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ARTICLE INFO ABSTRACT

Keywords: Natural disasters pose serious threats to Critical Infrastructure (CI) systems like power and drinking water,
Infrastructure hardening sometimes disrupting service for days, weeks, or months. Decision makers can mitigate this risk by hardening
Resilience CI systems through actions like burying power lines and installing backup generation for water pumping.
Stochastic optimization However, the inherent uncertainty in natural disasters coupled with the high costs of hardening activities
Disaster planning

make disaster planning a challenging task. We develop a disaster planning framework that recommends asset-
specific hardening projects across interdependent power and water networks facing the uncertainty of natural
disasters. We demonstrate the utility of our model by applying it to Guayama, Puerto Rico, focusing on the risk
posed by hurricanes. Our results show that our proposed optimization approach identifies hardening decisions
that maintain a high level of service post-disaster. The results also emphasize power system hardening due to
the dependency of the water system on power for water treatment and a higher vulnerability of the power
network to hurricane damage. Finally, choosing optimal hardening decisions by hedging with respect to all
potential hurricane scenarios and their probabilities produces results that perform better on extreme events
and are less variable compared to optimizing for only the average hurricane scenario.

Critical infrastructure systems
Energy-water nexus

1. Introduction reveal both the interconnections between CIs and the importance of CIs
to the functioning of our society [1,3,4]. In these and similar events,

The complex interactions between different CI systems are some-
thing we all experience in our day-to-day lives. The drinking water
that flows from our taps depends on the electricity sector to power
the purification and distribution processes. Transportation networks
require electricity to operate traffic signals. The electricity we consume

when we turn on the light may have been generated from hydropower,

CI interdependencies include outages of traffic signals due to loss of
electricity, loss of water pressure due to electricity loss at pumping
stations, water main breaks from co-located utility failures, and disrup-
tion in communication services for emergency response and repair due
to electricity and telecommunication system outages. Power outages

steam heated in a coal or natural gas power plant, or a nuclear plant
cooled by water.

The interconnections between CI systems become more apparent
when disasters occur. After a disturbance, limited resource availability
stresses interdependencies between systems. This can cause failures in
one system to cascade into the systems that depend on it, resulting
in disruptions throughout the dependent systems [1]. CI systems are
systems whose failure “would have a debilitating impact on the defense
and economic security” of a nation [2]. This includes drinking and
waste water, natural gas, telecommunications, transportation, electric
power systems, and emergency services [1]. Recent worldwide disasters
such as the 2001 World Trade Center attack, the 2011 Japan Earth-
quakes, the 2017 Puerto Rico hurricanes, and the 2021 Texas freeze
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result in $20 to $50 billion in damages annually to the United States
(U.S.) economy alone, and data suggest that outages are becoming more
frequent and more severe with time [5]. The frequency and impacts of
natural disasters have exhibited nearly exponential growth in recent
decades [6]. The growth of the world’s population combined with
the threat of climate change places more stress on already vulnerable
infrastructure systems [6,7]. Therefore, disaster modeling and analysis
of our CI and its vulnerabilities is an important and active area of
study [1].

In this paper, we develop a decision-making framework that systems
planners can use to make interconnected CI more resilient to a disaster
or disturbance. Resilience is the ability of a system to withstand,
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absorb, adapt, and rapidly recover from disturbances like hurricanes,
floods, earthquakes, and malicious attacks [1,6,8,9]. In this study, we
focus on long-term resilience planning or mitigation, exploring the
paradigm where decision makers seek to harden existing infrastructure.
These hardening activities include repairing water pipe leaks, installing
backup generation at pumping stations, undergrounding power lines,
and protecting water storage facilities. The inherent uncertainty in
predicting the occurrence and impact of natural disasters presents a
key challenge in resilience planning [8]. In this work, we consider
the impacts of natural disasters, specifically hurricanes, on connected
power and drinking water infrastructure by modeling the problem as
a two-stage stochastic program, a paradigm widely employed in the
literature for disaster planning [10-12]. The first stage (here-and-now)
decisions are the decision maker’s investment decisions to make the
systems more resilient to disturbances. The second stage (recourse)
decisions are the operations that meet as much demand as possible,
given a realization of the disturbance. In this study, we characterize
the uncertainty in disaster realization through the capacities of infras-
tructure components after the disaster, which depend on the disaster
scenario and the first stage hardening decisions. In contrast to other
models employing scenario- or simulation-based approaches [13-18],
we are thus able to develop an optimal decision-making framework
that hedges with respect to potential disaster realizations and their
probabilities. A cost-minimization objective forces decision makers to
prioritize which components they choose to harden in the face of
disaster uncertainty. The primary factors causing the model to identify
an infrastructure component for hardening are trade-offs among its
probability of failure, its criticality in being able to serve demand across
infrastructure systems, and the relative cost of hardening the asset
compared to the possible cost of repairing it.
In summary, our work contributes to the literature by:

1. Developing a framework for identifying optimal hardening de-
cisions across interdependent power and water infrastructure
systems

2. Exploring the relationship between power and water infrastruc-
ture in a disaster context

3. Characterizing the uncertainty in natural disaster realization and
the threats that disasters pose to power and water infrastructure

4. Applying our framework to a detailed, empirically grounded
case study to demonstrate its efficacy for real-world disaster
planning

We implement our model for a case study based on the city of
Guayama, Puerto Rico. In this case study, we demonstrate the ways our
methods can be used to guide a decision maker’s planning decisions by
prescribing hardening actions they should undertake. At optimality, our
model recommends more hardening of the power network than the wa-
ter network. This phenomenon is driven both by the power network’s
greater vulnerability to hurricanes and the water network’s dependency
on power to treat its water supply. We find that hedging over potential
hurricane scenarios yields decisions that are less variable and perform
better in the event of extreme disasters relative to planning only for
the average hurricane scenario, validating our advanced treatment of
disaster uncertainty. We also find that system performance is largely
insensitive to the relative cost of repairing assets versus hardening
them. Finally, we find that service level requirements imposed by
decision makers are able to be maintained across a wide variety of
simulated disaster scenarios when optimal hardening is implemented.

The remainder of this paper is organized as follows. We provide
an overview of the most relevant literature on resilience planning
in Section 2, paying special attention to resilience planning for in-
terdependent infrastructure systems. In Section 3, we present our
two-stage stochastic programming formulation for the interconnected
water-power resilience planning problem. We describe a case study of
interdependent power and water infrastructure in Section 4, focusing
on the city of Guayama, Puerto Rico. We then explore the case study
results in detail in Section 5. Finally, we discuss our conclusions in
Section 6.
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2. Literature review

While this paper focuses specifically on the resilience of interdepen-
dent infrastructures, the resilience of individual infrastructure systems
has a long history as an active area of interest in the literature. Works
that focus on individual CI systems often model relationships that may
be too computationally intensive in papers studying interdependent
infrastructure systems. Power [3,10,19], drinking water [14,15], and
transportation [11,12,16] infrastructure systems are most frequently
studied in the literature. For example, power grid resilience work often
captures nonlinearities of power flow using the AC or DC approxi-
mation, thus capturing the real-world response of these systems to
disturbances [10,19]. The resilience literature adopts different plan-
ning horizons. Some work explores long-term hardening decisions that
decision makers face months or years in advance to prepare for dis-
asters [3], while other work focuses on short-term planning as system
operators prepare for an upcoming disaster and then repair any damage
made to the infrastructure, restoring service [12,16]. In the context
of individual CI planning, researchers often take the perspective of
the system operator or utility in their study [3,11,12]. In contrast,
researchers in the interdependent infrastructure literature often take
the perspective of a system-of-systems planner, such as the Federal
Emergency Management Agency (FEMA), where the decision maker is
coordinating responses across multiple systems [20]. In the case of the
individual system planner, the objective may be more cost-based [11,
19], rather than the service-based objectives of system-of-systems plan-
ners. However, because individual CI utilities still serve the public
good, they still typically evaluate the risk of lost service, either as
part of the objective function or through a constraint [16,19]. While
resilience planning for individual infrastructure systems can improve
the computational tractability of models, the interactions between CI
systems and their impacts on overall system performance [1] serve to
motivate our nexus approach to CI planning.

