HotGPT: How to Make Software Documentation More
Useful with a Large Language Model?

Yiming Su, Chengcheng Wan, Utsav Sethi, Shan Lu, Madan Musuvathi, Suman Nath

{yimingsu,cwan,usethi,shanlu}@uchicago.edu,{madanm,Suman.Nath}@microsoft.com

ABSTRACT

It is well known that valuable information is contained in the
natural language components of software systems, like com-
ments and manual, and such information can be used to im-
prove system performance and reliability. Past research has
attempted to extract such information through task-specific
machine learning models and tool chains. Here, we inves-
tigate a general, one-model-fit-all solution through a state-
of-the-art large language model (e.g., the GPT series). Our
investigation covers three representative tasks: extracting
locking rules from comments, synthesizing exception predi-
cates from comments, and identifying performance-related
configurations; it reveals challenges and opportunities in ap-
plying large language models to system maintenance tasks.

CCS CONCEPTS

« Software and its engineering — Software develop-
ment techniques; - Computing methodologies — Nat-
ural language processing.

KEYWORDS

Software documentation, large language model

ACM Reference Format:

Yiming Su, Chengcheng Wan, Utsav Sethi, Shan Lu, Madan Musu-
vathi, Suman Nath. 2023. HotGPT: How to Make Software Docu-
mentation More Useful with a Large Language Model?. In Work-
shop on Hot Topics in Operating Systems (HOTOS ’23), June 22—
24, 2023, Providence, RI, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3593856.3595910

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HOTOS °23, June 22-24, 2023, Providence, RI, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0195-5/23/06. .. $15.00
https://doi.org/10.1145/3593856.3595910

2

4

5

/* @param n the {@code long} to divide by

* @return a {@link BigFraction} instance with the
resulting values

* @throws MathArithmeticException if the fraction
to divide by is zero =*/

public BigFraction divide(final long n) {

return divide(BigInteger.valueOf(n));

Figure 1: Comments on parameters and exception-
throwing conditions (Apache Commons Math 3.6.1)

1 INTRODUCTION

Modern software systems have vast amounts of natural lan-
guage components, such as code comments (e.g., Figure 1)
and software manuals, which contain valuable information
about system usage and behavior. Extracting such informa-
tion can be used for system understanding, bug finding, fail-
ure diagnosis, configuration tuning, and many more tasks.

Unfortunately, it is difficult to automatically extract such
information. Many techniques have been explored in the past,
including replacing natural languages with domain-specific
languages in writing comments [23], building task-specific
machine learning models [2, 17, 24] and customized Natural
Language Processing pipelines to process comments [19, 20],
complementing documentation understanding with source
code analysis [9, 12, 13], etc. These techniques are effective
in specific tasks, but all fall short as a general solution that
can be easily used to process a variety of natural language
artifacts for a variety of purposes.

In this paper, we explore whether the recent advance-
ment of large language models (LLM), such as the GPT se-
ries [3, 16, 18], can be leveraged to produce an easy-to-use
and one-model-fit-all solution for processing existing natural
language components of software systems. These language
models have achieved great success on many natural lan-
guage processing tasks, including translation, text comple-
tion, keyword extraction, and question answering, and have
shown potential in providing coding assistance [8].

Specifically, we identified three representative tasks and
investigate how (well) we can use a large language model,
GPT-3 [3], to replace customized solutions originally de-
signed for each task—an approach we refer to as HotGPT.
These tasks process different natural language components

HOTOS ’°23, June 22-24, 2023, Providence, RI, USA

Yiming Su, Chengcheng Wan, Utsav Sethi, Shan Lu, Madan Musuvathi, Suman Nath

Input Output

Previous techniques

Javadoc comments Exception conditions in Java
Free-text comments

Manual of configurations

Lock usage rules in pre-defined templates
Whether a configuration is performance-related | Static program analysis [13]

Language&task-specific ML models [2, 17, 24]
A pipeline of NLP tools [19, 20]

Table 1: Tasks explored in this work

of software systems, produce different types of output, sup-
port different types of system jobs (e.g., bug finding, per-
formance tuning), and were previously solved by different
solutions, as summarized in Table 1.

