
Waffle: Exposing Memory Ordering Bugs Efficiently
with Active Delay Injection

Bogdan Alexandru Stoica
University of Chicago
bastoica@uchicago.edu

Shan Lu
University of Chicago
shanlu@uchicago.edu

Madanlal Musuvathi
Microsoft Research

madanm@microsoft.com

Suman Nath
Microsoft Research

suman.nath@microsoft.com

Abstract

Concurrency bugs are difficult to detect, reproduce, and diag-
nose, as theymanifest under rare timing conditions. Recently,
active delay injection has proven efficient for exposing one
such type of bug Ð thread-safety violations Ð with low over-
head, high coverage, and minimal code analysis. However,
how to efficiently apply active delay injection to broader
classes of concurrency bugs is still an open question.
We aim to answer this question by focusing on MemO-

rder bugs Ð a type of concurrency bug caused by incorrect
timing between a memory access to a particular object and
the object’s initialization or deallocation. We first show ex-
perimentally that the current state-of-the-art delay injection
technique leads to high overhead and low detection cover-
age since MemOrder bugs exhibit particular characteristics
that cause high delay density and interference. Based on
these insights, we proposeWaffle Ð a delay injection tool
that tailors key design points to better match the nature of
MemOrder bugs. Evaluating our tool on 11 popular open-
source multi-threaded C# applications shows thatWaffle

can expose more bugs with less overhead than state-of-the-
art techniques.

CCS Concepts: · Software and its engineering→ Soft-

ware maintenance tools; · Computer systems organiza-

tion → Reliability.

Keywords: memory ordering bugs; order violations; concur-
rency bugs; delay injection; debugging; reliability

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

EuroSys ’23, May 9ś12, 2023, Rome, Italy

© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-9487-1/23/05. . . $15.00

https://doi.org/10.1145/3552326.3567507

Step 1: Identifying

injection locations

Step 2: Injecting

delays at run time

✓ How to identify?

✓ When to identify?

✓ How long to delay?

✓ When to delay?

T
h

d
.

1

T
h

d
.

2

Figure 1. The workflow of active delay injection

ACM Reference Format:

BogdanAlexandru Stoica, Shan Lu,MadanlalMusuvathi, and Suman

Nath. 2023.Waffle: Exposing Memory Ordering Bugs Efficiently

with Active Delay Injection. In Eighteenth European Conference

on Computer Systems (EuroSys ’23), May 9ś12, 2023, Rome, Italy.

ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3552326.

3567507

1 Introduction

Concurrency bugs are difficult to detect and time-consuming
to diagnose. Typically, they only manifest under rare timing
conditions [5, 25, 30, 32], many escaping rigorous in-house
testing and causing severe production failures [16, 20, 23, 58].

Among the various approaches to detect concurrency bugs
before code release, active delay injection [12, 26, 32, 46, 53]
has an inherent advantage of high detection accuracy. Specif-
ically, this approach reports a bug only after it manifests as
a consequence of the delays injected. However, how to apply
active delay injection to a wide variety of concurrency bugs,
not only with high accuracy but also with low overhead and
high bug coverage, is still an open question.
As Figure 1 illustrates, active delay injection identifies

strategic program locations in a target program where con-
currency bugs may exist (Step 1). Then, at run time, it injects
delays at those particular locations attempting to trigger
rare timing conditions and increase the chances of exposing
concurrency bugs (Step 2). However, despite its inherent ac-
curacy advantage, active delay injection traditionally suffers
from high overhead and potentially low bug coverage.
When identifying injection locations (Step 1), there is a

tension between the analysis cost and the quality of the loca-
tions identified. On the one hand, pruning program locations
already synchronized and hence not needing delay injection,
requires costly synchronization analysis [46, 53], such as

EuroSys ’23, May 9ś12, 2023, Rome, Italy Stoica et al.

happens-before analysis [27] (typically, 5ś10× slowdowns
reported by prior studies [14, 32]). On the other hand, per-
forming no synchronization analysis results in too many
injection points [12, 26] and hence high injection overhead.

When carrying out delay injection (Step 2), there is a trade-
off between the cost per run and the number of runs needed
to expose bugs. Prior work [12, 26] typically samples only a
few injection locations in each run, lowering the overhead
per run at the expense of needing many runs to expose bugs.
Recently, Tsvd [32] effectively adapted active delay in-

jection to detect a particular type of concurrency bug Ð
thread-safety violations Ð not only with high accuracy but
also with low overhead and high coverage. In Step 1, Tsvd
completely abandons the expensive happens-before analysis
and instead relies on easy-to-measure physical time gaps
between operations to infer which program locations are
likely un-synchronized. In Step 2, Tsvd injects delays aggres-
sively in each run to minimize the number of runs needed
to expose bugs.

Although effective, Tsvd leaves behind an intriguing ques-
tion: Does its unique approach to active delay injection work
for broader classes of concurrency bugs? And if not, are there
other design changes to active delay injection that work?

We investigate these questions by focusing onMemOrder

bugs Ð a type of concurrency bug caused by the lack of
synchronization between access to a memory object and its
initialization or deallocation (disposal).
It is crucial to expose MemOrder bugs before software

release as they are both common and severe. According to
previous studies, MemOrder bugs are the dominant type
of order violations [37, 56]. Moreover, they lead to memory
corruption which can cause crashes [19, 22] and serious
security vulnerabilities [28, 60].
MemOrder bugs also present significant research chal-

lenges as they have drastically different location and timing
properties from thread-safety violations, well representing
real-world concurrency bugs beyond those tackled by Tsvd:

• Location-wise, thread-safety violations can only occur
at call sites of thread-unsafe APIs [32]. In contrast,
MemOrder bugs can occur at any memory access to
shared heap objects, which are much more common;

• Timing-wise, exposing a thread-safety violation re-
quires the execution windows of two thread-unsafe
API calls to overlap. Conversely, exposing a MemO-

rder bug requires memory accesses to an object to
occur before the object’s initialization or after its deal-
location/disposal (see Figure 2). These represent two
fundamentally different concurrency-bug timing con-
ditions: atomicity violations for the former and order
violations for the latter [37].

Thd. 1

Thd. 2

API call 1

API call 2

(A)

Obj.

dispose

Obj. use

(O)

𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒

Figure 2. Different timing conditions. To make API calls
1 and 2 execute concurrently, the delay length needs to be
within a range: (𝑇4 −𝑇1)> delay𝐴 > (𝑇3 −𝑇2). In contrast, to
force an object use after it has been deallocated, the delay
needs to be sufficiently long: delay𝑂>(𝑇4 −𝑇1).

1.1 Adapting the state-of-the-art

We began our investigation by adapting the delay injection
design of Tsvd to detectMemOrder bugs. Unfortunately, the
efficacy of the resulting tool Ð referred to asWaffleBasic Ð
is limited. Our evaluation reveals that WaffleBasic injects
delays at a much higher rate than Tsvd, and struggles with
greater overhead and lower bug detection coverage.
This experience led us to decompose the workflow of ac-

tive delay injection into four key design points as illustrated
in Figure 1 Ð to understand why Tsvd’s approach does not
work for MemOrder bugs and propose a new design that
would.

How to identify delay candidate locations? Analyzing
WaffleBasic reveals that, due to their location properties,
there are simply too many program locations whereMem-

Order bugs can manifest for Tsvd’s inference heuristics to
prune effectively. In turn, this leads to abundant (dense) and
often pointless delay injection.
In particular, we observe that many delays injected by

WaffleBasic are needlessly attempting to reverse the execu-
tion order between memory accesses across the boundaries
of thread forks. This particular type of synchronization can
be analyzed accurately with negligible run-time overhead by
using a special type of thread-local storage, a feature available
in modern languages such as Java and C#. Then, the number
of delays injected at run time can be reduced considerably
with little analysis cost.

When to identify candidate locations? To minimize
the number of bug-detection runs, Tsvd uses the (buggy)
location identification heuristic in the same run where it in-
jects delays. Specifically, after identifying a program location
ℓ where a bug may exist, Tsvd considers injecting a delay
the next time ℓ is executed during the same run.
We found such a strategy not suitable forWaffleBasic.

This approach results in abundant (dense) delay injection
which severely affects the efficacy of location identification
which relies on physical time information. Furthermore, such

Waffle: Exposing Memory Ordering Bugs Efficiently with Active Delay Injection EuroSys ’23, May 9ś12, 2023, Rome, Italy

Design decisions RaceFuzzer [53] CTrigger [46] RaceMob [26] DataCollider [12] Tsvd [32] Waffle

How to identify candidate location?

Synchronization analysis? ! ! ! × × !∗

Synchronization inference? × × × × ! !

When to identify candidate locations?

During delay injection runs? × × × × ! ×

How long is the delay?

A fixed-length delay ! ! × ! ! ×

When to inject at run time?

Avoid delay interference? n/a n/a n/a n/a × !

At sampled candidate loc.? ! ! ! ! × ×

Probabilistic injection? × × ! ! ! !

Table 1. Different design decisions for recent active delay injection tools. (“*ž indicates partial analysis is done; “n/až stands
for ńnot applicableż as these tools deal with sparse sets of injection locations.)

a strategy often cannot help expose MemOrder bugs in
one run, as many of their candidate locations like object
initialization/disposal execute only a small number of times
(often once) in each run.

Consequently, separating location identification and delay
injection in different runs could fit MemOrder bugs better.

How long is the delay? Tsvd uses a fixed delay length for
all candidate locations. Relying on this strategy combined
with having to handle a denser set of candidate locations for
MemOrder bugs results in an unfortunate trade-off between
longer delays required for bug-exposing capabilities and
shorter delays for lower run-time overhead.
In comparison, injecting delays with different lengths at

different locations is a more suitable strategy forMemOrder

bugs: the long delays required for exposing certain bugs
will not lead to unnecessary delays at many other program
locations.

When to inject delay at run time? To minimize the
number of runs, Tsvd injects delays at candidate locations
with high probability1 compared with previous work, while
also allowing multiple threads to pause simultaneously. Un-
fortunately, due to the location property of MemOrder bugs,
this strategy leads to severe delay overlapping in Waffle-

Basic, with many delays canceling each other. Such delay
interference (and ensuing cancellation) occurs almost deter-
ministically for someMemOrder bugs, due to their unique
timing properties.
Therefore,MemOrder bugs require more careful coordi-

nation during delay injection.

