
and programming for introducing CS concepts.

After introducing students to fundamental concepts in CS
using physical games in an unplugged environment, stu-
dents can then apply the concepts to programming. However,
Brusilovsky et al. argue that one of the obstacles general-
purpose languages pose to beginning students includes being
too large and cognitively overwhelming [33]. Likewise, educa-
tors have shown success using domain-specific languages for
introducing programming [34], [35]. Other researchers argue
that the reduced complexity and natural relationship to familiar
mathematical concepts, in addition to leveling the playing
field, makes functional languages a better choice for teachers
and students [36]-[41], which is what spearheaded the suc-
cessful Bootstrap Algebra project [42], [43]. For these reasons,
we think it is important to use a functional, domain-specific
language as the beginning language for students. While we
understand that block-based languages have been shown to
help students understand some programming concepts better
[44], [45], in this project, we are specifically interested in
introducing a text-based language for expressing algorithms
in a formal notation.

III. CURRICULUM BACKGROUND

The researchers and CS students developed the program-
ming curriculum in collaboration with two teachers from a
middle school in the United States. We briefly summarize
the researcher-practitioner partnership and the curriculum de-
veloped and piloted at the local middle school during the
2020/2021 academic year, as a result of this partnership.

A. Developing the Curriculum: A Researcher Practitioner
Partnership

Building on a well-established collaboration with a local
dual-language immersion middle school, we developed a pro-
gramming curriculum that gradually introduces CS by using
simple, physical games and a domain-specific language to
teach fundamental concepts. The researchers worked with two
mathematics teachers, as well as the Assistant Principal, for 1-
2 hours each month throughout the previous 2019/2020 school
year building the teachers’ understanding of fundamental CS
concepts. One teacher was a 6th grade mathematics teacher
with a BS in primary education, and she was in her first
year of teaching during the 2019/2020 development phase.
The other teacher was an 8th grade mathematics teacher with
a MS in secondary education, and he was in his sixth year of
teaching during the development phase. Neither teacher had a
background in CS or prior programming experience.

Before offering the 7th-grade programming elective, the
researchers engaged with the practitioners in an iterative
process to polish the curriculum and teachers’ knowledge for
delivering the CS content. First, the teachers participated in
a summer workshop for 40 hours over two weeks addressing
questions and teaching concepts related to the curriculum. This

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 27,2023 at 14:42:01 UTC from IEEE Xplore. Restrictions apply.

training was critical for the development of the teachers’ CS
content knowledge. We revised the curriculum based off of the
information and feedback we gathered from the workshop.
Then, the teachers used the curriculum to teach middle-
school students in a 1-week, 3-hours-per-day online summer
camp to help develop the teachers’ technical pedagogical
content knowledge (TPACK) [46] for teaching CS, which was
especially important due to the shift to being online because
of COVID-19. The one-on-one training activities and summer
camps led to the final curriculum and the teachers’ TPACK
for delivering the electives in the 2020/2021 academic year.

B. The Resulting Programming Curriculum: A Domain-
Specific Teaching Language

The goal of the programming curriculum is to introduce
a formal notation for algorithms within the scope of board
games. To this end, we designed BoGL (the Board Game Lan-
guage) [47]. BoGL has a web interface to make it accessible
by anyone on any platform with internet access (see Figure 2).
The curriculum covers approximately 60 hours of instruction
over 18 weeks.

BoGL is a domain-specific teaching language (DSTL) tar-
geted at writing programs in the domain of board games
but used to easily move students to a general-purpose lan-
guage. BoGL is primarily a functional, text-based language
syntactically similar to Haskell [48] or Elm [49], but with a
significantly simplified syntax and type system.

Mirroring the non-programming curriculum, which begins
with the concept of representation, the programming curricu-
lum introduces types and values before functions, which are
the formal equivalent of algorithms in BoGL. We start with
simple functions to illustrate the use of parameters, followed
by simple expressions, control structures, and conditions. The
curriculum ends with introducing repetition and the concept
of an array data structure to represent game boards.