Modeling of interdependent CI is a growing area of the litera-
ture. Some work has been done on interdependent CI modeling in a
non-disaster context [21,22]. Because the interactions between interde-
pendent CI become more apparent and relevant to system performance
in the case of disasters, interdependent CI is typically studied in the
context of resilience and emergency response. Classification and mod-
eling of infrastructure interdependencies are discussed in [23]. [23]
classifies interdependencies along two orthogonal dimensions: ontology
and epistemology. The dimension of ontology describes when and how
the interdependencies appear, whereas the dimension of epistemology
classifies the interdependencies into modeling stages. [23] describes
two classifications in the dimension of ontology: episodic (interde-
pendencies that appear only under certain conditions) and chronic
(interdependencies that always exist). We focus on a chronic interde-
pendency; we assume that the water system depends on the power
system to operate across our decision making time horizon. In the
dimension of epistemology, [23] identifies four stages of the resilience
modeling process: hazard and exposure, policy and control, operation
and performance, and deterioration and recovery. Our framework spans
the first three stages. First, we develop a hazard and exposure model
to simulate the impacts of a hurricane on a network. Then, our model’s
first stage forms a policy and control model capturing the economic
considerations of resilience planning. Finally, our model describes the
operation and performance of the system for each disaster realization
in the second stage.

There are five main approaches to modeling the resilience of in-
terdependent CI systems in the literature: empirical approaches, agent-
based approaches, system dynamics-based approaches, approaches
based on economic theory, and network-based approaches. Ouyang [1]
provides an in-depth comparison of the different approaches and their
relative advantages and disadvantages. Empirical studies explore events
from historic case studies after a disaster using both quantitative
and qualitative approaches. In such studies, data are gathered from
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a number of sources including newspapers and media reports [24],
expert opinions [25], and utility owners and operators [26]. In these
empirical studies, failure consequences are characterized both by their
impact, defined by duration and severity, and their extent, defined
by the geographic area and the population impacted [27]. Empirical
studies range from system-level to component-level analyses [1]. By
contrast, agent-based approaches use a bottom-up approach, modeling
the complex behaviors of individual CI as individual agents interacting
with other CI and their environment based on a set of rules [1].
This modeling paradigm is popular at the U.S. National Labs, with
agent-based resilience modeling tools developed at Sandia National
Labs [28], Argonne National Lab [29], and Idaho National Lab [30].
While agent-based modeling is a bottom-up paradigm, system dynamics
approaches use a top-down modeling approach to capture the feedbacks
between different CI [1]. The challenge presented by model structure
selection, parametrisation, and model validation are all weaknesses
of this modeling approach [1]. The fourth modeling approach to
interdependent CI modeling is based on economic theory, e.g., Leontief
models and equilibrium-based models. Under the Leontief input-output
economic model [31] the impacts of a disturbance are captured as
decreased output or level of service from one sector, and the model
structure captures the impact of that sector on others. However, these
models do not capture component-level interdependencies, and the
matrix of sector interdependencies can be difficult to parameterize [1].
Economic theory-based approaches can also include equilibrium-based
models capturing the behavioral responses of consumers and producers
for infrastructure, e.g. [20]. Finally, network-based resilience models
illustrate CI components as nodes and connections between nodes
as links [1]. In these network-based studies, a hazard eliminates or
reduces the capacities of nodes and edges, simulating the impacts
of a disaster [9,17,32]. Some network-based approaches may explore
network topology, such as connectivity changes and redundancies [33],
while others model network flows, either as generic commodities [34]
or including nonlinearities such as power and water flows [10,19,21].
As Ouyang [1] notes, network flow-based approaches capture opera-
tional mechanisms, providing more realism in system behavior than the
other four modeling approaches. Our paper employs a network flow-
based approach to resilience planning, modeling the flows in power and
water infrastructure as generic commodities, a simplification that al-
lows for more computationally-intensive modeling of other dimensions
of the problem, such as uncertainty. We find that our rigorous treatment
of uncertainty through two-stage stochastic programming produces
hardening recommendations that perform better on extreme events and
are less variable compared to optimizing for only the average hurricane
scenario. This performance improvement helps justify our selection of
a network-based approach and related modeling assumptions.

2.1. Treatment of uncertainty

In resilience planning, the treatment of uncertainty presents a sig-
nificant modeling challenge due to the low probabilities, but high
consequences, of many disaster types [1]. While some resilience work
does not consider the uncertainty from natural disasters [20,35], most
models include some notion of uncertainty in the analysis and decision-
making framework. Treatment of uncertainty ranges from less rigor-
ous, in the form of scenario-based analysis [17,18], to more rigorous
simulation-based modeling [13-16], to the most rigorous approaches
that include uncertainty hedging in the model structure, either through
robust optimization [9] or two-stage stochastic programming [9-11,
36]. While scenario analysis and simulation are common approaches to
disaster uncertainty modeling in the literature, they do not guarantee
optimality of the actions they recommend, or even make clear the
degree of suboptimality [10]. Therefore, in this study we employ two-
stage stochastic programming to fully embed uncertainty within the
optimization framework. This paradigm guarantees that the solution it
finds is optimal with respect to the set of disaster scenarios incorporated
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into the stochastic program [37]. Frequently, there are many or infinite
possible realizations of uncertainty, for example when the distribution
of possible uncertainty realizations is continuous. In this case, it is
common to use Monte Carlo methods to sample scenarios from the
distribution of possible uncertainty realizations [37], called Sample
Average Approximation (SAA). SAA does not guarantee optimality
across all possible uncertainty realizations, though it does guarantee
optimality across the specific scenarios that are sampled. It is for this
reason that we employ an out-of-sample evaluation of the hardening
decisions. We find that constraints imposed in the in-sample formu-
lation are, with few exceptions, able to be met in the out-of-sample
evaluation. This suggests that the SAA, and the number of scenarios
we select in our approximation, are sufficient to fully characterize the
uncertainty in disaster realization and deliver optimal or near-optimal
hardening decisions.

For most paradigms, scenario generation is a key component of
modeling uncertainty. Some papers employ an in-depth scenario gener-
ation process, relying on historical data to derive representative disaster
scenario distributions [13,15,38]. Then a disaster scenario is sampled
from the distribution, and fragility curves are used to ascribe the
corresponding level of infrastructure damage to the sampled disaster
magnitude [15,38]. Other works employ a more abstract process to de-
fine scenarios by directly sampling the amount of damage experienced
by the infrastructure, generally from uniform, normal, or lognormal
distributions [3,16]. We selected the former method for its higher
degree of realism; an empirically-grounded case study is one of the
contributions of this work. First, we sample a category of hurricane
based on historical observations from our area of interest. Then we ap-
ply fragility curves to determine asset failure probabilities throughout
the network. Last, we sample network damage realizations according
to these computed failure probabilities.