1Deterministically injecting delays at every candidate location is widely

considered unacceptable, due to the huge overhead and delay interference.

1.2 A new design

Guided by these insights, we propose Waffle Ð a delay
injection tool for exposing MemOrder bugs that explores
new trade-offs and heuristics for each design point discussed
above. Given a program under test, Waffle runs it once
to identify candidate injection locations with lightweight
happens-before analysis. In subsequent runs, often just one,
Waffle carries out delay injection with a carefully designed
delay-or-not decision-making process guided by the infor-
mation collected from the first run.

Table 1 summarizesWaffle’s design decisions, and shows
how our tool compares to Tsvd and other recent delay injec-
tion techniques Ð techniques that rely on expensive program
analysis and/or need many runs to expose bugs, as discussed
above.
We implemented Waffle for C# and evaluated it on 11

popular open-source multi-threaded C# applications. Our
experiments show thatWaffle successfully exposes 18Mem-

Order bugs, including 12 known and 6 previously unknown

issues, without any bug-related prior knowledge. Waffle

manages to reliably discover and trigger most of these bugs
(15 out of 18) in just two runs. The end-to-end slowdown
is only 2.5× compared with running the bug-triggering in-
put once without any instrumentation. Our evaluation also
shows that Waffle exposes more bugs with much less over-
head than various alternative designs.

Starting from an attempt to understand why Tsvd works
so effectively for thread-safety violations and whether a
simple adaptation suffices for MemOrder bugs, our study
ends up with a completely different active delay injection
design and a new tool, Waffle. We hope our journey sheds
light on how to architect active delay injection tools for
broader classes of concurrency bugs. Consequently, we make
Waffle available at https://github.com/bastoica/waffle.

EuroSys ’23, May 9ś12, 2023, Rome, Italy Stoica et al.

2 Background

As mentioned in ğ1, our first goal is to understand the state-
of-the-art for active delay injection. Thus, we begin by pre-
senting a few details about Tsvd [32].

Tsvd is an active delay injection tool that aims to expose
thread-safety violations (TSVs), a type of concurrency bug
that manifests when the execution windows of two thread-
unsafe API calls operating on the same object overlap. Em-
pirically, it reports significantly more TSVs in proprietary
software with much less overhead than traditional delay
injection techniques [32]. To achieve this, Tsvd works as
follows:

How to identify delay candidate locations? Given a
program binary, Tsvd first instruments program locations
where thread-safety violations are likely to occur, namely call
sites of thread-unsafe APIs [32]. At run time, Tsvd collects
information at these instrumentation points and leverages
two heuristics to maintain a set S of thread-safety violation
candidates. Each candidate consists of a pair of program lo-
cations {ℓ1, ℓ2} where API calls at ℓ1 and ℓ2 may contribute to
thread-safety violations. Consequently, ℓ1 and ℓ2 are candi-
date locations where Tsvd injects delays and exposes poten-
tial thread-safety violations. We refer to S as the candidate
set.

The first heuristic Ð near-miss tracking Ð adds candidate
pairs toS based on constraints related to the 2 corresponding
threads, objects accessed, and the physical timestamps of the
operations involved. Specifically, if one thread-unsafe API
is invoked at location ℓ1 from thread 𝑡ℎ𝑑1 accessing object
𝑜𝑏 𝑗1 at time 𝜏1, while another is invoked at location ℓ2 from
thread 𝑡ℎ𝑑2 accessing 𝑜𝑏 𝑗2 at time 𝜏2, Tsvd adds {ℓ1, ℓ2} to S
iff. 𝑜𝑏 𝑗1 = 𝑜𝑏 𝑗2, 𝑡ℎ𝑑1 ≠ 𝑡ℎ𝑑2 and |𝜏1 − 𝜏2 | ≤ 𝛿 , for a time gap
threshold 𝛿 (called the near-miss window [32]). The intuition
is that two thread-unsafe APIs accessing the same object
from different threads are more likely to cause a thread-
safety violation if they execute close to each other at run
time.

The second heuristic Ð happens-before inferencing Ð re-

moves candidate pairs from S, namely those unlikely to
trigger thread-safety violations, based on delay injection
feedback. Assume Tsvd added a candidate pair {ℓ1, ℓ2} to
S. When a delay is injected before ℓ1 in thread 𝑡ℎ𝑑1, Tsvd
checks whether it causes a proportional slowdown before
location ℓ2 in thread 𝑡ℎ𝑑2. If true, Tsvd infers that there is
a likely happens-before relationship between ℓ1 and ℓ2 and
consequently removes {ℓ1, ℓ2} from S.

When to identify candidate locations? To minimize
the number of bug-detection runs, Tsvd uses the above two
heuristics to dynamically update S during the same run
it injects delays in. After adding {ℓ1, ℓ2} into the candidate
set, Tsvd injects a delay before ℓ1 at the immediate next

opportunity, especially if ℓ1 is exercised again in the same
run.

How long is the delay? Tsvd relies on fixed-length delays.
Specifically, Tsvd injects a Thread.Sleep() operation of 𝛿
milliseconds before a candidate location (e.g. ℓ1). The con-
figuration of 𝛿 balances the performance and bug-exposing
capabilities: when 𝛿 is too short, many bugs are missed; when
𝛿 is too long, delay injection overhead becomes prohibitive.

When to inject at run time? For each candidate pair
{ℓ1, ℓ2}, Tsvd injects a delay with 100% probability when ℓ1
is exercised for the first time. However, each time this action
fails to expose a thread-safety violation, the probability of
injecting a delay before ℓ1 in the future drops by a small
constant 𝜆 > 0. When this probability reaches 0, all candidate
pairs involving ℓ1 are removed fromS. This decay constant is
carefully set: If 𝜆 is too small, many ineffective delays would
contribute to an overhead increase. If too large, only a few
candidate locations are delayed, thus many runs are needed
to thoroughly search for bugs. We refer to this strategy as
probability decay.

Additionally, Tsvd injects delays aggressively and allows
multiple threads to be blocked in parallel, to reduce the num-
ber of runs needed to expose thread-safety violations. Al-
though delays injected simultaneously could overlap creat-
ing interference and thus canceling each other’s effect, the
sparsity of candidate locations related to thread-safety vio-
lations, combined with the probability decay scheme avoid
such interference in most situations [32].

3 WaffleBasic: Adapting Tsvd

In our first attempt to detectMemOrder bugs using active de-
lay injection, we designWaffleBasic by adapting Tsvd [32]
for this type of bug. On the one hand, WaffleBasic departs
from Tsvd by operating on different program locations, rel-
evant to MemOrder bugs (ğ3.1). On the other hand, Waf-

fleBasic preserves Tsvd’s core delay injection philosophy
(ğ3.2). Unfortunately, these design choices combined with
the location and timing properties of MemOrder bugs limit
WaffleBasic’s efficacy (ğ3.3).

3.1 How to identify delay candidate locations?

Instrumentation sites. WaffleBasic first instruments
every program location where aMemOrder bug could oc-
cur. Specifically, WaffleBasic instruments all operations
related to reference-type variables, namely access to member
fields and calls to member methods of heap objects. For each
operation,WaffleBasic records the corresponding object
ID, physical timestamp, the operation type, and the active
thread.

At run time, an instrumented operation is categorized into
one of three types: object initialization, object disposal, and
object use. An operation that changes the object’s reference

Waffle: Exposing Memory Ordering Bugs Efficiently with Active Delay Injection EuroSys ’23, May 9ś12, 2023, Rome, Italy

from NULL to non-NULL is considered an object initialization.
An operation that changes the state of the object’s reference
from non-NULL to NULL or makes an explicit call to the ob-
ject’s destructor (i.e., Dispose() method) is considered an
object disposal. Calling one of the object’s member methods
or accessing one of its member fields is considered an object

use.

Adding to the candidate set S. WaffleBasic adapts the
near-miss heuristic of Tsvd to match the characteristics of
MemOrder bugs. Consider an object initialization (object
use) at location ℓ1 executed by Thread 1 on object 𝑜𝑏 𝑗1 at
time 𝜏1, and another object use (object disposal) at location ℓ2
executed by Thread 2 on object 𝑜𝑏 𝑗2 at time 𝜏2.WaffleBasic

adds {ℓ1, ℓ2} to S as a candidate use-before-initialization
(use-after-free) MemOrder bug iff. 𝑜𝑏 𝑗1 = 𝑜𝑏 𝑗2, 𝑡ℎ𝑑1 ≠ 𝑡ℎ𝑑2,
𝜏2 − 𝜏1 < 𝛿 , where 𝛿 is the size of the near-miss window.

Specifically, {ℓ1, ℓ2} ∈ 𝑆 forms aMemOrder bug candidate

and ℓ1 becomes a candidate location where WaffleBasic

injects delays attempting to expose this potential (candidate)
MemOrder bug. In other words,WaffleBasic injects delays
before an object initialization hoping to force it to execute
after its corresponding object use (as recorded in S), and
before an object use hoping to force it to execute after its
corresponding object disposal (as recorded in S).

Removing from the candidate set S. WaffleBasic sim-
ilarly adapts the happens-before inference heuristic of Tsvd.
Given a candidate pair {ℓ1, ℓ2},WaffleBasic checks whether
a delay injected before ℓ1 is observed to block the progress
of the other thread right before ℓ2. If the delay propagates, ℓ1
and ℓ2 are likely ordered by a happens-before relationship
andWaffleBasic removes the pair from S.

3.2 What about the other design decisions?

The remaining design decisions of WaffleBasic follow those
of Tsvd.

When to identify candidate locations? WaffleBasic

injects delays in the same run in which it adds or removes
pairs from the candidate set S. This way,WaffleBasic at-
tempts to exposeMemOrder bugs in a minimal number of
runs.

How long is the delay? Similar to Tsvd, WaffleBasic

injects delays of a fixed length 𝛿 . This constant is set to 100

milliseconds, exactly as in Tsvd.

When to inject delays at run time? Like Tsvd, Waf-

fleBasic implements a probability decay scheme. Similarly,
WaffleBasic injects delays at candidate locations in S with
a probability that starts at 100% and gradually decreases to-
wards 0 if no MemOrder bugs could be uncovered there.
Likewise, WaffleBasic also allows multiple delays to block
multiple threads in parallel.

