
Putting Computing on the Table: Using Physical Games to Teach
Computer Science

Jennifer Parham-Mocello
Martin Erwig

parhammj@oregonstate.edu
erwig@oregonstate.edu
Oregon State University
Corvallis, Oregon, USA

Margaret Niess
Jason Weber

niessm@oregonstate.edu
webejaso@oregonstate.edu
Oregon State University
Corvallis, Oregon, USA

Madelyn Smith
Garrett Berliner

smitmad9@oregonstate.edu
berlineg@oregonstate.edu
Oregon State University
Corvallis, Oregon, USA

ABSTRACT
We describe a new introductory CS curriculum for middle schools
that focuses on teaching CS concepts using the instructions and
rules for playing simple, physical games. We deliberately avoid the
use of technology and, in particular, programming, and we focus
on games, such as tossing a coin to see who goes first and playing
Tic-Tac-Toe. We report on middle-school students’ understanding
of basic CS concepts and their experiences with the curriculum.

After piloting the curriculum in 6th and 7th grade electives, we
found that students liked the curriculum and using games, while
some other students reported struggling with the technical content
in the algorithm unit and vocabulary across the curriculum. Overall,
students gained an understanding of abstraction and representa-
tion, and most students could define an algorithm and recognize
a condition. However, they could not correctly organize the in-
structions of an algorithm. Our results suggest that the non-coding,
game-based curriculum engaged middle school students in basic
CS concepts at the middle school level, but we believe there is room
for improvement in delivering technical content and vocabulary
related to algorithms.

CCS CONCEPTS
• Applied computing→ Distance learning; • Social and pro-
fessional topics → K-12 education; Computational thinking.

KEYWORDS
CS education, middle school, games, computational thinking, un-
plugged

ACM Reference Format:
Jennifer Parham-Mocello, Martin Erwig, Margaret Niess, JasonWeber, Made-
lyn Smith, and Garrett Berliner. 2023. Putting Computing on the Table: Using
Physical Games to Teach Computer Science. In Proceedings of the 54th ACM
Technical Symposium on Computer Science Education V. 1 (SIGCSE 2023),
March 15–18, 2023, Toronto, ON, Canada. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3545945.3569883

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’23, March 15–18, 2023, Toronto, ON, Canada.
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9431-4/23/03. . . $15.00
https://doi.org/10.1145/3545945.3569883

1 INTRODUCTION
We developed a curriculum for introducing computer science (CS)
centered on identifying basic computing concepts in simple non-
electronic games (see Figure 1). We define CS as a discipline study-
ing the foundation of computing and all related concepts, and we
use non-programming computational thinking activities and exam-
ples to illustrate fundamental concepts in CS, such as abstraction,
representation, algorithm, and computation.

Figure 1: Computing explained through games.

One major goal of our approach is to debunk negative percep-
tions that CS is socially isolating, lacks creativity or fun, and is better
suited for male students [8, 17]. We do this by demonstrating that
learning basic concepts of CS is as fun, social, and gender-neutral as
playing non-electronic games. Just as with games, Figure 1 shows
that computing is divided into the static algorithm (or instructions)
in the top half and the dynamic computation (or game play) in the
bottom half. We believe choosing simple, physical games, such as
tossing a coin to see who goes first or Tic-Tac-Toe, makes CS more
widely accessible for students, teachers, and schools.

Our approach is similar to the approaches taken in CS For Fun
(CS4FN), Teaching London Computing, and CTArcade [11, 13, 23],
which also employ physical games to teach CS concepts, but it
differs in a fundamental way. Instead of focusing on the strategy
for winning games or playing against the computer, we use the
instructions/rules for playing games without the use of a computer
as a model to help students understand basic CS concepts before
introducing them to programming (see Figure 1).

444

SIGCSE ’23, March 15–18, 2023, Toronto, ON, Canada. Jennifer Parham-Mocello et al.

In the 2020/2021 academic year, a 6th grade mathematics teacher
and an 8th grade mathematics teacher piloted the curriculum in
their respective CS electives. To provide insights into student ex-
periences with the new curriculum and understanding about CS
concepts, we used student responses to exit tickets after each unit
and a post-survey upon completion of the course to answer the
following questions.

(1) What are students’ understandings about abstraction, repre-
sentation, and algorithms after learning about them in the
curriculum?

(2) What do students like, dislike, learn, and struggle with in
the curriculum?

2 MOTIVATION AND RELATEDWORK
Playing games develops problem-solving skills and creativity, which
are fundamental to computational thinking [18, 31, 32]. Thus, it is
not surprising that games have a long tradition as learning tools in
education, especially in the form of gamification, which is the idea
of representing a learning process as playing a game [21]. While
studies have shown that playing board games improves math skills
in elementary school students [7] and involves computational think-
ing activities [5, 6, 19, 22], simply playing games does not increase
one’s computational thinking skills, unless guided instruction about
the skills is given [24]. Our curriculum goes beyond just playing
games by teaching core CS concepts using simple, physical games
for explaining computation.