While we largely focus on optimal decision making uncertainty,
indeed this is the reason for our selected modeling paradigm, through
sensitivity analysis we also consider the impact of uncertainty in our
model parametrisation. This backwards propagation of uncertainty
helps quantify the amount of uncertainty each uncertain aspect of
the model and its inputs contribute to the overall uncertainty in the
model’s response [39]. [40] classifies sources of error in the resilience
modeling process into sample error, uncertain inputs, and model error.
We focus on input uncertainty by perturbing three model parameters:
the system performance requirement, the relative cost parameter, and
infrastructure prioritization. Often, the computational challenges of
stochastic programming prohibit sensitivity analyses [11,41], while
others include at least a sensitivity analysis of the impact of available
budget [42,43] similar to the analysis we conduct on the impact of our
three most uncertain model parameters. More rigorous sensitivity anal-
ysis techniques include Global Sensitivity Analysis (GSA) [39,40] and
Reliability-Oriented Sensitivity Analysis (ROSA) [44]. These sensitivity
analysis techniques can help guide future data collection by identifying
characteristics of the system and hazards that contribute significantly
to uncertainty [40] but were out of scope for this study.

2.2. Decision objectives

In this paper, as with all research in the resilience space, the
objective has implications for system performance, cost, and fairness.
Because many papers take the perspective of a system planner, max-
imizing system performance or minimizing service loss are the most
common objectives [10,13,14,16,35]. Some works combine both cost-
based and service-based objectives in their optimization problem by
quantifying the financial cost or value of lost service [9,17,18]. In these
works, the financial cost of hardening and disaster response is usually
included in the objective, creating a cost-effectiveness framework. In
our work, we choose to minimize total expected costs. We measure
resilience using an unmet demand constraint bounded by a service
level requirement, favoring a cost-effectiveness structure. We define
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unmet demand as the difference between exogenous demand and the
amount of a commodity (power or water) that is actually delivered.
We selected this framework because it most closely matches the system
planner’s perspective. Fairness is typically considered in concert with
other decision objectives, for example Karakoc et al. [17] normalize
individual lost service by the social vulnerability of the individuals.
Additionally, many works include a spatial dimension of their proposed
resilience metrics quantifying the criticality of a node [9,14,32,45,46].
Node weighting can capture critical loads like hospitals, schools, and
nursing homes, vulnerable populations, or differences in the impor-
tance of different infrastructure types. We include equity consideration
and spatial resolution in our resilience metric through individualized
node weighting, with a parameter describing the criticality of satisfying
demand at each node in each infrastructure system. In our case study,
we use this parameter to establish a prioritization between power and
water unmet demand. Finally, a measure of risk is often included in
resilience models, either as an expected value of service level [10-12],
a worst-case service level [9], or another metric for recovery, such as
the difference in minimum and maximum recovery times across simu-
lations [16]. In our formulation, we impose the minimum service level
requirement across all scenarios, thereby dictating that the worst-case
unmet demand does not exceed the service level requirement.

2.3. Temporal resolution and planning horizon

The temporal dimension of resilience planning is another differ-
entiating model characteristic in the literature. Resilience planning
takes the form of long-term mitigation and short-term preparedness and
repair. Mitigation, or long-term resilience planning, is where decision
makers proactively improve the resilience of CI systems by either
hardening existing components or by expanding networks to introduce
redundancies [10,20]. Preparedness, the first step of short-term re-
silience planning, describes the process of staging disaster repair and
response infrastructure such as gathering repair materials, installing
temporary protection equipment like flood barriers, and operating CI
to best prepare, for example by filling water storage tanks in advance
of anticipated loss of service [12]. Repair or restoration, the second
stage of short-term resilience planning, involves systematically restor-
ing service by repairing damaged infrastructure [16-18]. Adaptation, a
key component of resilience planning, means that service may not be
restored to pre-disaster status [6]. Some works include a combination
of long-term and short-term resilience planning [9,11]. In our work,
we focus on long-term disaster planning or mitigation, but include the
ability of the system operators to operate the systems differently in each
realization of the disaster. This methodology is consistent with other
two-stage stochastic programs implemented in the literature [10-12].
While we choose to model the resilience problem with two stages, one
of which represents the post-disaster stage, other works in the literature
explore multiple time periods [9,13,15-19,32,35,45-49]. These works
generally model the restoration and repair logistics of CI, therefore
necessitating the multi-stage approach. The computational complexity
this entails generally requires simulation or other non-prescriptive
methods, which does not guarantee optimal decision-making guidance.
In contrast, our model does guarantee optimality of hardening decisions
with respect to the set of disaster scenarios included in the stochastic
program, as previously discussed. Restoration-focused works like [47,
48] may feature more computationally-intensive modeling assump-
tions like binary decision variables and restoration crew scheduling.
Conversely, we assume all decision variables are continuous, making
our model a Linear Program (LP) as compared to the Mixed Integer
Linear Program (MILP) explored in [47,48]. This difference is in part
because detailed modeling of crew scheduling requires the use of binary
variables to define assignments, while hardening decisions are closer to
continuous. Decision makers face a range of hardening options in terms
of cost (e.g., tree trimming versus burying power lines) and spatial reso-
lution (i.e., hardening only a portion of a link). Additionally, restoration
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models typically prescribe rebuilding sequences for a specific disaster
realization. In comparison, the hardening problem explored in this
paper identifies a resilience plan that is optimal with respect to the
set of all disaster scenarios, though represents a significant additional
computational burden. Thus, by assuming that hardening decisions
are continuous, we not only capture some of the range in possible
hardening decisions, but are also able to prescribe decisions that are
optimal across a range of disaster scenarios.

2.4. Case study selection

We demonstrate our proposed framework on a detailed real-world
case study, a primary contribution of this work. We represent the city
of Guayama, Puerto Rico with a combined 2203 nodes and 2468 edges
for the power and water systems, making our case study among the
largest that we have found in the literature [11]. With this scale, we
are able to demonstrate our model’s efficacy for real-world disaster
planning. Many other case studies demonstrate their models on net-
works with around 100 or fewer nodes [9,17,19,32], often on synthetic
examples [18,21,35,50]. Our ability to implement our model on a real-
world case study was aided by the availability of public data from the
government of Puerto Rico [51]. As noted by Ouyang [1], data access
is a fundamental problem in CI modeling, in part driving the selection
of our case study. A symbiosis can exist between stakeholders and
researchers that we hope to see leveraged as the field of CI resilience
modeling grows. In our case study, we also develop scenarios tailored to
real-world disasters, specifically hurricanes. The disaster types explored
in the literature include hurricanes [13,19], earthquakes [11,12,14-
17,32], and generalized infrastructure disturbances [3,9,18,20]. The
disaster type selected is usually motivated by the geographic region
of the case study. In our case, hurricanes pose a severe threat to
Puerto Rico, a fact highlighted by the 2017 Category 5 hurricanes
Irma and Maria [3]. Our disaster scenario generation algorithm is
therefore designed to simulate the effects of hurricanes on the network
in Guayama, Puerto Rico.