App
Instrumentation Sites Injection Sites
TSV MO TSV MO

ApplicationIns. 8.7 188.6 0.1 3.5
FluentAssert. 57.3 76.9 0.3 5.9
Kubernetes 5.6 338.5 1.5 3.8
MQTT.Net 23.2 544.1 7.9 156.6
NetMQ 49.2 619.0 13.5 143.4
NSubstitute 1.3 261.4 0.6 10.7
NSwag 2.2 110.4 0.3 70.8
Ssh.Net 56.3 179.0 0.4 13.1

Table 2. The average number of unique static instrumen-
tation and delay-injection sites for thread-safety violations
(TSV) and MemOrder bugs (MO) across all test inputs.

3.3 How effective is WaffleBasic?

We evaluated WaffleBasic using 11 open-source applica-
tions with 12 previously reportedMemOrder bugs (details
in Tables 3 and 4). Our experiments found that although
WaffleBasic can expose someMemOrder bugs, it fails to
expose others even after many runs. Experiments also reveal
thatWaffleBasic incurs a significant overhead for several
applications. In particular, we observed several shortcomings
of WaffleBasic that reflect the fundamental difference be-
tween MemOrder bugs and thread-safety violations. These
shortcomings led us to the design of Waffle (ğ4).

Too many program locations in play. MemOrder bugs
and thread-safety violations have different location prop-
erties. Thus, WaffleBasic needs to handle a much more
numerous set of instrumentation sites than Tsvd (i.e., pro-
gram locations that access heap objects versus thread-unsafe
API call sites). For 8 out of 11 applications2 in our bench-
mark suite, WaffleBasic’s instrumentation sites are over
10× more common than Tsvd’s, in most cases (see “Instru-
mentation Sitesž columns in Table 2). With a larger base to
start with, more program locations tend to pass the near-miss
heuristic at run time and get added to the candidate set S.
Similarly, the number of delay injection locations identified
by WaffleBasic is predominantly an order of magnitude
more than those identified by Tsvd (see “Injection Sitesž
columns in Table 2).

Toomuch delay overlap. A denser set of instrumentation
sites means more delays injected at run time which, in turn,
increases delay overlap. To quantify this overlap we run
every test suite for the benchmarks in Table 2 and compute
the complement of the ratio between the “time projectionž
of all delays over the total delay value injected. This way, if
no delays overlap, the value is 0 while if all delays overlap
the ratio is close to 1 (i.e., 𝐷−1

𝐷
, with 𝐷 representing the total

2The public version of Tsvd cannot instrument the other 3 applications

in our benchmark suite.

EuroSys ’23, May 9ś12, 2023, Rome, Italy Stoica et al.

Trace Collection

Trace Analysis
Delay Injection

Preparation Run Detection Run(s)
Candidate

Set S

WAFFLE
Program

Binary

Test

Suite
Bug

Reports

Figure 3. Workflow diagram of Waffle.

number of delays injected at run time). For Tsvd, the average
overlap is less than 1% for 6 out of the 8 applications, with
the remaining 2 applications showing an average overlap of
12% and 15%, respectively. In contrast, for WaffleBasic, the
average overlap is 2 − 28%, with 3 applications above 25%.

Too few dynamic instances. The main reason Tsvd de-
tects many thread-safety violations in just one run is that
most thread-unsafe API calls are executed multiple times per
run, offeringmultiple chances for bugmanifestation [32]. Un-
fortunately, this is not true forMemOrder bugs. In particular,
many objection initialization operations naturally execute a
small number of times each run. In our evaluation, the me-
dian number of dynamic instances for all object initialization
operations is 2 across all unit tests for all applications.

4 Waffle: A New Design

To tackle the challenges faced by WaffleBasic, we propose
Waffle. As illustrated in Figure 3,Waffle works as follows:

• First, Waffle executes the targeted program binary
once, without injecting any delay, to record a delay-
free execution trace. We refer to this as the preparation
run.

• Next, Waffle analyzes this unperturbed trace to (i)
construct the set of candidate location pairs S, (ii) de-
termine the delay length for each candidate location,
and (iii) identify which candidate locations might in-
terfere with each other (ğ4.1Ð4.4).

• Finally, Waffle carries out delay injection in subse-
quent runs using information collected during the
preparation run as well as from the ongoing run it-
self (ğ4.4). We refer to these as detection runs.

In the rest of this section, we describe Waffle’s design
decisions and how they differ fromWaffleBasic.

4.1 How to identify delay candidate locations?

What went wrong in WaffleBasic? To identify can-
didate locations, WaffleBasic (like Tsvd) completely dis-
regards traditional happens-before analysis. Instead, it uses
run-time heuristics (near-miss tracking and happens-before
inference) to infer what operations may be un-synchronized

and hence should be part of the candidate set S. Unfortu-
nately, this design did not work well for WaffleBasic, af-
fecting detection overhead and bug coverage, for several
reasons.
First, MemOrder bugs naturally present many more in-

strumentation sites than thread-safety violations (Table 2)
which contributes to an increased number of delays getting
injected and higher run-time overhead.

Second, the happens-before inference can be less accurate
inWaffleBasic due to delay overlaps.WaffleBasic (like
Tsvd) infers happens-before relationships between two lo-
cations ℓ1 and ℓ2, iff. delaying Thread 1 before exercising ℓ1
causes a proportional slowdown of Thread 2 before exercis-
ing ℓ2. However, if a second delay is injected around the same
time in Thread 2, thus overlapping with the first in Thread
1 (see diagram in Figure 5), the happens-before inference
heuristic cannot reliably determine whether the slowdown
in Thread 2 is caused by a synchronization operation or it is
solely the effect of the second delay. Consequently, the more
delays overlapping, the less the effective happens-before
inference heuristic is.
Finally, even when the happens-before inference is as

accurate as in Tsvd, it offers little help to those locations
that only execute a small number of times each run (e.g.
object initializations). By the timeWaffleBasic infers the
happens-before relationship, the program locations involved
no longer get exercised during that same run.

Design of Waffle. At first glance, Waffle may need to
go back to full-blown happens-before analysis, which would
require significant manual effort in annotating synchroniza-
tion operations, in addition to the high overhead incurred
by the happens-before analysis itself [31, 32].
Fortunately, we found that a sizable fraction of MemO-

rder bug candidates is causally ordered by a specific type
of happens-before relationship Ð that between parent and
child threads. Typically, this happens because many objects
are allocated in a parent thread before the worker threads
are created. Consequently, Waffle replaces the happens-
before inference in WaffleBasic with a parent-child thread
relationship analysis. Pruning these orderedMemOrder can-
didates during the preparation run reduces the number of
candidate program locations where Waffle has to inject
delays. As Table 7 shows, failing to remove them decreases
the average performance of our tool by 1.17×. However, the
impact on memory-intensive applications is much greater
(e.g. 1.73× for NpgSQL)

To track parent-child thread relationships, traditionally
we would need to instrument every program location where
the parent forks a child thread. This is challenging in modern
object-oriented languages such as Java and C# which have
multiple mechanisms for thread creation. Instead of instru-
menting various types of thread fork operations, Waffle

leverages a special type of thread-local storage (TLS) that

Waffle: Exposing Memory Ordering Bugs Efficiently with Active Delay Injection EuroSys ’23, May 9ś12, 2023, Rome, Italy

automatically gets copied from a parent to all child threads
at the moment of thread creation. This language feature is
supported by other modern object-oriented programming
languages such as Java (InheritableThreadLocal [41]) and
C++ (LogicalCallContext [40]).

Note that whileWaffle only considers threads, .NET pro-
vides a similar mechanism for task-oriented programming Ð
async-local storge Ð which supports state propagation from
a parent to a child task irrespective of which thread these
tasks are scheduled to run on.

Waffle tracks happens-before relationships induced by
thread forks by implementing vector clocks on top of the
TLS mechanism. More precisely,Waffle creates and stores a
tailored thread-local vector clock object in the TLS memory
region of each thread. This vector clock is represented by
a set of tuples {(𝑡𝑖𝑑1,&𝑟𝑐𝑡𝑟1), (𝑡𝑖𝑑2,&𝑟𝑐𝑡𝑟2), ...}, with each
tuple representing a thread ID and a reference (pointer) to
the corresponding logical time counter. When a child thread
is created, the TLS memory region of the parent thread (and,
consequently, the vector clock object with it) gets automati-
cally propagated to the child thread. At this point in the exe-
cution, Waffle allocates a vector clock for the child thread
using information from the vector clock “clonedž from its par-
ent. Specifically,Waffle implements the constructor of the
vector clock object to (1) append a tuple (𝑡𝑖𝑑𝑘 ,&𝑟𝑐𝑡𝑟𝑘 = 1),
with 𝑡𝑖𝑑𝑘 being the child thread ID, to the vector clock con-
tent copied from the parent thread; and (2) increment the
logical counter of the parent using the counter reference
(pointer) passed through the TLS. Note that while vector
clock updates happen as part of the TLS propagation which
is triggered by a thread fork operation, the parent’s vec-
tor clock remains inaccurate until TLS region is completely
copied to the child threadÐas the value is not incremented
right before the fork happens. However,Waffle makes no
vector clock comparisons in this time frame.

Waffle leverages these vector clocks during near-miss
tracking. Consider a candidate location pair {ℓ1, ℓ2} that sat-
isfy all requirements related to timing, active threads, and
memory access set forth by the near-miss tracking heuristic
(ğ4.1). Waffle additionally checks whether the correspond-
ing vector clocks of the two active threads at time 𝜏1 and 𝜏2,
respectively, cannot be partially ordered before deciding to
add the pair to S or not.

4.2 When to identify candidate locations?

What went wrong in WaffleBasic? The design de-
cision of combining candidate locations identification and
delay injection into the same run does not benefit detecting
MemOrder bugs as much as it benefits detecting thread-
safety violations. This happens because program locations
involved in manyMemOrder bugs have only a few dynamic
instances, as mentioned in ğ3.3. Consequently, starting delay

injection in the same run makes little difference for pro-
gram locations that execute a few times, if at all, after being
identified as candidate locations.

Furthermore, our evaluation shows that the injected delays
sometimes interfere with candidate location identification,
which relies on physical time information. For example, a pair
of candidate locations {ℓ1, ℓ2} observed during a delay-free run
may “disappearž once delays are injected, as delays injected
between ℓ1 and ℓ2 could prevent them from executing close
to each other, failing the |𝜏1-𝜏2| < 𝛿 requirement. Intuitively,
the more delays injected at run time, the more severe this
interference is.