Our exploration shows the great potential of using LLMs to
help system tasks, achieving similar or higher accuracy than
previous task-specific techniques. However, several pitfalls
and challenges remain, which we describe in this paper. We
posit that building reliable tools that harness the capabilities
of these models is an exciting but open research problem.

2 FROM COMMENTS TO PREDICATES

2.1 Task Overview & Design

Javadoc [15] is a widely used tool that generates HTML
documentation from comments written in a format called
doc comment or doc string. A typical line of Javadoc comment
consists of a keyword headed by "@", called a block tag, and
a natural language description in the topic defined by the
block tag. An example is shown in Figure 1.

In the past, researchers have designed special ML models
to transform the @throws part of Javadoc into exception-
throw conditions in Java, which can then be used for auto-
mated run-time checking [2, 24]. These techniques involve
task-specific NLP analysis and customized pattern-matching
rules revolving around the grammar of the comment. Here,
HotGPT aims to accomplish the same task using a language-
agnostic large language model, Codex [4], a variant of GPT-3.

Prompt Design. A prompt is the text input to the language
model. After many attempts, we settled down on a design
that consists of three parts as shown in Figure 2:

1) An instruction text enclosed in /* */;

2) An example for Codex to learn from (Line 3-5 in Fig-
ure 2). For each software project to be processed, we ran-
domly choose a function with @throws comment from it,
and manually compose such an example for processing all
other @throws comments.

3) The synthesis task for Codex, which includes the “Com-
ment”, the function “Signature”, and an empty “output” line
waiting to be filled. The Comment line and the Signature
line are automatically extracted from program source code.

1

3

4

5

6

9

/* Summarize the comment in Java code using
signature provided. =*/

Comment: if the queue or transformer is null

Signature: transformQueue(java.util.Queue queue,

commons.collections4.Transformer transformer)

output:queue==null || transformer==null

7 Comment: if the fraction to divide by is zero
Signature: divide (final long n)
output:
n==0

12

Comment: if the fraction to divide by is zero

Figure 2: An Example Prompt and Codex output
(in green) For Method divide()

Although our prompt follows the generic structure recom-
mended by GPT-3, an instruction, some optional examples,
and the question, it took us many tries in the design.

The result of Codex was very sensitive to the instruc-
tion sentence. Some semantically similar instructions like
“Convert this sentence to code” and “Extract specification
from code” produced low-quality output, with at least 15%
precision reduction. Some other instructions produced mean-
ingful output, but required much effort in post-processing,
which we will explain later.

We also tried not using the function signature but got poor
results — knowing the type and parameter names helped
Codex in synthesizing exception predicates; we tried hav-
ing no example or multiple examples (e.g., up to 5), which
unfortunately was both detrimental.

Codex output post-processing. Ideally, we want Codex
to output exactly a predicate in Java that reflects the con-
dition under which an exception is to be thrown. However,
in practice, the output of Codex could be messy. When we
used “Summarize the comment in Java code by signature”
as the instruction, Codex tends to generate multiple lines of
code, with the exception predicate embedded in an exception-
throwing code structure made up by Codex (Figure 3). We
had to write a parser to extract the exception predicate. With

HotGPT: How to Make Software Documentation More Useful with a Large Language Model?

» output:

=~

if (n == 0) {
throw new IllegalArgumentException("Division by zero");

3

Figure 3: Codex output (in green) under an alternative
prompt for Figure 2 example. Extra code parsing is needed
to extract the exception predicate n==0.