We also support the smooth transition from algorithmic

|
43 BoGL: Board Game Language X +

O B hipsi/boc

engr.oregonstate.edu

BoGL: Board Game Language

Program Prelude

> playTicTacToe(X)
-- TicTacToe program without comments to show comparison to
algorithm

-~ Examle RUN: playTicTacToe(X)

game TicTacToe

& BoGL Says: Enter input,

or "clear" to stop
> (1,2)

type Player = {X, 0}

type Position = (Int,Int)

type Winner = {PlayerXWins, PlayerOWins, ItsATie}
8 type Board = Array (3,3) of Player & {Empty} X
) type Input = Empty

Empty Empty
Empty

Empty

Empty
Empty
Position Empty
initialBoard : Board
) initialBoard!(x, y) = Empty & BoGL says: Enter input,
or "clear" to stop
result : (Board, Player) -> Winner
> result(board, player) = if inARow(3, X, board) then
PlayerXwins
else if inARow(3, 0, board) then
PlayerOWins

> (2,2)

Empty Empty
X 0
Empty

Empty
else Empty

ItsATie

Empty Empty

Fig. 2. Screenshot of a Tic-Tac-Toe program in BoGL.

notation to a BoGL program through a manual process we call
BoGLization, which shows an algorithm and the development
of the BoGL program side by side, highlighting corresponding
parts in both. An example is shown in Figure 3. Referring
to Figure 3, the partial BoGL program (shown on top) is
manually created by the teacher from an algorithm (shown
at the bottom) in several steps. Parts in the algorithm that
have been translated in previous steps are shown in gray. The
light blue background focuses on those parts in the algorithm
that are translated into BoGL in the current step. Currently,
this translation is not automated; it is a manual process that
the teacher goes through with the students to build their
understanding of how to go from an algorithm description to a
formal programming language. We are currently investigating
how to support this process through an interactive tool.

IV. RESEARCH METHOD

In this section, we present the research method used to
determine students’ understanding of and experiences with
our curriculum. We first describe the implementation of the
7th grade elective, and then we describe the data collected to
answer our research questions.

A. The 7th grade CS Elective

Because 2020/2021 was the first year offering the curricu-
lum, students did not get exposure to the non-programming
6th-grade curriculum in the prior year, the teacher covered
most of the non-programming curriculum in the first 3-4 weeks
of the 18 weeks. Then, the students used BoGL to reinforce the
concept of how algorithms support the design of programs and
the concepts of types, names, values, functions, and control
structures with conditions.

Since the school was online due to COVID-19, the teachers
used Zoom for class lectures and Canvas to organize all the
information for the class, such as the syllabus, grades, etc.
The teachers used Kahoot! [50] games as brain breaks for
the students, and the students played physical board games,
like Boggle, Connect Four, or SET, as a class or in a Zoom
breakout room online each week.

The teachers had access to the pre-designed lesson plans,
presentation slides, and student worksheets. The teachers were
free to modify activities and material, add new material, or

game CoinToss

type Coin =
type Child =

{Heads, Tails}
{Jack, Rosa}

ALGORITHM Coin Toss
Jack picks heads or tails for the winning side
Rosa tosses the coin
IF the coin toss is equal to the winning side THEN
Rosa does the dishes
ELSE
Jack does the dishes

Fig. 3. BoGLization of the Coin Toss algorithm.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 27,2023 at 14:42:01 UTC from IEEE Xplore. Restrictions apply.

strictly keep to the lesson plans as presented. The 7th grade
elective teacher did not modify the provided curriculum before
the first elective offering. By the second offering, we noticed
the teacher felt comfortable making some modifications by
adding “skeleton” code with fill in the blanks for the students,
which he felt was easier for them to understand than creating a
program from a blank page. However, he never felt comfort-
able enough creating entirely new programs or assignments
for the students.

1) Student Background: Approximately, 28-30 students
were in each semester elective, which was only about 60
students total. With IRB approval, 37 students (25 identifying
as male and 12 identifying as female) consented to participate
in the research study and took the pre-survey. However, only
30 students (20 male and 10 female) shared their experiences
in the post-survey.

Most of the students self-selected to be in the elective, but
there were 10 students (8 in the post-survey) who did not
choose to take the elective. This is due to the school reducing
the number of electives offered online due to COVID-19, and
the school moved some students into other electives. While
26 of the 37 students reported having prior programming
experience, only 16 students reported attending a prior class
or camp for programming or CS, which could be because
students did not consider coding/CT activities, such as an
“Hour of Code” or self-taught exercises, as a class.