Several new board and card games have been invented specifi-
cally to teach computational thinking, such as RaBit EscAPE (ages
6-10), Cubetto (ages 3-6), and Crabs and Turtles (ages 8-9) [1, 29, 35],
but new games face two challenges. First, some rules are not simple
and create extraneous cognitive load on the learner, diverting cog-
nitive resources from the learning of the computational concepts.
Second, schools, kids, and families might not have access to the new
games. We believe using simple, physical games instead broadens
participation and shifts the focus to the computational concepts
being taught.

The idea of using simple, existing physical games to explain
computational concepts is not new [10, 12, 23], and researchers un-
derstand that playing games unsupported by an appropriate frame-
work may be ineffective at teaching the computational concepts
[24]. Researchers in the CS4FN and Teaching London Computing
projects have shown that the use of games with well-developed
lesson plans are effective for teaching specific computational con-
cepts [11, 13], and Lee et al. have shown that their educational
software called CTArcade enables children to articulate computa-
tional thinking patterns while playing Tic-Tac-Toe and Connect
Four [23].

We did not use CTArcade, because we wanted students to play
games with their peers to promote social interaction and com-
munication, as well as practice concepts learned in one game by
identifying them in other games, which would have to be first
implemented in CTArcade.

CS Unplugged [3, 4] has been shown to broaden participation [9],
and several studies have demonstrated that unplugged activities,
such as games, puzzles, and storytelling, can be a viable alterna-
tive to traditional programming activities for teaching introductory

computational skills and algorithms [3, 14, 15, 27, 30, 34]. Support-
ing studies have shown the positive impacts unplugged activities
have on students’ perspectives of, engagement in, and motivation
to study CS [2, 14, 16, 25, 33]. Playing games is also fun and can
be a source of motivation to engage the subject beyond the class-
room, for example, at home with parents and friends. For these
reasons, we also avoid the use of technology and programming for
introducing CS concepts.

Our curriculum is unique by embracing the following features:
• Focus on game rules and not strategy to avoid competition;
• Connect game descriptions to CS concepts;
• Play games socially to promote communication and termi-
nology;

• Avoid a programming language to promote algorithmic think-
ing without the use of technology.

3 CURRICULUM BACKGROUND
We developed the curriculum in collaboration with two middle
school teachers. In the following, we briefly summarize the research-
practice partnership (RPP) and the resulting curriculum.

3.1 A Research-Practice Partnership
Building on a well-established collaboration with a local dual-
language immersion middle school, we developed the CS curricu-
lum with two mathematics teachers, as well as the Assistant Prin-
cipal, for 1-2 hours each month throughout the 2019/2020 school
year. One teacher was a 6th grade mathematics teacher with a BS in
primary education, and she was in her first year of teaching during
the 2019/2020 development phase. The other teacher was an 8th
grade mathematics teacher with a MS in secondary education, and
he was in his sixth year of teaching during the development phase.
Neither teacher had a background in CS or prior programming
experience.

Before offering the electives, the researchers engaged with the
practitioners in an iterative process to polish the curriculum and
teachers’ knowledge for delivering the CS content. First, the teach-
ers participated in a summer workshop for 40 hours over two weeks
addressing questions and teaching concepts related to the curricu-
lum. This training was critical for the development of the teachers’
CS content knowledge. We revised the curriculum using the infor-
mation and feedback we gathered from the workshop. Then, the
teachers used the curriculum to teach middle-school students in a
1-week, 3-hours-per-day online summer camp to help develop the
teachers’ technical pedagogical content knowledge (TPACK) [26]
for teaching CS, which was especially important due to the shift to
being online because of COVID-19. The one-on-one training activi-
ties and summer camps led to the final curriculum and the teachers’
TPACK for delivering the electives in the 2020/2021 academic year.

3.2 The Child’s Play Curriculum
The goal of our approach was to introduce basic CS concepts, such
as representation, abstraction, algorithm, and computation using
physical games and the human as the computer (see Figure 1). We
wanted to eliminate the distraction of a machine and level the play-
ing field between those who had and did not have prior program-
ming experience.The resulting curriculum covered approximately

445

Putting Computing on the Table: Using Physical Games to Teach Computer Science SIGCSE ’23, March 15–18, 2023, Toronto, ON, Canada.

15 hours of instruction over 4.5 weeks in two units (see Table 1).

Table 1: Resulting Level 1 Curriculum.