3. Formulation

We construct the resilience hardening problem as a two-stage
stochastic program. This modeling paradigm is well-suited for modeling
disaster planning problems, capturing both the planning decisions
made before the realization of the uncertain natural disaster and the
operational decisions made in the aftermath. We assume that there is
a central decision maker allocating funds to the water network and
power network and that there is coordination between power and
water hardening decisions. Fig. 1 illustrates the conceptual relationship
between the power and water networks ideated in this study. Power
generation (Red “G”) and reservoir (Blue “R”) nodes represent the
supply nodes in the power and water networks, respectively. The red
“R” node in the power network corresponds to the power demand for
water treatment. Ovals are demand nodes, denoting either individual
customers or aggregations at the neighborhood scale. Demand nodes
may or may not have non-zero demands, shown by the presence of
a “D”. Thick dashed lines in the water network in Fig. 1 represent
pumps, and the linkage between these assets and pump stations (“P”) in
the power network. If a disaster occurs, then the capacities of certain
system assets — power stations, water reservoirs, water pumps, water
links, and power links — can be reduced if these assets are not suffi-
ciently hardened. Our framework allows the system planner to hedge
their hardening decisions with respect to a probability distribution of
potential disaster realizations. We model the system planner’s primary
objective as minimizing expected costs, consisting of preparedness
and expected repair expenditures, given a required service level. The
flexibility of our proposed framework allows the system planner to
assign weights to service losses, thereby prioritizing specific loads and
infrastructure types.
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Table 1
Nomenclature.
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Sets and Indices

seSs Infrastructure systems S = {W U P} where W is water and P is power
i€ N Nodes N* = {N'" UNP} in infrastructure system network s € S
i,j) €& Edges &£ = (€W U £} in infrastructure system network s € S
8 Y
wE N Disaster scenarios characterized as realized network failures

Decision variables

v First stage node hardening decisions for node i

zj; First stage edge hardening decisions for link (i, j)

u;, Second stage nodal unmet demand at node i under scenario @

L Second stage link flowrates for link (i, j) under scenario w

o), Second stage node supply capacity used under scenario » for node i

T Second stage fraction of link capacity available (undamaged) under scenario @ for link (i, j)

6;, Second stage fraction of node capacity available (undamaged) under scenario w for node i

Pio Second stage endogenously calculated power demand at node i required by the water
system in scenario @

Parameters

d; Demand on infrastructure system s € .S at node i

Do Occurrence probability of disaster scenario w

w} Weight placed on node i’s unmet demand for system s

¢ ¢ Hardening cost for nodes i and links (i, j), respectively, in system s

¢, ¢ Repair cost for nodes i and links (i, j), respectively, in system s

U Allowable weighted service level of the two systems across scenarios

KIW, Q,VIV Power-dependent supply capacity at node i and link (i, j), respectively

ay Conversion of power to water flowrate for water treatment. 0 if [i, k] is not a mapping
between water treatment plant i and k in the water and power networks, respectively

bijk Conversion of power to water flowrate for pumping. 0 if [(i, j), k] is not a mapping between
pump stations (i, j) and k in the water and power networks, respectively

Vi Siiw Realization of undamaged fraction without hardening under scenario ® for nodes i and

links (i, j), respectively. O if asset has failed, 1 otherwise

e~ =X

o o Reservoir

—_—— o Pump

Demand
node
Power
generation
Inter-
dependency

Pipe/ Power
line

Fig. 1. Conceptual model of power-water network interdependencies.

The system planner’s decisions consist of first stage “here-and-now”
planning decisions and second stage “recourse” decisions. We model
the problem using interconnected infrastructure systems s € S =
{W u P} where W is the drinking water infrastructure and P is power
infrastructure. These systems are fundamentally networks consisting of
nodes i € N and links (i, j) € & going from node i € N to node
Jj € N* for system s € .S. Continuous first stage variables y; capture the
amount of hardening done at each node i. Additional continuous first
stage variables z;; represent the amount of hardening done on the link
(i, j)- Both y; and zf/. are bounded between 0 and 1, describing the frac-
tion of original capacity that is protected by hardening. The bounds on
the hardening decision variables could be tightened by decision makers
to better match their fragility assessments. Fractional hardening can be
interpreted as investment in either less expensive hardening activities
or only partial hardening along a link. Nonlinear representations of
the impact of mitigation exist in the literature [42,43], though these
studies are computationally limited to smaller case studies or heuristic
methods. The planner’s second stage decisions focus on operation of
the networks after the realization of the disaster scenario w € Q.
We model this as a multi-commodity network flow problem, with X
representing the flow along link (i, j) in infrastructure system s under
scenario . The variable u}, denotes the unmet demand under scenario
 at node i in system s. The fractions of node and link capacity available

(i.e., undamaged) under scenario w, respectively, are represented by 67
and T/w The amounts of nodal and link capacity used are represented
by ¢ and X respectively. Finally, the second stage decision variable
Dio captures the nexus power consumption at node i € N'?, which is the
endogenously calculated power demand required by the water system.

The nomenclature used in this paper is summarized in Table 1.

mind, X e+ X ezt Y| X g1-0,)

SES ieN's SES (i,j)EES weN SES ieN's
+3 Y ga-1,) €8]
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> w <U VoeQ 2
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il(.))eEW ilG.ieeW

4

+ Z lj(t) =
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damage
repaired
unmet
hardening demand
decisions disaster
realization
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Fig. 2. Event sequence in the system planner’s disaster hardening problem.

Z xbo+dl —ul +p, VieNPoen

i|(j.heeP

5)
ayol <py VieNY keNP wen (6)
bkl S Pk VN EEY kENT 0EQ @
0;, <w +v; VseS,ieN* we (€))
rjjw < 5;'/,0) + zf} Vs€ S,(i,j)EE’,we R 9
rjjw = r;'iw Vs € S,(i,j) €& we R (10)
0<y <1 VseS,ie N’ 1D
0<z;<1 VseS,Gj)ee 12)
Piw>20 VieNPoweQ 13
OSxfjstfjrfjw Vs € S,(i,j) € EweE R 14)
0<o), <k'07, VseS,ieN,weR (15)
0<u <a¥ vieNV oeQ 16)
o<ul <dl+p, ViENP owecQ a7)
0<6 <1 VseS,ieN 0eQ (18)
07, <1  VseS,(,)eE neQ 19

We model all decisions using continuous decision variables, making
our two-stage stochastic program an LP. The objective function (1)
minimizes the total expected cost of first stage hardening and post-
disaster repairs applied to the two CI systems. Constraints (2) place
service level limits on the system across all scenarios ®, normalized
by the total demand across the whole infrastructure network s. Critical
nodes i for a specific infrastructure system s can be prioritized using
the weighting parameter w; as we demonstrate in our experiments.
Decision makers can also adjust these weighting parameters w; for
vulnerable or otherwise disadvantaged populations to include equity
consideration in their hardening plan. Constraints (3) impose symmetry
of hardening in both link flow directions, because the decision variables
correspond to a single section of pipe or power line that can be
hardened, regardless of flow direction. Constraints (4) and (5) establish
flow balance at all nodes in the water and power systems, respectively.
Constraints (5) include the additional variable p,, capturing the en-
dogenous power demand required by the water system. Constraints (6)
bound the drinking water supply by the electricity available to treat it.
Similarly, (7) constrain pump capacity by the amount of power avail-
able. Constraints (8) and (9) determine the realized capacities of nodes
and links to supply demand and permit flow, respectively, based on the
disaster realization and the first stage hardening decisions. Constraints
(10) impose symmetry of link status. Constraints (11) through (19)
impose bounds on the decision variables.

