Received: 29 April 2022

Revised: 17 March 2023

m Check for updates

Accepted: 13 April 2023

DOI: 10.1112/tlm3.12054

RESEARCH ARTICLE

Transactions of the London
Mathematical Society

Punctured groups for exotic fusion systems

Ellen Henke' | Assaf Libman?

LFakultit Mathematik, TU Dresden,
Dresden, Germany

2Institute of Mathematics, King’s College,
University of Aberdeen, Aberdeen, UK

3Department of Mathematics, University
of Louisiana at Lafayette, Lafayette,
Louisiana, USA

Correspondence

Ellen Henke, Fakultit Mathematik, TU
Dresden, Zellescher Weg 12-14, D-01069
Dresden, Germany.

Email: ellen.henke@tu-dresden.de

| Justin Lynd?

Abstract

The transporter systems of Oliver and Ventura and the
localities of Chermak are classes of algebraic structures
that model the p-local structures of finite groups. Other
than the transporter categories and localities of finite
groups, important examples include centric, quasicen-
tric, and subcentric linking systems for saturated fusion
systems. These examples are, however, not defined in
general on the full collection of subgroups of the Sylow
group. We study here punctured groups, a short name for
transporter systems or localities on the collection of non-
identity subgroups of a finite p-group. As an application
of the existence of a punctured group, we show that the
subgroup homology decomposition on the centric col-
lection is sharp for the fusion system. We also prove a
Signalizer Functor Theorem for punctured groups and
use it to show that the smallest Benson—-Solomon exotic
fusion system at the prime 2 has a punctured group,
while the others do not. As for exotic fusion systems at
odd primes p, we survey several classes and find that
in almost all cases, either the subcentric linking sys-
tem is a punctured group for the system, or the system
has no punctured group because the normalizer of some
subgroup of order p is exotic. Finally, we classify punc-
tured groups restricting to the centric linking system
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for certain fusion systems on extraspecial p-groups of
order p3.

MSC 2020
20D05, 20D20, 20J06, 55R35 (primary)

1 | INTRODUCTION

Let F be a fusion system over the finite p-group S. Thus, F is a category with objects the subgroups
of S, and with morphisms injective group homomorphisms that contain among them the conju-
gation homomorphisms induced by elements of S plus one more weak axiom. A fusion system is
said to be saturated if it satisfies two stronger “saturation” axioms that were originally formulated
by Puig [47] and reformulated by Broto, Levi, and Oliver [8]. Those axioms hold whenever G is a
finite group, S is a Sylow p-subgroup of G, and Hom (P, Q) = Hom;(P, Q) is the set of conjuga-
tion maps ¢, from P to Q that are induced by elements g € G. The fusion system of a finite group
is denoted Fg(G).

A saturated fusion system F is said to be exotic if it is not of the form F4(G) for any finite group
G with Sylow p-subgroup S. The Benson-Solomon fusion systems at p = 2 form one family of
examples of exotic fusion systems [1, 35]. They are essentially the only known examples at the
prime 2, and they are in some sense the oldest known examples, having been studied in the early
1970s by Solomon in the course of the classification of finite simple groups (although not with the
more recent categorical framework in mind) [49]. In contrast with the case p = 2, a fast-growing
literature describes many exotic fusion systems on finite p-groups when p is odd.

In replacing a group by its fusion system at a prime, one retains information about conjuga-
tion homomorphisms between p-subgroups, but otherwise loses information about the group
elements themselves. It is therefore natural that a recurring theme throughout the study of satu-
rated fusion systems is the question of how to “enhance” or “rigidify” a saturated fusion system to
make it again more group-like, and also to study which fusion systems have such rigidifications.

The study of the existence and uniqueness of centric linking systems was a first instantiation
of this theme of rigidifying saturated fusion systems. A centric linking system is an important
extension category of a fusion system F that provides just enough algebraic information to recover
a p-complete classifying space. For example, it recovers the homotopy type of the p-completion of
BG in the case where F = F(G). Centric linking systems of finite groups are easily defined, and
Oliver proved that the centric linking systems of finite groups are unique [38, 39]. Then, Chermak
proved that each saturated fusion system, possibly exotic, has a unique associated centric linking
system [14]. A proof that does not rely on the classification of finite simple groups can be obtained
through [24, 41].

More generally, there are at least two frameworks for considering extensions, or rigidifications,
of saturated fusion systems: the transporter systems of Oliver and Ventura [45] and the localities of
Chermak [14]. In particular, one can consider centric linking systems in either setting. While cen-
tric linking systems in either setting have a specific set of objects, the object sets in transporter
systems and localities can be any conjugation-invariant collection of subgroups that is closed
under passing to overgroups. The categories of transporter systems and isomorphisms and of local-
ities and isomorphisms are equivalent [14, appendix] and [25, Theorem 2.11]. However, depending
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PUNCTURED GROUPS FOR EXOTIC FUSION SYSTEMS | 23

on the intended application, it is sometimes advantageous to work in the setting of transporter
systems, and sometimes in localities. The reader is referred to Section 2 for an introduction to
localities and transporter systems.

In this paper, we study punctured groups. These are transporter systems, or localities, with
objects the nonidentity subgroups of a finite p-group S. To motivate the terminology, recall
that every finite group G with Sylow p-subgroup S admits a transporter system 74(G) whose
objects are all subgroups of S and Mor;(P,Q) = N;(P, Q), the transporter set consisting of all
g € G that conjugate P into Q. Conversely, [45, Proposition 3.11] shows that a transporter sys-
tem 7 whose set of objects consists of all the subgroups of S is necessarily the transporter
system 75(G) where G = Aut;(1), and the fusion system F with which 7 is associated is
Fs(G). Thus, a punctured group 7 is a transporter system whose object set is missing the
trivial subgroup, an object whose inclusion forces 7 to be the transporter system of a finite
group.

If we consider localities rather than transporter systems, then the punctured group of G is
the locality L - 5)(G) C G consisting of those elements g € G that conjugate a nonidentity sub-
group of S back into S. This is equipped with the multivariable partial productw := (g, ..., g,) =
g1 *** g, defined only when each initial subword of the word w conjugates some fixed nonidentity
subgroup of S back into S. Thus, the product is defined on words that correspond to sequences
of composable morphisms in the transporter category 7¢'(G). See Definition 2.6 for more
details.

By contrast with the existence and uniqueness of linking systems, we will see that punctured
groups for exotic fusion systems do not necessarily exist. The existence of a punctured group for
an exotic fusion system seems to indicate that the fusion system is “close to being realizable” in
some sense. Therefore, considering punctured groups might provide some insight into how exotic
systems arise.

It is also not reasonable to expect that a punctured group is unique when it does exist. To give
one example, the fusion systems PSL,(q) withq = 9 (mod 16) all have a single class of involutions
and equivalent fusion systems at the prime 2. On the other hand, the centralizer of an involution is
dihedral of order 2(g — 1), so the associated punctured groups are distinct for distinct q. Examples
like this one occur systematically in groups of Lie type in nondefining characteristic. Later we
will give examples of realizable fusion systems with punctured groups that do not occur as a full
subcategory of the punctured group of a finite group.

We will now describe our results in detail. To start, we present a result that gives some
motivation for studying punctured groups.

1.1 | Sharpness of the subgroup homology decomposition

As an application of the existence of the structure of a punctured group for a saturated fusion
system F, we prove that it implies the sharpness of the subgroup homology decomposition for
that system. Recall from [8, Definition 1.8] that given a p-local finite group (S, F, £) its classifying
space is the Bousfield-Kan p-completion of the geometric realization of the category L. This space
is denoted by |£|IAJ.

The orbit category of F, see [8, Definition 2.1], is the category O(F) with the same objects as F
and whose morphism sets Mor (P, Q) is the set of orbits of F(P, Q) under the action of Inn(Q).
The full subcategory of the F-centric subgroups is denoted O(F°). For every j > 0 there is a functor
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24 | HENKE ET AL.

HI D O(F)P - 7,)-mob:
M/ : P~ H/(P;F,), (PeOF)).

The stable element theorem for p-local finite groups [8, Theorem B, see also Theorem 5.8] asserts
that for every j > 0,

H/(ILIy:Fy) = lim H) = lim  HI(P;F)).
O(F°©) PeO(F*)

The proof of this theorem in [8] is indirect and requires heavy machinery such as Lannes’s T-
functor theory. From the conceptual point of view, the stable element theorem is only a shadow
of a more general phenomenon. By [8, Proposition 2.2], there is a functor

B: O(F°) - Top

with the property that B(P) is homotopy equivalent to the classifying space of P (denoted BP) and
moreover there is a natural homotopy equivalence

|£| ~ hocolimB.
O(F°)

The Bousfield-Kan spectral sequence for this homotopy colimit [6, chapter XII, section 4.5] takes
the form

E) = @i H = Hi+i(|[:|g;[Fp)
O(Fe)P

and is called the subgroup decomposition of (S, F, L£). We call the subgroup decomposition sharp,
see [20], if the spectral sequence collapses to the vertical axis, namely E;’J =0 foralli > 0. When
this is the case, the stable element theorem is a direct consequence. Indeed, whenever F is
induced from a finite group G with a Sylow p-subgroup S, the subgroup decomposition is sharp
(and the stable element theorem goes back to Cartan-Eilenberg [13, Theorem XI1.10.1]). This fol-
lows immediately from Dwyer’s work [20, section 1.11] and [7, Lemma 1.3], see, for example, [18,
Theorem B].

Itisstill an open question as to whether the subgroup decomposition is sharp for every saturated
fusion system. We will prove the following theorem.

Theorem 1.1. Let F be a saturated fusion system that affords the structure of a punctured group.
Then the subgroup decomposition on the F-centric subgroups is sharp. In other words,

lim! H/ =0
—
O(F<)°P

foreveryi>1landj>0.

We will prove this theorem in Section 3. We remark that our methods apply to any functor H
which in the language of [18] is the pullback of a Mackey functor on the orbit category of F denoted
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O(F)such that H(e) = Owheree < S is the trivial subgroup. In the absence of applications in sight
for this level of generality, we have confined ourselves to the functors H = M.

1.2 | Signalizer functor theorem for punctured groups

It is natural to ask for which exotic fusion systems punctured groups exist. We will answer this
question for specific families of exotic fusion systems. As a tool for proving the nonexistence of
punctured groups we define and study signalizer functors for punctured groups thus mirroring a
concept from finite group theory.

Definition 1.2. Let (£, A, S) be a punctured group. If P is a subgroup of S, write 7 p(P) for the
set of elements of P of order p. A signalizer functor of (L, A, S) on elements of order p is a map
0 from 1 p(S) to the set of subgroups of £, which associates to each element a € Ip(S) a normal
p’-subgroup 6(a) of C(a) such that the following two conditions hold.

* (Conjugacy condition) 8(a¥) = 6(a)? forany g € Land a € Ip(S) such that a¥ is defined and
an element of S.
* (Balance condition) 6(a) N C.(b) < 6(b) forall a,b € I,(S) with [a,b] =1.

Notice in the above definition that, as (£,A,S) is a punctured group, for any a € S, the
normalizer N -({a)) and thus also the centralizer C,(a) is a subgroup.

Theorem 1.3 (Signalizer functor theorem for punctured groups). Let (L, A, S) be a punctured
group and suppose 6 is a signalizer functor of (L, A, S) on elements of order p. Then

0 := U 6(x)

xelp(S)

is a partial normal subgroup of £ with ® N S = 1. In particular, the canonical projection p : L —
£ /© restricts to an isomorphism S — SP. Upon identifying S with SP, the following properties hold.

(@) (£/6,A,58)is alocality and F(L/©) = Fg(L).
(b) Foreach P € A, the projection p restricts to an epimorphism N.(P) — N, /@(P) with kernel ©(P)
and thus induces an isomorphism N (P)/O(P) = Nﬁ/@(P).

1.3 | Punctured groups for families of exotic fusion systems

Let F be a saturated fusion system on the p-group S. If £ is a locality or transporter system associ-
ated with F, then for each fully 7-normalized object P of L, the normalizer fusion system N(P)
is the fusion system of the group N,(P) if L is a locality, and of the group Aut,(P) if £ is a trans-
porter system. This gives an easy necessary condition for the existence of a punctured group: for
each fully 7-normalized nonidentity subgroup P < S, the normalizer N(P) is realizable.
Conversely, there is a sufficient condition for the existence of a punctured group: F is of char-
acteristic p-type, that is, for each fully F-normalized nonidentity subgroup P < S, the normalizer
N7(P) is constrained. This follows from the existence of linking systems (or similarly linking
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26 | HENKE ET AL.

localities) of a very general kind, a result that was shown in [28, Theorem A] building on the
existence and uniqueness of centric linking systems.

The Benson-Solomon fusion systems Fg;(q) at the prime 2 have the property that the normal-
izer fusion system of each nonidentity subgroup P is realizable, and moreover, Cr(Z(S)) is the
fusion system at p = 2 of Spin,(q), and hence not constrained. So, Fg, (q) satisfies the obvious
necessary condition for the existence of a punctured group, and does not satisfy the sufficient one.

Based on results of Solomon [49], Levi and Oliver showed that Fg,(q) is exotic [35, Theo-
rem 3.4], that is, it has no locality with objects all subgroups of a Sylow 2-group. In Section 4,
we show the following theorem.

Theorem 1.4. For any odd prime power q, the Benson-Solomon fusion system Fg,(q) has a
punctured group if and only if g = £3 (mod 8).

If | is the nonnegative integer with the property that 2/+3 is the 2-part of g> — 1, then Fy;(q) &
7?501(321 ). So, the theorem says that only the smallest Benson—-Solomon system, Fg(3), has a punc-
tured group, and the larger ones do not. Further details and a uniqueness statement are given in
Theorem 4.1.

When showing the nonexistence of a punctured group in the case g = +1 (mod 8), the Signal-
izer Functor Theorem 1.3 plays an important role in showing that a putative minimal punctured
group has no nontrivial partial normal p’-subgroups. This is similar to the way signalizer func-
tor theory was used by Solomon in [49, section 3]. To construct a punctured group in the case
q = +3 (mod 8), we turn to a procedure we call Chermak descent. It is an important tool in Cher-
mak’s proof of the existence and uniqueness of centric linking systems [14, section 5] and allows
us (under some assumptions) to “expand” a given locality to produce a new locality with a larger
object set. Starting with a linking locality, we use Chermak descent to construct a punctured group
L for Fg,(q) in which the centralizer of an involution is C(Z(S)) = Spin,(3).

It is possible that there could be other examples of punctured groups for Fg,(3) in which the
centralizer of an involution is Spin,(g) for certain g = 31*69; a necessary condition for existence
is that each prime divisor of g*> — 1 is a square modulo 7. However, given this condition, we can
neither prove or disprove the existence of an example with the prescribed involution centralizer.

In Section 5, we survey a few families of known exotic fusion systems at odd primes to deter-
mine whether or not they have a punctured group. A summary of the findings is contained in
Theorem 5.2. For nearly all the exotic systems we consider, either the system is of characteristic
p-type, or the normalizer of some p-subgroup is exotic and therefore a punctured group does not
exist. Indeed, it might be that a similar result can be shown for all known exotic fusion systems at
odd primes. At least we are not aware of any counterexample.