‘ Jdoctor C2S HotGPT
0.97 0.98 0.96
0.79 0.91 1.00

Precision
Recall

Table 2: Specification Translation Precision and Recall

our final prompt, Codex tends to output the expected con-
dition predicate first (e.g., n==0 on Line 10 of Figure 2), and
then part of the prompt after an empty line (e.g., Line 12 in
Figure 2). Thus, we simply truncate the raw output and take
the predicate line before the empty line.

2.2 Evaluation

Methodology. We evaluate HotGPT on 6 well-maintained
Java libraries, which were also used in the evaluation of Jdoc-
tor [2] and C2S [24]—prior techniques that turn @throws
Javadoc into predicates. These libraries were used by previ-
ous work partly because developers already provided cor-
responding code expressions for 60% of their 778 @throws
comments in the Javadoc, which offers perfect ground truth
for evaluation. So, like previous work, we focus on these
@throws comments that have ground truth. We will mea-
sure precision, defined as the proportion of total translation
that is correct: wa, with C being the number of correctly
translated predicates and W being the number of incorrectly
translated predicates. Since the precision metric only penal-
izes wrong-output but not no-output, previous work [2, 24]
also measured recall, computed as ﬁ with M being the
number of cases where the tool fails to output any predicate
for a comment. We will use the same definition below.
Results. As shown in Table 2, HotGPT is effective at trans-
lating throw comments into code specifications. Comparing
with Jdoctor and C2S, whose results are from their papers on
exactly the same dataset, we achieve similar precision and
better recall. It is worth noticing that both Jdoctor and C2S
rely on detailed analysis of the format of comments, both
syntactically and semantically, to achieve high precision. In-
stead, we leverage the capability of Codex to conduct the
translation, without conducting the task-specific analyses.

HOTOS ’°23, June 22-24, 2023, Providence, RI, USA

We also checked whether the results are sensitive to lan-
guage models’ hyper-parameters. The answer was not so
much—much less than that under different prompt designs.

3 FROM COMMENTS TO LOCKING RULES

3.1 Task Overview & Design

Published in HotOS 2005, HotComments [20] pioneered ex-
tracting system rules from code comments using NLP tech-
niques. Due to the limitation of NLP techniques at that time,
HotComments took many steps: it manually identifies pop-
ular words that refer to locks (e.g., spinlock, rwlock) and
replaces them with the word “lock”; it then breaks all com-
ments to sentences, and uses a word splitter [21] to break a
sentence into words; it then uses Part-of-Speech (POS) tag-
ging and Semantic Role Labeling [21] to tell whether a word
in a sentence is a verb or a noun, to distinguish main clauses
from sub clauses, and to tell subjects from objects; it then
determines whether a sentence contains a locking rule based
on how the word “lock” is used in the sentence (e.g., used as
a verb or a noun, appearing in the main clause or not, used
as a subject or not, etc.). Finally, locking rules that fall into 4
carefully designed templates are extracted. In this task, we
attempt to use GPT-3 to replace this long chain of NLP tools.

Prompt Design. We explored different designs in two di-
rections: (1) a generic prompt that covers all four types of
locking rules targeted by HotComments; (2) a set of dedicated
prompts that each targets one type of rule.

Our final design of the generic prompt is shown in Figure
4. It informally introduces the concept of locks (we omitted
this paragraph in the figure for space constraints); provides
a list of locking rules we are targeting, which come from
HotComments [20]; puts the comment to be analyzed after
"Read this sentence:"; and asks a series of questions.

This design came after several tries. Our initial design
did not contain a background paragraph about locks. As a
result, GPT-3 treated many irrelevant comments as related
to locks, like “Hold reference count during initialization.”—
GPT-3 outputs that a lock named “reference count” should be
held. Adding the background paragraph largely solved this
problem. We initially did not include the four locking-rule
templates from HotComments. As a result, GPT-3 identified
many comments that are related to locks and yet difficult
to use in correctness checking, like “For dynamic locks, a
static lock_class_key variable is passed in through the mu-
tex_init()”.