Depending on the parametrisation of the model, our formulation can
model the system planner’s problem across a variety of different dis-
asters. Each disaster scenario is characterized by infrastructure failure

realizations (wfw,cffjm) and occurrence probability p,. These scenarios
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represent the next upcoming disaster for which the planner is prepar-
ing. Fig. 2 illustrates the sequence of events in the system planner’s
problem. The system starts in a pre-hardened state (blue in Fig. 2). Once
the planner makes their hardening decisions, the system is hardened
(green in Fig. 2). Then, a disaster occurs, resulting in unmet demand,
and requiring repairs, inducing the damaged state (red in Fig. 2). The
planner’s constraint on system service level, i.e., unmet demand, is
assessed before damage is repaired. While Fig. 2 shows a timeline,
we assume steady-state network flow conditions in our assessment of
unmet demand after the disaster realization. We also assume that after
every disaster, the network is repaired to full working order. At its core,
our formulation adopts a cost-effectiveness point of view where the
system’s desired service level is set at level U (constraints (2) will be
binding for one or more scenarios). An alternative formulation would
pose the problem as a cost-benefit study where constraints (2) enter
the objective function and a value of lost service is used to assign a
monetary cost to unmet demand.

Our model formulation employs simplifications to improve its com-
putational complexity. We acknowledge these limitations but feel the
trade-off is justified by the scale of the problem they allow us to
explore. On the power side, common approaches to power system
modeling include the AC or DC power flow problem. Phenomena like
frequency control may also be included in these high fidelity operation
models. On the water side, our model ignores energy constraints, water
storage, and pipe friction losses. Some of these limitations may become
more significant in a disaster context when the networks are stressed.
For example, [52,53] develop high fidelity failure and operational
modeling representations of interdependent infrastructure. However,
with this level of detail, [52,53] are not able to rigorously explore
the impacts of uncertainty on optimal resilience planning as we do
in this paper. Furthermore, as noted in Section 2, simplifications
like the ones we make in our model are not without precedent [1].
These simplifications are sufficient to capture operational mechanisms
in a model whose focus is long-run planning, while avoiding the large
computational burden of detailed mechanisms like energy balances [1].
Moreover, these simplifications allow us to more fully explore other
dimensions of disaster modeling, such as the uncertainty of disaster
impacts on a real-world sized network, while determining optimal
here-and-now hardening decisions.

4. Case study

A significant and novel contribution of this work is the development
of a large-scale case study involving a detailed representation of both
power and water infrastructure, and therefore our framework’s ability
to aid real-world decision makers. As discussed in Section 2, many
works either focus on an individual CI, do not employ optimization to
provide prescriptive guidance to decision makers, or demonstrate their
models only on small-scale synthetic examples. We address this gap by
demonstrating our optimization framework’s efficacy through a case
study of the city of Guayama in Puerto Rico. Guayama, shown in Fig. 3,
is a city located on the southeastern coast of Puerto Rico. The Guayama
Municipality has a population of 45,362 as per the 2010 census [54].
Our AOI includes a portion of the Guayama Municipality extending
from the more sparsely-populated northwestern reaches, south to the
city center, and west along the coast. The AOI for our study contains
a population of 20,394 [54]. As with all of Puerto Rico, Guayama is
vulnerable to a number of natural disasters, including earthquakes,
landslides, and hurricanes. In particular, hurricanes constitute a sig-
nificant threat to the region, demonstrated by the 2017 Category 5
hurricanes Irma and Maria that left many without power or water
for months. In this study, we focus on the threat hurricanes pose to
Guayama, Puerto Rico.
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4.1. Guayama power and water networks

The network topology used in this case study comes from data
made publicly available by the Government of Puerto Rico [51]. For
our region of interest, the water utility is Puerto Rico Aqueducts and
Sewers Authority (PRASA), and the power utility is Puerto Rico Electric
Power Authority (PREPA). From our communications with PRASA, the
two entities operate independently, but do work together to coordinate
disaster preparedness and response.

Fig. 4(a) illustrates the water network used in our case study. Darker
nodes and edges indicate larger diameter pipes. This network has one
water treatment plant located in the northeastern part of the city:
Guayama Urbano with a capacity of 6 million gallons/ day (0.26 m3/s).
The water network is composed of approximately 200 km of pipes with
859 nodes and 1095 edges. 13 pumping stations are located throughout
the network. Pipes range in diameter from 2 inches (5.08 cm) to
24 inches (60.96 cm). Nodal water demands were populated from
2010 census data [54] and an estimated per-capita residential water
consumption of 51.46 gallons/ day (2.255 x 10~°m3/s) [55]. Thus, the
network’s total population of 20,394 [54] generated 738.80 gallons/
minute (0.0466 m3/s) of drinking water demand.

Fig. 4(b) shows the power network used in our case study. This
network has two power plants. The larger one, Complejo Aguirre, is
located in the western region of Guayama and is connected to the
power distribution system (light red) by transmission lines (darker red).
Complejo Aguirre is an oil-fired plant with a capacity of 1540 MW. The
second power plant, AES, is a coal-fired plant located in the southern
part of Guayama and has a capacity of 454 MW. The power network

has 370 km of transmission and distribution power lines with 1344
nodes and 1373 edges. The power demand at each node was again
parameterized based on the population of the surrounding area [54].
We calculated the demand on the network to be about 11.76 MW
based on a population of 20,394 [54] and an average instantaneous
residential power use of 576 W per-capita [56].

We employ synthetically generated hardening and repair costs in
our case study, informed by the rough order of magnitude of costs
found in the literature [57-59]. In reality, hardening and repair costs
are highly variable, depending on the existing condition of infrastruc-
ture, the geographic region being studied, the specific hardening and
repair methods selected, and the extent of damage [60]. Furthermore,
because costs appear only in the objective function of our formulation,
their absolute values do not impact the optimal solution, and only
relative cost differences affect decision making. Therefore, one of our
sensitivity analyses focuses on the repair cost factor R given in (20) and
2n.
¢ =Rc} (20)

i

Efj = Rc[‘.‘j 21

We assume that the hardening cost of power lines is $10/m. This
cost is of the same order of magnitude as activities like vegetation
trimming and line inspection in [58]. We parameterize the hardening
cost of power plants as $1 million. This power plant hardening cost is
based on the repair costs listed in [57]; we assume that power plant
hardening costs can be of the same order of magnitude as repairs in
our base case parametrisation. The hardening cost of water pipes is
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assumed to be $100/m [59] and water treatment plant hardening is
assumed to be $1 million. As previously mentioned, our formulation
permits fractional hardening of both nodes and edges (y; and z;, are
continuous decision variables) indicating investment in less hardening
spatially or in less expensive activities. Because all costs in our model
are variable costs, the costs listed above are the maximum cost of the
activity (i.e., if the corresponding decision variable equals 1). Real-
world hardening is more discrete than is modeled in this paper and
includes fixed costs rather than exclusively variable costs. Therefore,
costs for the actions prescribed by our model may be higher when they
are actually implemented.

4.2. Hurricane scenario generation

In this study, we explore the threats that hurricanes pose to CL
Hurricanes constitute a significant threat to the region. Since 1851,
Puerto Rico has been hit by six Category 4 or 5 hurricanes [61].
In the 170 years of data available in the National Oceanic and At-
mospheric Administration (NOAA) database [61], 31 hurricanes have
passed within 100 km of Guayama. Of those hurricanes, 11 were
Category 1 as they passed our AOI eight were Category 2, six were
Category 3, three were Category 4, and three were Category 5. From
these historical storms, we estimate that the next hurricane’s severity
will be Category 1 with probability 35.4% (11/31), Category 2 with
a 25.8% (8/31) chance, Category 3 with probability 19.4% (6/31),
or a Category 4 and 5 storm each with a probability of 9.7% (3/31).
While we parameterize the distribution of hurricane severities based on
historical occurrences, as in [38], the probability of extreme storms is
increasing, driven by climate change. Decision makers looking to hedge
against the changes could easily modify the distribution of hurricane
severities to match a future climate change scenario.