In particular, when considering the family of Clelland-Parker systems [17] in which each essen-
tial subgroup is special, we find that OP/(CP(Z (S))/Z(S)) is simple, exotic, and had not appeared
elsewhere in the literature as of the time of our writing. We dedicate part of Subsection 5.3 to
describing these systems and to proving that they are exotic.

Applying Theorem 1.1 to the results of Sections 4 and 5 establish the sharpness of the subgroup
decomposition for new families of exotic fusion systems, notably

* Benson-Solomon’s system Fg;(3) [35],
* all Parker-Stroth systems [46],
* all Clelland-Parker systems [17] in which each essential subgroup is abelian.

d ‘1 “€T0T ‘986¥TSOT

woiy

dy) SUONIPUOD) PUE WD, 9 99§ “[€70Z/£0/L0] U0 ATBIqIT uITUQ) A9[LAL *ONOARIET 18 BUBISIOT JO ANSIOAT) KQ $SOT 1 EWN/TI 1 101 /10p/wod Kopia Kreaqy

2-SULIOY/WOD"A;

25U SUOWIWOD) 2ANERI) d[quatdde oy £q POUIOAOS AIE SIIIIE VO 498N JO I[N 10} AIIqI] AUIUQ Ao[1A UO



PUNCTURED GROUPS FOR EXOTIC FUSION SYSTEMS | 27

It also recovers the sharpness for certain fusion systems on p-groups with an abelian subgroup
of index p, a result that was originally established in full generality by Diaz and Park [18].

1+2

1.4 | Classification of punctured groups over p,’

In general, it seems difficult to classify all the punctured groups associated with a given saturated
fusion system. However, for fusion systems over an extraspecial p-group of exponent p, which by
[48] are known to contain among them three exotic fusion systems at the prime 7, we are able to
work out such an example. There is always a punctured group £ associated to such a fusion system,
and when F has one class of subgroups of order p and the full subcategory of £ with objects the
F-centric subgroups is the centric linking system, a classification is obtained in Theorem 6.4.
Conversely, the cases we list in that theorem all occur in an example for a punctured group. This
demonstrates on the one hand that there can be more than one punctured group associated to the
same fusion system and indicates on the other hand that examples for punctured groups are still
somewhat limited.

Outline of the paper and notation

The paper proceeds as follows. In Section 2, we recall the definitions and basic properties of trans-
porter systems and localities, and we prove the Signalizer Functor Theorem in Subsection 2.8. In
Section 3, we prove sharpness of the subgroup decomposition for fusion systems with associated
punctured groups. Section 4 examines punctured groups for the Benson-Solomon fusion systems,
while Section 5 looks at several families of exotic fusion systems at odd primes. Finally, in Section 6
classifies certain punctured groups over an extraspecial p-group of order p* and exponent p. The
Appendix sets notation and provides certain general results on finite groups of Lie type that are
needed in Section 4.

The first four sections of the paper do not use the classification of the finite simple groups
(CFSG). The CFSG is always used indirectly in Sections 5 and 6 whenever we need to apply known
results that certain exotic fusion systems at odd primes are indeed exotic. Each time this occurs
(e.g., Proposition 5.7), the results could be stated so as to avoid indirect use of the CFSG. Aside from
this, there are two direct applications of the CFSG. The first occurs in the proof of Lemma 5.10(c)
when showing that fusion systems related to the Clelland-Parker systems are exotic. The second
occurs in the proof of Lemma 6.5(b).

Throughout most of the paper, we write conjugation like maps on the right side of the argument
and compose from left to right. There are two exceptions: when working with transporter systems,
such as in Section 3, we compose morphisms from right to left. Also, we apply certain maps in
Section 4 on the left of their arguments (e.g., roots, when viewed as characters of a torus). The
notation for Section 4 is outlined in more detail in the Appendix.

2 | LOCALITIES AND TRANSPORTER SYSTEMS

As already mentioned in the introduction, transporter systems as defined by Oliver and Ventura
[45] and localities in the sense of Chermak [14] are algebraic structures that carry essentially the
same information. In this section, we will give an introduction to both subjects and outline briefly
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28 | HENKE ET AL.

the connection between localities and transporter systems. At the end we present some signalizer
functor theorems for localities.

2.1 | Partial groups

We refer the reader to Chermak’s papers [14] or [15] for a detailed introduction to partial groups
and localities. However, we will briefly summarize the most important definitions and results
here. Following Chermak’s notation, we write W(L) for the set of words in a set £, and @ for the
empty word. The concatenation of words u,, ..., u;, € W(L) is denoted by u; ou, o -+ ouy.

Definition 2.1 (Partial group). Let £ be a nonempty set, let D be a subset of W(L),letII: D —» L
be a map and let (=) : £ — £ be an involutory bijection, which we extend to a map

(=) W(L) = WD), w = (g1, g0) > W = (g s g7 ).

We say that £ is a partial group with product IT and inversion (=)~ if the following hold.

* £ CD(i.e., D contains all words of length 1), and
uoveD= u,veD.

(So in particular, @ € D.)
* Il restricts to the identity map on L.
* uovow € D= uo(ll(v))ow € D, and IT(u o v o w) = II(u o (TI(V)) o w).
cweD=wloweDand I(w!ow) =1wherel :=II(Q).

Note that any group G can be regarded as a partial group with product defined in D = W(G) by
extending the “binary” product to a map W(G) — G, (g, G2, > 9n) = G192 *** -

For the remainder of this section, let £ be a partial group with product I1: D —» £
defined on the domain D C W(L).

Because of the group-like structure of partial groups, the product XY of two subsets X and Y
of £ is naturally defined by

XY :={l(x,y): x € X, y € Ysuch that (x,y) € D}.
Similarly, there is a natural notion of conjugation, which we consider next.
Definition 2.2. For every g € L, we define
D(g) ={x € L| (97", x,9) € D}.

Themapc,: D(g) = L, x = x9 = (g1, x, g) is the conjugation map by g. If H is a subset of £
and H C D(g), then we set

HY9 ={h' | h € H}.
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PUNCTURED GROUPS FOR EXOTIC FUSION SYSTEMS | 29

Whenever we write x9 (or H7), we mean implicitly that x € D(g) (or H C D(g), respectively).
Moreover, if M and H are subsets of £, we write N ,,(H) for the set of all g € M such that H C
D(g) and HY = H. Similarly, we write C,(H) for the set of all ¢ € M such that H € D(g) and
h =hforallhe HIfM C Land h € L,setC,,(h) :=C,,({h}).

Definition 2.3. Let H be a nonempty subset of £. The subset H is a partial subgroup of L if

c g€H = g '€ H;and
cweDNWH) = II(w) € H.

If H is a partial subgroup of £ with W(H) C D, then H is called a subgroup of L.
A partial subgroup N of L is called a partial normal subgroup of £ (denoted N < L) if for all
gELandn e N,

neD(g) = n? e N.

We remark that a subgroup H of L is always a group in the usual sense with the group
multiplication defined by hg = II(h, g) for all h, g € H.

2.2 | Localities

Roughly speaking, localities are partial groups with some some extra structure, in particular with
a “Sylow p-subgroup” and a set A of “objects” which in a certain sense determines the domain of
the product. This is made more precise in Definition 2.5. We continue to assume that £ is a partial
group with product IT: D — £. We will use the following notation.

Notation 2.4. If S is a subset of £ and g € L, set
S, :={s€SnD(g): s/ € S}

More generally, if w = (g, ..., g,) € W(L)with n > 1, define S, to be the set of elements s € S for
which there exists a sequence of elements s = s, 5y, ..., 5, € S with 5;_; € D(g;) and S,Tqil =, for
alli=1,..,n.

Definition 2.5. We say that (£, A, S) is a locality if the partial group L is finite as a set, S is a
p-subgroup of £, A is a nonempty set of subgroups of S, and the following conditions hold.

(L1) S is maximal with respect to inclusion among the p-subgroups of L.

(L2) For any word w = (f3,..., f,) € W(L), we have w € D if and only if there exist P, ... ,P,, €
A with
(x) P,_; € D(f;) and Plf_il =P;foralli=1,...,n.

(L3) Theset Aisclosed under passing to £-conjugates and overgroupsin S, thatis, A is overgroup-
closed in S and, for every P € A and g € £ such that P C Sg, we have P9 € A.

If (£, A, S) is a locality, w = (f4, ..., f,,) € W(L), and Py, ..., P,, are elements of A such that (x)
holds, then we say that w € D via P, ..., P,, (or w € D via P).
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It is argued in [28, Remark 5.2] that Definition 2.5 is equivalent to the definition of a local-
ity given by Chermak [15, Definition 2.7] (which is essentially the same as the one given in [14,
Definition 2.9]).

Example 2.6. Let M be a finite group and S € Sylp(M ). Set F = Fg(M) and let A be a nonempty
collection of subgroups of S, which is closed under F-conjugacy and overgroup-closed in S. Set

L\(M):={geCG:SnSYeA}={geG: 3P € Awith P? < S}

and let D be the set of tuples (g, ..., g,) € W(M) such that there exist Py, Py, ...,P,, € A with
Pl.gil = P;. Then L£,(M) forms a partial group whose product is the restriction of the multivari-
able product on M to D, and whose inversion map is the restriction of the inversion map on the
group M to L, (M). Moreover, (LA(M), A, S) forms a locality.

In the next lemma, we summarize the most important properties of localities that we will use
throughout, most of the time without reference.

Lemma 2.7 (Important properties of localities). Let (£, A, S) be a locality. Then the following hold.

(a) N (P)isasubgroup of L foreach P € A.
(b) LetP € Aand g € LwithP CS,. ThenQ := P9 € A, N, (P) C D(g) and

¢, Np(P) = N.(Q), x = x7

is an isomorphism of groups.
(c) Letw = (gy,---» 9,) € Dvia (X, ..., X,,). Then

€g1 © = ©Cqy = Ciw)
is a group isomorphism N (X,) = N (X,,).

(d) Forevery g € L, wehave S, € A. In particular, S, is a subgroup of S. Moreover, Sg =S,1 and
¢, S, = S,x — xY is an injective group homomorphism.

(e) Foreveryg € L, c,: D(g) — D(g~ 1), x = x9 is a bijection with inverse map Cymt.

(f) Forany w € W(L), S, is a subgroup of S with S, € A if and only if w € D. Moreover, w € D
implies S, < Sty(w)-

Proof. Properties (a), (b), and (c) correspond to the statements (a), (b), and (c) in [15, Lemma 2.3]
except for the fact stated in (b) that Q € A, which is, however, clearly true if one uses the definition
of a locality given above. Property (d) holds by [15, Proposition 2.5(a),(b)] and property (e) is stated
in [14, Lemma 2.5(c)]. Property (f) corresponds to [15, Corollary 2.6]. O

Let (L, A, S) be alocality. Then it follows from Lemma 2.7(d) that, for every P € A and every g €
L with PC S , themapc,: P— P%x ~ x7 is an injective group homomorphism. The fusion
system F¢(L)is the fusion system over S generated by such conjugation maps. Equivalently, F¢(L)
is generated by the conjugation maps between subgroups of S, or by the conjugation maps of the
formcg : Sg - S,x — x9withg € L.
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Definition 2.8. If F is a fusion system, then we say that the locality (£, A, S) is a locality over F
it F =Fqg(L).

If (£, A, S) is a locality over F, then notice that the set A is always overgroup-closed in S and
closed under F-conjugacy. Definition 2.8 says precisely that every morphism in F is a composite of
conjugation maps. It is, however, not true in general that every F-morphism is itself a conjugation
map. In the following lemma, the assumption that P is an object in A (rather than just a subgroup
of S) is therefore important.

Lemma2.9. Let (L, A, S) be a locality over a fusion system F and P € A. Then the following hold.
(a) Forevery ¢ € Hompy(P,S), there exists g € L such that P < S, and ¢(x) = x? for all x € P.

(b) Np(P) = Fyy (o) (N, (P)).

Proof. For (a), see [28, Lemma 5.6]. As F = Fg(L), one sees that FNS(P)(N (P)) is a subsystem
of Nr(P). Conversely, by definition of the normalizer system, each morphism in N(P) extends
to a morphism with source a subgroup of N¢(P) containing P, so N(P) is generated as a fusion
system by morphisms in F between objects of L. Part (a) then gives equality. O

Suppose (L1, AT, S) is a locality with partial product IT* : D* — L£*.If A is a nonempty subset
of A* which is closed under taking £*-conjugates and overgroups in S, we set

LY, :={f eL*: 3P € Asuchthat P C D*(f) and P/ < S}

and write D for the set of words w = (f,..., f,) such that w € D* via P,...,P, for some
Py, ...,P, € A.Note that D is a set of words in £*], that is contained in D*. It is easy to check that
L£*], forms a partial group with partial product IT*|p : D — L*],, and that (£*],, A, S) forms a
locality; see [14, Lemma 2.21] for details. We call £LF|, the restriction of L to A.

2.3 | Projections of localities

Throughout this subsection, let £ and £’ be partial groups with products I1: D — £ and
I : D' - £/, respectively.

Definition 2.10. Let 3: £ — L', g — ¢f be a map. By abuse of notation, we denote by § also the
induced map on words

W(L) > WKL, w=(f s fr) e 0P =P P

and set Df = {wf : w € D}. We say that 8 is a homomorphism of partial groups if

(1) D C D’;and
(2) T(w)? = I (wh) for every w € D.

If moreover Df = D’ (and thus § is in particular surjective), then we say that 8 is a projection of
partial groups. If § is a bijective projection of partial groups, then f is called an isomorphism.
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There is no accepted notion of a morphism of localities (at the same prime p) in the literature.
One could, however, form a category of localities with morphisms the partial group homomor-
phisms - or alternatively there are several full subcategories of this which one might want to
consider. For our purposes, it will be enough to consider the category of localities with projections
of localities as defined next.

Definition 2.11. Let (£,A,S) and (£/,A’,S’) be localities and let 8: £ — £’ be a projection
of partial groups. We say that 8 is a projection of localities from (L, A, S) to (L', A’, S") if, setting
AP = {PP | P € A}, we have Af = A’ (and thus S = §).

If B is in addition bijective, then f is a called an isomorphism of localities. If S = S/, then an
isomorphism of localities from (£, A, S) to (£/, A’, S) is called a rigid isomorphism if it restricts to
the identity on S.

The notion of a rigid isomorphism will be important later on when talking about the uniqueness
of certain localities attached to a given fusion system.