Curriculum CS Concepts Games
Unit 1: Abstraction Abstraction Tic-Tac-Toe
and Representation Representation
(1 week) Kind of Thing/Type

Thing/Value
Unit 2: Algorithm Algorithm Coin Toss
(3.5 weeks) Input/Output Rock-Paper-Scissors

Placeholder/Variable Nim
Control Instruction Tic-Tac-Toe
(if/else and while/do)
Condition

Unit 1 contained four lessons motivating the concepts of rep-
resentation (an entity that stands for something else) and abstrac-
tion (the process of omitting detail). It did this by correlating the
categories/kinds of things (types) and the actual things (values)
that were used in the game instructions to representations. Stu-
dents played with using different representations in Tic-Tac-Toe
to motivate the appropriate choice of a representation that was
abstract enough to omit unnecessary detail but remained easily
distinguishable, such Xs and Os versus pictures of team members
or two different sides of a coin.

Unit 2 contained eight lessons which introduced the concept of
algorithms and furthered the concept of representation. It did this
by relating algorithms to game instructions and by addressing pros
and cons of using different representations (or types of values) in a
game, along with how the instructions/rules change with different
representations. Unit 2 also introduced the idea of placeholders for
values (variables) in algorithms and formal if-then-else constructs
with conditions.

Each unit contained a cover sheet for the teacher with a list of
the CS topics addressed, a unit description, objectives, definitions
of CS terms, and an example of using the concepts. Each lesson had
a lesson plan with an accompanying PowerPoint and student work-
sheet activity. The lesson plans provided teachers with a lesson
overview, the details about the duration and purpose for differ-
ent parts of the lesson, materials needed, and teacher instructions
for the PowerPoint and student worksheet with possible student
solutions (see Table 2).

The curriculum used stories to describe the games of Tic-Tac-Toe,
tossing a coin, and Nim to motivate the concepts of representation
and abstraction. For example, the game of Tic-Tac-Toe was initially
represented as an island map with eight treasure chests and a story
about two teams trying to be the first to recover a treasure by
three teams members in different sections of the island pulling
on the same rope (see top of Figure 2). Students were tasked with
understanding the differences between the game and the story,
as well as which aspects of the story were important for playing
the game. Then, students were asked to think about changing the
representations used in the game, such as using shapes instead of
ropes and a line instead of a grid for the map, to motivate the need
to talk about algorithms and how algorithms use representations
(see bottom of Figure 2). After writing and presenting algorithms

Table 2: Example Unit 1 Lesson 3 Plan.

Lesson Overview
Total Time:
36 minutes
Lesson Materials:
Lesson Overview (this document), PowerPoint slides, student worksheet,
Students’ homemade representations of the players for the Treasure Hunt game.
Focused Topics:
Benefits and disadvantages of representations
Summary:
Students revisit the Treasure Hunt game, this time viewing different
representations of the game’s components, such as using shapes instead of ropes
and a single line instead of a grid for a board. Students will have to analyze
the new representations to figure out how the game rules change with different
representations.
Student Learning Objectives (SLOs):
Students will work on learning how to. . .
• SLO 1: List advantages, disadvantages, and differences for various
representations of game objects.
• SLO 2: Understand how rules change to accommodate different representations.
Lesson Details Teacher (T) Student (S)

Time:
5-10 min

Purpose: SLO 1.
Summarize ideas
learned from
Days 1 and 2
to refresh Ss
understanding.

T has Ss place their different team
characters on the classroom
display as they come into the
classroom (get them out of their hands!)
T reminds Ss that these characters
are representations for pieces of
the game. Then T reminds them
of some of the other representations
they identified for this game, like
ropes for in a row.
Revisit from Day 2: Can you describe
the different representations in this
story or game and the details that
were omitted by the representation?
Today we are going to think about
some of these representations and
see if the game rules must change.

Ss place their team
characters on the
classroom display
On another display
are the Ss ideas for
representations from
yesterday such as story,
island representation,
ropes, symbols for ropes.

for games, we advanced students’ understanding of how to formally
express algorithms using the idea of Parsons Problems [28] with
pieces of an algorithm jumbled and an outline for sequencing the
algorithm pieces (see Figure 3).

Figure 2: Story Representation of Tic-Tac-Toe

4 EXPERIENCE IMPLEMENTATION
In this section, we describe the implementation of the electives and
the data collected to answer our questions about students’ under-
standing and experiences with our curriculum. This is an experience
report from one case study, and since our population of students
and teachers might not be representative of other populations, this
report is not intended to be a generalizable research study.

446

SIGCSE ’23, March 15–18, 2023, Toronto, ON, Canada. Jennifer Parham-Mocello et al.