We assign asset failure probabilities for both infrastructures based
on the most common failure mode for the specific type of infrastructure
in a hurricane. For electrical power systems, high winds, specifically
wind gusts, cause the most damage to infrastructure. Water system
infrastructure is most vulnerable to flooding [62], which in the coastal
city of Guayama is largely caused by storm surge. In power infras-
tructure, winds bring down above-ground support structures for power
lines and falling branches or trees can knock down the power lines
themselves. Hurricane severity is defined on the Saffir-Simpson scale
by the hurricane’s sustained wind speed. Category 1 storms produce
speeds 74-95 mph (119-153 km/h), Category 2 storms produce speeds
96-110 mph (154-177 km/h), Category 3 storms are “devastating”
with speeds 111-129 mph (178-208 km/h), and Category 4 (speeds
130-156 mph (209-251 km/h)) and Category 5 (speeds greater than
157 mph (252 km/h)) are “catastrophic” [61]. For a given hurricane
category, we assume that the wind gust speed (W) is approximately
25% higher than the sustained wind speed [60]. [38] defines the failure
probability (Pr(failure)) of a transmission pole as (22) with 230 m
between poles and the probability of distribution pole failure as (23)
with an average 42 m between support poles. For both equations, W,
is assumed to be in mph. Egs. (22) and (23) are visualized in Fig. 5.

Pr(transmission pole failure) = min{(2E — 7)exp(0.0834W,), 1} (22)

Pr(distribution pole failure) = min{0.0001exp(0.0421W,), 1} 23)

These values were calibrated in [60] for Harris County, Texas
which experiences a similar frequency of hurricanes as Puerto Rico
and is also located in the United States. Therefore, we use the same
parametrisation in our implementation. By dividing the length of each
link in the power network by the distance between support poles, we
obtain the number of support poles (N) for that link. We assume that
the failure of each support pole is independent, and that the whole link
will fail if any of the support poles along its length fail. We assume
no spatial correlation between nearby power lines, instead generating
the realization of each link failure as a Bernoulli random variable (RV)
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Fig. 5. Support pole failure probabilities.

with a failure probability calculated using (24). This procedure results
in a 91.4% power line failure rate with a Category 5 hurricane in our
case study. This value is similar to the 80% power system failure rate
observed in the wake of Irma and Maria [3].

Pr(link failure) = 1 — (1 — Pr(support pole failure))™ 24

Water infrastructure is naturally more protected from hurricanes
than power infrastructure, because it is typically below ground, pro-
tected from wind and falling trees. Its primary direct vulnerability is
from flooding [62]. Indirect vulnerabilities due to CI interdependencies
are also captured by our model, such as loss of power at pump stations
for water treatment. As a coastal city, Guayama’s primary flooding risk
comes from storm surge. Fig. 6 shows the Category 1 and Category 5
storm surge zones, a NOAA data product generated using their Sea,
Lake, and Overland Surges from Hurricanes (SLOSH) model [63]. By in-
tersecting the water distribution network with these storm surge maps,
we determine the inundation depths under Category 1 to Category 5
hurricane scenarios along all water pipes. As seen in Fig. 6(b), even in
the most severe hurricane scenario, most of the infrastructure is outside
the storm surge zone. Still, inundation depths up to 11 ft are possible
in the AOIL We assume an inundation depth of 0.5 m or greater causes
damage to the water infrastructure [62], and assume deterministic
failure if flood depths exceed this threshold. No critical assets such as
water treatment plants, pumps, or power stations fall in any storm surge
zones in our case study’s AOL

Algorithm 1 details the scenario generation process. First, the user
determines the number of scenarios desired. In our implementation,
we generate || = 50 scenarios to determine the system planner’s
optimal hardening decisions. Then, the storm severity for each scenario
is generated. Next, for the power network, link failure probabilities
are calculated using (22), (23), wind speeds for the scenario’s storm
severity, and the length of the link. Then, power link failure realizations
are generated Bernoulli RVs. Pipe outages are determined determin-
istically from the generated storm severity and the data presented in
Fig. 6. Supply node failures in both networks are generated as Bernoulli
RVs independent of storm severity. If the required number of scenarios
has not been reached, this process is repeated for the next scenario.
Otherwise, the sets of link and node failure realizations are output for
each scenario, along with the occurrence probability of that scenario.
Algorithm 1 uses stratified sampling, a variance reduction technique.
With Algorithm 1, we first divide the population of possible failure
realizations into strata by hurricane severity, then sample asset failures
for each category of hurricane. Similar works have employed other vari-
ance reduction techniques such as Latin Hypercube sampling [36,64]
to ensure that the sampling covers a representative set of scenarios.
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Fig. 6. Storm surge zone (gray) in the AOIL The power infrastructure is shown in red, the water infrastructure in blue, and the AOI in green.

Algorithm 1 Scenario Generation

1: Input: number of scenarios ||
2: For scenario w in |Q|:

3: Generate hurricane category (discrete RV) with occurrence
probability from historical hurricane data
4: Define W, as the median wind gust speed for the simulated

hurricane category

5: Calculate power link failure probabilities using (22)-(24)

6: Generate power line (.ff;w) and power supply node (u/i; ) outages
(Bernoulli RV)

7: Generate water pipe outages based on hurricane category and
storm surge (¢,

8: Generate water supply node outage (xyif)) realizations (Bernoulli
RV)

9: Return: Post-disaster working capacity realizations v} , 55,‘01

5. Results

We demonstrate our optimal hardening decision-making framework
by implementing it on the Guayama power and water networks. The
model defined by (1)-(19) was used to determine the optimal harden-
ing decisions across 50 disaster scenarios. We implemented the model
in Pyomo [65,66] and solved it using the Gurobi solver [67]. The
original formulation selects hardening decisions based on direct con-
sequences of the first stage decisions. The original formulation takes
approximately 15 min to solve with the base case parametrisation on
a Windows 10 laptop with 16 GB of RAM and an Intel(R) Core(TM)
i7-8550U CPU @ 1.80 GHz processor. We then assessed the quality
of the optimal hardening decisions using 1000 out-of-sample scenarios
with the first stage hardening decisions ] and z!) fixed. For the
out-of-sample experiments, we determined the decisions’ performance
on constraints defined by Egs. (4)-(19) and the objective function
defined by Eq. (25). With the first stage decisions fixed, the problem
decomposes into separate optimization problems for the second stage
decisions in each scenario. Thus, for each scenario, we computed the
aggregate service loss using Eq. (25):

u” ul
min Y p, (B Y ——p+(1-p) Y —2— (25)
wEQ ieNW ZjeJ\/W dj ieN'P zjeJ\/P dj

The original service level requirement, U, may not be met in all out-
of-sample hurricane scenarios when the first stage decisions (y; and zfj)

are fixed, requiring the reformulation for the out-of-sample assessment.
We use f to represent the prioritization applied to the water network,
and (1 — p) to capture the weight applied to the power network.