We will now describe some naturally occurring projections of localities. Suppose (£, A, S)
is a locality and W is a partial normal subgroup of L. A coset of N in L is a subset of the
form

Nf :={I(n, f): n € N such that (n, f) € D}

for some f € L. Unlike in groups, the set of cosets does not form a partition of £ in general.
Instead, one needs to focus on the maximal cosets, that is, the elements of the set of cosets of N in
L that are maximal with respect to inclusion. By [15, Lemma 3.15], the set £ /N of maximal cosets
of N in £ forms a partition of £. Thus, there is a natural map

B:L—>LIN

sending each element g € L to the unique maximal coset of A in £ containing g. Set C =L/ N
and D :=Df := {wf: w € D}. By [15, Lemma 3.16], there is a unique map II: D — £ and a

unique involutory bijection L—L, f - f_l such that £ with these structures is a partial group,
and such that 8 is a projection of partial groups. Moreover, setting§ :=SPandA :={PF: P e A},
the triple (E, A, §) is by [15, Corollary 4.5] a locality, and 3 is a projection from (£, A, S) to (E, A, §).
The map g is called the natural projection from £ — L.

The notation used above suggests already that we will use a “bar notation” similar to the one
commonly used in finite groups. Namely, if we set L :=£/N, then for every subset or element
P of £, we will denote by P the image of P under the natural projection 5 : £ — L. We conclude
this section with a little lemma needed later on.

Lemma 2.12. Let (£, A, S) be a locality with partial normal subgroup N. Setting C := L/ N, the
preimage of S under the natural projection equals N'S.

Proof. For every s € S, the coset N's is maximal by [15, Lemma 3.7(a) and Proposition 3.14(c)].
Thus, for every s € S, we have s = N's. Hence, the preimage of S = {s: 5 € S}equals (J,cq N's =
NS. O
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2.4 | Transporter systems

Throughout this section, fix a finite p-group S, a fusion system F over S, and a collection A of
nonidentity subgroups of S that is overgroup-closed in S and closed under F-conjugacy. As the
literature about transporter systems is written in left-hand notation, in this section, we will also
write our maps on the left-hand side of the argument. Accordingly, we will conjugate from the left.

The transporter category T4(G) (at the prime p) of a finite group G with Sylow p-subgroup S
is the category with objects the nonidentity subgroups of S and with morphisms given by the
transporter sets N;(P, Q) = {g € G | 9P < Q}. More precisely, the morphisms in 75(G) between P
and Q are the triples (g, P, Q) with g € N;(P, Q). We also write 7,(G) for the full subcategory of
T5(G) with objects in A.

As we conjugate in this section from the left, for P,Q < S and g € N (P, Q), we write ¢, for the
conjugation map from P to Q given by left conjugation, that is,

cg:P—>Q,x»—>-‘7x.

Definition 2.13 [45, Definition 3.1]. A transporter system associated to F is a nonempty finite
category 7 having object set A C Ob(F), together with functors

TA(S)—€> TL) F

that satisfy the following axioms.

(A1) Aisclosed under F-conjugacy and passing to overgroups, ¢ is the identity on objects, and p
is the inclusion on objects.
(A2) Foreach P,Q € A, the kernel

E(P) :=ker(pp p : Auty(P) — Autp(P))

acts freely on Mor(P, Q) by right composition, and pp , is the orbit map for this action.
Also, E(Q) acts freely on Mor (P, Q) by left composition.

(B) Foreach P,Q € A, ep ¢ Ng(P,Q) — Mor,(P, Q) is injective, and the composite pp 5 0 €p
sends s € Ng(P, Q) to ¢; € Homy(P, Q).

(C) For all ¢ € Mor;(P,Q) and all g € P, the diagram

¢

P——

)

epp(8) €0.0((#)(8)

-

P——

¢

Q

commutes in 7.
(D €55(S) is a Sylow p-subgroup of Aut(S).
(II) Let @ €Iso7(P,Q), let PIP < S, and let Q Q< S be such that poepp(P)op™ <
€0.0(Q)- Then there exists ¢ € Mor,(P, Q) such that g o ep 5(1) = €5 5(1) 0 .

If we want to be more precise, we say that (7, €, p) is a transporter system.
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Note that, by [45, Lemmas 3.2(b) and 3.8], every morphism in a transporter system is both a
monomorphism and an epimorphism.

A centric linking system in the sense of [8] is a transporter system in which A is the set of -
centric subgroups and E(P) is precisely the center Z(P) viewed as a subgroup of Ng(P) via the
map €p p. A more general notion of linking system will be introduced in Subsection 2.6.

We next want to state the definition of an isomorphism of transporter systems as used in [25].
First we prove a lemma that helps to explain that a property implicitly assumed there, and which
is needed for the definition to make sense, does in fact hold.

Given a fusion system F on a finite p-group S and a set A of subgroups of S, we write F|, for
the full subcategory of 7 with object set A.

Lemma 2.14. Let (7 ,¢,p) and (T',€', p") be two transporter systems having object sets A and A’,
associated with the fusion systems F and F’ over the p-groups S and S’, respectively. Leta: T — T
be any equivalence of categories. Then the following hold.

@) a(S) =9, and a(P) < a(S) foreach P € A.

(b) Suppose a has the following two additional properties:
(typ) app(epp(P)) = ;(P) c((P)(oc(P))for each P € A, and
(inc) aps(ep (1)) = a(P) (S)(l)for each P € A,
and set

-1
B= (ng,sf) O0QgsO€ss-

Then
(i) B is an isomorphism of groups from S to S’,

(i) a(P) = B(P) for all P € A, and for each P,Q € A with P < Q, we have a(P) < a(Q) and
apolep (D) = a(p) a(Q)(l)

(iii) the functor gt Fly— F! la(a) defined by cg(P) = B(P) for each P € A, and by cg(p) =
BogpoB~t for each morphism ¢ € Homy(P,Q) with P,Q € A, is well-defined and an
isomorphism of categories.

(c) If a satisfies (typ) and (inc), then « is a bijection on objects, and hence an isomorphism of
categories.

Proof.

(a) The subgroup S (resp., S’) is characterized as the unique object of 7 (resp., 7”) that receives
a morphism from every object. As « is an equivalence, this implies a(S) = S’, and hence also
a(P) < S" = a(S) forall P € A.

(b) By (a), ¢ a(P). (S)(l) is defined, so the right-hand side of the equality in (inc) makes sense.

Assume (typ) and (inc) and set § = (es, S,)

(i) Asaisan equivalence, it is a bijection on morphism sets. As ag (€5 5(S)) = es, S,(S ) by
(a) and (typ), and as ¢ is injective on morphism sets (Axiom (B)), § is thus a well-defined
isomorphism of groups from Auty (5)(S) = Ng(S) = S to Aut, ,(S,)(S )=Ng(S)=S5"

(i) Proving a(P) = B(P) for all P € A means showing o (€. S(P)) = e rgr (a(P)) for all such
P. For the proof fix an object P and let x € P. By (typ), there ex1st y € a(S) =S’ and

oag g o€g g as above.
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V' € a(P) such that ag s (€ 5(0) = €, ,(v) and ap plep (X)) = €, (7). Note that

eps(1)oepp(x) = €p g(x) = €5 5(x) o €p g(1).

Applying o we obtain from this and our assumption that
/ ' A '
€Ot(P),S,(1) o €a(P)’a(P)(y ) - €s/’sl(y) o EOZ(P),S’(l)

and thus €’ «P). S,(y )= (). By axiom (B), ¢’ is injective. Thus, y =y’ € a(P)

Oc(P) S’ a(P),s’
and thus ag g(e5 5(x)) = eS,’S,(y) € es’,s’ (a(P)). This proves ag s(€s 5(P)) < eg,’s,(oc(P)).

To prove the opposite inclusion, leta € oc(P) By the first assumption, there exist x € S and x’ € P

such that eS, (@) = ag 5(es 5(x)) and ¢ o), (P)(a) = ap p(ep p(x")). Then

ap s(eps(x") = ap s(eps(1)) 0 ap p(ep p(x"))
= €5 (D0 Eop) o) (@)
= ezlx(P),S’(a)
= €{sf,s'(a) ° €;c(P),s'(l)
= ag s(€s5.5(x)) o ap s(€p 5(1))

= ap s(€p 5(X)).

As ap g and ¢p g are injective (Axiom B), it follows x = x’ € P and thus eg,,S,(a) € ag s(es 5(P)).
This shows ag g(eg 5(P)) = ¢!, ,(a(P)) and completes the proof that ¢ and B coincide on
objects.

Now let P < Q be an inclusion of subgroups in A. Then a(P) = S(P) < f(Q) = a(Q). The

equality €5 s(1) o €p (1) = €p 5(1) holds in 7. Applying « to this and using (inc) we have

N

E;C(Q),Dt(s)(l) o O(P’Q(EP’Q(I)) = E(;(P),Dt(s)(l)'

On the other hand, €’ P Q)(l) is a morphism in 7’ because a(P) < a(Q), and we have a similar

equality

€2 @D ° Cara@® = S acsD:

As € Q). (S)(l) is a monomorphism in 7'/, we have ap olepo) = (1), completing the

proof of (ii).

Ot(P) a(Q)

(iii) This is more or less shown in the proof of [25, Proposition 2.5], but not all details are given
there. In any case, our stated hypotheses here are weaker (we do not assume A, A’ contain
Fer, F'e") and our conclusion is weaker (we only are claiming an isomorphism of full subcat-
egories of the fusion systems, not of the fusion systems themselves). So, we repeat the proof
and add the details.
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Step 1: Let B, : To(S) — TA/(S") be the functor defined by 8 on objects and also 8 on morphism
sets. We first show ¢’ o 8, = atoc.

The functors ¢’ o 8, and « o ¢ agree on objects by (ii) and (Al). They also agree on morphism
sets as we now show. Let P,Q € A and s € Ny(P, Q). In 7 we have

€s5(8)oeps(1) = €9 s(1) 0 €p o(s).
Applying a, and using (inc) and the definition of 3, we have
eg/7s/ (;B(S)) o eéC(P),S,(l) = ec’?{(Q),S,(l) o aP,Q(EP,Q (S))

We also have the same equality when ap (ep o(s)) is replaced by e; @) a(Q)(,B(s)). As every
morphism of 77 is a monomorphism, this forces apolepo(s) = ec’x(P) a(Q)(ﬁ(S))- Thus,

€ of, =aoce. 2.1
Step 2: We next show that for each ¢ € Mor (P, Q) with P,Q € A,

c6(Pp.o(P)) = Plp) o) @P.0(P));

but let us omit subscripts on p, p’, and « in the proof to lighten the notation, after which the
equality read reads

cs(p(p)) = p'(a(e))-
This then implies 8 o p(¢) o 1 € Hom(B(P), B(Q)) is a morphism in 7’. Using that p is surjective

on morphisms by (A2), cgas defined in (iii) is thus a well-defined functor.
Let x € P. By Axiom (C) for 7, we have

po €P,P(x) = €Q,Q(P(¢’)(x)) °Q.

Applying a and using (2.1), this gives
A(P) 0 €, py 0y BON) = € ) BR(@I(X))) 0 ().

On the other hand, Axiom (C) for 7’ says we have the same equality if we replace the instance of

/ / ’ . . . . ’ ’
€@ PP@OONbYE] () 0 (P (@(@)(B(X))). As a(g) is an epimorphism in 7" and €_ )
is injective, we have shown

cg(p(@N(B(x)) = Blp(p)(x)) = p'(a(@)(B(x))

for all x € P, and hence cg(p(9)) = o' (a(p)) as claimed.

Step 3. We finish the proof of (iii). By (i) and (ii), ¢4 is a bijection on objects, and it is also an
injection on morphisms. By assumption on ¢ and axiom (A2) for 77, the composite functor p’ o «
is surjective on morphisms, so ¢ is surjective on morphisms by Step 2.
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(c) By assumption on « and (i)-(ii), « is injective on objects, and it remains to prove that
a is surjective on objects. Assume this is not the case, and choose Q' € A’ of minimal
index in S’ subject to Q" & a(A). As « is essentially surjective, there is P € A and an iso-
morphism ¢’ : a(P) -» Q" in 7’. By Alperin’s Fusion Theorem for transporter systems [45,
Proposition 3.9], there are subgroups a(P) = »Q), = Q"in A, subgroups T/ > (Q]_,,Q!),
automorphisms Tl. € AutT,(Tl.’ ), and 1somorph1sms qol S IsoT,(Ql’ 1 Ql) fori=1,...,n, such
that ¢/ = Ti,|QLny foralli,and ¢’ = ¢/ o - o g!.

Choose the least index m € {0, 1, ..., n} such that Q) ¢ a(A). Then m > 0 and Q;n_l € a(A), so
that Q:n L F Q). The subgroup T/, therefore has smaller index in S’ than Q’, and hence T/, €
a(A). Fix T,,, Q-1 € A and 7, € Auty(T,,) such that 8(Q,,_1) = a(Qp—1) =Q;,_;, ﬁ(Tm) =
aT,) =T, anday 1 (1,)=1,,.

Now o’(z},) is an F’-automorphism of T, sending Q) _, onto Q/, . Thus, by (iii), c[;l(p’ @)=
B~top/(z],) 0B is an F-automorphism of T,, sending Q,_, = 7'(Q/ ) onto 71(Q),). As
Qm_1 €A and A is closed under F-conjugacy by (Al), we have 8~'(Q) ) € A. Hence, Q) =
a(ﬁ‘l(Q,’n)) € a(A) by (ii), and this contradicts the choice of m. O

An equivalence satisfying (typ) is said to be isotypical. One satisfying (inc) is said to send inclu-
sions to inclusions. Given Lemma 2.14, it is now sensible to define an isomorphism of transporter
systems to be an isotypical equivalence sending inclusions to inclusions.

Definition 2.15. Let F and F’ be fusion systems over the finite p-groups S and S’, and let (7, €, p)
and (7',¢’, ') be transporter systems over F and F’, respectively. An equivalence of categories
a: T — T'is called an isomorphism of transporter systems if for all objects P of T,

(1Y) app(pp(P) = € (@(PY) and
(lnc) aP,S(eP,S(l)) OC(P),OC(S)(l)'

An isomorphism a : 7 — 7' of transporter systems is said to be rigid if S = S’ and aggo€g 5 =
s 5 as homomorphisms S — Aut/(S).

Thus, an isomorphism of transporter systems is in particular an isomorphism of categories by
Lemma 2.14(c), and a rigid isomorphism is one for which the isomorphism § of Lemma 2.14(b) is
the identity mapon S = S’.

This version of the definition of isomorphism of transporter systems is equivalent to the one
given in [25, Definition 2.3]. The definition of an isotypical equivalence is the same here as there.
The authors formulated the condition that a sends inclusions to inclusions by requiring that
apolep (1) = €, (P) o Q)(l) for each pair of objects P < Q in [25]. But as was pointed out to the
third author by Julian Kaspczyk, this assumes implicitly that P < Q implies a(P) < a(Q), which
presumably need not hold for an arbitrary equivalence. Lemma 2.14(a), however, shows that
(inc) makes sense When a is isotypical, and then Lemma 2.14(ii) gives indeed that a(P) < a(Q)
and ap o(ep o(1)) = a(P) o Q)(l) whenever P < Q are objects of 7. Thus, (typ) and the seemingly
stronger condition

(inc’) ap(ep (1)) = (P) (Q)(l) whenever P < Q are objects of 7 with a(P) < a(Q)

are together equivalent to conditions (typ) and (inc). We will refer to property (inc’) also by saying
that “a sends inclusions to inclusions™.
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2.5 | The correspondence between transporter systems and localities

Throughout this subsection, let 7 be a fusion system over S.