Figure 3: Worksheet with Algorithm as Parsons Problem

4.1 6th and 7th grade CS Electives
The curriculum was created for a 4.5-week class in the 6th grade
elective wheel, which was a set of eight pre-selected electives that
the majority of students rotate through. However, due to COVID-
19, the school changed the elective wheel from 4.5-week classes
to 9-week classes, which doubled the number of hours in the class
and halved the number of offerings to four. Because 2020/2021
was the first year offering the curriculum, we also introduced the
curriculum in the two 7th-grade, 18-week semester programming
electives because those students were not exposed to the curriculum
in the prior year. All offerings of the electives had 20-30 students.

Since school was online that year, the teachers used Zoom for
class lectures and Canvas to organize all the information for the
class, such as the syllabus, grades, etc. The teachers used Kahoot!
[20] games as breaks from academic content for the students, and
the students played online versions of the physical board games,
like Boggle or Connect Four each week as a class or as a group in a
breakout room.

The teachers had access to the pre-designed lesson plans, pre-
sentation slides, and student worksheets. The teachers were free to
modify activities and material, add new material, or strictly keep
to the lesson plans as presented. Neither teacher modified the pro-
vided curriculum before their first elective offering. However, by
the end of the year, we noticed the 6th grade teacher felt more
comfortable making modifications and adding content to the cur-
riculum. We think this was because she taught the elective four
times, instead of twice, and her knowledge for teaching the curricu-
lum increased more rapidly than the 7th grade teacher’s. However,
since the teacher had limited but developing understanding of CS,
some of the ideas for engaging students did not mesh with the
designed curriculum, causing some confusion for students.

4.2 Data Collection
With IRB approval, a total of 41 students (23 identifying as male,
16 identifying as female, 1 identifying as non-binary, and 1 not
available) in the 6th grade elective assented to participate in the
study, and 37 students (25 identifying as male and 12 identifying as
female) in the 7th grade elective assented to participate. Interest-
ingly, only about 40% of the 6th grade students assented to be in
the study; whereas, almost 80% of the 7th grade students assented.

4.2.1 Assessment Questions. At the end of both units, we provided
exit tickets to assess student understanding (see Tables 3 and 4), and
at the end of both electives, we provided a post survey with four
open-ended questions asking students about their likes, dislikes,
struggles, and learning in the elective. Not all assenting students
participated in the exit tickets or post-survey. Altogether, 67 stu-
dents (33 6th grade and 34 7th grade) took the Unit 1 exit ticket on
abstraction and representations, and 53 students (30 6th grade and
23 7th grade) took the Unit 2 exit ticket on algorithms.

The Unit 1 exit ticket contained a combination of free-response
and multiple-choice questions (see Table 3). While we intended stu-
dents fill in the blank for question 5, the 6th grade teacher changed
the question to a multiple-choice format in the second quarter,
but the 7th grade teacher continued to keep the fill-in-the-blank
format in the second semester. The Unit 2 exit ticket contained
a combination of free-response and algorithm analysis questions
(see Table 4). In the algorithm analysis questions 4 and 5, students
were presented with a similar Parsons Problem for the coin toss
algorithm they had seen in Unit 2 (see Figure 3).

Table 3: Unit 1 Open-Ended and Multiple-Choice Questions

Free Response/Fill in the blank
1. In your own words, define abstraction.
2. In your own words, define representation.
3. Provide two examples of abstraction.
4. Provide two examples of representation.
The following question was changed to multiple choice by the 6th grade teacher
in the 2nd quarter, which is labeled with an ‘a’ to represent an alternate format.
5. In Tic-Tac-Toe, the Xs and Os _______________ the players in the game.
Multiple Choice
Question Choices

5a. In Tic-Tac-Toe, the Xs and Os
_________ the players in the game.

• confirm
• represent
• eliminate
• move

6. Which representation would be the
best alternative to Xs and Os in
Tic-Tac-Toe? Why?

• Using X and +
• Using 0 and 1
• Using "zero" and "one"
• Other

7. Which representation (Lego figures,
coins, or Xs and Os) is the best choice
for playing Tic-Tac-Toe? Why?

• Lego figures because they are
the most fun
• Xs and Os because they can be most
easily distinguished
• Coins because they don’t omit as much
detail as Xs and Os
• They are all equally the best choice

Table 4: Unit 2 Open-Ended and Algorithm Questions

Free Response/Fill in the blank
1. In your own words, define algorithm.
2. What if an input is always the same for an algorithm?
3. What is the purpose of a condition in an algorithm?
Algorithm Analysis
Below are the instructions (not in the right order) for an algorithm that takes two
coin tosses as input and outputs the player as a winner if the both tosses are Heads.
1. ELSE
2. Get the value of the first coin
3. ELSE IF the second coin is equal to Heads THEN
4. Output Player loses!
5. Get the value of the second coin
6. IF the first coin is equal to Tails THEN
7. Output Player wins!
8. Output Player loses!
4. List the numbers corresponding to the correct order for this algorithm.
5. List all the conditions in this algorithm.