5.1. Base case

Parametrisation consistently presents challenges when building op-
timization models. For our most uncertain parameters, specifically the
service level threshold, U, the repair cost factor, R, and the weighting
between power and water demands, #, we perform sensitivity analyses
exploring different values and their impacts on the optimal solution.
For the base case, we first select a base value for each of these
parameters, and explore the results for this case in more depth. For
the base case, we assumed a service level requirement of U = 20%,
a water weighting of f = 50%, and a repair cost factor of R = 1.2.
In reality, decision makers would set their own values for U and g,
and R would be determined from actual costs. Our base values were
selected to be approximately average across the parameter’s range of
possible values. With these base case assumptions, the optimal harden-
ing decisions are shown in Fig. 7. Lighter links (blue for water, red
for power) are unhardened, while darker links are chosen for some
level of hardening. At optimality, all supply nodes are selected for
hardening. These decisions cost $1.81 million for hardening and an
expected $0.826 million for repairs. $1.83 million is spent on the water
network for both hardening and repairs, while $0.807 million is spent
on the power network. One supply node in each network is selected for
hardening, as are 11 water pipes and 738 power lines. Because partial
hardening is permitted, some assets are not hardened to their maximum
capacity. We find that out of the 851 assets that are recommended
for hardening, only 12 are hardened more than 90%. By contrast, 822
assets are recommended for a small amount (less than 20% hardening)
of hardening. Very few assets receive a middling amount (between
20% and 90%) of hardening. In practice, this provides two useful
pieces of information to decision makers. First, there are a few assets
that decision makers should be certain to harden, and to harden them
completely. For decision makers with little time to spend on a diffuse
amount of hardening throughout the networks, this indicates which
assets they should focus on. Second, there are many assets for which a
small amount of hardening is optimal. For these assets, decision makers
could consider more modest hardening activities, like inspections and
tree-trimming for above-ground infrastructure. Overall, our assumption
of linear hardening decisions yields results that suggest the degree of
hardening decision makers should consider for all assets throughout the
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network. These results can help decision makers prioritize which assets
to focus on for their hardening efforts.

For the base case, we find an Expected Value of Perfect Information
(EVPI) of 14.6%, meaning even if the utility knew exactly which assets
were going to fail in the next hurricane (i.e., had perfect information)
and could harden accordingly, they would expect to save only 14.6%
on hardening and repairs over the optimal hedging solution generated
by the stochastic program. The EVPI is an upper bound on how much
the utility would pay for information about the next disaster and its
impacts. For example, utilities could more accurately estimate asset
failure probabilities by inspecting assets for degradation or by studying
historical asset failures. Practically however, because any information
that the utility would gather would only marginally reduce uncertainty
and because these activities would be relatively expensive (asset in-
spection in particular is challenging for underground infrastructure),
investing in improved ability to predict disaster damages has limited
value from a cost perspective.

The hardening decisions illustrated in Fig. 7 include a path from one
of the power plants to the water treatment plant where all power lines
are hardened. This helps ensure that power can be supplied to the water
treatment plant, which is necessary for water supply and a prerequisite
for operation of the water network. It also shows hardening of some
of the longer links in the transmission infrastructure. Because longer
links have a higher probability of failure, the preferential hardening of
longer links follows intuition. Finally, Fig. 7 shows more hardening in
the power network than the water network, both because it is more
vulnerable to hurricanes, and because power link hardening is less
expensive because the assets (power lines) are above-ground.

Fixing the hardening decisions in Fig. 7, we then simulated this
hardening plan’s performance on 1000 new hurricane scenarios, again
using Algorithm 1. We determine the performance of the hardening de-
cisions using the optimization problem defined by constraints (4)-(19)
and the objective function (25) for each of the 1000 newly generated
hurricane scenarios. The average aggregate service loss across these
1000 out-of-sample hurricanes is 1.03%, with a 95% confidence inter-
val of [0.96%, 1.10%) and a maximum value of 5.93%. The narrow 95%
confidence interval indicates that the 1000 out-of-sample scenarios are
sufficiently many, so we continue to use 1000 out-of-sample scenarios
throughout the remaining analyses. This maximum aggregate service
loss is much lower than the threshold required by the original harden-
ing problem, U = 20%, suggesting that the service level requirements
that infrastructure system managers aim to achieve can reliably be
satisfied despite uncertainty in potential hurricane realizations for the
selected parametrisation. Fig. 8 shows the service level achieved for
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Fig. 8. Performance of the base case and expected value optimal hardening decisions
on 1000 out-of-sample hurricane scenarios, for each category of hurricane.

different category hurricanes, both for the base case parametrisation
and the expected value case. The expected value case sets each asset’s
failure realization (v, and szjw) deterministically at their respective
probabilities of failure and determines the optimal hardening decisions
using Egs. (1)-(19). The expected value case is a standard point of
comparison in stochastic optimization. Fig. 8 shows that more demand
is met for less severe hurricanes in the mean base case and mean
expected value case, as would be expected. This trend does not hold
for the maximum value of the base case and expected value case,
likely because the maximum value is significantly more sensitive to the
specific 1000 out-of-sample scenarios generated. In Fig. 8, the mean
base case hardening performs similarly to the mean expected value
case for less severe hurricanes, and outperforms the mean expected
value case for the more severe hurricanes. The maximum base case
also outperforms the maximum expected value case for all hurricane
severities. This difference in performance helps validate the utility
of our framework in the highly-uncertain disaster planning context;
the expected value case does not sufficiently capture the range of
potential disaster realizations, leaving the system more vulnerable to
more extreme weather events and the potential for worse performance.
We also compared the performance of our framework’s hardening
decisions against the case where no hardening is permitted. We found
that without mitigation, repair costs were expected to be $1.17 million.
This value is less than the total cost ($2.636 million) of hardening
and expected recovery with optimal hardening decisions. However, no
mitigation results in significantly higher expected unmet demand, with
values as high as 35.5% and an expected unmet demand of 7.40%.
Thus, without mitigation the expected unmet demand is higher than
the maximum value experienced with mitigation (5.93%). The trade-
off between mitigation and recovery is explored in further detail in
Section 5.3.

5.2. Service threshold

The selection of the service level requirement U is a challenge for
any systems planner. If they select a service level that is too low, then
they are exposing their customers to the brunt of the disaster impacts,
forcing them to subsist without fundamental services while repairs are
made in the wake of a disaster. If they select a service level that is
too high, then more money will be spent on hardening projects than
is necessary. In this sensitivity analysis, we explore the impact of the
service level requirement U on the optimal hardening decisions while
keeping the water prioritization as § = 50% and the repair cost factor
as R = 1.2, as in the base case’s parametrisation.

Fig. 9 shows the simulation results for the sensitivity analysis on
service level requirement U. The results show that as the original
service level requirement is relaxed, the aggregate service loss tends to
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increase for both the maximum and mean values. This result indicates
that the service level requirement U performs as it should, helping
induce higher levels of reliability when dictated by the decision maker.
Fig. 9 also shows that for less stringent service level requirements (U >
15%) the maximum simulated service loss is lower than the original
service level requirement U. However, for U > 15%, the maximum
aggregate service loss can exceed the service level requirement U,
though the mean value did meet the requirement for all tested parame-
terizations. This indicates that the performance of hardening decisions
is relatively robust to the service level requirement set by the decision
maker for less stringent service level requirements. While the maximum
service loss may exceed the original service level requirement U, the
mean service loss is always bounded by the original service level
requirement. Finally, plateauing behavior is exhibited for the mean
aggregate service loss for U > 15%. Our original formulation requires
that the service level requirement U be met in every scenario, making
investment highly sensitive to the worst-case scenario. The plateauing
behavior indicates that the service level constraints (2) may no longer
be as binding; this reasoning is confirmed by the fact that the out-of-
sample maximum aggregate service loss is less than the service level
requirement U for all parameterizations.