2) Assessment Questions: At the end of the units on
functions and if-then-else, we provided exit tickets to assess
student understanding/recognition of the BoGL syntax and
tracing algorithms (see Figure 4). The exit ticket on types and
functions was multiple choice with multiple correct answers,
and the second exit ticket on tracing algorithms and if-then-
else contained free-response and multiple choice with one
and multiple correct answers. At the end of the elective, we
provided a post survey with five open-ended questions asking
students about their likes, dislikes, struggles, and learning in
the elective, as well as what they thought about BoGL and
using games to teach programming.

V. RESULTS

In this section, we present the experiences of students in
the 7th grade elective by analyzing their multiple-choice and
free-response answers to exit tickets and categorizing their
qualitative responses to post-survey questions into themes. For
some post-survey question responses, we categorized them
into more than one theme. We counted the number of times
each theme appears in the student responses to quantitatively
evaluate overall experiences with the curriculum and the new
functional, text-based DSTL.

A. Student Understanding About BoGL Syntax

In this section, we present how students understand the
syntax of functions and if-then-else in BoGL. Only 19 students
from the first semester took the first exit ticket on function
syntax (see Figure 5), and 27 students (19 from the first
semester and 8 from the second semester) took the second

[Multiple Choice |

Question Answers (multiple select)

fun : Int-> NumPair

m : NumPair -> Inf

i : (Int. Int) > NumPair}

m(a. b a+b+5). (5

Algorithm Analysis

Algorithm #1

. OQuestim | Answers
when num is <=0

Algorithm #2

________ Question ________| Answers

when direction is (or equal to

Algorithm #3

Answers (multiple select)

Fig. 4. Multiple Choice and Algorithm Analysis Questions

exit ticket on tracing algorithms (see Figure 6). Unfortunately,
the researchers forgot to remind the teacher about the first exit
ticket in the second semester, and the teacher forgot to give the
first exit ticket to second-semester students. The researchers
and teacher remembered the second exit ticket.

1) What are students’ understandings of the function syntax
in BoGL?: In the first question, we asked students to identify
valid function signatures in BoGL, given a new type called
NumPair that is a pair of Ints (see Figure 4). Most students
(16 out of 19) recognized that the keyword “type” was never
used in a function signature, and the majority of the students
recognized that the last signature with parentheses around
the pair of Ints was correct (see Figure 5). However, out
of 14 students who correctly recognized the pair of Ints
with a parentheses, five also incorrectly selected the signature
without parentheses around the pair of Ints. Interestingly, only
four students selected the signature with an Int as input and
a NumPair as output. Whereas, seven students selected the
signature with a NumPair as input and an Int as output. In
either case, the number of students selecting options with one

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 27,2023 at 14:42:01 UTC from IEEE Xplore. Restrictions apply.

Question #1 Question #2
Includes (Includes| Includes Includes | Includes
answer, | answer, |answer and answer, | answer, [Exclud
not fun: fun(a, b)| fun(a,b) [fun(a,b)
2| Pair > | Int) > [NumPair ->] — ((a+b),[~(a+b+5) =ab
Int NumPair| Int,Int (a-b))

uestion #3
E;‘;'s';:':s Tncludes|
....... IsSIng | oprect
parens'

answer
answers| answer

Includes

[Partici pant| pen | ABSWer,
Pe™ | n:Int-

fun a, b

answer

Fig. 5. Answers to Multiple Choice Function Syntax Questions

Algorithm #1
Question #4

Algorithm #2
Question #7

correct| Right
answer| not

(3,6) |direction|

Algorithm #3

Q#5 | Q#6

[Excludes|
fun(4)
answer

directi
direction|

Includes(Includes

is Right

Fig. 6. Answers to Algorithm Analysis Questions

Int as input or output with a NumPair was low.

In the second and third questions, we asked students to
identify a valid function definition, given the same NumPair
type definition with an additional Bag type with two NumPairs
in Question #3 and a function signature (see Figure 4). We
wanted to further evaluate students’ understanding of tuple
types and the use of parentheses.

As suspected, the majority of the students (14 out of 19) cor-
rectly recognized missing parentheses around the parameters
beside the name of the defined function in Question #2, but
most of the students (6 out of 7) who incorrectly chose the
definition without parentheses around the pair of Ints being
returned were also those who correctly recognized missing

parentheses around the parameters (see Figure 5). Figure 5 also
shows that most students (14 out of 19) correctly identified the
most obviously correct function definition, but most students
did not choose the other answer with the extra parentheses
around the single literal integer value in the second pair of
integers, which was a tricky question.