447

Putting Computing on the Table: Using Physical Games to Teach Computer Science SIGCSE ’23, March 15–18, 2023, Toronto, ON, Canada.

4.2.2 Experience Questions. At the end of the 6th and 7th grade
classes, students took a post-survey with four questions about their
likes and dislikes about the class. Only 20 6th grade students as-
sented to take the post-survey. We did not evaluate the experiences
from the 7th grade elective, since the post-survey questions were
given at the end of the elective, and the 7th grade students only en-
gaged with the non-programming curriculum for 3-4 weeks out of
their 18-week, semester course. Even though themajority of student
responses focused on the programming portion of the class, there
were a few students who mentioned struggling with or disliking
the non-programming section of the class.

5 EXPERIENCE EVALUATION
5.1 Student Understandings
We evaluated student understandings of abstraction, representation,
and algorithms using the responses to the exit tickets provided at
the end of each unit in the 6th and 7th grade electives. To determine
the correctness of student answers to the free-response questions,
we created a rubric for coding the answers as fully, almost, or not
correct. After we reached approximately 87% inter-rater reliability
between two researchers on 20% of the data, we used the final rubric
to code the rest of the responses to the Unit 1 and Unit 2 exit tickets.

5.1.1 What are student understandings of representation and ab-
straction? In the first two questions of the Unit 1 exit ticket, we
asked students to define abstraction and representation in their
own words. Based on what they were taught in the curriculum,
we were looking for students to define abstraction as a process (or
the result) of ignoring or omitting details. For representation, we
wanted students to understand that a representation is an entity
that stands for something else and is a form of abstraction.

Almost half of the students correctly defined abstraction in the
first question, and another 42% were almost correct by giving an
example of abstraction but not the definition (see Table 5). For
example, one student said, “something that is more just raw shapes
and not a lot of detail”. When defining representation in the second
question, only 39% of the students provided a correct definition,
and 50% were partially correct by giving an example instead of a
definition, such as saying “it is the way something is shown”, as
with signs. Along these same lines, when students were asked for
two examples of abstraction and representation in questions 3 and
4, 84% of the students were able to provide 1-2 correct examples of
both concepts, which were considered partially and fully correct.

While the performance on the first four questions did not differ
based on gender or having had prior programming, the 7th grade
students outperformed the 6th grade students, especially in the
second question when defining representation (see Table 5). It is
also interesting to note that the 6th grade students significantly
improved on the first and third questions about abstraction each
quarter, especially in the last two quarters.

In question 5, we asked students to fill in the blank with a word
they learned in the curriculum that matched the application of the
word in the sentence. Students did well on the question, and based
on student responses, it did not seem that the teacher needed to
change the question to a multiple choice.

Lastly, we asked students to apply their knowledge of abstraction
and representation in two multiple choice questions with open

Table 5: Unit 1 Percentage of Students with Correct Answers

6th grade 7th grade 6th grade 7th grade6th
grade

7th
grade Female Male Female Male Prog No Prog Prog No Prog

Q1 45% 53% 54% 39% 33% 64% 36% 50% 56% 44%
Q2 27% 50% 23% 22% 50% 50% 17% 36% 52% 44%
Q3 48% 65% 54% 44% 83% 55% 39% 57% 68% 56%
Q4 61% 68% 62% 61% 75% 64% 56% 64% 72% 56%
Q5 91% 91% 92% 89% 92% 91% 94% 86% 96% 78%
Q6 85% 85% 77% 89% 67% 95% 78% 93% 84% 89%
Q7 73% 79% 69% 72% 83% 77% 72% 71% 84% 67%

areas to explain their reasoning. Students performed well on the
first multiple-choice question asking them for the best alternative
to Xs and Os (see Q6 in Table 5). The majority of the students
recognized that a good representation for the players in Tic-Tac-Toe
omits details and is easily distinguished. Students also performed
really well on the second multiple-choice question asking students
to recognize that Xs and Os are a good choice for Tic-Tac-Toe
(see Q7 in Table 5). In both questions, over 75% of the students
recognized the correct answer, but less gave a correct answer for
their reasoning, which we expected at a middle school level.

We considered 84-91% of 6th and 7th grade students having some
understanding of what abstraction and representation meant as a
success, even if students might not have had a clear understanding
of how these words related to CS. One primary goal of the curricu-
lum was to introduce students to basic CS concepts and provide
them with the tools and foundation for learning CS.

5.1.2 What are student understandings of algorithms? In the first
question of the second unit, we asked students to define algorithm
in their own words. We were looking for students to mention one
of the following facts about an algorithm: 1) An algorithm consists
of instructions that are organized in some way, 2) An algorithm
receives input and produces output, 3) An algorithm is a method for
solving a problem, 4) An algorithm is applicable to different problem
examples, or 5) An algorithm must be given by a description in a
language that is understandable by a computer, which students were
repeatedly told was someone or something that can understand
and execute the set of instructions. The majority of the students
(81%) stated one of the five facts, and another 13% gave an example
of an algorithm, rather than the definition (see Table 6).