5.3. Repair costs

Because synthetic values were used to partially parameterize the
hardening and repair costs in our model, we perform a sensitivity
analysis to determine the potential impacts of our assumptions. We
vary the repair cost parameter, R, which is defined in (20) and (21)
as the multiplicative coefficient converting hardening costs to repair
costs. A low R value indicates that hardening costs are higher than
repair costs, and a high R value indicates repair costs are higher than
hardening costs. Hardening and repair costs are equal when R = 1. In
this experiment, we explore a single value of R for conversion between
hardening and repair costs for all assets. In the literature, costs are
highly dependent on location, type of hardening, degree of damage,
and other factors [60]. Some hardening activities such as power line
inspections and vegetation management are inexpensive compared to
repair costs, while others like water line upgrades and power line
undergrounding may be more expensive. Therefore, we test different
values of R ranging over four orders of magnitude.

The impacts of repair cost factor R are explored in Fig. 10. On the
right axis, repair costs increase dramatically as the repair cost factor,
R, increases. Intuitively, it makes sense that as repair costs increase,
more money is expected to be spent on repairs. Hardening costs also
increase with R, as higher repair costs encourage more hardening
investment to avoid high repair costs. Notably, aggregate service loss
does not show a clear trend as R is perturbed; both high and low
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values of R produce similar aggregate service loss. This suggests that
the additional hardening, in this case driven by higher repair costs, does
not necessarily translate to better service.

5.4. Power-water prioritization

Our formulation combines water and power decision-making into
a single optimization framework. However, when assessing hardening
performance through aggregate service loss (defined in Eq. (25)), deci-
sion makers have to determine the weighting of unmet water demand
relative to unmet power demand. While both power and water unmet
demands are normalized by total demand in their respective networks,
it is possible that the value of lost service is higher for one infrastructure
type than the other. For example, customers may have been able to
store water in preparation for a disaster, so power outages could present
a more immediate concern. We therefore explore the impacts of the
prioritization of water service, f, on optimal hardening decisions and
the resulting simulated achievable service levels and costs. For this
experiment, we hold constant the base case parameter assumptions for
the service level requirement (U = 20%) and the repair cost factor
(R=1.2).

Fig. 11 shows the trade-off between power and water service losses
depending on the value of the water prioritization parameter . g =
0% indicates 100% power prioritization and 0% water prioritization
while f = 100% indicates 100% water prioritization and 0% power
prioritization. For low values of g, service loss for water is much higher.
Conversely, for high values of g, corresponding to high water service
priority, service loss for power is high, while service loss for water is
low. Fig. 11 reveals a region (10% < g < 50%) over which the solution is
fairly insensitive to the power-water prioritization. For all values of f,
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the aggregate service loss (black in Fig. 11) remains relatively constant.
Service loss for power and water are not symmetric about g = 50%,
producing lower service loss in the water network even for g < 50%.
This indicates that the power side may be more difficult to harden, both
because the power network is longer (370 km as compared to the water
network’s 200 km) and because it is more vulnerable to hurricanes.

6. Conclusions

In this study, we explore the energy-water nexus in a disaster
context. Natural disasters often exacerbate interdependencies between
infrastructure systems, resulting in cascading failures. Natural disasters
are becoming more frequent and severe, a trend driven by climate
change. Infrastructure system managers aim to mitigate these effects
by hardening CI to better withstand disasters, helping preserve service
levels. The criticality of power and water to human life makes this not
only a financial decision, but also an existential imperative. However,
the uncertainty inherent in natural disasters poses a challenge to dis-
aster planning. In this paper, we therefore develop a decision-making
framework for infrastructure system managers designed to determine
optimal hardening decisions across interdependent power and water
networks. The optimization framework is a two-stage stochastic pro-
gram, with infrastructure hardening as the first stage decisions, and
network operation as the second stage decisions. Thus, guided by our
model, the infrastructure system manager can hedge their hardening
decisions with respect to a suite of potential natural disaster scenarios.

We implement the optimal decision-making framework for a case
study focusing on the city of Guayama in Puerto Rico. Puerto Rico is
highly vulnerable to hurricanes; the two Category 5 hurricanes, Irma
and Maria, that struck the island in 2017 devastated infrastructure for
months, leaving thousands without power and water. In our case study,
we demonstrate that our optimal decision-making framework can be
used effectively to make real-world hardening decisions. We find the
following:

1. The decisions prescribed by our model favor hardening the
power network; in the base case, all power lines connecting one
of the power plants to the water treatment facility are hardened,
helping to ensure that power is delivered to the origin of the
water supply. The emphasis on hardening the power network
over the water network is driven in large part by the power
network’s greater vulnerability to hurricanes; the entirety of the
water network is buried, offering it some natural protection.
The smaller scale of the water network combined with the
one-way dependency of water on power also help explain this
phenomenon.

2. We find an EVPI of 14.6% in the base case parametrisation.
Practically, utilities would only be able to marginally reduce
their uncertainty about exactly which assets are likely to fail
in a disaster through activities like line and pipe inspections.
Therefore, the EVPI of 14.6%, an upper bound on cost savings
possible from these activities, suggests that data collection to
reduce asset survival uncertainty would not hold much value to
the decision maker from a system resilience perspective.

3. In the base parametrisation, we find that hedging with respect to
the full set of possible disaster scenarios produces less variable
aggregate service loss than planning only for the average hur-
ricane scenario. We also find that this same hedging produces
hardening decisions that perform better in the case of more
severe hurricanes than planning only for the average hurri-
cane scenario. Overall, these results show the necessity of the
advanced treatment of uncertainty present in our formulation.

4. A tighter service level requirement in the planning stage im-
proves the system’s ability to provide service after a disaster.
Additionally, hardening decisions are generally able to meet the
service level requirement in out-of-sample assessments.
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5. Significantly higher and significantly lower repair costs than
hardening costs may lead to similar levels of aggregate ser-
vice loss. Because higher repair costs encourage more harden-
ing investment, this indicates that more hardening does not
necessarily translate to reduced service loss.

6. The relative prioritization of water versus power service im-
pacts the hardening decisions. While this conclusion is hardly
unexpected, our model does reveal a fairly wide range over
which the decisions are relatively insensitive to water versus
power service prioritization. In general, our framework is able to
demonstrate to decision makers the trade-offs between meeting
service in the water network and meeting service in the power
network, allowing them to select a prioritization that best suits
their needs.

The findings enumerated above should be considered in tandem
with the limitations of our formulation. Our model excludes some
features that exist in reality; addressing these limitations suggests direc-
tions for future work. First, to ensure the tractability of the numerical
study, the model defines hardening decisions as continuous. The most
realistic representation would be an IP formulation with both inte-
ger and continuous decision variables describing specific hardening
activities. Future work could relax our assumption of linearity, per-
haps by identifying a subset of candidate links for hardening, thereby
preserving tractability while also allowing discrete decision variables.
A second limitation is the lack of energy balances in the power and
water network modeling. We model both systems as generic commodi-
ties, ignoring pipe friction losses and reactive power. This could be
of critical importance for a system under high stress during a disas-
ter (e.g. balancing frequencies becomes challenging for a power grid
system operating under disaster). Future research could address this
limitation by modeling energy balances in addition to mass balances in
the model. Finally, we aggregate time to a steady-state representation
of post-disaster operations. Disaster resilience typically includes both a
measurement of magnitude of service loss, which we do include, and an
assessment of time spent without service, which our steady-state model
lacks. Inclusion of multiple time periods in the model will significantly
increase the computational intensity of the model, potentially requiring
other simplifications to the model and making this extension a focus for
future work.
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