In addition to the generic prompt, we also designed a col-
lection of dedicated prompts. Each dedicated prompt is very
simple, only including one question specifically designed
for one HotComments locking rule, like “Does the following
text explicitly specify that a lock or semaphore must, or must

HOTOS ’°23, June 22-24, 2023, Providence, RI, USA

<... a background paragraph about locks ...>

» Here are some templates about patterns of locks/

or must not, be held
Lock must, or

semaphores. 1: Lock must,
before entering function. 2:
must not, be held before leaving function. 3:
Lock A must, be held before Lock
B. 4: be held here.

or must not,
Lock must, or must not,

Read this sentence: is_cpuset_subset(p, q) - Is
cpuset p a subset of cpuset g? One cpuset is a
subset of another if all its allowed CPUs and
Memory Nodes are a subset of the other, and
its exclusive flags are only set if the other'
s are set. Call holding manage_mutex.
Does the sentence describe constraint(s) about
locks or semaphores using the above templates?
If so, output: (1) the name of the lock/
semaphore, (2) to hold or not to hold the lock
/semaphore, (3) the condition(s) for holding or
and(4) the template number that

the condition belong to.

not holding,

Name of lock/semaphore: manage_mutex
To hold or not to hold: Hold
Condition(s): Before entering is_cpuset_subset

Template number: 1

Figure 4: Prompt for identifying locking rules (GPT-3
outputin green). (For space constraints, we omitted the first
paragraph of our prompt that introduces lock background)

not, be held before function call or on entry (yes/no)?”. The
other three prompts ask “Does the following text explicitly
specify that a lock or semaphore must, or must not, be held
before exiting a function (yes/no)?”, “Does the following text
specify that a lock or semaphore must, or must not, be held
before another lock (yes/no)?”, and “Excluding on entry/call
and exit, does the following text specify that a lock must, or
must not, otherwise be held here (yes/no)?”, respectively.

Although this design of dedicated prompts requires us
to invoke GPT-3 multiple times upon each comment, we
envision that it may provide some accuracy advantages over
the generic prompt, as we have observed that GPT-3 is very
consistent in answering yes/no questions and the answer,
the literal “yes” or “no”, is also easy to parse. Furthermore,
the decomposition made our prompt design easier.

3.2 Evaluation

Methodology. We evaluated HotGPT on the same five Linux
modules used in HotComments: arch, drivers, fs, kernel,

Yiming Su, Chengcheng Wan, Utsav Sethi, Shan Lu, Madan Musuvathi, Suman Nath

kernel mm
0.54 0.90
1.00 1.00

| arch drivers fs
0.60 0.78 0.70
1.00 1.00 1.00

Positive
Negative

Table 3: Accuracy in identifying comments that contain
locking rules. Positive (Negative) are the comments con-
sidered to (not) contain locking rules by the generic prompt.

mm. Not knowing the exact Linux version used by HotCom-
ments, we chose the one released right before the deadline
for HotOS 2007 (v2.6.19). We extracted all the multi-line
comments from those five modules using Python library
comment_parser [1], and applied GPT-3 to every comment.
To measure the accuracy, we randomly sampled 50 positive
comments and 50 negative comments from each module and
manually checked the answers of GPT-3. Here, we refer to
positive (or negative) comments as those considered by the
generic GPT-3 prompt as containing locking rules (or not).

Results. In total, the generic prompt identified 1461 locking
rules (93 inarch, 778 indrivers, 469 in f's, 73 in kernel, and
48 in mm). In comparison, HotComments identified 538 lock-
ing rules (50 in arch, 263 indrivers, 180 in fs, 29 in kernel,
and 16 in mm). Since HotGPT and HotComments may not
have used the same version of Linux and HotComments pa-
per did not mention the accuracy of their rule identification
(the 1461 rules identified by GPT-3 contain false positives),
it is unrealistic to expect them to identify the same number
of rules. We found it encouraging that (1) the number of
rules is of roughly the same magnitude; (2) the proportional
distribution of rules across modules is similar.