Table 6: Unit 2 Percentage of Students with Correct Answers

6th grade 7th grade 6th grade 7th grade6th
grade

7th
grade Female Male Female Male Prog No Prog Prog No Prog

Q1 77% 87% 75% 75% 71% 94% 88% 58% 84% 100%
Q2 53% 61% 50% 56% 57% 63% 63% 42% 58% 75%
Q3 23% 17% 42% 13% 43% 6% 19% 33% 21% 0%
Q4 27% 22% 17% 25% 0% 31% 25% 25% 21% 25%
Q5 30% 30% 25% 25% 57% 19% 25% 33% 37% 0%

In the second free-response question, we asked students to tell
us what happens if the input to an algorithm was always the same,
and we expected students to say something about the output always
being the same. Table 6 shows that a little over half had a good
understanding of the concept, and another 19% provided an example.

448

SIGCSE ’23, March 15–18, 2023, Toronto, ON, Canada. Jennifer Parham-Mocello et al.

For example, one student said, “... if the input was always the same,
the game would be boring and their [sic] would be no point to
playing it.” However, 25% of the students did not say either and
received no credit.

The third question asked students what the purpose of a con-
dition was, and we looked for students to say something about a
condition being used to control the execution of some instructions.
If they provided an example, like how if-then-else used a condition,
then they were classified as being almost correct. An additional
42% gave an example of how a condition was used with a control
structure, primarily with an if-then-else, than the purpose of the
condition to control execution of instructions (see Table 6).

In the last two questions, we provided students with a Parsons
Problem that they were to rearrange to create a correct algorithm
and identify conditions (see Table 6). There were four correct order-
ings for the Parsons Problem: (a) 2, 5, 6, 4, 3, 7, 1, 8, (b) 2, 5, 6, 8, 3, 7,
1, 4, (c) 5, 2, 6, 4, 3, 7, 1, 8, and (d) 5, 2, 6, 8, 3, 7, 1, 4. There were two
conditions: “the first coin is equal to Tails” and “the second coin is
equal to Heads”. Only 25% of the students correctly organized the
instructions, and another quarter were close to the correct ordering.
However, half of the students (51%) were not even close to correctly
organizing the instructions in the Parsons Problem. Even though
only 30% of the students correctly identified both conditions in the
algorithm (see Table 6), another 43% identified one condition or
thought the if-then-else structure was the condition. At least, only
26% of the students showed no understanding of what a condition
was and did not associate it with a control structure.

Even though most students could define what an algorithm was
and understand the relationship between inputs and outputs in an
algorithm, they struggled with correctly organizing instructions
for an algorithm that was very similar to one they saw in the
curriculum. There were no significant differences in performance
between students’ reported gender, prior programming, or grade.

5.2 Student Experiences
In this section, we present the experiences of the 6th grade students
using their responses to the post-survey questions. We categorized
their qualitative responses to post-survey questions into themes.
Some student responses were categorized intomore than one theme,
and for each survey question, we counted the number of times each
theme appeared in a student response to quantitatively evaluate
their overall experiences with the curriculum.

Half of the students mentioned something about games as be-
ing what they liked the most, and only one student did not like
games. This may not be surprising for 11-12 year old children, but
it was reassuring for the curriculum. Three students mentioned the
curriculum directly, and another four students said they liked the
algorithms or if-then-else part of the class.

While algorithms came up as something a few students liked
in the class, algorithms were also what three students reported as
liking the least in the class. Another seven students reported strug-
gling the most with algorithms or the if-then-else in the elective,
and two other students mentioned something about struggling with
the game mechanics and Nim, which was when repetition/looping
was introduced. Two students reported that the vocabulary was a
struggle, and one student mentioned bubble sort, which was not

part of the curriculum. We think this was due to the teacher intro-
ducing other concepts and curriculum to fill the extra time that was
added to the elective, due to COVID-19 changes.

Just as one student mentioned struggling with something that
was not part of the curriculum, three students reported learning
something that was not part of the curriculum. For example, stu-
dents mentioned the internet, job footprints, and Minecraft. This
suggested that introducing other topics outside the curriculum
might distract some students’ learning the key CS concepts. On the
other hand, it was encouraging to see that the majority of students
reported learning about the intended concepts from the curriculum,
such as algorithms, abstraction, representation, control structures,
conditions, input/output, and computers.