Design ofWaffle. In contrast,Waffle conducts a prepa-
ration run (delay-free) for planning purposes (see Figure 3),
before injecting delays in subsequent, detection runs. In this
first run, Waffle uses the near-miss heuristic together with
the parent-child relationship pruning to construct the can-
didate locations set S. In subsequent runs,Waffle injects
delays at these locations. In addition, Waffle leverages the
delay-free environment in the first run to collect timing in-
formation to help guide delay injection. We will elaborate
more in the next two sub-sections.
Note that using a delay-free run can potentially increase

the cost of Waffle, as at least two runs are now needed to
expose a MemOrder bug. We believe the benefits outweigh
the extra cost, and we experimentally validate this claim
during evaluation (ğ6).

4.3 How long is the delay?

Whatwentwrong inWaffleBasic? WaffleBasic strug-
gles to find a delay length that can balance performance and
bug-exposing capabilities. Compared to Tsvd, WaffleBasic

incurs significantly more overhead under the same delay
length setting due to starting with a larger candidate set S
(ğ3.3). For example, using a delay length of 100 milliseconds,
Tsvd incurs 15%, 9%, and 11% overhead when running all
multi-threaded tests available for ApplicationInsights, Fluen-
tAssertion, and Kubernets.Net, respectively [32]. In contrast,
WaffleBasic incurs over 100% overhead for the same three
applications (Table 5).

Of course, we could lower the overhead by using a much
shorter delay. However, the bug-exposing capabilities of
WaffleBasicwould suffer. For example, decreasing the delay
length from 100 to 10 milliseconds would speed up the aver-
age performance of WaffleBasic by about 4 times across
all multi-threaded unit tests available for NetMQ. Unfortu-
nately, in that case, the knownMemOrder bug [42] which
could be exposed by WaffleBasic when utilizing delays of
100 milliseconds, cannot be triggered with delays of only 10

milliseconds even after many runs (ğ6.2-ğ6.3).

Design of Waffle. To address this challenge, Waffle

leverages the observation that different bugs have different
time gaps between corresponding operations in bug-free

EuroSys ’23, May 9ś12, 2023, Rome, Italy Stoica et al.

// Thread #1

1.public DiagnosticsLstnr(){

2. lstnr = new EventLsntr();

3.}

...

4. public void Dispose() {

5. lstnr.Dispose();

6. }

// Thread #2

7. public void OnEventWritten(){

8. lstnr.EventWrite();

9. }

(a) ApplicationInsights Issue #1106 [39]: Interfering bugs

// Thread #1

1.public NetMQRuntime() {

2. m_poller = new NetMQPoller();

3.}

...

4. void Cleanup() {

5. if (ChkDisposed() == true){

6. throw new Exception();

7. }

8. m_poller.Dispose();

9. }

// Thread #2

10.bool ChkDisposed() {

11. return m_poller.IsDisposed;

12.}

...

13.void TryExecTaskInline() {

14. if (ChkDisposed() == true){

15. throw new Exception();

16. }

17.}

(b) NetMQ Issue #814 [42]: Interfering candidate locations

Figure 4. Examples of delay interference

runs (i.e., the gap between an object initialization and its use,
or between an object use and its disposal) and hence opts
to inject delays of different lengths at different locations. In
particular, for the 12 known bugs in our evaluation (ğ6.1),
measurements reveal that these time gaps range from less
than 1 to around 100 milliseconds. Consequently, if we ob-
serve the time gap between ℓ1 and ℓ2 to be much shorter than
ℓ3 and ℓ4 during a delay-free run, we can inject much shorter
delays at ℓ1 than at ℓ3 during detection (i.e., delay injection)
runs.

To achieve this,Waffle keeps track of time gaps between
each pair of candidate locations in S. For a candidate pair
{ℓ1, ℓ2} ∈ 𝑆 , Waffle creates a record with the delay length
at that particular candidate location, 𝑙𝑒𝑛ℓ1 = |𝜏1 − 𝜏2 |. If ℓ1
is part of multiple candidate location pairs (e.g. {ℓ1, ℓ

∗} ∈

𝑆), Waffle updates 𝑙𝑒𝑛ℓ1 with the larger gap (i.e., 𝑙𝑒𝑛ℓ1 =

MAX(|𝜏1 − 𝜏2 |, |𝜏1 − 𝜏∗ |).
During a detection run, Waffle injects delays propor-

tional to the gap measured above. For instance, given a loca-
tion ℓ1, Waffle injects a delay of 𝛼 · 𝑙𝑒𝑛ℓ1 milliseconds, for a
small constant 𝛼 ≥ 1. In our experiments, 𝛼 = 1.15.

4.4 When to inject at run time?

What went wrong in WaffleBasic? As discussed in
ğ3.3, WaffleBasic experiences much more delay overlap
than Tsvd. These overlapping delays interfere with each
other and causeWaffleBasic to miss someMemOrder bugs
with significant probability. Most often, this occurs in two
scenarios:
1. Interfering bugs: Sometimes, the manifestation of two

bug candidates interfere with each other Ð one requires
Thread 1 to execute faster than Thread 2, and the other
requires Thread 2 to execute faster than Thread 1. When
attempting to trigger them both, the injected delays can-
cel each other. Unfortunately, these cases are particularly
common when, for example, attempting to trigger a use-
before-initialization and use-after-freeMemOrder bug on
the same object instance (in the same run).

Figure 4a illustrates such an example from ApplicationIn-
sights [39]. The bug manifests when the constructor takes

longer than expected to allocate lstnr before a WRITE event
occurs, which triggers the OnEventWritten() handler.Waf-

fleBasic consistently misses this bug because it injects de-
lays both before the allocation at line 2 in Thread 1, aiming
to push the allocation after the object use (line 8), and before
the object use at line 8 in Thread 2, aiming to push the use
after the dispose operation (line 8). Therefore, WaffleBasic

blocks both threads in parallel for the same duration and
cannot trigger the bug even after 50 runs.

2. Interfering dynamic instances: Sometimes,WaffleBasic

injects a delay at a location ℓ1, hoping to make it execute
after ℓ2. Unfortunately, this delay repeatedly gets canceled
out by a delay at another dynamic instance of ℓ1, which is
executed by the same thread right before exercising ℓ2.
Figure 4b illustrates such an example from NetMQ [42].

The failure happens when a connection is abruptly termi-
nated, causing several shared objects to be disposed (e.g.
m_poller on line 8, Thread 1) while other threads are still
processing network packages (e.g. m_poller on line 11, Thread
2). To trigger this bug, WaffleBasic injects a delay right
before line 11, aiming to push the use of m_poller in Thread
2 to execute after the dispose operation in Thread 1. Unfor-
tunately, since line 11 is also executed (in a different exe-
cution context) by Thread 1 right before the dispose call,
both threads get delayed at around the same time and for the
same duration. This, in turn, prevents WaffleBasic from
exposing the bug even after 50 runs.

Design of Waffle. Similar to WaffleBasic and Tsvd,
Waffle uses the probability decay strategy to inject delays
at candidate locations with decreasing probabilities. Unfortu-
nately, this alone is not enough to mitigate delay interference.
Thus, Waffle proposes an additional, new heuristic to re-
duce delay interference.
A naïve solution to the delay interference problem is to

modifyWaffleBasic to inject only one delay per run, similar
to prior work [46, 53]. However, this would require too many
runs to expose the bug, asWaffle routinely observes tens,
or even hundreds of location candidates after the preparation
run, for just one input. A better solution might be to change

Waffle: Exposing Memory Ordering Bugs Efficiently with Active Delay Injection EuroSys ’23, May 9ś12, 2023, Rome, Italy

ℓ𝟏
Interference

window

𝒕𝟐𝒕𝟏− 𝜹
Thd. 1

Thd. 2 ℓ∗ ℓ𝟐
Figure 5. Illustration of delay interference. Highlighted, the
interference window Ð when a concurrent delay injected in
Thread 2 can cancel the effect of the delay injected before ℓ1.

WaffleBasic to avoid any parallel (i.e., overlapping) delays.
However, completely avoiding parallel delays may cause
some bugs to take many runs to trigger [32]. This could be
even worse for MemOrder bugs: If the candidate location
ℓ of a bug executes only a small number of times each run,
WaffleBasicmay never trigger the bug if another candidate
location, from a different thread, keeps getting exercised
right before ℓ does.

Therefore,Waffle proposes a new heuristic that aims to
strike a balance between enabling parallel delay injection and
reducing delay overlaps. The high-level idea is to enhance
WaffleBasic so that a delay planned to be injected before ℓ1
is skippedwhen an interfering delay is ongoing. As illustrated
in Figure 5, we consider a delay planned for ℓ∗ in thread Thd2
to interfere with another delay planned for ℓ1 in a different
thread Thd1 if two conditions are met: (1) First, ℓ∗ executes
before ℓ2 on the same thread Thd2Ðif {ℓ1, ℓ2} is a bug candidate
that Waffle aims to expose by injecting a delay before ℓ1,
allowing another delay before ℓ∗ will block Thd2, essentially
canceling out the original delay and preventing ℓ1 execute
after ℓ2. (2) Second, ℓ

∗ needs to either execute shortly ahead
of ℓ1 or between ℓ1 and ℓ2Ðotherwise, the interference is
negligible.

A challenge in implementing the above strategy is that we
cannot predict whether ℓ2 will be executed by thread 𝑇ℎ𝑑2
(i.e., the thread of ℓ∗) at the time when execution reaches ℓ1.
Consequently, we cannot predict which delays might inter-
fere with ℓ1 when it gets exercised. To address this challenge,
we leverage the preparation (i.e., delay-free) run. Specifically,
we augment the near-miss heuristic as follows: when the
execution reaches ℓ2 and Waffle identifies {ℓ1, ℓ2} as a can-
didate pair, it further checks if any other candidate location,
say ℓ∗, was exercised by the same thread that reaches ℓ2 at a
time between 𝑡1 − 𝛿 or and 𝑡2. If so, the pair (ℓ1, ℓ

∗) is added
to a global set I of locations that could interfere with each
other if delayed simultaneously. I (along with S and the
per-location delay-length values) is saved after analyzing the
execution traces recorded during the preparation run and
used to bootstrap future detection runs. This way, in future
detection runs no delay gets injected at ℓ∗ as long as there

is another delay concurrently injected at a location interfer-
ing with ℓ∗ (e.g., ℓ1). Conversely, no delay gets injected at ℓ1
as long as there is another delay concurrently injected at a
location interfering with ℓ1 (e.g. ℓ

∗).