As shown in Table 3, the generic GPT-3 prompt has 100%
accuracy in judging a comment to not contain one of those
locking rules (the “Negative” row); it has 54-90% accuracy
in judging a comment to contain one of those four locking
rules. This accuracy imbalance is likely due to the majority
of comments not containing a locking rule.

Once GPT-3 correctly identifies a rule-containing com-
ment, its accuracy in identifying the lock name and differen-
tiating locking from unlocking is very high, close to 100%,
while its accuracy in pin-pointing the rule template ranges
from 54% to 77% across the five kernel modules.

When we apply the dedicated GPT-3 prompts on those
sampled positive comments, the average accuracy across the
four dedicated prompts in each module ranges from 70% to
86%, an improvement from the generic prompt.

In summary, it is promising to replace the long chain of
NLP tools used 15 years ago with a large language model
(LLM). However, an LLM does not solve all the problems:
those four rule templates designed by HotComments cannot

HotGPT: How to Make Software Documentation More Useful with a Large Language Model?

Precision Recall Accuracy
83% 76% 81%
87% 46% 76%

Table 4: Performance configuration identification (*:

We use a broader definition of “performance”, which caused

LearnConf to have a lower recall.)

HotGPT
LearnConf™

be replaced yet. Furthermore, the accuracy of HotGPT is suf-
ficient for bootstrapping rule extraction but is not sufficient
yet to completely take humans out of the loop.

4 FROM MANUAL TO PERF. CONFIG.
4.1 Task Overview & Design

An important task of system performance tuning is to un-
derstand which software configurations can affect perfor-
mance. In the past, researchers have used expensive program
analysis [9, 13] to automatically identify these performance-
related configurations. Here, HotGPT tries to use GPT-3 to
figure out whether a configuration can affect performance
based on the configuration’s documentation (manual).

The prompt design is much simpler comparing with the
previous two tasks. We simply use the classic prompt struc-
ture for GPT-3 Q&A engine and ask about one configuration,
together with its manual description, at a time. Figure 5
shows an example of our prompt and GPT-3’s answer about
configuration mapreduce.map.output.compress.

We tried prompt variations like, “Is the following parame-
ter related to performance?”, “Will this parameter affect the
memory consumption or the execution speed?”, and others.
However, asking about “execution speed” gives us the most
reasonable answers.

4.2 Evaluation

Methodology. Our evaluation mainly focuses on 287 user-
facing configurations in 4 systems, MapReduce, HDFS, HBase,
and Cassandra — the exact set of configurations used to eval-
uate LearnConf [13]. In addition, since the training data of
GPT-3 may already include all the documentation of these
four systems, we also study the configurations of a grocery
ordering application, DDMC [7], the most popular (i.e., most
stars) Java applications on GitHub that are created after the
release of GPT-3 and contain user-facing configurations. To
get the ground truth about which configurations are perfor-
mance related, three authors have independently checked
the configurations with related information and reached a
consensus through discussion.

Results. As shown in Table 4, HotGPT performed well on
the dataset of LearnConf, achieving 81% accuracy for those

1

™o

-

5

HOTOS ’°23, June 22-24, 2023, Providence, RI, USA

Q: Based on following description, will this
parameter affect execution speed? Why?
mapreduce.map.output.compress: Should the outputs
of the maps be compressed before being sent
across the network. Uses SequenceFile
compression.

A: Yes, this parameter will affect the execution speed.
Compressing the map outputs before sending them across the

network reduces the amount of data that needs to be

transferred, which can improve the overall execution speed.

Figure 5: The prompt and an informative answer
(in green) from GPT-3 about map.output.compress

287 configurations. Most of the mistakes by GPT-3 are caused
by the manual not providing sufficient information.