6 CONCLUSIONS
From this experience, we learned that the teacher’s technical peda-
gogical content knowledge (TPACK) for teaching CS, as well as the
class content, contributed significantly to students’ positive experi-
ences and learning in the curriculum. We observed throughout the
RPP over 2 years that middle school mathematics teachers without
a background in CS could not simply use this curriculum without
the proper training for understanding and teaching the content. We
found that the majority of students liked the curriculum and using
games as a way to explain CS concepts. Since only a few students
directly mentioned not liking the non-programming part of the 7th
grade elective, we believe the curriculum could be integrated into a
CS programming curriculum.

Prior programming experience did not seem to influence student
experiences or understandings of the material. However, the grade
and quarter did impact performance on some Unit 1 questions, and
as the 6th grade teacher’s TPACK for teaching CS developed, the
students understanding of abstraction and representation did too. It
was interesting that the students’ understanding of abstraction also
increased as the 6th grade teacher added more activities related to
abstraction, such as using the idea of selfies starting with a camera
picture and then emojis.

Even though the curriculum was for 4.5 weeks/900 minutes of
instruction, it seemed that teachers were able to easily adapt the
curriculum to cover more or less time. However, we suggest that
a teacher only add new material that employs the four features of
the curriculum and reinforces the core CS concepts of the curricu-
lum. Otherwise, a teacher might select additional material beyond
student capabilities, such as with bubble sort.

As with any experience report, we recognize that the evalua-
tion of the results were only from some students in the electives;
other students might have different understandings or experiences.
Therefore, the lists of understandings about key CS concepts and
likes and dislikes about the curriculum are not exhaustive. However,
these preliminary results provided insight into students’ experi-
ences and suggested that students learn about basic CS concepts
from this curriculum. Also, these results were within the context of
an online environment during COVID-19, and the experience for
teachers and students might be different in-person.

ACKNOWLEDGMENTS
This work was supported by the National Science Foundation under
grant #1923628.

449

Putting Computing on the Table: Using Physical Games to Teach Computer Science SIGCSE ’23, March 15–18, 2023, Toronto, ON, Canada.

REFERENCES
[1] P. Apostolellis, M. Stewart, C. Frisina, and D. Kafura. 2014. RaBit EscAPE: A

Board Game for Computational Thinking. In Conference on Interaction Design
and Children. 349–352.

[2] T. Bell, P. Curzon, Q. I. Cutts, V. Dagiene, and B. Haberman. 2011. Overcoming
Obstacles to CS Education by Using Non-Programming Outreach Programmes.
In Int. Conf. on Informatics in Schools (LNCS 7013). 71–81.

[3] T. Bell, I. H. Witten, and M. Fellows. 2015. CS Unplugged. An Enrichment and
Extension Programme for Primary-Aged Students.

[4] T. C. Bell, I. H. Witten, and M. Fellows. 1998. Computer Science Unplugged: Off-line
Activities and Games for All Ages. Computer Science Unplugged.

[5] M. Berland and S. Duncan. 2016. Computational Thinking in theWild: Uncovering
Complex Collaborative Thinking through Gameplay. Educational Technology 56,
3 (2016), 29–35.

[6] M. Berland and V. R. Lee. 2011. Collaborative Strategic Board Games as a Site for
Distributed Computational Thinking. Int. Journal of Game-Based Learning 1, 2
(2011), 65–81.

[7] S. Cavanagh. 2008. Playing Games in Class Helps Students Grasp Math. Education
Digest: Essential Readings Condensed for Quick Review 3 (2008), 43–46.

[8] B.J. Cheryan, Drury and M Vichayapai. 2013. Enduring Influence of Stereotypical
Computer Science Role Models on Women’s Academic Aspirations. (2013).
https://doi.org/10.1177/0361684312459328

[9] T. J. Cortina. 2015. Reaching a Broader Population of Students Through “Un-
plugged” Activities. Commun. ACM 58, 3 (2015), 25–27.

[10] CS For Fun: Queen Mary, University of London. 2011. Noughts & Crosses.
http://www.cs4fn.org/programming/noughts-crosses. Accessed: 2021-01-07.

[11] CS For Fun: Queen Mary, University of London. 2011. Welcome to cs4fn : the
fun side of Computer Science. http://www.cs4fn.org/. Accessed: 2021-01-07.

[12] CS For Fun: QueenMary, University of London. 2011. Winning at Nim: computers
outwitting humans. http://www.cs4fn.org/binary/nim/nim.php. Accessed: 2021-
01-07.

[13] CS For Fun: Queen Mary, University of London. 2015. Teaching Lon-
don Computing: A Resource Hub from CAS London & CS4FN. https://
teachinglondoncomputing.org/. Accessed: 2021-01-07.

[14] Paul Curzon, Peter W. McOwan, Nicola Plant, and Laura R. Meagher. 2014. In-
troducing teachers to computational thinking using unplugged storytelling. In
Proceedings of the 9th Workshop in Primary and Secondary Computing Education
(WiPSCE ’14), 89–92.