In Question #3, most students recognized that a function
definition cannot have missing commas between the param-
eter names or returned output (see Figures 4 and 5). Also,
interestingly, the majority of students (17 out of 19) did not
incorrectly choose the option with missing parentheses around
the returned pair of integers in Question #3, as they did with
the last option in Question #2 (see Figure 4).

In the last question of the second exit ticket, we asked
students a general question about possible executions of a
function given a specific function definition (see Figure 4).
We were looking for students to recognize that there were two
inputs to this function. Therefore, the function needed to be
applied to two values. Most students (24 out of 27) understood
this concept and did not select the incorrect option with only
one input value (see Figure 6). However, three students, who
did not include the option with only one input, did not include
the correct answer with two literal inputs, and only selected the
option with two math expressions as input. Most students (19
out of 27) did not select the option with the math expressions
and parentheses for the two input values, but this was not
surprising based on student responses in the first exit ticket.

2) What are students’ understandings of tracing functions
with if-then-else in BoGL?: In the first four questions of the
second exit ticket, we asked students to identify properties
about the if-then-else conditions and to perform a trace (or
computation) with given inputs to functions with if-then-else
(see the “Algorithm Analysis” portion of Figure 4). In the
first algorithm question, we asked students to explain what
would make the function output “False”. We were looking for
students to say something about being less than and equal
to zero. While many students (16 out of 27) said something
about being less than zero, most students (19 out of 27) did not
include being equal to zero in their response (see Figure 6). It
is interesting that four students mentioned when the number
was zero without mentioning being less than zero.

In Question #5, we asked students to recognize what the
output would be when the input was zero (see Figure 4), and
most students (20 out of 27) correctly selected “False” (see
Figure 6). This might suggest that 7th grade students can better
recognize a correct answer than provide all pieces to a correct
answer in an open-ended question. However, it was surprising
that approximately 30% of the students got this simple tracing
exercise wrong.

Next, we asked students to trace another if-then-else with
specific input (see Figure 4), and even though it was a multiple
choice question with only one option to choose, many students
(12 out of 27) struggled with the question (see Figure 6). When
the direction is “Down”, then the output should be the same
x value and one subtracted from the y value. However, the
majority of the students (8 out of the 12) either increased the

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 27,2023 at 14:42:01 UTC from IEEE Xplore. Restrictions apply.

y value or increased the x value, which was unexpected from
the middle-school math learned.

With a more concrete Question #7 that asked students to
explain when the x value was increased and the y value
stayed the same (see Figure 4), only 9 out of the 27 students
did not mention something about “Right”, and only 4 out of
18 students, who mentioned “Right”, did not say when the
direction was equal to “Right” (see Figure 6), which was
different than student open-ended responses to Question #4.
In any case, 30% or more students struggled with analyzing
and tracing algorithms with if-then-else control structures.

B. Student Experiences

In this section, we present the experiences of the 30 assent-
ing students who took the post-survey in the 7th grade elective
by categorizing their qualitative post-survey responses into
themes. Some student responses were categorized into more
than one theme, and for each survey question, we counted the
number of times each theme appeared in a student response
to quantitatively evaluate their overall experiences with the
curriculum.

1) What do students like the most about the elective?:
First, we asked students what they liked about the class. The
majority of students mentioned something about coding, using
BoGL, programming games, or getting their code to work as
what they like the most in the elective (see Figure 7). These
responses were not surprising in an elective. However, out
of the 8 students who did not choose the elective, three of
the students mentioned liking coding, and one liked learning
something new. The other four, who did not choose to take
the elective, liked working in teams, playing Kahoot! games,
the teacher, and the energy of the class. It was interesting
that 5-6 students specifically mentioned the teacher and teams
as something they liked about the class, and many students
mentioned only one or both of these aspects as what they
liked the most in the class.