5 Implementation

Waffle. We implemented Waffle to find MemOrder

bugs in C# applications. Waffle measures 6, 378 lines of C#
code and an additional 433 lines of Python and PowerShell
scripts.Waffle is divided into three key components: (1) the
instrumenter which statically instruments the target binary;
(2) the trace analyzer which constructs the candidate set
S, the interference set I, and determines appropriate delay
lengths; and (3) the runtime which implements the delay
injection algorithm.

1. Waffle’s instrumenter. This component takes an appli-
cation binary as input and wraps every access to object mem-
ber fields or calls to member methods in a proxy function.
The proxy function transfers control to Waffle’s runtime
library (see below) which implements the delay injection
strategy. To instrument the binary, Waffle relies on a .NET
instrumentation framework called Mono.Cecil [13].
Waffle executes the instrumented application at least

twice. Waffle runs the instrumented application once to
collect an unperturbed execution trace containing every ac-
cess to heap objects (preparation). Note that no delay is
injected in this preparation phase.Waffle runs the instru-
mented application at least one more time, to inject delays
and expose MemOrder bugs (detection).
2. Waffle’s trace analyzer. This component analyzes a

run time trace to identify pairs of memory accesses likely to
cause MemOrder bugs. At this stage Waffle constructs the
candidate set S, discarding those pairs ordered by happens-
before relationships between parent and child threads, along
with those with a physical time gap larger than the near-miss
threshold. Next, it computes the appropriate delay length
to inject for each candidate pair in S. Finally, it identifies
which candidate locations interfere with each other if delays
are to be injected concurrently, constructing set I.

3.Waffle’s runtime. This component implements the core
delay injection algorithm.
Recall that during the preparation run, the library logs

all accesses to reference-type variables (heap objects) along
with metadata such as timestamps, accessed object id, and
access types (i.e., object initialization, object dispose, access
to object fields, or call to object methods).
During the detection run, the library injects delays ac-

cording to the delay planning done in the preparation run
and updates delay probabilities at candidate locations based
on the probability decay heuristic. After each detection run,
the new delay probabilities are saved on disk and used to
bootstrap the next detection run.

EuroSys ’23, May 9ś12, 2023, Rome, Italy Stoica et al.

Finally,Waffle reports a bug only when the target binary
raises a NULL reference exception as a consequence of the
delay injection performed. At that time, the relevant run-
time context (i.e., faulty input, candidate locations involved,
stack traces for all threads, and delay value information) is
recorded as part of the bug report.

Extending Waffle. To extend Waffle for applications
written in other object-oriented languages, like Java and C++,
we mainly need to change the underlying instrumentation
framework. We would similarly instrument method calls
and field accesses related to heap objects, and implement
the same delay injection algorithms which rely primarily on
language-independent time-based heuristics. One language-
dependent feature used by Waffle is C#’s thread-local stor-
age (TLS) mechanism which transfers state from a parent to
a child thread and facilitates happens-before analysis (ğ4.1).
However, similar language features are available for Java [41]
and C++ [40].

WaffleBasic. LikeWaffle,WaffleBasic uses the same
.NET instrumentation framework (i.e., Mono.Cecil [13]).Waf-

fleBasic instruments applications at similar locations as
Waffle, although different delay injection algorithms are
conducted at run time. Furthermore, WaffleBasic does not
instrument applications to produce traces and does not con-
tain a trace analyzer. The delay injection policy implemented
byWaffleBasic measures 447 lines of C# code.

6 Evaluation

Benchmarks. We evaluateWaffle on 11 popular open-
source multi-threaded C# applications (Table 3). We made
this selection by searching Github for C# applications that
(1) are popular, measured by the number of Github stars;
(2) have well-maintained test suites which would help us
conduct a systematic evaluation; and (3) contain confirmed
and clearly describedMemOrder bugs in their issue trackers.
To find MemOrder bugs, we first searched for issue re-

ports containing keywords such as “data racež or “race condi-
tionž. We further narrowed down the results using keywords
like “exceptionž or “crashž. Finally, we manually inspected
the remaining reports to confirm they are describing MemO-

rder bugs and include bug-triggering inputs.

6.1 Methodology

Following instructions in these MemOrder bug reports, we
were able to manually reproduce 12 previously knownMem-

Order bugs in 9 applications (the top 12 bugs in Table 3).
These helped us evaluate the bug-detection capabilities of
Waffle and WaffleBasic. Although we were unable to
reproduce the MemOrder bugs reported in SignalR and
MQTT.Net (we suspect the reported bug-triggering inputs or

Application LoC
Multi-thread

Stars
tests

ApplicationInsights 151.2K 156 0.5K
FluentAssertions 47.7K 41 2.5K
Kubernetes.Net 173.2K 21 0.7K
LiteDB 18.3K 7 6.2K
MQTT.Net 27.1K 126 2.2K
NetMQ 20.7K 101 2.3K
NpqSQL 51.9K 283 2.4K
NSubstitute 17.9K 13 1.7K
NSwag 101.5K 18 4.9K
SignalR 51.8K 52 8.5K
SSH.Net 84.4K 117 2.8K

Table 3. Details about the set of open-source C# applications
used to evaluate Waffle.

bug code versions are inaccurate), we keep these two appli-
cations in our benchmark suite as they both contain a large
set of multi-threaded test cases.

Note that, although we manually reproduced all 12 known
bugs, we did not use this knowledge when evaluating Waf-

fle or WaffleBasic. Specifically, we ran both tools using
every multi-threaded test case in the test suites of each ap-
plication and recorded the number of bugs exposed as well
as how many runs it took to trigger them, statistics about
delays injected, and overhead measurements.

Experiments Setup. We run each benchmark on a Win-
dows 10 desktop machine with an Intel Core i7-8700 3.2GHz
CPU, 16GB of RAM, and 1TB of disk space.

We use a near-miss window 𝛿 of 100milliseconds for both
Waffle andWaffleBasic Ð the default setting in Tsvd [32].
Similar to Tsvd, we also use 100 milliseconds as WaffleBa-

sic’s fixed-length delay value.
Finally, we repeat each experiment 15 times, to reduce

measurement variations that could arise due to the proba-
bilistic nature of our tools.

6.2 Bug-detection coverage

Waffle can trigger all 12 previously known MemOrder

bugs, as well as 6 previously unknown (i.e., unreported) Mem-

Order bugs (18 bugs in total), using only inputs from the
applications’ test suites.

Note that none of these 18 bugs can manifest themselves
without delay injection, even when we execute the corre-
sponding bug-triggering inputs repeatedly 50 times. More-
over, some of the previously unknown bugs discovered by
Waffle remained undetected for many months or even
years (e.g. Bug-14). Additionally,Waffle can trigger 3 of the
known bugs using a test case that was already available in
the test suite before the issues were reported, indicating that

Waffle: Exposing Memory Ordering Bugs Efficiently with Active Delay Injection EuroSys ’23, May 9ś12, 2023, Rome, Italy

No Application
Issue Previously Exec. time (ms) w/o # of detection runs Detection slowdown (×)

ID known? instrumentation WaffleBasic Waffle WaffleBasic Waffle

Bug-1 SSH.Net 80 Yes 2,464 2 2 1.4× 1.2×
Bug-2 SSH.Net 453 Yes 1,042 2 2 1.7× 1.6×
Bug-3 NSubstitute 205 Yes 437 1 2 3.3× 5.1×
Bug-4 NSubstitute 573 Yes 316 2 2 9.0× 4.4×
Bug-5 NSwag 3015 Yes 887 2 2 2.1× 1.8×
Bug-6 FluentAssertions 664 Yes 782 1 2 1.4× 2.7×
Bug-7 FluentAssertions 862 Yes 831 2 2 1.2× 2.5×
Bug-8 LiteDB 1028 Yes 495 - 2 - 4.9×
Bug-9 Kubernetes.Net 360 Yes 1,955 1 2 1.3× 2.0×
Bug-10 ApplicationInsights 1106 Yes 143 - 2 - 4.9×
Bug-11 NetMQ 814 Yes 18,503 5 2 5.1× 2.2×
Bug-12 NpqSQL 3247 Yes 1,097 - 4 - 6.9×

Bug-13 SignalR n/a No 952 - 2 - 1.3×
Bug-14 ApplicationInsights 2261 No 1,349 2 2 1.5× 1.3×
Bug-15 NetMQ 975 No 593 - 3 - 12.2×
Bug-16 MQTT.Net 1187 No 1,207 - 4 - 5.4×
Bug-17 MQTT.Net 1188 No 13,722 - 3 - 6.2×
Bug-18 Kubernetes.Net n/a No 1,494 2 2 2.5× 2.0×

Table 4. Detection results from Waffle and WaffleBasic (Basic). Waffle discovered 6 previously unreported bugs (the
bottom 6). Four of these bugs manifest in the latest available major release version (March 30th, 2022) and are reported by
us. The other two (Bug-13, 18) no longer surface in the latest builds. The slowdowns are based on the execution time of the
bug-triggering input without any instrumentation. “-ž indicates that WaffleBasic fails to expose the bug in 50 runs.

our tool is useful for finding hard-to-detect bugs in mature
software.
In contrast, WaffleBasic exposes only 11 out of the 18

bugs.WaffleBasic cannot expose any of the other 7 bugs
even after a significant number of detection runs (50 in
our evaluation). This happens because WaffleBasic injects
many more delays and allows much more delay interference
thanWaffle, as discussed in ğ4.
In theory, the number of runs required to expose aMem-

Order bug could vary in different attempts due to the prob-
abilistic nature of concurrency bugs. Therefore, we repeated
our experiment 15 times. When we report that a bug can
be detected in 1 or 2 runs, we make sure that this is the
case in the majority of attempts (i.e., at least 10 out of the
15 attempts). Bugs that require more runs to expose tend
to behave more non-deterministically. For those bugs, we
report the median number of runs required to expose them
(Table 4).