Every locality (£, A, S) over F leads to a transporter system associated to F. To see that we
need to consider conjugation from the left. If f,x € £ such that (f, x, f~!) € D (or equivalently
x € D(f71)), then we set fx :=TI(f,x, 1) = x/ ™. Similarly, if f € £ and H C D(f~1), then
set

=17 = x x e ML

Define 7,(£) to be the category whose object set is A with the morphism set MorTA(E)(P, Q)
between two objects P, Q € A given as the set of triples (f, P, Q) with f € £ such thatP C D(f~1)
and /P < Q. This leads to a transporter system (7,(L), ¢, o), where for all P,Q € A, €po Is the
inclusion map and pp o sends (f, P, Q) to the conjugation map P — Q, x Ix.

Conversely, Chermak showed in [14, appendix]| essentially that every transporter system leads
to a locality. More precisely, it is proved in [25, Theorem 2.11] that there is an equivalence of cat-
egories between the category of transporter systems with morphisms the isomorphisms and the
category of localities with morphisms the isomorphisms, and such an equivalence can be cho-
sen to preserve the rigid isomorphisms. The definition of a locality in [25] differs slightly from
the one given in this paper, but the two definitions can be seen to be equivalent if one uses first
that conjugation by f € £ from the left corresponds to conjugation by f~! from the right, and
second that for every partial group £ with productIT: D — £ the axioms of a partial group yield
D={weW&): w!eDb}L

We will consider punctured groups in either setting thus using the term “punctured group”
slightly abusively.

Definition 2.16. We call a transporter system 7 over F a punctured group if the object set of
T equals the set of all nonidentity subgroups. Similarly, a locality (£, A, S) over F is said to be a
punctured group if A is the set of all nonidentity subgroups of S.

Observe that a transporter system over F that is a punctured group exists if and only if a locality
over F thatis a punctured group exists. If it matters it will always be clear from the context whether
we mean by a punctured group a transporter system or a locality.

2.6 | Linking localities and linking systems

As we have seen in the previous subsection, localities correspond to transporter systems. Of fun-
damental importance in the theory of fusion systems are (centric) linking systems, which are
special cases of transporter systems. It is therefore natural to look at localities corresponding
to linking systems. Thus, we will introduce special kinds of localities called linking locali-
ties. We will moreover introduce a (slightly nonstandard) definition of linking systems and
summarize some of the most important results about the existence and uniqueness of linking
systems and linking localities. Throughout this subsection let 7 be a saturated fusion system
over S.
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We refer the reader to [2] for the definitions of F-centric and F-centric radical subgroups
denoted by F¢ and F¢ respectively. Moreover, we will use the following definition that was
introduced in [28].

Definition 2.17. A subgroup P < S is called F-subcentric if OP(NP(Q)) is centric in F for every
fully F-normalized F-conjugate Q of P. The set of subcentric subgroups is denoted by 7.

Recall that 7 is called constrained if there is an 7-centric normal subgroup of 7. It is shown in
[28, Lemma 3.1] that a subgroup P < S is F-subcentric if and only if for some (and thus for every)
fully -normalized F-conjugate Q of P, the normalizer N(Q) is constrained.

Definition 2.18.

* A finite group G is said to be of characteristic p if CG(OP(G)) <0 p(G).

* Define a locality (£, A, S) to be of objective characteristic p if, for any P € A, the group N.(P) is
of characteristic p.

* A locality (L, A, S) over F is called a linking locality, if F<" C A and (L, A, S) is of objective
characteristic p.

* A subcentric linking locality over F is a linking locality (£, F*5,S) over F. Similarly, a centric
linking locality over F is a linking locality (£, F¢, S) over F.

If (£,A,S) is a centric linking locality, then it is shown in [28, Proposition 1] that the corre-
sponding transporter system 7, (L) is a centric linking system. Also, if (£, A, S) is a centric linking
locality, then it is a centric linking system in the sense of Chermak [14], that is, we have the
property that C(P) < P for every P € A.

The term linking system is used in [28] for all transporter systems coming from linking locali-
ties, as such transporter systems have properties similar to the ones of linking systems in Oliver’s
definition [40] and can be seen as a generalization of such linking systems. We adapt this slightly
nonstandard definition here.

Definition 2.19. A linking system over F is a transporter system 7 over F such that 7" C obj(7")
and Aut,(P) is of characteristic p for every P € obj(T). A subcentric linking system over F is a
linking system 7 whose set of objects is the set F* of subcentric subgroups.

Proving the existence and uniqueness of centric linking systems was a long-standing open prob-
lem, which was solved by Chermak [14]. Building on a basic idea in Chermak’s proof, Oliver [41]
gave a new one via an earlier developed cohomological obstruction theory. Both proofs depend a
priori on the classification of finite simple groups, but work of Glauberman and the third author of
this paper [24] removes the dependence of Oliver’s proof on the classification. The precise theorem
proved is the following.

Theorem 2.20 (Chermak [14], Oliver [41], Glauberman-Lynd [24]). There exists a centric linking
system associated to F that is unique up to an isomorphism of transporter systems. Similarly, there
exists a centric linking locality over F that is unique up to a rigid isomorphism.

Using the existence and uniqueness of centric linking systems one can relatively easily prove
the following theorem.
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Theorem 2.21 (Henke [28]). The following hold.

(a) IfF" C A C F* such that A is overgroup-closed in S and closed under F-conjugacy, then there
exists a linking locality over F with object set A, and such a linking locality is unique up to a rigid
isomorphism. Similarly, there exists a linking system T associated to F whose set of objects is A,
and such a linking system is unique up to an isomorphism of transporter systems. Moreover, the
nerve |T | is homotopy equivalent to the nerve of a centric linking system associated to F.

(b) The set F* is overgroup-closed in S and closed under F-conjugacy. In particular, there exists a
subcentric linking locality over F that is unique up to a rigid isomorphism, and there exists a
subcentric linking system associated to F that is unique up to an isomorphism of transporter
systems.

The existence of subcentric linking systems stated in part (b) of the above theorem gives often
a way of proving the existence of a punctured group, and indeed yields a punctured group directly
when the fusion system is of characteristic p-type.

Definition 2.22. The saturated fusion system F is of characteristic p-type if Nx(Q) is constrained
for every nontrivial fully 7-normalized subgroup Q of S.

Note that a fusion system F is constrained if and only if the trivial subgroup of S is 7-subcentric,
and thus if and only if every subgroup of S is F-subcentric. The next lemma gives an analogous
characterization for fusion systems of characteristic p-type. Properties (c) and (c’) of it will be the
usual way we use the characteristic p-type condition in Section 5, for example.

Lemma 2.23. The following are equivalent.

(a) F is of characteristic p-type.

(b) Every nonidentity subgroup of S is F-subcentric.

(c) Nx(Q) is constrained for each fully normalized Q < S of order p.
(¢’) Cx(Q) is constrained for each fully normalized Q < S of order p.

Proof. Points (a) and (b) are equivalent by the definition of subcentric subgroup. For the equiv-
alence of (c) and (c’), we refer to [28, Lemma 2.13]. Finally, (b) and (c) are equivalent by
Theorem 2.21(b) (i.e., F* is overgroup-closed and closed under F-conjugacy). O

Thus, if F is of characteristic p-type but not constrained, then the set 7 equals the set of all
nonidentity subgroups. In any case, by Theorem 2.21(b) and Lemma 2.23, there exists a canoni-
cal punctured group associated to each F of characteristic p-type, namely the subcentric linking
locality (or the subcentric linking system if one uses the language of transporter systems).

2.7 | Partial normal p’-subgroups
Normal p’-subgroups are often considered in finite group theory. We will now introduce a cor-

responding notion in localities and prove some basic properties. Throughout this subsection, let
(L,A,S) be alocality.
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Definition 2.24. A partial normal p’-subgroup of £ is a partial normal subgroup A of £ such that
N NS = 1. The locality (£, A, S) is said to be p’-reduced if there is no nontrivial partial normal
p’-subgroup of L.

Remark 2.25. 1f (£, A, S) is a locality over a fusion system F, then for any p’-group N, the direct
product (£ X N, A, S) is a locality over F such that N is a partial normal p’-subgroup of £ x N and
(L X N)/N = L;see [27] for details of the construction of direct products of localities. Thus, if we
want to prove classification theorems for localities, it is actually reasonable to restrict attention to
p’-reduced localities.

Recall that, for a finite group G, the largest normal p’-subgroup is denoted by O (G). Indeed,
a similar notion can be defined for localities. Namely, it is a special case of [15, Theorem 5.1] that
the product of two partial normal p’-subgroups is again a partial normal p’-subgroup. Thus, the
following definition makes sense.
Definition 2.26. The largest normal p’-subgroup of £ is denoted by O o (L£).

We will now prove some properties of partial normal p’-subgroups. To start, we show two lem-
mas that generalize corresponding statements for groups. The first of these lemmas gives a way
of passing from an arbitrary locality to a p’-reduced locality.

Lemma2.27. SetL =L/ O,/(L). Then (L,A,S) is p'-reduced.

Proof. Let N be the preimage of O I (£) under the natural projection £ — L. Then by [15, Proposi-

tion 4.7], N is a partial normal subgroup of £ containing Op(L). Moreover, NnSCNNnS=1,
which implies N' NS € O,/(£) and thus N' NS € 0,,(£) N S = 1. Thus, N is a partial normal p’

subgroup of £ and so by definition contained in O/ (£). This implies OP,(E) =N =1 O

Lemma 2.28. Given a partial normal p’-subgroup N of L, the image of O p(L)inL/ N under the
canonical projection is a partial normal p’-subgroup of L/N'. In particular, if L/ N is p’-reduced,
then N' = 0,,(L).

Proof. Set £ := £/N. Then by [15, Proposition 4.7], O,(L) is a partial normal subgroup of L.

By Lemma 2.12, the preimage of S equals N'S. As N' C Op/(L), the preimage of O,/(L) N S is
thus contained in O, (£) N (N'S). By the Dedekind lemma [15, Lemma 1.10], we have O (LN

(NS) = N(O,(£)nS) = N.Hence,0,(£) N S =1and 0,/(£) is a normal p'-subgroup of £.1f
L =L/N is p/-reduced, it follows that Oy(L£)=1andso0,(L) = N. O

‘We now proceed to prove some technical results that are needed in the next subsection.
Lemma 2.29. If N is a partial normal p’-subgroup of L, then f € C (S ) forevery f € N.
Proof. Let f € N, set P :=S; and let s € P. Then P/ < S and thus P/ < S. Moreover, P = P.

Thus, w = (s7%, f~1,s, f) € D via P/5. Now I(w) = (f~1)’f =s~'s/ € N NS =1 and hence
s/ =s. As s € P was arbitrary, this proves f € C(P). O
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Lemma 2.30. If N is a nontrivial partial normal p’ subgroup of L, then there exists P € A such
that N r(P) = Cr(P) # 1. In particular, if O,y (N (P)) = 1 forall P € A, then O (L) = 1.

Proof. Let N be a nontrivial partial normal p’-subgroup and pick1 # f € M. ThenP :=S rEA
by Lemma 2.7(d), and it follows from Lemma 2.29 that 1 # f € C/(P). As N ,(P) is a normal
p’-subgroup of N -(P) and P is a normal p-subgroup of N -(P), we have C ,-(P) = N ,+(P). Hence,
C(P) = N+ (P) # 11is anormal p’-subgroup of N.(P) and the assertion follows. O

Corollary 2.31. If (L, A, S) is a linking locality or, more generally, a locality of objective characteristic
p. then O, L)y=1

Proof. Tf, for every P € A, the group N (P) is of characteristic p, then it is in particular p’-reduced.
Thus, the assertion follows from Corollary 2.30. O

2.8 | Asignalizer functor theorem for punctured groups

In this section, we provide some tools for showing that a locality has a nontrivial partial normal
p’-subgroup. Corresponding problems for groups are typically treated using signalizer functor
theory. A similar language will be used here for localities. We will start by investigating how a
nontrivial partial normal p’-subgroup can be produced if some information is known on the level
of normalizers of objects. We will then use this to show a theorem for punctured groups that looks
similar to the signalizer functor theorem for finite groups, but is much more elementary to prove.
Throughout this subsection, let (£, A, S) be a locality.

Definition 2.32. A signalizer functor of (L, A, S) on objects is a map from A to the set of subgroups
of £, which associates to P € A a normal p’-subgroup @(P) of N(P) such that the following
conditions hold.

* (Conjugacy condition) ®(P)? = @(PY) forall P € Aand all g € L With P < S,.
* (Balance condition) ®(P) N C,(Q) = 6(Q) for all P,Q € Awith P £ Q.

As seen in Lemma 2.30, given a locality (£, A,S) with O,/(£) # 1, there exists P € A with
Op,(N +(P)) # 1. The next theorem says basically that, under suitable extra conditions, the
converse holds.

Proposition 2.33. If © is a signalizer functor of (L, A, S) on objects, then

0:= U o(P)

PeA

is a partial normal p’-subgroup of L. In particular, the canonical projection p: L — L/ O restricts
to an isomorphism S — SP. Upon identifying S with SP, the following properties hold.

(@) (£/0,A,S) is alocality and Fs(L£/0) = Fg(L).

(b) Foreach P € A, the restriction N.(P) - N . 5(P) of p is an epimorphism with kernel ©(P). In
c £/6
particular, N-(P)/O(P) = Nﬁ/@(P).
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Proof. We proceed in three steps, where in the first step, we prove a technical property, which
allows us in the second step to show that © is a partial normal p’ -subgroup, and in the third step
to conclude that the remaining properties hold.

Step 1: We show x € ©(S,) forany x € ©. Let x € ©. Then by definition of ©, the element x lies
in @(P) for some P € A. Choose such P maximal with respect to inclusion. Notice that [P, x] = 1.
In particular, P < S, and [N s, (P), x] £ ©(P) N Ng(P) = 1. Hence, using the balance condition,
we conclude x € O(P) N Cp(N S, (P)) = B(N S, (P)). So, the maximality of P yields P = N S, (P) and
thus P = S,. Hence, x € O(S,) as required.

Step 2: We show that Oisa partial normal p’-subgroup of L. Clearly, © is closed under inversion,
as O(P) is a group for every P € A. Note also that II(@) =1 € © as 1 € O(P) for any P € A. Let
i together with the balance condition and Step 1 show R S Sy, and x; € G)(le_) <OR)<Cr(R)
foreachi =1, ...,n. Hence, II(x;, X5, ..., X,,) € O(R) C ®. Thus, 0 is a partial subgroup of L.

Let x € ® and f € £ with (f~1,x, f) € D. Then X := S(f-1,x,5) € A by Lemma 2.7(f). More-
over, X/ 7' < S.. By Step 1, we have x € ©(S,.), and then by the balance condition, x € ©(X/ - ). It

follows now from the conjugacy condition that x/ e ox’ - )f = ©(X) C ©. Hence, O isa partial
normal subgroup of L. Notice that OnS=1a0P)NS=0P)N Ng(P)=1for each P € A.
Thus, © is a partial normal p’ -subgroup of L.