GPT-3 is able to provide its reasoning process in response
to the “why” prompt, which is quite logical as shown in Fig-
ure 5. Sometimes, GPT-3’s answers even go beyond what the
manual says. For example, in explaining why HBase’ con-
figuration io.storefile.bloom.block.size affects performance,
GPT-3 says “a larger (bloom filter) block size will result in
fewer disk seeks”, which is not part of the manual.

In comparison, GPT-3 has similar accuracy as LearnConf.
LearnConf has higher precision, but lower recall (i.e., more
false negatives). The main reason is that LearnConf has a
narrower definition of performance configurations — it only
considers a configuration C as performance related if C can
affect the execution of a time/memory-consuming operation
from a pre-defined set. Of course, by analyzing source code
LearnConf can figure out other information about how a
configuration’s setting can affect performance (monotonicity,
slope, etc.), which is often not documented in the manual.

HotGPT also performed well for the new application, DDMC.
Among the 10 configurations described in DDMC manual,
HotGPT achieves 90% accuracy in identifying perf. configs.

5 EXPLORATION ON GPT-4

Two months after submitting this work, Open Al released
GPT-4 [14], the latest version of the GPT series. To under-
stand whether and how our system tasks can benefit from
this state-of-the-art LLM, we re-run the experiments in Sec-
tion 2-4 with GPT-4 and present the result highlight below.

From comments to predicates. Counterintuitively, Hot-
GPT’s precision slightly regressed from 96% down to 93%
in translating Javadoc comments into predicates with GPT-
4. On one hand, with GPT-4, HotGPT is able to correctly
translate some comments with complicated conditions that
it failed to translate before, such as "if a value of array is
outside of arange". We believe this can be attributed to the

» Signature:

HOTOS ’°23, June 22-24, 2023, Providence, RI, USA

Comment: if the map is null
switchClosure(java.util.Map

predicatesAndClosures)

Figure 6: A comment that GPT-4 performs worse

increased model capabilities of [14]. On the other hand, with
GPT-4, HotGPT sometimes translates comments into pred-
icates without considering the method signature provided,
producing incorrect predicates and causing a regression in
overall accuracy. For example, for the task shown in Figure
6, HotGPT’s output was “predicatesAndClosures==null”,
which is correct. However, with GPT-4, the new output be-
comes “map==null”, which is incorrect.

From comments to locking rules. We see an increase
in the accuracy of extracting lock-related rules from com-
ments. This increase ranges from 6% to 15% across the four
Linux modules. GPT-4 appears to consider comments more
comprehensively and precisely than GPT-3.

From manual to performance configurations. Utilizing
GPT-4, HotGPT achieves a high recall, correctly identifying
94% of performance configurations. This is a big improve-
ment in recall from both the original HotGPT (76%) and
LearnConf (46%). However, with GPT-4, the precision of Hot-
GPT drops from 83% to 70%. Checking and comparing the
results, we believe GPT-4 has a stronger capability of parsing
performance relationships from manuals and thus tends to
over-estimate performance sensitivity.

6 RELATED WORK

Recent work has explored the use of LLMs for various soft-
ware related tasks, particularly for coding assistance. Jig-
saw [10] complements LLMs with testing and syntax check-
ing to synthesize code for using Python Pandas APIs based
on a natural language description of desired functionality.
Other works similarly explore generating code in multiple
languages [4, 6, 8, 22] using natural language or partial code
as input. In contrast to these works, which focus on coding as-
sistance, this paper explores the extraction of specifications,
rules, and other knowledge from pre-existing software docu-
mentation, which can then be used for correctness checking,
performance tuning, and other system tasks.

There is work in non-software-related domains that use
LLMs to extract structured information from text [5], al-
though these rely on LLM-fine-tuning using domain-specific
information, with results not intended to be used program-
matically. There is also work that explores the summarization
of software code snippets using LLMs [11].