Previously unknown bugs. Among the 6 previously un-
knownMemOrder bugs exposed byWaffle, 4 have since
been fixed by developers in the most recent releases.

Two out of these six bugs lead to use-before-initialization
problems (Bug-13 and Bug-14). For example, Bug-14 in Ap-
plicationInsights [39] happens because the constructor only
manages to initialize the event handler field of the object (i.e.,
this.buffer.OnFull) before the “buffer eventž occurs. At

that point control is transferred to the event handler, which
attempts to access one of the still uninitialized fields of the
object, triggering a NULL reference exception.

The other four previously unknown bugs lead to use-after-
free problems. For example, Bug-15 in NetMQ [43] happens
because the underlying message queue gets disposed while
the queue still stores messages that are currently being pro-
cessed. Later on, when a worker thread attempts to dequeue
a message that just finished processing, it triggers a NULL

reference exception.

6.3 Bug-detection efficiency

For 14 out of the 18 bugs, Waffle reliably exposes them by
running the corresponding test case twice. Specifically, the
bug is reliably exposed in Waffle’s first detection run after
a preparation run. The remaining 4 bugs tookWaffle 3 or 4
runs to trigger. This happens because NpqSQL, MQTT.Net,
and NetMQ perform significantly more heap object accesses
which, in turn, are the source of many more delay candidate
locations for Waffle to sift through. Moreover, as shown
in Table 4,Waffle incurs a 1.2×ś5.1× slowdown (median,
2.1×) for these 14 bugs when compared with running the
bug-triggering input without instrumentation. For 7 of those,
the overhead is 2.0× or lower. This happens because the
bug manifestation halts the detection run prematurely, thus
the end-to-end time in these cases is similar to or much

EuroSys ’23, May 9ś12, 2023, Rome, Italy Stoica et al.

App. Base WaffleBasic (%) Waffle (%)
(ms) Run#1 Run#2 R#1 R#2

Applic. 227 122 357 19 38
Fluent. 776 48 48 24 27
Kubernet. 2051 14 37 9 41
MQTT.Net 1768 TimeOut TimeOut 13 332
NetMQ 1657 167 375 34 288
NpgSQL 1118 2818 2509 266 968
NSubst. 344 72 294 26 78
NSwag 995 12 56 14 51
SignalR 267 58 144 13 81
Ssh.Net 702 68 96 16 20

Table 5. Average overhead on all test inputs. (Base: the av-
erage run time of a test input without any instrumentation)

shorter than running the original test input twice without
instrumentation.
The remaining 4 bugs take a longer time to get exposed

(5.4×ś12.2×), as they require more than one detection run
to manifest. This happens because more delays get injected
in each run due to the denser, much more frequent heap
object accessesÐa similar trend across all test inputs for
these particular applications (Table 5). Note, however, that
traditional race detection techniques routinely incur several
times the slowdown (e.g. 5-10× [14, 32]).
In comparison,WaffleBasic takes the same number of

runs or, in one case, more (Bug-11), while managing to ex-
pose only 11 bugs. This is actually surprising, as WaffleBa-

sic starts delay injection from the first run, unlikeWaffle

which spends its first run for preparation, without injecting
any delays. WaffleBasic was able to expose only 3 bugs
(Bug-3, Bug-6, and Bug-9) in fewer runs than Waffle (i.e.,
in its first run).WaffleBasic requires more detection runs
thanWaffle for the remaining 8. Moreover,WaffleBasic

incurs longer end-to-end bug-detection overhead than Waf-

fle for 7 out of these 11 bugs. Overall, these findings justify
our decision to dedicateWaffle’s first run for preparation
without any delay injection (ğ4.2).

Finally, Bug-7 is the only case where Waffle incurs more
overhead thanWaffleBasic, although both tools need the
same number of detection runs to trigger it. This happens
because WaffleBasic exposes Bug-7 close to the beginning
of its second run, while Waffle only does so towards the
end of its second run (i.e., its first detection run).

6.4 Detailed results

Overhead. Table 5 reports the average overhead thatWaf-

fle incurs on every multi-threaded test case in each appli-
cation’s test suite, for both its preparation and detection
runs. We exclude LiteDB since it contains only a few multi-
threaded test cases, as noted in Table 3.

Application WaffleBasic Waffle

Delays Duration (ms) # Delays Duration (ms)

Applic. 2,475 247,500 475 7,212
Fluent. 448 44,800 43 167
Kubernet. 177 17,700 197 5,904
MQTT.Net TimeOut TimeOut 3,243 141,699
NetMQ 11,767 1,176,700 11,271 520,037
NpqSQL 246,477 24,647,700 123,166 4,535,586
NSubst. 575 57,500 78 1,083
NSwag 343 34,300 349 11,806
SignalR 861 86,100 513 11,342
Ssh.Net 829 82,900 506 10,126

Table 6. Cumulative number and duration of delays injected
across all test inputs (one detection run for each input). Time-
Out: most tests timed out due to excessive delay.

Waffle incurs much less overhead than WaffleBasic

for 8 applications, and similar overhead for the remaining 2
applications (Kubernetes.Net and NSwag). Particularly, for
NSubstitute, NpgSQL, and ApplicationInsights, Waffle’s
detection runs (R#2) are more than twice as fast as Waffle-

Basic’s. Furthermore, for MQTT.Net, a protocol communi-
cation application,WaffleBasic incurs so much overhead
that most of the test cases timed out, which does not happen
forWaffle.
The performance benefit of Waffle comes from its de-

cision to analyze parent-thread causal relationships (ğ4.1)
and its reliance on variable-length delays (ğ4.3). This is re-
flected by the significantly fewer delays injected and the
much shorter cumulative (total) delay duration introduced
byWaffle, as illustrated in Table 6.

For 7 out of 10 applications (i.e., except for Kubernets.Net,
NetMQ, and NSwag),Waffle injects only one-tenth to about
half the number of delays across all test inputs, compared
toWaffleBasic. SinceWaffle uses variable-length delays
instead of a fixed 100-millisecond value likeWaffleBasic,
the cumulative delay durationWaffle injects is 5× less than
WaffleBasic. Note that for multi-threaded programs the
cumulative delay duration only indirectly affects the total ex-
ecution time. Thus, althoughWaffle injects less cumulative
delay than WaffleBasic for Kubernets.Net and NSwag, the
overhead incurred byWaffle andWaffleBasic is similar.
In all other cases,Waffle incurs much less overhead than
WaffleBasic.

Overall,Waffle achieves reasonable performance for in-
house testing. For the preparation run (R#1), Waffle incurs
9ś34% average overhead across all applications except for
NpgSQL; for the first detection run (R#2),Waffle incurs 20ś
81% average overhead for all applications except for NpgSQL,
NetMQ, and MQTT.Net. These three applications allocate a
large number of objects at run time. Even though Waffle

achieves significant improvements overWaffleBasic, the
delay density is still moderately high for these 3 applications.

Waffle: Exposing Memory Ordering Bugs Efficiently with Active Delay Injection EuroSys ’23, May 9ś12, 2023, Rome, Italy

bugs slowdown
missed over Waffle

no parent-child analysis (ğ4.1) 0 1.17x
no preparation run (ğ4.2) 4 1.84x
no custom delay length (ğ4.3) 1 1.03x
no interference control (ğ4.4) 6 1.41x

Table 7. Alternative designs detect fewer bugs with slower
detection runs. (Baseline # of bugs and performance are from
Waffle across all applications).

Benefit of every design point. Table 7 shows how differ-
ent design points helpWaffle’s bug detection capabilities
and performance. We measure the impact on the number
of bugs exposed and overhead incurred, averaged across all
test inputs for all applications when disregarding one of the
four key design decisions discussed in ğ4 (e.g. w/o parent-
child analysis meansWaffle does not prune out parent-child
thread causal relationships).
This experiment shows that every design point has its

benefit. Among the 4, the decision of having a dedicated
preparation run without delay injection (ğ4.2) and the de-
cision of coordinating delays to avoid interference (ğ4.4)
offer the biggest benefit in both bug coverage and perfor-
mance. The other two are also helpful. For example, exclud-
ing parent-child causal analysis for NpgSQL slows down
Waffle’s detection runs by 1.73×, on average, across all test
inputs.

False positives. Waffle has no false positives, as our tool
only reports a bug after triggering it and once it observes the
NULL pointer exception not handled by the target application.

False negatives. Although Waffle successfully detected
all 12 previously known bugs as well as 6 previously un-
known bugs in our benchmarks, it could still miss MemO-

rder bugs for several reasons. First, like all dynamic detec-
tion tools,Waffle’s bug detection capabilities rely on test
inputs. If a buggy code region is not exercised by the test
set, Waffle cannot detect the bug. Second, similar to Tsvd,
Waffle uses several algorithms that rely on physical time in-
formation, such as delay interference analysis, delay length
analysis, near-miss tracking, and so on. Consequently, Waf-

fle could non-deterministically miss some MemOrder bugs
in the first few detection runs.

7 Related Work

Concurrency-Bug Detection. Some techniques aim to
predict concurrency bugs that might occur in the future by
analyzing memory accesses and synchronization operations
executed in one monitored run [14, 45, 47, 52, 55]. Typically,
they do not aim to report bugs without false positives. This
is difficult to guarantee without actually observing how the

software behaves under buggy timing conditions, particu-
larly in large software systems.

Some prior work [7, 22, 35, 53, 64, 65] guarantees no false
positives in its reporting of concurrency bugs, including of
MemOrder bugs [7, 22, 65]. Many first identify bug candi-
dates through a predictive bug-detection run [7, 35, 64, 65]
or through static analysis [53] and then use one or more
delay-injection runs to validate each bug candidate. These
tools naturally require many more runs thanWaffle. UFO
[22] eliminates false positives from its predictive bug de-
tection through sophisticated trace analysis and constraint
solving, instead of delay injection. Unfortunately, the com-
plexity of its analysis prevents it from analyzing long traces.
Furthermore, all these techniques incur about 10× or even
100× slowdown during the predictive bug detection run and
require precise knowledge about synchronization operations
present in the target application.

A significant amount of research is dedicated to static data
race detection [3, 11, 33, 49, 61, 63], including uncovering
use-after-free bugs [2]. These tools require careful annota-
tion of all synchronization operations and inevitably incur
more false positives than those using dynamic program anal-
ysis. Nevertheless, they are orthogonal to the latter and thus
complement tools similar to Waffle.