2) What do students like the least about the elective?:
Just as we asked students about what they liked, we also
asked them what they did not like. Many students (10 out of
30) said that there was nothing they liked the least about the
class (see Figure 7). However, four students specifically said
something about the class being on Zoom or using breakout
rooms. Four students explicitly stated not liking coding, and
two students mentioned not liking debugging their code or
being confused by code. However, only three of the seven who
mentioned something negative about coding did not choose to
take the elective. Whereas, two of the three who mentioned
something about the class being hard or having a lot of
material also did not choose to take the class. Other students
mentioned not liking either the non-programming part of the
class, remembering to insert screenshots in their assignments,
the lectures on input and output to functions, specifics about
the syntax, waiting to start programming, or specific games.

3) What do students feel they learn from the elective?: Even
though the curriculum started with teaching fundamental CS
concepts without programming, the majority of the students

Theme Responses

Like the most

Learn from the class

Like the least

Struggle with the most

Fig. 7. Student Experiences in the 7th-grade Elective

(27 out of 30) felt they learned about coding the most in
the class (see Figure 7), which is not surprising when they
spent 14-15 weeks (out of 18 weeks) on programming. It
was interesting that two students explicitly mentioned types
and functions as what they learned in programming. Although
only two students reported that their beliefs about CS and
programming were changed, their conclusions were exactly in
line with two of the major goals of the curriculum, namely:

(A) illustrating that programming is not intimidating,

and

(B) providing students with an accurate view of CS.

We believe that goal (A) is particularly relevant for under-
represented groups in CS and those not self-selecting CS, and
both of these criteria apply to the student who reported that
change in belief. Goal (B) is important to provide clarity to
students who think they want to do CS because they play video
games or it is popular.

4) What do students feel they struggle with the most in the
elective?: While many students said coding was what they
liked most about the class and learned in the class, the majority
of students (19 out of 30) also stated that writing the code
and the details of the syntax was what they struggled with the
most in the elective (see Figure 7). Three students mentioned

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 27,2023 at 14:42:01 UTC from IEEE Xplore. Restrictions apply.

specifically struggling with functions and types, and five other
students mentioned struggling to understand and debug code.
It was interesting that two students stated struggling with
the non-programming/boring parts of the class, and one also
mentioned disliking the non-programming part of the class
the most. One of these students had no prior programming
experience, while the other reported some experience using
Scratch.

5) Do students like using games as a way to learn fun-
damental CS concepts?: The overwhelming majority of the
students (28 out of 30) liked using games as a way to teach
CS concepts and programming (see Figure 8). Most students
stated that they liked using games because it is fun, the best
way to learn, and not boring. One student specifically said that
the use of games helped them focus. Two students mentioned
that games were cool to program/learn how they work in code
and making games was cool to show your family, which we
also had as a goal of this curriculum. Since games are usually
played with friends and family, we believe that games provide
a common language for kids to share what they learn about
CS with their friends and family.

6) How well do students enjoy programming in a new
Sfunctional, text-based language?: Finally, we asked students
what they thought about the new programming language used
in their class. The majority of students (23 out of 30) liked
using BoGL. Four students did not like the language at all,
and three students sort of liked the language (see Figure 9).

Students gave many reasons for liking or disliking the new
language. We provide a list of the reasons with the number

Did you like using games as a
way to teach computer

i 2
30 sclence:
20
10
0 |
Sort of Yes
Fig. 8. Student Feelings Toward Games
Did you like
programming in BoGL?
30
20
10
0 | [
No Sort of Yes

Fig. 9. Student Feelings Toward BoGL

of students who listed the reason. Since one of our goals was
to expose students to a text-based language in early middle
school, it was good to see that a reason for liking the language
was because it was not block-based.

It was interesting that some students explicitly stated liking
the language because it was simple, not complicated, and
made sense compared to other text-based languages, which
was another goal of making it a DSTL. One student goes as
far as saying that they tried learning other text-based languages
that did not make sense before BoGL.

Only two students did not like the language because they
preferred other languages, which did not seem like a primary
reason for disliking the language. Other possible reasons for
students to dislike the language were because they did not
understand programming or like programming at all. Reasons
for students sort of liking the language were because of
platform issues or general frustration from learning how to
program, but they stated otherwise liking the language.