Step 3: We are now in a position to complete the proof. By [15, Corollary 4.5], the quotient map
p: L—>L/Oisa projection of partial groups with ker(p) = ©. Moreover, by the same result,
setting AP := {PP: P € A}, the triple (£/©,A®,SP) is a locality. Notice that p|g: S — S is a
homomorphism of groups with kernel S N ® = 1 and thus an isomorphism of groups. Upon iden-
tifying S with S®, it follows now that (£/ 6, A, S) is a locality. Moreover, by [28, Theorem 5.7(b)],
we have Fy(L) = Fg(L/ ©). So, (a) holds.

Let P € A. By [15, Theorem 4.3(c)], the restriction of p to a map N.(P) - N, /@(P) is an epi-
morphism with kernel N.(P) N ®. For anyx € N (P)n ©, we have P < S, and then x € ©(S,) <
O(P) by the balance condition and Step 1. This shows N.(P) N ® = O(P) and so (b) holds. O

The property stated in Proposition 2.33(a) holds indeed for every partial normal p’-subgroup
© of £. More generally, for any partial normal subgroup N of £, setting L:=C JN and A :=
{P: P €A} the triple (C,A,S)isa locality with 7—‘§(Z) > Fy(L£)/(S N N) (see [15, Corollary 4.5]
and [28, Theorem 5.7]).

Remark?2.34. If P,Q,R € Asuchthat P < Q < R and the balance condition in Definition 2.32 holds
for the pair P < Q, then

0(Q)NC,(R) = O(P) N CL(Q) N Cr(R) = OP) N C,(R)

so O(R) = ©(Q) N C,(R) if and only if O(R) = O(P) N C.(R). Hence, in this situation balance
holds for the pair Q < R if and only if balance holds for the pair P < R.

Definition 2.35. Let G be a finite group. Then G is said to be p-constrained if G/O,/(G) is of
characteristic p. The group G is called Sylow p-constrained, if C1(0,(G)) < O,(G) for some (and
thus for every) Sylow p-subgroup T of G.
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The following proposition is essentially a restatement of [28, Proposition 6.4], but we will give
an independent proof building on the previous proposition.

Proposition 2.36. Let (L,A,S) be a locality such that N, (P) is p-constrained for all P € A. For
each P € A, set

O(P) := 0,/ (N.(P)).

Then the assignment © is a signalizer functor of (L, A,S) on objects and O,/(L) equals 0:=
U{®(P) : P € A} In particular, the canonical projection p: L — L/ O restricts to an isomorphism
S — SP. Upon identifying S with SP, the following properties hold.

(@ £/ 0,A,9)isa locality of objective characteristic p.

(b) Fs(L/®) = Fg(L).

(c) Forevery P € A, the restriction N;(P) - N, /@(P) of p is an epimorphism with kernel ©(P). In
particular, N(P)/©(P) = Nﬁ/@(P).

Proof. We remark first that, as any normal p’-subgroup of N .(P) centralizes P and O p,(C ~(P))is
characteristic in C.(P) < N.(P), we have O(P) = Op/(C (P)) for every P € A.

We show now that the assignment O is a signalizer functor of £ on objects. It follows from
Lemma 2.7(b) that the conjugacy condition holds. Thus, it remains to show the balance condition,
that is, that ®(Q) = O(P) N C,(Q) for any P, Q € A with P < Q. For the proof note that P is sub-
normal in Q. So, by induction on the subnormal length and by Remark 2.34, we may assume that
P<Q.SetG := N, (P). Then Q £ G and C(Q) = C5(Q). As G is p-constrained, it follows from
[34,8.2.12] that 0,y (N5(Q)) = 0,/(G) N Ng(Q) = 0,/(G) N C(Q). Hence, ©(Q) = 0,,(CL(Q)) =
Op,(CG(Q)) = Op,(NG(Q)) = Op/(G) N C;(Q) = ©(P) N C,(Q). This proves that the assignment
O is a signalizer functor of (£, A, S) on objects. In particular, by Proposition 2.33, the subset

O := U e(P)

PeA

is a partial normal p’-subgroup of £. Moreover, upon identifying S with its image in £/0, the
triple (£/ 0,A,S)isa locality and properties (b) and (c) hold. Part (c) and our assumption yield
(a). Hence, by Corollary 2.31, we have O I (c/ ®) = 1. So, by Lemma 2.28, we have ®=0 p,(ﬁ) and
the proof is complete. L]

Lemma 2.37. If G is a Sylow p-constrained finite group, then G is p-constrained.

Proof. Write T for a Sylow p-subgroup of G, and set P := O,(G). Then the centralizer Cr(P)
equals Z(P) and is thus a central Sylow p-subgroup of C5(P). So, for example, by the Schur-
Zassenhaus theorem [34, 6.2.1], we have C;(P) = Z(P) X 0,/(C(P)) < Z(P) X O,,(G). Set G=
G/0,/(G), write C for the preimage of CE(I_J) in G. As P is normal in G, it follows that [P,C] <
PN Op,(G) = 1. So, C = C;(P) and thus C= Cs(P) < P. Thus, G has characteristic p and G is
p-constrained. O

We now turn attention to the case that (£, A, S) is a punctured group and we are given a sig-
nalizer functor on elements of order p in the sense of Definition 1.2 in the introduction. We show
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PUNCTURED GROUPS FOR EXOTIC FUSION SYSTEMS | 45

first that, if  is such a signalizer functor on elements of order p and a € Z,(S), the subgroup 6(a)
depends only on (a).

Lemma 2.38. Let (L, A,S) be a punctured group and let 6 be a signalizer functor of (L, A, S) on
elements of order p. Then 6(a) = 6(b) forall a,b € I,(S)with (a) = (b).

Proof. If (a) = (b), then [a,b] =1 and 8(a) C C.(a) = C,(b). So, the balance condition implies
8(a) = 6(a) N C.(b) C O(b). A symmetric argument gives the opposite inclusion 6(b) C 6(a), so
the assertion holds. O

Theorem 1.3 in the introduction follows directly from the following theorem, which explains
at the same time how a signalizer functor on objects can be constructed from a signalizer functor
on elements of order p.

Theorem 2.39 (Signalizer functor theorem for punctured groups). Let (£, A, S) be a punctured
group and suppose 0 is a signalizer functor of (L, A, S) on elements of order p. Then a signalizer
functor © of (L, A, S) on objects is defined by

oP) :=| (] 6x)|nC.(P)forallP € A.
erp(P)

In particular,

0 := U o(P) = U 8(x)

PeA x€L,(S)
is a partial normal p' subgroup of L and the other conclusions in Proposition 2.33 hold.

Proof. As 0(x) is a p’-subgroup for each x € 1,(S), the subgroup O(P) is a p’-subgroup for each
object P € A. Moreover, it follows from the conjugacy condition for 8 (as stated in Definition 1.2)
that ©(P)is a normal subgroup of N (P), and that the conjugacy condition stated in Definition 2.32
holds for ®; to obtain the latter conclusion notice that Lemma 2.7(b) implies C.(P)? = C,(P?) for
every P € @ and every g € L with P < S .

To prove that © is a signalizer functor on objects, it remains to show that the balance condition
O(P) N C,(Q) = O(Q) holds for every pair P < Q with P € A. Notice that P is subnormal in Q
whenever P < Q. Hence, if the balance condition for © fails for some pair P < Q with P € A, then
by Remark 2.34, it fails for some pair P < Q with P € A. Suppose this is the case. Among all pairs
P <4Q such that P € A and the balance condition fails, choose one such that Q is of minimal
order.

Notice that P < Q, as the balance condition would otherwise trivially hold. So as 1 # P, : =
Cp(Q) € A and P, 4 P, the minimality of |Q| yields that the balance condition holds for the
pair P, < P. If the balance condition holds also for the pair P, < Q, then the balance condition
holds for the pair P < Q by Remark 2.34, contradicting our assumption. So, the balance condi-
tion does not hold for P, < Q. Therefore, replacing P by P,, we can and will assume from now on
that P < Z(Q).
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46 | HENKE ET AL.

Itis clear from the definition that ©(Q) < ©(P) n C,(Q). Hence, it remains to prove the opposite
inclusion. By definition of ®(Q), this means that we need to show ©(P) N C,(Q) < 6(b) for all
b € 1,(Q). To show this fix b € 7,(Q). As P € A, we have P # 1 and so we can pick a € 1,(P).
As P < Z(Q), the elements a and b commute. Hence, the balance condition for 6 yields

eP)NCL(Q) <8(a)nC(b) <6(b).

This completes the proof that © is a signalizer functor on objects.

Given P € A, we can pick any x € 7,(P) and have ©(P) C 6(x). Hence, 0:= Upea O(P) is
contained in Uxelp(S) 0(x). The opposite inclusion holds as well, as Lemma 2.38 implies 6(x) =
O((x)) for every x € I,(S). The assertion follows now from Proposition 2.33. O

3 | SHARPNESS OF THE SUBGROUP DECOMPOSITION
3.1 | Additive extensions of categories

Let C be a (small) category. Define a category Cy; as follows, see [32, section 4]. The objects of
Cyy are pairs (I, X) where I is a finite set and X : I — obj(C) is a function. A morphisms (7, X) —
(J,Y) is a pair (o,f) where o : I — J is a function and f : I — mor(C) is a function such that
f(i) € C(X(i), Y(o(i))). We leave it to the reader to check that this defines a category.

There is a fully faithful inclusion C C Cj; by sending X € C to the function X : {@&} — obj(C)
with X(@) = X. We will write X (not boldface) to denote these objects in Cy;.

The category C;; has a monoidal structure [] where (I, X)[[(J,Y) o ITI7,.X]]Y). One
checks that this is the categorical coproduct in Cj;. For this reason, we will often write objects
of Cyy in the form [],.; X; where X; € C. Also, when the indexing set I is understood we will
simply write X instead of (I, X).

When (I, X) is an object and J C I we will refer to (J, X|;) as a “subobject” of (I, X) and we leave
it to the reader to check that the inclusion is a monomorphism, namely for any two morphisms
f,g: Y- X|,if inclﬁb of = in01§|j o g then f = g. One also checks that

cu( [ xv) =[] cexi v, G.1)
iel iel
[ Tyo =[] e vy.
iel iel

Definition 3.1 (Compare [32, p. 123]). We say that C satisfies (PB X;;) if the product of each pair
of objects in C exists in Cj; and if the pullback of each diagram ¢ — e « d of objects in C exists in
-

Definition 3.2 (Compare [32, p. 124 and Lemma 5.13]). Assume that C is a small category satisfying
(PB X;p). A functor M : C°P — Ab is called a proto-Mackey functor if there is a functor M, : C —
Ab such that the following hold.

(a) M(C) = M,(C) for any C € obj(C).
(b) For any isomorphism ¢ € C, M,(p) = M(p~1).
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PUNCTURED GROUPS FOR EXOTIC FUSION SYSTEMS 47

(c) By applying M and M, to a pullback diagram in Cj; of the form

Zi Pi
Hiel B; =D

) i

c—% sE
where B;,C, E € C, there results the following commutative square in Ab

Zi M.(®)
Dy M(B) ——" M(D)

TM(ﬁ)
M) —9 L MmE)

@iM(Ipi)T

We remark that every pullback diagram in C;; defined by objects in C is isomorphic in Cj; to a
commutative square as in (c) in this definition.
Given a small category D and a functor M : D — Ab, we write

def ,
H*(D; M) = lim*M
D

for the derived functors of M. We say that M is acyclic if H/(D; M) = 0 for all i > 0.

Proposition 3.3 (See [32, Corollary 5.16]). Fix a prime p. Let C be a small category that satisfies (PB
X)) and in addition

(B1) C has finitely many isomorphism classes of objects, all morphism sets are finite and all self
maps in C are isomorphisms;
(B2) for every object C € C there exists an object D such that |C(C,D)| # 0 mod p.

Then any proto-Mackey functor M : C°P — Z,)-mobd isacyclic, namely H i(c°P,M) = Oforalli > 0.

3.2 | Transporter categories

Let F be a saturated fusion system over S and let 7 be a transporter system associated with 7
(Definition 2.13). By [45, Lemmas 3.2(b) and 3.8] every morphism in 7 is both a monomorphism
and an epimorphism. For any P, Q € obj(7) such that P < Q denote lg = epg(e) € Mor (P, Q).
We think of these as “inclusion” morphisms in 7. We obtain a notion of “extension” and “restric-
tion” of morphisms in 7 as follows. Suppose ¢ € Mor,(P,Q) and P’ < P and Q' < Q and 9 €
Mor,(P’, Q") are such that g o 1};, = 18, o 1. Then we say that ¢ is a restriction of ¢ and that ¢ is
Q
Q/
is unique and we will write ¢ = ¢ |}Q,,/. Similarly, as tllj, is an epimorphism, given 1, if an extension
@ exists then it is unique. By [45, Lemma 3.2(c)], given ¢ € Mor;(P, Q) and subgroups P’ < P
and Q' < Q such that p(p)(P") < Q', then ¢ restricts to a (unique morphism) ¢’ € Mor;(P’, Q).

an extension of ¢. Notice that as ¢*, is a monomorphism, given ¢ then its restriction ¢ if it exists,
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48 | HENKE ET AL.

We will use this fact repeatedly. In particular, every morphism ¢ : P — Q in 7 factors uniquely
Q

rpl, Q where @ is an isomorphism in 7 and P = p(¢)(P).
For any P, Q € obj(7), set

Kpo=1{(A,@) 1 A<P, A€ obj(T), a € Mor(A,Q)}

This set is partially ordered where (4, a) < (B, 8) if A < B and a = | 4. As Kp , is finite we may
consider the set Kméx of the maximal elements.
For any x € N4(P, Q) we write X instead of €p (x). There is an action of Q X P on K, defined

by
3,%x)-(A4,a) = (xAx L, yoaox™h), (xeP,yeQ).

This action is order preserving and therefore it leaves ngx invariant. We will write K max for the
set of orbits. For any P, Q € T we will choose once and for all a subset

ma: ma:
ICP’QX C KRQX
of representatives for the orbits of Q X P on Klgnéx.
Lemma 3.4. Forany (A,a) € Kp, there exists a unique (B, §) € Kglgx such that (A, a) < (B, ).

Proof. We use induction on [S : A]. Fix (4,a) € Kp and (By, ;) and (B,, ;) in Kg"g" such that
(A,a) < (B;, ;). Thus, B,|4 = a = B,| 4. We may assume that A < B; because if say A = B, then
(By,8,) < (By, B,) and maximality implies (B, ;) = (B, ).

Fori =1,2setN; = Ny (A). Then N; contain A properly and we set D = (N, N,). Then A < D.
SetT = a(A)and T = No(T). Fori = 1,2, if x € N; then Axiom (C) of Definition 2.13 applied to
B; yields

ao Rl = (Biln) o Ry)la = B 0 Bils = BXIG o .