Systematic testing. Extensive research has been con-
ducted on systematic testing. These techniques steer the
program execution towards potential buggy interleavings
within some bound [15, 17, 18, 29, 38], relying on various
coverage metrics [4, 21], or offering certain probabilistic
guarantees [5]. Despite finding concurrency bugs, they are
not designed to minimize the number of runs necessary
to expose bugs and bear the cost of controlling the thread
scheduler. In contrast,Waffle is explicitly designed to find
concurrency bugs in a small number of runs, instrumenting
only the target binary.

Test Generation. A large number of tools have been
proposed to synthesize inputs to expose concurrency bugs,
mainly inside libraries [9, 48, 50, 51]. Typically, they rely on
generating sequences of concurrent method calls to help find
combinations that harbor bugs. This is orthogonal toWaf-

fle, which re-purposes existing tests to uncoverMemOrder

bugs.
Recently, fuzzing techniques have also been applied to

tackle this problem [24, 34]. Razzer [24] leverages fuzzing to
effectively generate system-call sequences whose concurrent
execution can help expose concurrency bugs. ConAFL [34]
combines traditional timing perturbation with input fuzzing.
Specifically, it inserts code snippets that adjust thread-schedule
priority right after thread creation and around potential bug
locations3, similar to previous concurrency-bug detection

3To identify these locations, ConAFL uses static analysis that cannot

scale beyond ten thousand lines of code.

EuroSys ’23, May 9ś12, 2023, Rome, Italy Stoica et al.

tools [53, 65]. It then applies AFL [62] on the modified appli-
cation to increase the fuzzer’s capability of exposing concur-
rency bugs.

Causality Inference. Past research has explored how
to automatically infer happens-before causality between
send/receive messages for system performance [1, 10], net-
work dependency analysis [8], or concurrency bug detec-
tion [31]. These tools need to observe a large number of runs
to make robust inferences and hence cannot directly help
Waffle to expose bugs after a small number of runs.

Memory Bugs. Different fromMemOrder bugs, there are
also deterministic use-after-free and use-before-initialization
bugs that occur within one thread and do not require con-
current accesses or rare timings to manifest. These belong to
the larger family of memory bugs [57] and can be detected
by generic memory bug detection tools like AddressSani-
tizer [54] and Valgrind [44], as well as dedicated use-after-
free bugs detectors [6, 19, 28, 36, 59]. Naturally, analyzing
synchronization or exploring different thread interleaving
is out of the scope of these tools. They cannot detect con-
currency bugs such as MemOrder bugs unless the program
is executed under the bug-triggering input many times and
the bug-triggering timing occurs spontaneously.

8 Conclusion

This paper explores a new design point in the active delay
injection spaceÐa design point aimed at exposing MemO-

rder bugs efficiently and effectively. We start from the ex-
isting state-of-the-art and gradually move towards a novel
approach that balances bug-exposing capabilities, cost, and
practicality. We hope future research can rely on our ex-
perience to design other resource-conscious active delay
injection tools for detecting concurrency bugs.

9 Acknowledgments

We would like to thank the anonymous reviewers for their
insightful comments on the paper and the artifact, and Jia-
Ju Bai for shepherding this work. We would also like to
thank Guangpu Li for his invaluable help with sketching out
an initial prototype. The authors’ research is supported by
NSF (grants CCF-2119184, CCF-2028427, CNS-1956180, CCF-
1837120, CNS-1764039), the CERES Center for Unstoppable
Computing, an Eckhardt Fellowship, and gifts fromMicrosoft
and Meta.

References
[1] Marcos K. Aguilera, Jeffrey C.Mogul, Janet L.Wiener, Patrick Reynolds,

and Athicha Muthitacharoen. Performance debugging for distributed

systems of black boxes. In Proceedings of the Nineteenth ACM Sympo-

sium on Operating Systems Principles, SOSP ’03, page 74ś89, New York,

NY, USA, 2003. Association for Computing Machinery.

[2] Jia-Ju Bai, Julia Lawall, Qiu-Liang Chen, and Shi-Min Hu. Effective

static analysis of concurrency use-after-free bugs in linux device dri-

vers. In Proceedings of the 2019 USENIX Conference on Usenix An-

nual Technical Conference, USENIX ATC ’19, page 255ś268, USA, 2019.

USENIX Association.

[3] Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey.

Racerd: Compositional static race detection. Proc. ACM Program. Lang.,

2(OOPSLA), oct 2018.

[4] Arkady Bron, Eitan Farchi, Yonit Magid, Yarden Nir, and Shmuel Ur.

Applications of synchronization coverage. In Proceedings of the Tenth

ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-

gramming, PPoPP ’05, page 206ś212, New York, NY, USA, 2005. Asso-

ciation for Computing Machinery.

[5] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and San-

tosh Nagarakatte. A randomized scheduler with probabilistic guaran-

tees of finding bugs. SIGPLAN Not., 45(3):167ś178, March 2010.

[6] Juan Caballero, Gustavo Grieco , Mark Marron, and Antonio Nappa .

Undangle: Early detection of dangling pointers in use-after-free and

double-free vulnerabilities. In ISSTA 2012 Proceedings of the 2012

International Symposium on Software Testing and Analysis, pages 133ś

143. Association for Computing Machinery, July 2012.

[7] Yan Cai, Biyun Zhu, Ruijie Meng, Hao Yun, Liang He, Purui Su, and

Bin Liang. Detecting concurrency memory corruption vulnerabilities.

In Proceedings of the 2019 27th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering, ESEC/FSE 2019, page 706ś717, New York, NY, USA, 2019.

Association for Computing Machinery.

[8] Xu Chen, Ming Zhang, Z. MorleyMao, and Paramvir Bahl. Automating

network application dependency discovery: Experiences, limitations,

and new solutions. In Proceedings of the 8th USENIX Conference on

Operating Systems Design and Implementation, OSDI’08, page 117ś130,

USA, 2008. USENIX Association.

[9] Ankit Choudhary, Shan Lu, and Michael Pradel. Efficient detection of

thread safety violations via coverage-guided generation of concurrent

tests. In Proceedings of the 39th International Conference on Software

Engineering, ICSE ’17, page 266ś277. IEEE Press, 2017.

[10] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F.

Wenisch. The mystery machine: End-to-end performance analysis

of large-scale internet services. In Proceedings of the 11th USENIX

Conference on Operating Systems Design and Implementation, OSDI’14,

page 217ś231, USA, 2014. USENIX Association.

[11] Dawson Engler and Ken Ashcraft. Racerx: Effective, static detection of

race conditions and deadlocks. In Proceedings of the Nineteenth ACM

Symposium on Operating Systems Principles, SOSP ’03, page 237ś252,

New York, NY, USA, 2003. Association for Computing Machinery.

[12] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk

Olynyk. Effective data-race detection for the kernel. In Proceedings

of the 9th USENIX Conference on Operating Systems Design and Imple-

mentation, OSDI’10, page 151ś162, USA, 2010. USENIX Association.

[13] Jb Evain. Mono.cecil. Retrieved October 4, 2022. https://www.mono-

project.com/docs/tools+libraries/libraries/Mono.Cecil.

[14] Cormac Flanagan and Stephen N. Freund. Fasttrack: Efficient and

precise dynamic race detection. volume 44, page 121ś133, New York,

NY, USA, jun 2009. Association for Computing Machinery.

[15] Pedro Fonseca, Rodrigo Rodrigues, and Björn B. Brandenburg. Ski:

Exposing kernel concurrency bugs through systematic schedule ex-

ploration. In Proceedings of the 11th USENIX Conference on Operating

Systems Design and Implementation, OSDI’14, page 415ś431, USA, 2014.

USENIX Association.

[16] Sean Gallagher. Wcry ransomware worm’s bitcoin take tops $70k as

its spread continues, May 2017. https://arstechnica.com/information-

technology/2017/05/wcry-ransomware-worms-bitcoin-take-tops-

70k-as-its-spread-continues/.

Waffle: Exposing Memory Ordering Bugs Efficiently with Active Delay Injection EuroSys ’23, May 9ś12, 2023, Rome, Italy

[17] Patrice Godefroid. Model checking for programming languages using

verisoft. In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’97, page 174ś186, New

York, NY, USA, 1997. Association for Computing Machinery.

[18] Sishuai Gong, Deniz Altinbüken, Pedro Fonseca, and Petros Maniatis.

Snowboard: Finding kernel concurrency bugs through systematic inter-

thread communication analysis. In Proceedings of the ACM SIGOPS

28th Symposium on Operating Systems Principles, SOSP ’21, page 66ś83,

New York, NY, USA, 2021. Association for Computing Machinery.

[19] Binfa Gui, Wei Song, and Jeff Huang. Uafsan: An object-identifier-

based dynamic approach for detecting use-after-free vulnerabilities.

In Proceedings of the 30th ACM SIGSOFT International Symposium on

Software Testing and Analysis, ISSTA 2021, page 309ś321, New York,

NY, USA, 2021. Association for Computing Machinery.

[20] Egor Homakov. Hacking starbucks for unlimited coffee. May

2015. https://www.dailydot.com/unclick/starbucks-hack-unlimited-

coffee-2015/.

[21] Shin Hong, Jaemin Ahn, Sangmin Park, Moonzoo Kim, and Mary Jean

Harrold. Testing concurrent programs to achieve high synchroniza-

tion coverage. In Proceedings of the 2012 International Symposium on

Software Testing and Analysis, ISSTA 2012, page 210ś220, New York,

NY, USA, 2012. Association for Computing Machinery.

[22] Jeff Huang. Ufo: Predictive concurrency use-after-free detection. In

Proceedings of the 40th International Conference on Software Engineering,

ICSE ’18, page 609ś619, New York, NY, USA, 2018. Association for

Computing Machinery.

[23] Joab Jackson. Nasdaq’s facebook glitch came from ‘race conditions’,

May 2012. https://www.computerworld.com/article/2504676/nasdaq-

s-facebook-glitch-came-from--race-conditions-.html.

[24] Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung

Lee, and Insik Shin. Razzer: Finding kernel race bugs through fuzzing.

In 2019 IEEE Symposium on Security and Privacy (SP), pages 754ś768,

2019.