Reasons for liking BoGL

« New coding language they didn’t know or it wasn’t block
based (4)

« Not complicated/simple (3)

e Makes sense (2)

« Rewarding to figure things out/get it working (2)

« Setup/user interface/errors/syntax highlighting (4)

« Engages them in thinking (2)

o Fun/the best (4)

Reasons for disliking BoGL

o Prefer other coding language (2)
« Do not understand/do not like coding (2)

Reasons for sort of liking or disliking BoGL

« Glitchy/platform issues (3)
« Fun but frustrating/difficult (2)

VI. CONCLUSIONS

From this experience, we learned that the teacher and class
structure contributed significantly to students’ positive experi-
ences in the elective. While the majority of the students under-
stood some of the basic syntax and concepts in BoGL, some
students struggled with expanding their knowledge to new
situations, such as with parentheses for pairing information
and mathematical expressions as input values. Students also
had a hard time analyzing and tracing algorithms correctly,
which were not concepts emphasized in the curriculum. In
the future, we will emphasize the concept of computation by
integrating more activities on algorithm analysis, tracing, and
prediction, which could also help with debugging skills.

However, we did see that the majority of students like
the curriculum and using games as a way to explain CS
concepts and teach programming. Even though most students
self-selected into the elective, the experience was positive for
those who did not choose to take the elective on their own.

We were surprised by how much prior programming expe-
rience the middle school students had in the 7th grade, but this
did not seem to have an impact on their feelings toward the

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 27,2023 at 14:42:01 UTC from IEEE Xplore. Restrictions apply.

curriculum or the language. Most students were appreciative
of learning a text-based language instead of a block-based
language. This might be attributed to the fact that BoGL is a
DSTL that is simple to use.

Only few students did not like the non-programming part
of the curriculum, and the gentle slope could lead to the
positive feeling toward the curriculum and less intimidation
with learning how to program, as evidenced by some of the
students’ responses.

As with any innovative practice report or research study,
we recognize that the evaluation of these results were only
from half the students in the class; other students might have
had different experiences. Therefore, the list of likes and
dislikes about the curriculum and new programming language
is not exhaustive, but it does give some insights into what
students understand about the BoGL syntax and think about
the curriculum.

In the future, we plan to use these results to further improve
the curriculum. For example, to address students’ struggle
with syntax, we will provide a gentler slope into learning
the syntax of the language by utilizing the interpreter before
the editor. Students will write expressions on Integers and
Booleans to motivate the idea that operations take certain types
of values as input and produce a certain type of value as
output. Playing with small expressions and exploring syntax
in the interpreter can also gradually accustom students to
deal with errors. We also contemplate making minor changes
to BoGL, based on students’ interaction with the language.
Finally, we are currently working on formalizing the process of
BoGLization and implementing a tool that can assist teachers
and students with translating their algorithm descriptions to
BoGL programs.

ACKNOWLEDGMENT

This work is supported by the National Science Foundation
under the grant #1923628.

REFERENCES

[1]1 CS For Fun: Queen Mary, University of London, “Welcome to cs4fn : the
fun side of computer science,” http://www.cs4fn.org/, 2011, accessed:
2021-01-07.

[2] ——, “Teaching london computing: A resource hub from cas london &
cs4fn,” https://teachinglondoncomputing.org/, 2015, accessed: 2021-01-
07.

[3] T. Y. Lee, M. L. Mauriello, J. Ahn, and B. B. Bederson, “Ctarcade:
Computational thinking with games in school age children,” Int. Journal
of Child-Computer Interaction, vol. 2, no. 1, pp. 26-33, 2014.

[4] L. A. Sharp, “Stealth Learning: Unexpected Learning Opportunities
Through Games,” Journal of Instructional Research, vol. 1, pp. 42-48,
2012.

[5] C. Harris, “Meet the New School Board: Board Games Are Back—And
They’re Exactly What Your Curriculum Needs,” School Library Journal,
no. 5, pp. 24-26, 2009.

[6] C. Ragatz and Z. Ragatz, “Tabletop Games in a Digital World,”
Parenting for High Potential, no. 7, pp. 16-19, 2018.

[71 K. M. Kapp, The Gamification of Learning and Instruction: Game-Based
Methods and Strategies for Training and Education. Pfeiffer, 2012.

[8] S. Cavanagh, “Playing Games in Class Helps Students Grasp Math,”
Education Digest: Essential Readings Condensed for Quick Review,
no. 3, pp. 43-46, 2008.

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

(28]

[29]

[30]

[31]

(32]

[33]

M. Berland and S. Duncan, “Computational Thinking in the Wild:
Uncovering Complex Collaborative Thinking through Gameplay,” Ed-
ucational Technology, vol. 56, no. 3, pp. 29-35, 2016.