Notice that §;(x) € No(T), so Axiom (II) of Definition 2.13 implies that a extends to & €
MorT(D Q) As for i = 1,2 the morphlsms l : A — N, are epimorphisms in 7, the equality
51|N ol =a=90|,= (5|N)O£ shows that 5|Ni = 5i|N,-- Now we have (Ni,ﬁl-lNl_) < (D, ) and
(N;, ﬁl| Ni) < (B;,B;) in Kp . As |A| < |N;| the induction hypothesis implies that (B;, 8;) is the
unique maximal extension of (N}, ;| Ni) foreachi = 1, 2, and both must coincide with the unique
maximal extension of (D, §). It follows that (B;, ;) = (B, 5). O

The orbit category of T is a category OT with the same set of objectsas 7. Forany P, Q € OT the
morphism set Mor (P, Q) is the set of orbits of Mor, (P, Q) under the action of 0= €0,0(Q) €
Mor(Q, Q) via postcomposition. See [45, section 4, p. 1010]. Axiom (C) guarantees that compo-
sition in OT is well-defined. Given ¢ € Mor (P, Q) we will denote its image in Mor (P, Q) by

[o].
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PUNCTURED GROUPS FOR EXOTIC FUSION SYSTEMS | 49

We notice that every morphism in @7 is an epimorphism, namely for every [a] € Mor (P, Q)
and [B],[y] € More;(Q,R), if [B] o [a] = [y] o [«] then [B] = [y]. This follows from the fact that
every morphism in 7 is an epimorphism.

Consider P, Q € obj(OT ) such that P < Q. Precomposition with [lg] gives a “restriction” map

Mor;(Q, S) = Mor oy (P, S).

Observe that Q acts on Mor (P, S) by precomposing morphisms with [X |§] for any x € Q. This
action has P in its kernel by Axiom (C) of transporter systems.

Lemma 3.5. Let T be a transporter system and OT its orbit category.

(a) ForanyP,Q € obj(OT ) such that P < Q the map Mot 57(Q, S) — Mot (P, S) induced by the
restriction [@] — [¢|p], gives rise to a bijection

res: Moror(Q,S) — Mor@T(P,S)Q/P. (3.2)
(b) Forany P € OT, we have |Mor;(P,S)| # 0 mod p.

Proof.

(a) First, observe that if [p] € Mory;(Q, S) then [¢|p] is fixed by Q/P by Axiom (C), hence the
image of res is contained in Mor e, (P, S)?/?. Now suppose that [¢] € Mor (P, S)?/? and
set P = p(p)(P). As [¢] is fixed by Q/P this exactly means that for every x € Q there exists
y € Ny(P) such that poX |1; =y o and Axiom (II) implies that ¢ extends to a morphism
¥ € Mor;(Q, S). This shows that the map res in (3.2) is onto Mor (P, $)Q/P 1t is injective
because [lg] is an epimorphism in O7 .

(b) Useinductionon|[S : P].IfP = S theneg 5(S) isa Sylow p-subgroup of Aut(S) = Mor,(S, S)
and therefore |Mor (S, S)| # 0 mod p. Suppose P < S and set Q = Ng(P). Then Q > P and
because Q/P is a finite p-group, |More, (P, S)| = |[More,(P,S)%/F| mod p. It follows from
part (a) and the induction hypothesis on [S : Q] that [Mory,(P,S)| # 0 mod p. O

In the remainder of this subsection, we will prove that OT satisfies (PB X;;), keeping the
notation from above.

Definition 3.6. Let 7 be a transporter system with orbit category OT . For P,Q € OT, consider
the object P [X] Q of OTj; given by

PROQ= H L.

(L,A)GICEEX

Thatis, PX Q: ng‘g" — 0bj(OT) is the function (L,A) — L. Let 7, : PXIQ - Pand 7, : P[X
Q — Q be the morphisms in O7}; defined by 7, = ¥, l)[Lf land 7, = ¥ 5[4

Proposition 3.7. Let T be a transporter system with orbit category OT . Then P [X Q is the product
in OT; of P, Q € obj(OT).
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50 | HENKE ET AL.

Proof. 1t follows from (3.1) that it suffices to show that

(7[1*?772*)

OT;1(R, P X Q) —— Mor (R, P) X Morpr (R, Q)

is a bijection for any R € obj(OT). Write & = (7, ,, 7,,.)-

Surjectivity of w: Consider [¢] € Mor (R, P) and [1] € Moro, (R, Q). Set A = p(¢)(R). Then
A < P and there exists an isomorphism ¢ € Mor; (R, A) such that ¢ = zi o Q.

Seta = o (@)t € Mory(4,Q). Then (A,a) € Kp - Choose (B, B) € Kgfgx such that (4, a) <
(B, B). There exists a unique (L, 1) € IC?EX and some x € P and y € Q such that

(LA =,%)-(B,f) = (xBx~, 7o oI

Set u = (X|}) 015 0 § € Mor/(R, L). It defines a morphism [u] : R — P [{] Q in O, via the inclu-
sion (L, 1) C P [X] Q. We claim that 7([u]) = ([¢], [$]), completing the proof of the surjectivity of
7. By definitionof 7r; : PXIQ - Pand7m,: PXIQ — Q,

(Ul = [ 1o [ul = [if o (RI) 0 0 ¢l = [(RI)) 0 @] = [(RIp) 0 9] = [¢]
o ([u) = [Ale[u] = [ edou] = [ o do(RI) o] 0 ¢l
=[Bot}og] = [aop] = [YI].

Injectivity of 7: Suppose that h,h’ € OT;(R, P [XI Q) are such that 7w(h) = 7(h'). From (3.1)
there are (L, 1), (L', 1) € IC}?EX and ¢ € Mor;(R,L) and ¢’ € Mor;(R, L") such that h = [¢] and
h' = [¢'] via the inclusions L, L’ C P [X] Q. The hypothesis 7z(h) = 7(h") then becomes [LILJ op] =
[LILJ, og’land [Ao¢] = [A 0 ¢']. Thus,

t};, op/ =%olop for some x € P (3.3)
Nogp =Foldog for some y € Q.

Set A = p(¢)(R) and A’ = p(¢')(R). There are factorizations ¢ = ¢} o and ¢’ = lI/‘;, o ¢’ for iso-
morphisms ¢ € Mor,(R, A) and ¢’ € Mory(R, A") in 7. We get from (3.3) that /£, 0 " = X[/} 0 &.
From this we deduce that A’ = xAx™! and that ¢’ = flﬁ/ o @. The second equation in (3.3)
gives

r L _ o L T_1|A
Aoty =yoldor,ox71|%,.

We deduce that (A", 2’| 4/) = (¥, x) - (4, 4] 4). Clearly (A’, 1| 4») < (L’,2")and (A4,1],) < (L,4) so
Lemma 3.4 implies that (L',1") = (y,x) - (L, 1). As (L, 1) and (L', 1") are elements of IC??QX and
are in the same orbit of Q X P it follows that (L,1) = (I/,1"). In particular x € Np(L), and it fol-
lows from (3.3) that ¢’ = X o @ and that 1 = j 0o A 0 X! (as ¢ is an epimorphism in 7). By Axiom
(II) of Definition 2.13, there exists an extension of A to a morphism 1: (L,x) — Q in 7. Notice
that (L, x) C P so the maximality of (L, 1) implies that x € L. As ¢’ = X o ¢ we deduce [¢’] = [¢]
namely h = h’ as needed. O
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PUNCTURED GROUPS FOR EXOTIC FUSION SYSTEMS | 51

Definition 3.8. Let P i) R Q be morphisms in OT . Let U(f, g) be the subobject of P [X] Q

L.A)~L .
obtained by restriction of P[X Q : IC'PPZ" L obj(OT) to the set I of those (L, 1) € ICIT‘iQX such

that f o [LILJ] = golA].

Proposition 3.9. Let T be a transporter system with orbit category OT, and let P i» R Q be
morphisms in OT . Then (U(f, 9), 71 |y(s,q) 72lu(s,q)) i the pullback of P and Q along f and g in

R

L R
OTy;. Moreover, the pullback of P LR Qis

Q*npP
x€(Q\R/P)r

where x runs through representatives of the double cosets such that Q* N P = x~'Qx N P is an object
of T.

Proof. 1t follows from (3.1) that in order to check the universal property of U = U(f, g) it suf-

fices to test objects T € OT . Suppose that we are given morphisms T —[ﬂ» Pand T ﬂ Q that

. h
satisfy fo[p] = go[]. We obtain T M P X Q which factors T — L C P[X] Q for some

L, e ]Cgl"é". Then

fomlyoh=Ffomo(el.[¥]) = folel
gomlpoh=gomo(lel[$]) = go[].

As h is an epimorphism in ©O7 and because f o[@] = go[¢] by assumption, it follows that
fom|; = gom,|; which is the statement f o [tf | = g o[A]. This precisely means that (L,1) € I
where [ is as in Definition 3.8, hence h = ([¢], [¢]) factors through U and clearly 7; o h = [¢]
and 7, o h = [9]. As the inclusion U C P [X Q is a monomorphism in @7}, there can be only one
morphism h: T — U such that 7; o h = [¢] and 7, o h = [9]. This shows that U = U(f, g) is
the pullback.

Now assume we are given P LR Q. The indexing set of the object U(f, g) consists of (L, 1) €
Kpo such that [F] = [lg o 1], namely lg o1 = X|¥ for some x € Ng(L, Q), which is furthermore
unique. As Lg is a monomorphism, this implies that A = X |S. As(L,A)ismaximal,L = Q* N P. We
obtain a map U(t5, LS) — (Q\R/P); that sends (L, 1) to PxQ with x € Ny(L, Q) described above.
This map is injective because if QxP = Qx'P are the images of (I, 1) and (L', ") then x’ = gxp
for some p € P and q € Q and it follows that L' = p~'Lp and that A = fclg and A/ = )E’l(L), and
therefore A = o1’ o p|L', so (L,A) and (L', ") are in the same orbit of Q X P, hence they must be
equal. It is surjective because for any PxQ € (Q\R/P); we obtain a summand in U(:, LS) that is

equivalent in Kp  to (L, ) with L = Q*NPand 1 =X |S. O

3.3 | The A-functors

Let I" be a finite group and M a (right) I-module. Let p be a fixed prime and let O,(T') be the full
subcategory of the category of I'-sets whose objects are the transitive I'-sets whose isotropy groups
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52 | HENKE ET AL.

are p-groups. Let F); : O,(I')°P — Ab be the functor that assigns M to the free orbit T'/1 and 0 to
all orbits with nontrivial isotropy. Define [33, Definition 5.3]

def
AY(DM)'= im* Fy (= HY(Op(D); Fyy)).
0P

These functors have the following important properties.

Lemma 3.10. Suppose that M is a Z ,[T']-module.

(a) If Cp(M) contains an element of order p, then A*(I'; M) = 0.
(b) IfT/Cr(M) has order prime to p, then A*(T; M) = 0 for all +> 1.

Proof. Point (a) is [33, Proposition 6.1(ii)]. Point (b) follows from [33, Proposition 6.1(ii)] when p
divides |C(M)| and from [33, Proposition 6.1(i),(iii)] when p does not divide |C-(M)]. O

Observe that p: 7 — F reflects isomorphisms. Hence, the isomorphism classes of objects of
T and of OT are F-conjugacy classes.

A functor @ : OT°P — Ab is called atomic if there exists Q € obj(7) such that ® vanishes out-
side the F-conjugacy class of Q. The fundamental property of A-functors is that they calculate the
higher limits of atomic functors:

Lemma 3.11 [45, Lemma 4.3]. Let T be a transporter system associated with a fusion system F over
S.Let®: OT P — Z,y-mod be an atomic functor concentrated on the F-conjugacy class of Q. Then
there is a natural isomorphism

H*(OT?; @) = A*(Auter(Q); 2(Q)).

We remark that the result holds, in fact, for any functor @ into the category of abelian groups
(indeed, the proof given by Oliver and Ventura only uses [45, Proposition A.2]).

Notice that p: 7 — F induces a functor g: OT — O(F). We will write OT¢ for the full
subcategory of 7 spanned by P € 7 that are F-centric.

Corollary 3.12. Let T be a transporter category for F. Let ® . O(F)°P — 7 p)-mobd be a functor and
set ® = ® o p. Then @ is a functor OT °P — Z,)-mobd and let ¥ be the restriction of @ to OT ©. Then
the restriction induces an isomorphism

H*(OTP, @) — H*((OT°)°°; W),

Proof. Let @' : OT°P — Z,)-mob be the functor obtained from ® by setting @'(Q) = 0 for all
Q € obj(T \ T°) and @'(Q) = ®(Q) otherwise. This is a well-defined functor because the F-
centric subgroups are closed to overgroups. As there is no morphism in O7 from a centric
object to a noncentric one, and as ¥ = ®’|y7cyop there is an isomorphism of cochain complexes
C*(OT P, @") =~ C*((OT ©)°P, ¥) (cf. the description of the bar resolution in [2, section I11.5.1]), and
hence an isomorphism

H*(OT°P,®") = H*((OT )P, ¥).

It remains to show that H*(OT °P, ®) ~ H*(OT °P, ®').
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Suppose that Q € obj(7 \ 7¢) has minimal order. Set M = ®(Q) and let F,;: OTP —
Z(,)-mobd be the induced atomic functor. The minimality of Q implies that there is an injective
natural transformation F;; — ®. By possibly replacing it with an F-conjugate, we may assume
that Q is fully centralized in 7. As Q is not F-centric, choose some x € C4(Q) \ Q. Its image
in I' = Auty;(Q) is a nontrivial element (as x ¢ Q) of order p-power. It acts trivially on ®(Q)
because its image in Outx(Q) is trivial (as the image of Cs(Q) in Aut-(Q) is trivial) and because
® = ® o 5. Lemma 3.10(a) implies that A*(Auter(Q), ®(Q)) = 0. It follows from Lemma 3.11 and
the long exact sequence in derived limits associated with the short exact sequence 0 — Fy; — ® —
®/F); — 0that H*(OT °P,®) ~ H*(OT °°, ®/F,,). But ®/F,, is obtained from ® by annihilating
the groups ®(Q’) for all Q in the F-conjugacy class of Q. We may now apply the same process to
®/F,, and continue inductively (on the number of F-conjugacy classes in 7 \ 7¢) to show that
H*(OT°P, ®) =~ H*(OT °P,®') as needed. O

Proof of Theorem 1.1. Let F be a saturated fusion system over S that affords a punctured group 7.
That is, 7 is a transporter system associated to F with object set A containing all the nontrivial
subgroups of S.

Let H/ : O(F)® — Z,)-mob be the functor

M/ : P HI(P;F))

. 50P HI
andlet M/ : OT°P — Z,)-mobd be the composite OT °P LN O(F)°P — Z(p,)-mobd. Our goal is to
show that for every j > 0,

HY(OF)P; H)) =0 foralli > 1.