[25] Baris Kasikci, Weidong Cui, Xinyang Ge, and Ben Niu. Lazy diagnosis

of in-production concurrency bugs. In Proceedings of the 26th Sympo-

sium on Operating Systems Principles, SOSP ’17, page 582ś598, New

York, NY, USA, 2017. Association for Computing Machinery.

[26] Baris Kasikci, Cristian Zamfir, and George Candea. Racemob: Crowd-

sourced data race detection. In Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles, SOSP ’13, page 406ś422,

New York, NY, USA, 2013. Association for Computing Machinery.

[27] Leslie Lamport. Time, clocks, and the ordering of events in a distributed

system. Commun. ACM, 21(7):558ś565, jul 1978.

[28] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo

Kim, Long Lu, and Wenke Lee. Preventing use-after-free with dan-

gling pointers nullification. In Proceedings of the 2015 Annual Network

and Distributed System Security Symposium, NDSS ’15, pages 101ś115.

USENIX Association, 02 2015.

[29] Tanakorn Leesatapornwongsa and Haryadi S. Gunawi. Samc: A fast

model checker for finding heisenbugs in distributed systems (demo).

In Proceedings of the 2015 International Symposium on Software Testing

and Analysis, ISSTA 2015, page 423ś427, New York, NY, USA, 2015.

Association for Computing Machinery.

[30] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and

Haryadi S. Gunawi. Taxdc: A taxonomy of non-deterministic con-

currency bugs in datacenter distributed systems. In Tom Conte and

Yuanyuan Zhou, editors, Proceedings of the Twenty-First International

Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS 2016, Atlanta, GA, USA, April 2-6, 2016,

pages 517ś530. ACM, 2016.

[31] Guangpu Li, Dongjie Chen, Shan Lu, Madanlal Musuvathi, and Suman

Nath. Sherlock: Unsupervised synchronization-operation inference. In

Proceedings of the 26th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS

2021, page 314ś328, New York, NY, USA, 2021. Association for Com-

puting Machinery.

[32] Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath, and Rohan

Padhye. Efficient scalable thread-safety-violation detection: Finding

thousands of concurrency bugs during testing. In Proceedings of the

27th ACM Symposium on Operating Systems Principles, SOSP ’19, page

162ś180, New York, NY, USA, 2019. Association for Computing Ma-

chinery.

[33] Bozhen Liu and Jeff Huang. D4: Fast concurrency debugging with

parallel differential analysis. page 359ś373, 2018.

[34] Changming Liu, Deqing Zou, Peng Luo, Bin B. Zhu, and Hai Jin. A

heuristic framework to detect concurrency vulnerabilities. In Pro-

ceedings of the 34th Annual Computer Security Applications Conference,

ACSAC ’18, page 529ś541, New York, NY, USA, 2018. Association for

Computing Machinery.

[35] Haopeng Liu, Guangpu Li, Jeffrey F. Lukman, Jiaxin Li, Shan Lu,

Haryadi S. Gunawi, and Chen Tian. Dcatch: Automatically detecting

distributed concurrency bugs in cloud systems. In ASPLOS, 2017.

[36] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. Doubletake:

Fast and precise error detection via evidence-based dynamic analysis.

In Proceedings of the 38th International Conference on Software Engi-

neering, ICSE ’16, page 911ś922, New York, NY, USA, 2016. Association

for Computing Machinery.

[37] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning

from mistakes: A comprehensive study on real world concurrency bug

characteristics. In ASPLOS, 2008.

[38] Madan Musuvathi and Shaz Qadeer. Chess: Systematic stress testing

of concurrent software. Lecture Notes in Computer Science: Logic-Based

Program Synthesis and Transformation, 4407:18ś41, July 2007.

[39] [n.d.]. Applicationinsights.net issue # 1106. Retrieved October 4,

2022. https://github.com/microsoft/ApplicationInsights-dotnet/issues/

1106.

[40] [n.d.]. Class CallContext. Retrieved October 4, 2022.

https://docs.microsoft.com/en-us/dotnet/api/system.runtime.

remoting.messaging.callcontext.

[41] [n.d.]. Class InheritableThreadLocal. Retrieved Octo-

ber 4, 2022. https://docs.oracle.com/javase/8/docs/api/java/lang/

InheritableThreadLocal.html.

[42] [n.d.]. Netmq issue # 814. Retrieved October 4, 2022. https://github.

com/zeromq/netmq/issues/814.

[43] [n.d.]. Netmq issue # 975. Retrieved October 4, 2022. https://github.

com/zeromq/netmq/issues/975.

[44] Nicholas Nethercote and Julian Seward. Valgrind: A framework for

heavyweight dynamic binary instrumentation. In Proceedings of the

28th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’07, page 89ś100, New York, NY, USA, 2007.

Association for Computing Machinery.

[45] Robert H. B. Netzer and Barton P. Miller. Improving the accuracy of

data race detection. In PPOPP, 1991.

[46] Soyeon Park, Shan Lu, and Yuanyuan Zhou. Ctrigger: Exposing atom-

icity violation bugs from their hiding places. SIGARCH Comput. Archit.

News, 37(1):25ś36, March 2009.

[47] Eli Pozniansky and Assaf Schuster. Multirace: efficient on-the-fly

data race detection in multithreaded c++ programs. Concurrency and

Computation: Practice and Experience, 19(3):327ś340, 2007.

[48] Michael Pradel and Thomas R. Gross. Fully automatic and precise

detection of thread safety violations. In Proceedings of the 33rd ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation, PLDI ’12, page 521ś530, New York, NY, USA, 2012. Association

for Computing Machinery.

[49] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. Locksmith:

Practical static race detection for c. ACM Trans. Program. Lang. Syst.,

33(1), jan 2011.

EuroSys ’23, May 9ś12, 2023, Rome, Italy Stoica et al.

[50] Malavika Samak and Murali Krishna Ramanathan. Multithreaded

test synthesis for deadlock detection. In Proceedings of the 2014 ACM

International Conference on Object Oriented Programming Systems Lan-

guages and Applications, OOPSLA ’14, page 473ś489, New York, NY,

USA, 2014. Association for Computing Machinery.

[51] Malavika Samak, Murali Krishna Ramanathan, and Suresh Jagan-

nathan. Synthesizing racy tests. In Proceedings of the 36th ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation, PLDI ’15, page 175ś185, New York, NY, USA, 2015. Association

for Computing Machinery.

[52] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,

and Thomas E. Anderson. Eraser: A dynamic data race detector for

multi-threaded programs. In SOSP, 1997.

[53] Koushik Sen. Race directed random testing of concurrent programs.

In Proceedings of the 29th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’08, page 11ś21, New York,

NY, USA, 2008. Association for Computing Machinery.

[54] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and

Dmitry Vyukov. Addresssanitizer: A fast address sanity checker. In Pro-

ceedings of the 2012 USENIX Conference on Annual Technical Conference,

USENIX ATC’12, page 28, USA, 2012. USENIX Association.

[55] Konstantin Serebryany and Timur Iskhodzhanov. Threadsanitizer:

Data race detection in practice. In Proceedings of the Workshop on

Binary Instrumentation and Applications, WBIA ’09, page 62ś71, New

York, NY, USA, 2009. Association for Computing Machinery.

[56] Yao Shi, Soyeon Park, Zuoning Yin, Shan Lu, Yuanyuan Zhou, Wen-

guang Chen, andWeimin Zheng. Do i use the wrong definition? defuse:

Definition-use invariants for detecting concurrency and sequential

bugs. In Proceedings of the ACM International Conference on Object Ori-

ented Programming Systems Languages and Applications, OOPSLA ’10,

page 160ś174, New York, NY, USA, 2010. Association for Computing

Machinery.

[57] Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn

Volckaert, Per Larsen, and Michael Franz. Sok: Sanitizing for security.

In 2019 IEEE Symposium on Security and Privacy (SP), pages 1275ś1295,

2019.

[58] The ImmunEFI Tool. Bitswift race condition bug fix postmortem. Sep-

tember 2021. https://medium.com/immunefi/bitswift-race-condition-

bug-fix-postmortem-588184b8b43e.

[59] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. Dangsan:

Scalable use-after-free detection. In Proceedings of the Twelfth European

Conference on Computer Systems, EuroSys ’17, page 405ś419, New York,

NY, USA, 2017. Association for Computing Machinery.

[60] Brian Wickman, Hong Hu, Insu Yun, DaeHee Jang, JungWon Lim,

Sanidhya Kashyap, and Taesoo Kim. Preventing Use-After-Free attacks

with fast forward allocation. In 30th USENIX Security Symposium

(USENIX Security 21), pages 2453ś2470. USENIX Association, August

2021.

[61] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. Spatio-temporal

context reduction: A pointer-analysis-based static approach for detect-

ing use-after-free vulnerabilities. ICSE ’18, page 327ś337, New York,

NY, USA, 2018. Association for Computing Machinery.

[62] Michał Zalewski. American fuzzy loop. https://lcamtuf.coredump.cx/

afl/. Retrieved October 4, 2022.

[63] Sheng Zhan and Jeff Huang. Echo: Instantaneous in situ race detection

in the ide. In Proceedings of the 2016 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, page

775ś786, New York, NY, USA, 2016. Association for Computing Ma-

chinery.

[64] Wei Zhang, Junghee Lim, RamyaOlichandran, Joel Scherpelz, Guoliang

Jin, Shan Lu, and Thomas W. Reps. Conseq: detecting concurrency

bugs through sequential errors. In ASPLOS, 2011.

[65] Wei Zhang, Chong Sun, and Shan Lu. Conmem: Detecting severe con-

currency bugs through an effect-oriented approach. volume 45, page

179ś192, New York, NY, USA, mar 2010. Association for Computing

Machinery.

	Abstract
	1 Introduction
	1.1 Adapting the state-of-the-art
	1.2 A new design

	2 Background
	3 WaffleBasic: Adapting Tsvd
	3.1 How to identify delay candidate locations?
	3.2 What about the other design decisions?
	3.3 How effective is WaffleBasic?

	4 Waffle: A New Design
	4.1 How to identify delay candidate locations?
	4.2 When to identify candidate locations?
	4.3 How long is the delay?
	4.4 When to inject at run time?

	5 Implementation
	6 Evaluation
	6.1 Methodology
	6.2 Bug-detection coverage
	6.3 Bug-detection efficiency
	6.4 Detailed results

	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References