[15] Q. Cutts, Q. Connor, G. Michaelson, and P. Donaldson. 2014. Code or (not code):
separating formal and natural language in CS education. Proceedings of the 9th
Workshop in Primary and Secondary Computing Education, 20–28.

[16] Q. I. Cutts, M. I. Brown, L. Kemp, and C. Matheson. 2007. Enthusing and inform-
ing potential computer science students and their teachers. In SIGCSE Conf. on
Innovation and Technology in Computer Science. 196–200.

[17] A. Gokhale and K Machina. 2010. Online Learning Communities to Recruit and
Retain Students in Information Technology Programs. (2010). https://doi.org/10.

1109/ITNG.2010.259
[18] C. Harris. 2009. Meet the New School Board: Board Games Are Back–And They’re

Exactly What Your Curriculum Needs. School Library Journal 5 (2009), 24–26.
[19] N. R. Holbert and U. Wilensky. 2011. Racing games for exploring kinematics: a

computational thinking approach. 7th Int.l Conf. on Games + Learning + Society,
109–118.

[20] Kahoot! 2020. A game-based learning platform. https://kahoot.it/. Accessed:
2020-08-26.

[21] K. M. Kapp. 2012. The Gamification of Learning and Instruction: Game-Based
Methods and Strategies for Training and Education. Pfeiffer.

[22] C. Kazimoglu, M. Kiernan, L. Bacon, and L. MacKinnon. 2012. Learning pro-
gramming at the computational thinking level via digital game-play. Procedia
Computer Science 9 (2012), 522–531.

[23] T. Y. Lee, M. L. Mauriello, J. Ahn, and B. B. Bederson. 2014. CTArcade: Com-
putational Thinking with Games in School Age Children. Int. Journal of Child-
Computer Interaction 2, 1 (2014), 26–33.

[24] T. Y. Lee, M. L. Mauriello, J. Ingraham, A. Sopan, J. Ahn, and B. B. Bederson. 2012.
CTArcade: Learning Computational Thinking Thile Training Virtual Characters
Through Game Play. In Human Factors in Computing Systems. 2309–2314.

[25] C. Mano, V. Allan, and D. Cooley. 2010. Effective In-Class Activities for Middle
School Outreach Programs. In Annual Conf. on Frontiers in Education. F2E–1–
F2E–6.

[26] P. Mishra and M. J. Koehler. 2006. Technological pedagogical content knowledge:
A framework for teacher knowledge. Teachers College Record 108 (2006), 1017–
1054.

[27] J. Parham-Mocello, S. Ernst, M. Erwig, E. Dominguez, and L. Shellhammer.
2019. Story Programming: Explaining Computer Science Before Coding. In
ACM SIGCSE Symp. on Computer Science Education. 379–385.

[28] D. Parsons and P. Haden. 2006. Parson’s Programming Puzzles: A Fun and
Effective Learning Tool for First Programming Courses. Proceedings of the 8th
Australasian Conference on Computing Education 52, 157–163.

[29] Primo. 2018. Cubetto: Screenless Coding Toy for Girls and Boys Aged 3-6.
https://www.primotoys.com.

[30] Primo. 2020. Free beginner’s guide to Coding with Kids. https://www.primotoys.
com/guide-coding-for-kids-ebook/. Accessed: 2021-01-07.

[31] C. Ragatz and Z. Ragatz. 2018. Tabletop Games in a Digital World. Parenting for
High Potential 7 (2018), 16–19.

[32] L. A. Sharp. 2012. Stealth Learning: Unexpected Learning Opportunities Through
Games. Journal of Instructional Research 1 (2012), 42–48.

[33] R. Taub, M. Ben-Ari, and M. Armoni. 2009. The Effect of CS Unplugged on Middle-
School Students’ Views of CS. In SIGCSE Conf. on Innovation and Technology in
Computer Science. 99–103.

[34] R. Thies and J. Vahrenhold. 2013. On Plugging “Unplugged” Into CS Classes.
365–370.

[35] K. Tsarava, K. Moeller, and M. Ninaus. 2018. Training Computational Thinking
Through Board Games: The case of Crabs and Turtles. Int. Journal of Serious
Games 5, 2 (2018), 25–44.

450

	Abstract
	1 Introduction
	2 Motivation and Related Work
	3 Curriculum Background
	3.1 A Research-Practice Partnership
	3.2 The Child's Play Curriculum

	4 Experience Implementation
	4.1 6th and 7th grade CS Electives
	4.2 Data Collection

	5 Experience Evaluation
	5.1 Student Understandings
	5.2 Student Experiences

	6 Conclusions
	Acknowledgments
	References