Choose a fully normalized P € obj(7). As Ng(P) is a Sylow p-subgroup of Aut,(P), see [45,
Proposition 3.4(a)], it follows that C¢(P) is a Sylow p-subgroup of the kernel of Aut;(P) —
Autp(P) and hence C4(P)/Z(P) is a Sylow p-subgroup of the kernel of Auty;(P) — Outx(P).
Thus, if P is F-centric, then this kernel has order prime to p, and so [7, Lemma 1.3] implies the
first isomorphism in

H*(O(F)°P; M) = H*(OT©)°P; M7) = H*(OT °°; MY),

while Corollary 3.12 gives the second. It remains to show that H*(O7 °P; M J)y = 0forall j = 0and
all %> 1.

Assume first that j > 1. We will show that M/ is a proto-Mackey functor for O7 in this case.
The transfer homomorphisms give rise to a (covariant) functor Hi 1 O(F) > Z(p)-mob where
P = H (P.; [Fp) andtoany ¢ € F(P, Q) we assign tr(p) : H/(P; [Fp) - H/(Q; [Fp). The composition
M. :=H! o pis a covariant functor OT — Z(p)-mob.

Now, OT satisfies (PB X;;) by Propositions 3.7 and 3.9. Clearly, M/ and Mi have the same
values on objects; this is the first condition in Definition 3.2. The transfer homomorphisms
have the property that if ¢ : P — Q is an isomorphism then trg(cp) =Hi(p7}; F,). This is the
second condition in Definition 3.2. The factorization of morphisms in 7 as isomorphisms fol-

lowed by inclusions imply that any pullback diagram P’ i» R Q' in OT is isomorphic to one
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54 | HENKE ET AL.

R (R
of the form P ﬂ R i Q.IfU = U([:f], [LS]) is the pullback (Definition 3.8), then by Propo-
sition 3.9, U = [[,cx Q* N P where x runs through a set X = (Q\R/P); of representatives of
those double cosets QxP with x € R and Q* NP € T, namely Q* N P # 1 (because obj(7) is
the set of all nontrivial subgroups of S). As j > 1 we have that H/(1; [Fp) =0s0o P, H I(Q*n
PiFp) = &b xeo\r/p H /(Q* N P;Fp), where here Q\R/P is a full set of double coset representatives.
Mackey’s formula [10, Proposition 9.5(iii)] then gives the commutativity of the diagram

P .
Toxnp ©Cx

. H(Q* nP:F,) = HiQiF,)

P R
(rest apxex T Treso

HI(P;F,) HI(R;F )

R
try

This shows that the third condition in Definition 3.2 also holds and that M/ is a proto-Mackey
functor. Now, Condition (B1) in Proposition 3.3 clearly holds for @7 and (B2) holds by Lemma 3.5.
It follows that H{(OT°P; MJ) = 0 for all i > 1 as needed.

It remains to deal with the case j = 0. In this case M is the constant functor with value Fp.
Thus, Outx(P) acts trivially on F, for any P € F¢. It follows from Lemma 3.10(b) that if P = S
then A'(Outx(S), [Fp) =0 for all i > 0, and if P < S then Outr(P) contains an element of order
p so A*(Outr(P), [Fp) = 0. Now [8, Proposition 3.2] together with a filtration of H° by atomic
functors show that H is acyclic. 1

4 | PUNCTURED GROUPS FOR F,,(q)

The Benson-Solomon systems were predicted to exist by Benson [5], and were later constructed
by Levi and Oliver [35, 36]. They form a family of exotic fusion systems at the prime 2 whose iso-
morphism types are parameterized by the nonnegative integers. Later, Aschbacher and Chermak
gave a different construction as the fusion system of an amalgamated free product of finite groups
[1]. The main result of this section is the following theorem.

Theorem 4.1. A Benson-Solomon system Fg,(q) over the 2-group S has a punctured group if and
onlyif g = +3 (mod 8). If ¢ = +3 (mod 8), there is a punctured group L for Fg,(q) that is unique
up to rigid isomorphism with the following two properties:

1) C,(Z(S)) = Spin,(3), and
(2) L\, is a linking locality, where A is the set of F-subcentric subgroups of S of 2-rank at least 2.

4.1 | Notation for Spin, and Sol
It will usually be most convenient to work with a Lie theoretic description of Spin,. The nota-

tional conventions that we use in this section for algebraic groups and finite groups of Lie type
are summarized in the Appendix.
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PUNCTURED GROUPS FOR EXOTIC FUSION SYSTEMS 55

4.1.1 | The maximal torus and root system
Let p be an odd prime, and set
H= Spin7(ﬁp).

Fix a maximal torus T of H, let X(T) = Hom(T, E:) =~ 73 be the character group (of algebraic
homomorphisms), and denote by V = R ® , X(T) the ambient Euclidean space that we regard as
containing X(T). Let Z(T) C X(T) be the set of T-roots. Denote a T-root subgroup for the root
by

Xy =1{x,(A) | 1 €F,}.

AsH is semisimple, it is generated by its root subgroups [26, Theorem 1.10.1(a)]. We assume that
the implicit parameterization x,(4) of the root subgroups is one like that given by Chevalley, so
that the Chevalley relations hold with respect to certain signs c, g € {+1} associated to each pair
of roots [26, Theorem 1.12.1].

We often identify £(T) with the abstract root system

of type B;, having base IT = {a;, a5, a3} with
0(1 = el - 62, 062 = 62 - 63, O£3 = 93,
where the e; are standard vectors. Write ¥ = {aV | a € %} for the dual root system, where ¥ =
2a/(a, o).
Instead of working with respect to the «;, it is sometimes convenient to work instead with a
different set of roots {3;} C X:

ﬁl =O(1, ﬁz =C(1+2062+20C3 =€1+62, ‘83=Of3.

This is an orthogonal basis of V with respect to the standard inner product (, ) on R3. An
important feature of this basis is that for each i and j,

En{kB; +1B; | k.l € 2} = {4, +B;}, (4.1)

a feature not enjoyed, for example, by an orthogonal basis consisting of short roots. In par-
ticular, the B;-root string through B; consists of §; only. This implies via Lemma A.1(4),

that the corresponding signs involving the §; that appear in the Chevalley relations for H
are

cﬁi’ﬁj =1ifi 73 j, and cﬁi’ﬁi =—-1. (42)
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4.1.2 | The torus and the lattice of coroots
We next set up notation and state various relations for elements of T. Let
h, ) €T and ny(1) € N(T)

be as given in the Appendix as words in the generators x,(4). By Lemma A.2 and as H is of uni-
versal type, there is an isomorphism ZXV ® ﬁ: — T that on simple tensors sends ¥ ® A to h, (1),

. X = . . .
and the homomorphisms hai : [FP — T are injective. In particular, as ITV = {oc}’, oc;’ , a;’ }is a basis

for zzV, we have T = ha1 (E:) X ha2 (E:) X h%(ﬁ:). Define elements z and z; € T by
zZ, = hal(—l) and z= h%(—l).

Thus, z and z; are involutions. Similar properties hold with respect to the 8;’s. Recall that §5; = ¢;
fori =1,3. As ,6’2V = cxi’ + Zoc;’ + oc;’, Lemma A.2(3) yields

hﬁz(—l) = hal(—l)haz((—l)z)h%(—l) = 2z,Z.
In particular,
hﬁl(—l)hﬁz(—l)h53(—1) =2zz,zz=1. (4.3)

However, as the Z-span of the ,Bi\”s is of index 2 in ZZV and every element of E: is a square, we
still have

T = hg (F, kg, (F, hy, (F)). (4.4)

So, the hg, (ﬁp)x generate T, but the product is no longer direct.

4.1.3 | The normalizer of the torus and Weyl group
The subgroup
W = (g, (1), 1, (1), ng, (1)) < N(T)
projects onto the Weyl group
W = (W, Wy, Wq,) = Cr 283 = Cy XSy

of type B; in which the W, are fundamental reflections. Also, W N T is the 2-torsion subgroup

{teT|t*=1}of T, see [26, Remark 1.12.11]. A subgroup similar to W was denoted “W” in [1,
Lemma 4.3]. It is sometimes called the Tits subgroup.
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PUNCTURED GROUPS FOR EXOTIC FUSION SYSTEMS 57

Let

V = Cayay+ay € {+1},

and fix a fourth root i € [F; of 1. (This notation will hopefully not cause confusion with the use of

i as an index.) Define elements wy, 7 € NH(T) by
wy = ng (=y)ng,(Wng, (1) and 7 = ng o (Dhg (—Dhg, (Dhg, (D).

It will be shown in Lemma 4.2 that w, and 7 are commuting involutions and that w, inverts T.

414 | Three commuting SL,’s
Let

Zi = <)_(ﬁi,)_(_5 ),

i

fori =1,2,3.Thus, Zi o SLZ(EP) for each i by the Chevalley relations, again using that H is of uni-
versal type when i = 3. A further consequence of (4.1) is that the Chevalley commutator formula
[26, 1.12.1(b)] yields

[Ei,fj] =1 forall i#j.

For each i, Zi has unique involution hﬁl_(—l) that generates the center of fl-. By (4.3), the center of
the commuting product L, L,L; is (z, z; ), of order 4. By (4.4), T < L,L, L.
4.1.5 | The Steinberg endomorphism and Spin,(q)
We next set up notation for the Steinberg endomorphism we use to descend from H to the finite
versions. Let g = p? be a power of p. Let € € {1} be such that g = ¢ (mod 4), and let k be the
2-adic valuation of g — €.

The standard Frobenius endomorphism ¢ of H is determined by its action xa(l)g = X,(AP) on

the root groups, and so from the definition of the n, and h, in (A.1), also n,(1) = n,(1?) and
ha(/l)§ = h,(AP). Write Cup conjugation map induced by w,, as usual, and define

{ga ife=1
c=19 . ]
$%y, ife=-1.

Then o is a Steinberg endomorphism of H in the sense of [26, Definition 1.15.1], and we set

H := Cg(0) = Spin,(g).
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Given that w, inverts T, the action of o on T is given for each t € T by
19 =%,
and hence
— T — N~ 3

Crl@)={teT |t =1} =(Cy_c)”.

Likewise,
Cq(ocy,) = (Cyye)’.
Finally, letu = u, € ﬁ; be a fixed element of 2-power order satisfying u°¢ = —u and powering

to the fourth root i, and set

c= hﬁl (/vl)l’lﬁ2 (M)hﬁ3 (w) € T.

4.1.6 | A Sylow 2-subgroup
We next set up notation for Sylow 2-subgroups of H and H along with various important subgroups
of them. Let

§ = Tzoo W\g,
where sz denotes the 2-power torsion in T and where ﬁ/\g = (nal(l), Ny, +a3(1), n%(l)).

Set
S = CE(O')
Define subgroups
Z<U<E<AKLS
by
Z=(z), U=(z,z)), E={teT|t*=1}, and A= E(w,).

Then Z = Z(S), U is the unique four subgroup normal in S, E is elementary abelian of order 8,
and A is elementary abelian of order 16. It will be shown in Lemma 4.2 that w, € S, and hence

ALS.
We also write

Tg=TNS;

thus, Ty = 0,(T) = (Cx)? is the 2*-torsion in T, a Sylow 2-subgroup of T..

4.2 | Conjugacy classes of elementary abelian subgroups of Hand H

We state and prove here several lemmas on conjugacy classes of elementary abelian subgroups of
H and H, and on the structure of various 2-local subgroups. Much of the material here is written
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PUNCTURED GROUPS FOR EXOTIC FUSION SYSTEMS | 59

down elsewhere, for example, in [35] and [1]. Our setup is a little different because of the emphasis
on the Lie theoretic approach, so we aim to give more detail in order to make the treatment here
as self-contained as possible.

The first lemma is elementary and records several initial facts about the elements we have
defined in the previous section. Its proof is mainly an exercise in applying the various Chevalley
relations defining H.

Lemma 4.2. Adopting the notation from Subsection 4.1, we have:

W) Z(H) = Z = (2);

(2) the elements w, and t are involutions in N, S(T) —T,and c € T has order 2k, powering into
E—-U;

(3) wy inverts T; and

@ [wy, 7] =[c,T] =1.

Proof.

(1): It is well-known that Z(H) has order 2. We show here for the convenience of the reader that
the involution generating ZH)isz = has(—l). We already observed in Subsection 4.1.3 that
z is an involution. For each root o € Z, the inner product of a with a5 is an integer, and so
(a,a3) = 2(a, a3) € 2Z. By Lemma A.2(1), h%(—l) lies in the kernel of a. Thus, the central-

izer in H of ha3(—1) contains all root groups by Proposition A.3, and hence Cﬁ(h%(—l)) =

H.
(2): We show that wj is an involution. Using Equations (A.6) and (4.2), we see that

[ng, (1), ng (£1)] = 1 for each i, j € {1,2,3}. (4.5)
So, wg = 1by (A.7) and (4.3).
We next prove that 7 is an involution. Recall
T = Ng, 4o, (Dhg (=Dhg, (Dhg, (D).

First, note that n, .. (1)* = z. To see this, use (A.7) to get ny ,, (1)* = hy 4, (—1). Then use
(0 + a3)" = 2a, + 203 = 2a) + a and Lemma A.2(3) to get

noc2+cc3(1)2 = ha2+a3(_1) = haz(_l)zha3(_1) = ho(S(_l) =z

as desired. Next, the fundamental reflection w, .., interchanges 8, and §, and fixes 3, so
Ny, +a3(1) inverts hﬁl(—i)hﬁz(i) by conjugation and centralizes h53(i) by (A.5). Hence,

2 = n, o (D2 (hg, (—Dhg (Dhg (D)5 D (hg (=D)hg, (Dhg, (D)

= naﬁ%(1)21153(1')2 =zz=1.

We show c is of order 2€ and powers into E — U. Recall that k is the 2-adic valuation of g — ¢,
and that C=(0) = (Cq_€)3. The latter has Sylow 2-subgroup of exponent 2€. Butc € C7(0) because

¢ = hy (WD, (WD, (1) = hy (—hg, (~hg, (—) = hy (Whg, (Whs, (1) = c.
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So, ¢ has order at most 2¥. On the other hand,
k=1 he (Dha (Dha (i
c = ﬁl(l) 8, @ ﬁs(l)-

As in Subsection 4.1.4, we have hﬁz(i) = hal(i)haz(iz)h%(i), and so
k—
™" = g (=Dhy (~Dhy, (1)

As H is of universal typeand U = (hal(—l), h%(—l)), it follows from Lemma A.2(2) that e
E — U, and hence c has order 2F as claimed. In particular, this shows ¢ € Tg.

It remains to show that w,, 7 € S in order to complete the proof of (2). For each o € £, we
have [n,(+1),{] =1 by (A.1), while [nﬁi(il), wy] =1 for i =1,2,3 by (A.6) and (4.2). Also,
hﬁl(ii)hﬁz(ii)h53(ii) € E < H by (4.3). These points cgmbine to givew, € H, ¥ =7,and7 €8S.
As [wy, 7] =1by(4),weseet € H,soindeed 7 € HN S = S. Finally,

ng, (g, (g, (1) = ng (Dng (1)*2+sVng 1) € 5

and this element represents the same coset modulo E as w, does by (A.7) and (4.5). AsE < S, it
follows that w, € S.