Yiming Su, Chengcheng Wan, Utsav Sethi, Shan Lu, Madan Musuvathi, Suman Nath

7 DISCUSSION & CONCLUSIONS

Our exploration shows that it is promising to use LLMs, like
GPT-3 and GPT-4, as a generic tool for extracting useful in-
formation from software documentation, which can then be
used to support various systems tasks. But several important
challenges remain.

First, large language models’ accuracy is promising but
offers no guarantees. As shown by our evaluation, LLM’s an-
swer could be incorrect. But even when correct, the answer
can be incomplete. For example, although the answer regard-
ing configuration mapreduce.map.output.compress in Fig-
ure 5 is informative, it did not mention that compression itself
could take time and hence affect performance from another
aspect. Overall, LLM’s answers provide a good starting point
for follow-up manual or tool examination, and can serve as
an initial screening.

Second, the performance of tools depends on prompt en-
gineering or tuning, which remains a black art; whether
background information is needed (e.g., the one about lock),
whether a working example is needed, what kind of word-
ing/phrasing would work the best all require trial and error.

Third, despite the phenomenal capabilities these models
exhibit, LLMs have to be significantly more reliable before
they can be used at scale in scenarios requiring no or little
manual inspection. As our experiments with GPT-4 demon-
strate, progress is not always guaranteed to be positive, re-
quiring future systems to handle regressions with care.

Finally, domain expert knowledge is still needed: if we did
not use the four locking-rule templates from HotComments,
we could not make GPT-3 or GPT-4 to extract actionable
items from comments.

Due to these challenges, we believe that harnessing these
large language models to build automated and reliable tools
for various system tasks is an exciting research area. We need
rigorous techniques to convert the fuzzy natural language
processing capabilities of these models into precise, deter-
ministic, and correct tools that systems designers require.

We are currently experiencing an accelerating pace of im-
provements in the capabilities of LLMs. It is quite possible
that future versions of these models solve many of the short-
comings we document here. Nevertheless, our work is just a
starting point in this area. We hope that future work explores
techniques to incorporate LLMs into the workflow of many
system tasks, such as testing, debugging, and maintenance.

ACKNOWLEDGEMENT

We thank the reviewers for their insightful feedback. The au-
thors’ research is supported by NSF (CNS1764039, CNS1956180,
CCF2119184), the CERES Center for Unstoppable Comput-
ing, the Marian and Stuart Rice Research Award, Microsoft
research dissertation grant, University of Chicago College
Research Fellow Grant, and research gifts from Facebook.

HotGPT: How to Make Software Documentation More Useful with a Large Language Model? HOTOS ’°23, June 22-24, 2023, Providence, RI, USA

REFERENCES [17] Hung Phan, Hoan Anh Nguyen, Tien N Nguyen, and Hridesh Rajan.
2017. Statistical learning for inference between implementations and
documentation. In 2017 IEEE/ACM 39th International Conference on
Software Engineering: New Ideas and Emerging Technologies Results

[1] Jean-Ralph Aviles. 2022. comment_parser: Parse comments from vari-
ous source files. Online document https://pypi.org/project/comment-

arser/.
[2] pArianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Track (ICSE-NIER). IEEE, 27-30.
Michael D Ernst, Mauro Pezzé, and Sergio Delgado Castellanos. 2018. (18] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Translating code comments to procedure specifications. In Proceedings Ilya Sutskever, et al. 2019. Language models are unsupervised multitask
of the 27th ACM SIGSOFT International Symposium on Software Testing learners. OpenAl blog 1, 8 (2019), 9.
and Analysis. 242-253. [19] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /*
[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D iComment: Bugs or bad comments?”. In Proceedings of twenty-first

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish ACM SIGOPS symposium on Operating systems principles. 145-158.