M. Berland and V. R. Lee, “Collaborative Strategic Board Games as
a Site for Distributed Computational Thinking,” Int. Journal of Game-
Based Learning, vol. 1, no. 2, pp. 65-81, 2011.

N. R. Holbert and U. Wilensky, “Racing games for exploring kinematics:
a computational thinking approach,” 2011, pp. 109-118.

C. Kazimoglu, M. Kiernan, L. Bacon, and L. MacKinnon, “Learning
programming at the computational thinking level via digital game-play,”
Procedia Computer Science, vol. 9, pp. 522-531, 2012.

T. Y. Lee, M. L. Mauriello, J. Ingraham, A. Sopan, J. Ahn, and
B. B. Bederson, “CTArcade: Learning Computational Thinking Thile
Training Virtual Characters Through Game Play,” in Human Factors in
Computing Systems, 2012, pp. 2309-2314.

P. Apostolellis, M. Stewart, C. Frisina, and D. Kafura, “RaBit EscAPE:
A Board Game for Computational Thinking.” in Conference on Inter-
action Design and Children, 2014, pp. 349-352.

Primo, “Cubetto: Screenless coding toy for girls and boys aged 3-6,”
2018, https://www.primotoys.com.

K. Tsarava, K. Moeller, and M. Ninaus, “Training Computational
Thinking Through Board Games: The case of Crabs and Turtles,” Int.
Journal of Serious Games, vol. 5, no. 2, pp. 25-44, 2018.

CS For Fun: Queen Mary, University of London, “Winning at nim: com-
puters outwitting humans,” http://www.cs4fn.org/binary/nim/nim.php,
2011, accessed: 2021-01-07.

——, “Noughts & crosses,” http://www.cs4fn.org/programming/
noughts-crosses, 2011, accessed: 2021-01-07.

T. C. Bell, I. H. Witten, and M. Fellows, Computer Science Unplugged:
Off-line Activities and Games for All Ages. Computer Science Un-
plugged, 1998.

T. Bell, I. H. Witten, and M. Fellows, CS Unplugged. An Enrichment
and Extension Programme for Primary-Aged Students, 2015.

T. J. Cortina, “Reaching a Broader Population of Students Through
“Unplugged” Activities,” Communications of the ACM, vol. 58, no. 3,
pp. 25-27, 2015.

R. Thies and J. Vahrenhold, “On Plugging “Unplugged” Into CS
Classes,” 2013, pp. 365-370.

Q. Cutts, Q. Connor, G. Michaelson, and P. Donaldson, “Code or (not
code): separating formal and natural language in CS education,” 2014,
pp. 20-28.

J. Parham-Mocello, S. Ernst, M. Erwig, E. Dominguez, and L. Shell-
hammer, “Story Programming: Explaining Computer Science Before
Coding,” in ACM SIGCSE Symp. on Computer Science Education, 2019,
pp. 379-385.

J. Parham-Mocello and M. Erwig, “Does Story Programming Prepare
for Coding?” in ACM SIGCSE Symp. on Computer Science Education,
2020, pp. 100-106.

J. Parham-Mocello, A. Nelson, and M. Erwig, “Exploring the Use of
Games and a Domain-Specific Teaching Language in CS0,” in ACM
Conf. on Innovation and Technology in Computer Science Education,
2022, pp. 351—-357.

P. Curzon, P. W. McOwan, N. Plant, and L. R. Meagher, “Introducing
teachers to computational thinking using unplugged storytelling.” 2014,

pp. 89-92.
Primo, “Free beginner’s guide to coding with kids,”
https://www.primotoys.com/guide-coding-for-kids-ebook/, 2020,

accessed: 2021-01-07.

T. Bell, P. Curzon, Q. I. Cutts, V. Dagiene, and B. Haberman, “Overcom-
ing Obstacles to CS Education by Using Non-Programming Outreach
Programmes,” in Int. Conf. on Informatics in Schools, ser. LNCS 7013,
2011, pp. 71-81.

Q. I. Cutts, M. I. Brown, L. Kemp, and C. Matheson, “Enthusing and
informing potential computer science students and their teachers,” in
SIGCSE Conf. on Innovation and Technology in Computer Science,
2007, pp. 196-200.