Sastry, Amanda Askell, et al. 2020. Language models are few-shot [20] Lin Tan, Ding Yuan, and Yuanyuan Zhou. 2007. Hotcomments: how

learners. Advances in neural information processing systems 33 (2020), to make program comments more useful?. In HotOS, Vol. 7. 49-54.
1877-1901. [21] NLP tools. 2023. Online document http://12r.cs.uiuc.edu/Ececogcomp/

tools.php.
[22] Immanuel Trummer. 2022. CodexDB: Synthesizing code for query
processing from natural language instructions using GPT-3 Codex.

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, et al. 2021. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374 (2021). Proceedings of the VLDB Endowment 15, 11 (2022), 2921-2928.

[5] Alexander Dunn, John Dagdelen, Nicholas Walker, Sanghoon Lee, [23] Alvaro Veizaga, Mauricio Alferez, Damiano Torre, Mehrdad Sabet-

Andrew S Rosen, Gerbrand Ceder, Kristin Persson, and Anubhav Jain. zadeh, and Lionel Briand. 2021. On systematically building a controlled

2022. Structured information extraction from complex scientific text natural language for functional requirements. Empirical Software En-

with fine-tuned large language models. arXiv preprint arXiv:2212.05238 gineering 26, 4 (2021). https:/doi.org/10.1007/510664-021-09956-6
(2022). [24] Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong

Fang, Shiqing Ma, Lin Tan, and Xiangyu Zhang. 2020. C2S: trans-

Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. lating natural language comments to formal program specifications.
Codebert: A pre-trained model for programming and natural languages. In Proceedings of the 28th ACM Joint Meeting on European Software
arXiv preprint arXiv:2002.08155 (2020). Engineering Conference and Symposium on the Foundations of Software
Engineering. 25-37.

[6] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,

[7] GitHub. 2022. DDMC: a grocery ordering application. Online docu-
ment https://github.com/LovelyWhite/ddmc.

[8] Github. 2023. Copilot: Your Al pair programmer. Online document
https://github.com/features/copilot.

[9] Yigong Hu, Gongqi Huang, and Peng Huang. 2020. Automated rea-
soning and detection of specious configuration in large systems with
symbolic execution. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). 719-734.

[10] Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan,
Suresh Parthasarathy, Sriram Rajamani, and Rahul Sharma. 2022. Jig-
saw: Large Language Models Meet Program Synthesis (ICSE °22). As-
sociation for Computing Machinery, New York, NY, USA, 1219-1231.
https://doi.org/10.1145/3510003.3510203

[11] Junaed Younus Khan and Gias Uddin. 2023. Automatic Code Documen-
tation Generation Using GPT-3. Association for Computing Machinery,
New York, NY, USA. https://doi.org/10.1145/3551349.3559548

[12] Ted Kremenek, Paul Twohey, Godmar Back, Andrew Ng, and Dawson

Engler. 2006. From uncertainty to belief: Inferring the specification

within. In Proceedings of the 7th symposium on Operating systems design

and implementation. 161-176.

Chi Li, Shu Wang, Henry Hoffmann, and Shan Lu. 2020. Statically

inferring performance properties of software configurations. In Pro-

ceedings of the Fifteenth European Conference on Computer Systems.

1-16.

OpenAl 2023. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774

(2023).

Oracle. 2023. How to Write Doc Comments for the Javadoc Tool. Online

document https://www.oracle.com/technical-resources/articles/java/

javadoc-tool.html.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright,

Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama,

Alex Ray, et al. 2022. Training language models to follow instructions

with human feedback. arXiv preprint arXiv:2203.02155 (2022).

(13

[t

(14

[l

(15

[

[16

—

	Abstract
	1 Introduction
	2 From comments to predicates
	2.1 Task Overview & Design
	2.2 Evaluation

	3 From comments to locking rules
	3.1 Task Overview & Design
	3.2 Evaluation

	4 From manual to perf. config.
	4.1 Task Overview & Design
	4.2 Evaluation

	5 Exploration on GPT-4
	6 Related Work
	7 Discussion & Conclusions
	References