C. Mano, V. Allan, and D. Cooley, “Effective In-Class Activities for
Middle School Outreach Programs,” in Annual Conf. on Frontiers in
Education, 2010, pp. F2E-1-F2E-6.

R. Taub, M. Ben-Ari, and M. Armoni, “The Effect of CS Unplugged on
Middle-School Students’ Views of CS,” in SIGCSE Conf. on Innovation
and Technology in Computer Science, 2009, pp. 99-103.

P. Brusilovsky, E. Calabrese, J. Hvorecky, A. Kouchnirenko, and
P. Miller, “Mini-languages: a way to learn programming principles,”

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 27,2023 at 14:42:01 UTC from IEEE Xplore. Restrictions apply.

[34]

[35]

[36]

(371

(38]

[39]

[40]

Education and Information Technologies, vol. 2, no. 1, pp. 65-83,
1997. [Online]. Available: https://doi.org/10.1023/A:1018636507883

T. Kosar, N. Oliveira, M. Mernik, M. Pereira, érepin§ek, D. D. Cruz,
and P. H. Rangel, “Comparing general-purpose and domain-specific
languages: An empirical study,” Computer Science and Information
Systems, vol. 7, no. 2, pp. 247-264, 2010.

T. Kosar, M. Mernik, and J. C. Carver, “Program comprehension of
domain-specific and general-purpose languages: comparison using a
family of experiments,” Empirical Software Engineering, vol. 17, no. 3,
pp. 276-304, 2012.

M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi, “The
structure and interpretation of the computer science curriculum,” vol. 14,
no. 4, pp. 365-378. [Online]. Available: https://www.cambridge.org/
core/product/identifier/S0956796804005076/type/journal _article

——, “The TeachScheme! project: Computing and programming for
every student,” Computer Science Education, vol. 14, no. 1, pp. 55—
77. [Online]. Available: https://www.tandfonline.com/doi/full/10.1076/
csed.14.1.55.23499

M. M. T. Chakravarty and G. Keller, “The risks and benefits of teaching
purely functional programming in first year,” vol. 14, no. 1, pp.
113-123. [Online]. Available: https://www.cambridge.org/core/product/
identifier/S0956796803004805/type/journal_article

J. Hughes, “Experiences from teaching functional programming
at chalmers,” vol. 43, no. 11, pp. 77-80. [Online]. Available:
https://doi.org/10.1145/1480828.1480845

J. Margolis and A. Fisher, Unlocking the Clubhouse: Women in Com-

[41]

[42]
[43]

[44]

[45]

[46]

[47]
[48]
[49]

(501

puting. Cambridge, MA: MIT Press, 2003.

S. Joosten, K. Van Den Berg, and G. Van Der Hoeven, “Teaching
functional programming to first-year students,” vol. 3, no. 1, pp. 49-65.
[Online]. Available: https://www.cambridge.org/core/product/identifier/
S0956796800000599/type/journal_article

B. Community, “Bootstrap.” [Online].
bootstrapworld.org/materials/algebra/

G. Wright, P. J. Rich, and R. Lee, “The influence of teaching program-
ming on learning mathematics,” 2013.

M. Mladenovi, S. Mladenovi, and Zana Zanko, “Impact of used pro-
gramming language for k-12 students’ understanding of the loop con-
cept,” International Journal of Technology Enhanced Learning, vol. 12,
pp. 79-98, 2020.

N. Humble, “The use of programming tools in teaching and learning
material by k-12 teachers,” 10 2021.

P. Mishra and M. J. Koehler, “Technological pedagogical content knowl-
edge: A framework for teacher knowledge,” Teachers College Record,
vol. 108, pp. 1017-1054, 2006.

Friedman, B. and Grejuc, A. and Erwig, M., “BoGL Web Implementa-
tion,” 2020, bogl.engr.oregonstate.edu.

Haskell, “An advanced, purely functional programming language,” https:
/Iwww .haskell.org, 2019, accessed: 2020-08-24.

Elm, “A delightful language for reliable web applications.” https://elm-
lang.org, 2021, accessed: 2021-08-11.

Kahoot!, “A game-based learning platform,” https://kahoot.it/, 2020,
accessed: 2020-08-26.

Available: https://

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 27,2023 at 14:42:01 UTC from IEEE Xplore. Restrictions apply.