(3): As{B,,B,,p5}is an orthogonal basis of V, the image wg wg, wg, in W of w, acts as minus the
identity on V. In particular, it acts as minus the identity on the lattice of coroots ZZ¥ C V.
This implies via Lemma A.2(4) that w,, inverts T, and so (3) holds.

(4): Showing [w,, 7] =1 requires some information about the signs appearing in our fixed
Chevalley presentation. First,

2(ot, 0y + az)

L0 + ) = = —2.
(Brrap +az) Gttty

So, by Lemma A.1(3),

= (_1)<ﬁ1’0‘2+0‘3> = (_1)_2 =1,

Cﬁb“z"’“s cﬁzs“2+0‘3

and hencecg, o o, = ydef=cg , .o, . Therootstringof a, + a; = e, through §; = e;ise; —
e,,e3,e3+ e, so

1
C:5’3’0‘2"'0‘3 =1 =-1

by Lemma A.1(4). So, n, +a3(1) inverts each of ng (—=y)ng, (1) and nﬁs(l), by (A.6). Using
[wy, na2+a3(1)] €E, hg, (ii)hﬁz(ii)hﬁg(ii) € E, and (4.5), we thus have

[wo. 7] = [wg. hg, (—Dhg (Dhg, (D][Wy, Mg, 4, (1] 0233 O
= [wy, hﬁl(—i)hﬁz(i)hﬁ3 O][wp, noc2+a3(1)]
= [wO’ na2+a3(1)]

= [, (=7 g, (D gy 1o, DI Vg (1, gy o (D]
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= (ng, (—7)*ng, (1> Vng (1)
=ng (7’)2”/32(—1)2”153(1)2
= lelzZ
=1.
Finally, as [c, na2+a3(1)] = 1by (A.5), we have [c, 7] = 1. O
For any group X and nonnegative integer r, write &,.(X) for the elementary abelian subgroups
of X of order 2" and &,(X,Y) for the subset of &,.(X) consisting of those members containing the
subgroup Y.

We next record information about the conjugacy classes and normalizers of four subgroups
containing Z.

Lemma 4.3. Let B = N7(U) and B = Ny (U). Write B’ for the connected component of B.
1) &H,Z)=U", and
B=(L,L,L;)r) and B =Cy(U)=LL,L,,

where T interchanges fl and fz by conjugation and centralizes Z3. Moreover Z (ED) =U.
(2) &(H,Z)=U", and

B = (L,L,L;){c, ) and Cy(U) = (L1L,L5){c),

where L; = C; (o), and where ¢ € N3(L,L,L3) acts as a diagonal automorphism on each L;.

Proof. Viewing H classically, an involution in H/Z has involutory preimage in H if and only
if it has —1-eigenspace of dimension 4 on the natural orthogonal module (see, for example, [1,
Lemma 4.2] or [35, Lemma A.4(b)]). It follows that all noncentral involutions are H-conjugate
into U, and hence that all four subgroups containing Z are conjugate. Viewing H Lie theoretically
gives another way to see this: let V be a four subgroup of H containing Z, and let v € V — Z. By,
for example, [50, 6.4.5(ii)], v lies in a maximal torus, and all maximal tori are conjugate. So, we
may conjugate in H and take v € E. Using Lemma 4.4(1), for example, Nﬁ(f) / CNﬁ(T)(E) =S,
acts faithfully on E and centralizes Z, so as a subgroup of GL(E) it is the full stabilizer of the chain
1 < Z < E. This implies Nﬁ(T) acts transitively on the nonidentity elements of the quotient E/Z,
so v is N(T)-conjugate into U.
We next use Proposition A.3 to compute B. Recall that

U= (Z, Zl) = (hoc3(_1)7 hocl (_1»

and that z = ha3(_1) is central in H by Lemma 4.2(1). So, C(U) = Cﬁ(hal(—l)). By Proposi-
tion A.3 and inspection of X,

CHU)° = (T,X, | {a,a)is even)

= (T, X, | ot € {B1, 55, B3}).
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Further, T < L,L,L; by (4.4), so
CrU) = (X5.X_g | i €{1,2,3}) =L,L,L; (4.6)

as claimed.

We next prove that Ci(U) is connected. As C7(U) = C(z,), this follows directly from a theo-
rem of Steinberg to the effect that the centralizer of a semisimple element in a simply connected
reductive group is connected, but it is possible to give a more direct argument in this special case.
By Proposition A.3,

CH(U) = cxU)°C Nﬁ(f)(U)’

and we claim that CNﬁ(T)(U) < Cx(U)°. By (4.6), Ncﬁ(U)o (T)/T is elementary abelian of order
8. On the other hand, CNf(T)(U) /7 stabilizes the flag 1 < Z < U < E, and so induces a group of
H

transvections on E of order 4 with center Z and axis U. The element w,, of Nﬁ(f) inverts T and is
trivial on _E by Lemma 4.2(3). It follows that |Ncﬁ(U)(T) /T| = |Ncﬁ(U)o (T)/T|,andso N Cﬁ(U)(T) =
NCﬁ(U)" (T) Thus,
CNH@)(U) = NCE(U)(T) = NCH(U)°(T) < CxU)°,
completing the proof of the claim. By (4.6)
C(U) = L,L,Ls,. (4.7)
Foreach A € ﬁp, we have
Xg, ' = xg, (1)t (Dhg, (=Dhg, (Dhg, (1)

= Xg, (_l)hﬁs ®

= x53(i<ﬁ3"g3>(—/1))

= X, ((=2))

= X53 (ﬂ.)

Similarly, x_g (1) = x_g,(i"%(=2)) = x_g,(2). S0,as L; = (x.5,(2)), we have [L;, 7] = 1. Finally,

as w interchanges 8, and §3,, and as T normalizes all root groups, 7 interchanges L, and L,.

062+OC3
In particular, 7 interchanges the central involutions hg (—1) = z; and hg, (—1) = zz, of L, and L,.
This shows 7 acts nontrivially on U, and hence

B = (L,L,L;)(z),

completing the proof of (1).
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By (1), C7(U) is connected, so [26, Theorem 2.1.5] applies to give &,(H, Z) = U . LetL; = C; (o)
fori =1,2,3,and set B® = L, L,L; < H. Asw € Ny (U) — Cy(U), we have C(U) = CEo(a).lLet
B denote the direct product of the L;, and let & be the Steinberg endomorphism lifting ol along
the isogeny B — B given by quotienting by ((—1, —1, —1)) (see, e.g., [26, Lemma 2.1.2(d,e)]). Then
C3(6) = Ly X L, X Ls. So, by [26, Theorem 2.1.8] applied with the pair B, ((—1, —1, —1)) in the role
of K, Z, we see that B° is of index 2 in Cy(U) with C(U) = B°(Cx(U) N T) = B°T. The element
c= hﬁ1 (,u)hﬁ2 (,u)hﬁ3 (u) € T lifts to an element é € B with [¢, §] = (-1, —1, —1) by definition of u,
and so ¢ € C;(U) — B° by [26, Theorem 2.1.8]. Finally, as each L; is generated by root groups on
which ¢ acts nontrivially, ¢ acts as a diagonal automorphism on each L;. O

Next we consider the H-conjugacy classes of elementary abelian subgroups of order 8 that
contain Z.

Lemma 4.4. The following hold.

(1) Ni(E) = N(T) and C5(E) = T(w).
(2) Ny(E) = Ny(T) and Cy(E) = T{wy).
(3) Nz(T)/T = C, X Sy = Ny(T)/T.

Proof. Given that wy, inverts T (Lemma 4.2(3)) part (1) is proved in Proposition A.4.
By (1),

Ny(E) = Np(E)NnH = Ng(T) n H = Ny(T),

while N H(T) < NyHN T)=N (T). These combine to show the inclusion N (E) < Ny(T). But
Ny (T) < Ny(E) because E = Q,(0,(T)) is characteristic in T. Next, by (1),

Cy(E) = Cx(E) N H = T(w,) N H = (T N H){w,)

with the last equality as w, €H by Lemma 4.2(2). This shows C(E) = T{(wj).
For part (3) in the case of H, see Subsection 4.1.3. We show part (3) for H. First, by (1) and (2),

Ny(T) = Cy_(0) = Cn (@) = Ny (E) = Ny (T). (4.8)

In the special case € = 1, o centralizes W, which covers W = NE(T) /T. Using (4.8), this shows
Ny(T) = NH(T) projects onto W with kernel TN CNﬁ(T)(U) =T.So, Ny(T)/T = W in this case.

In any case, Two generates the center of Nﬁ(f) /T,s0 g°¢g~1 €T for each g € Nﬁ(f). AsT is
connected, for each such g there is t € T with t =t = ¢° g~ by the Lang-Steinberg theorem, and
hence tg € CNﬁ(T)(O-)' This shows each coset T¢ contains an element centralized by o, and so
arguing as in the previous paragraph, we have Ny (T)/T = W. 1

Lemma 4.5. Letd = cw, and E' = U(d) < S. Then &(H, Z) is the disjoint union of E¥ and E'".
Moreover, there is a o-invariant maximal torus T' of H with E' ={t € T’ | t* = 1} such that the
following hold.
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1) Oy (Cy(E)) = 0x(T) = (C(q_e) /zk)3, and Ny (T)/T = C, X S, acts faithfully on the r-torsion
subgroup of T for each odd prime r dividing q — e.

(2) 05 (CH(EN) = 0y(T") (C(q+€)/2)3, and N (T")/T" = C, X S, acts faithfully on the r-torsion
subgroup of T' for each odd prime r dividing q + €.

(3) Cy(E") = T'(wy) for some involution wy inverting T'.

Proof. By Lemma 4.2, w,, is an involution inverting T and hence inverting c. So, d is an involution,
and indeed, E’ is elementary abelian of order 8.

Part of this lemma is proved by Aschbacher and Chermak [1, Lemma 7.8]. We give an essen-
tially complete proof for the convenience of the reader. LetX € {1_30, H}, and write X = Cx(0). The
centralizer Cx(E) = T(w,) is not connected, but has the two connected components T and Tw.
Thus, there are two C(0)-conjugacy classes of subgroups of X conjugate to E in H [26, 2.15].
A representative of the other X-class can be obtained as follows. As X is connected, we may fix
by the Lang-Steinberg theorem g € X such that wy = ¢g°¢g~ L. Then ¢° = wyg. In the semldlrect
product X (o), we have g9 = ow,. Now as T(wo) is invariant under ow, it follows that (T(wo))
is o-invariant. Indeed by choice of g, we have 99 = t7“09 for each ¢ € T, that is, the conjugation

— Cyp — — —
isomorphism T(w,) BEN Tg(wg ) intertwines the actions of cw, on T(w,) and ¢ on Tg(wg ). Then
E and EY are representatives for the X-classes of subgroups of X conjugate in X to E, and

XNT' =Cpo(0) = Crlowy) = {t € T | 1759 = 1} = (Cp,)° (4.9)

The above argument shows we may take g € B’ evenwhenX = H. By Lemma 4.3, B isacom-
muting product L fzf3 with L; = SLZ(EP) and Z(Eo) =U.Also, B’ ~7 /{j) where J is a direct
product of the L;’s and j the product of the unique involutions of the direct factors (Subsec-
tion 4.1.4). Thus, each involution in B” — U is of the form f1f>f5 for elements f; € L; of order
4. But L; is transitive on its elements of order 4. Hence, all elementary abelian subgroups of B
of order 8 containing U are Eo-conjugate. Now E is contained in the normal subgroup L,L,L; of
Cp(U), while E’ is not because d lies in the coset L, L,L;c. It follows that E9 is Cp;(U)-conjugate
to E’. Hence, E and E’ are representatives for the X-conjugacy classes of elementary abelian
subgroups of X of order 8 containing Z.

—1  —gb

Fix b € C;(U) with E9® = E’. Set T =T T = CTgb(O'), and w) = wgb. By (4.9), 0,,(T") is as
described in (a)(ii), and wj inverts T’. Now Ny (T)/T & C, X S, by Lemma 4.4(3). As Tw, gener-
ates the center of Nﬁ(f)/f, it follows by choice of g and [12, 3.3.6] that N;;(T9)/T9 = Ny(T)/T,
and hence Ny (T")/T’ = N (T)/T because b € H.

Fix an odd prime r dividing g — € (resp., g + ¢€), and let T, (resp., T) be the r-torsion subgroup
of T (resp., T/). Then T, < T (resp., T < T'). As Nﬁ(f) /T (resp., NE(T/) /T’) acts faithfully on
T, (resp., T) by Proposition A.4, it follows that the same is true for Ny (T)/T (resp., Ny (T')/T").
This completes the proof of (1) and (2), and part (3) then follows. O

4.3 | Conjugacy classes of elementary abelian subgroups in a
Benson-Solomon system

In this subsection, we look at the conjugacy classes and automizers of elementary abelian sub-
groups of the Benson-Solomon systems. We adopt the notation from the first part of this section,
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so S is a Sylow 2-subgroup of H = Spin,(q), Z = Z(S) is of order 2, U is the unique normal four
subgroup of S, and E is the 2-torsion in the fixed maximal torus T of H, and A = E{(w,)).

Lemma 4.6. Let F = Fg,(q) be a Benson-Solomon fusion system over S. Then

(D) &) =27, and Np(Z2) = Cp(2) = Fg(H);

() &) =U";

(3) forTg =T NS, Outp(Tg) = Autp(Ts) = C, X GL;(2), and Outx(Tg(w,)) = GL;(2) acts natu-
rallyon T /®(T) and on E.

Proof. Part (1) follows from the construction of Fg,(q). By part (1) and [2, Lemma II.3.1], every
element of &,(S) is F-conjugate to a subgroup containing Z and thus by Lemma 4.3(2) to U.

The structure of Outx(T) in (3) follows from the construction of the Benson-Solomon sys-
tems; for example, see [1, Proposition 5.4(b), Lemma 7.13(e)] or [36, Proposition 1.5]. The structure
of Outr(Tg¢(w,)) follows from that of Outr(T); for the details we refer the reader to [30,
Lemma 2.38(c)]. As the actions in (3) are induced by the restriction map Auty(Ts(w,)) —
Autr(T), the remainder of (3) is clear. O

We saw in Lemma 4.5 that H has two conjugacy classes of elementary abelian subgroups of
order 8 containing Z. As far as we can tell, Aschbacher and Chermak do not discuss the possible
F-conjugacy of E and E’ explicitly, but such information can be deduced from their description
of the conjugacy classes of elementary abelian subgroups of order 16. As we need to show later in
Lemma 4.8 that E and E’ are in fact not 7-conjugate, we provide an account of that description.

On page 935 of [1], T is denoted R,,. As on pages 935-936, write R; = NA(Ts(wy)) 2= (Cpe1)*.
Thus, T has index 8 in R;, and R, /T is elementary abelian of order 8. Fix a set

{x.,| e € E}

of coset representatives for T in R;, with notation chosen so that x; = 1 and xezk =e € Eforeach
e € E — {1}, and set

A, = A%,
As w, inverts T, we have A, = E(t,w,) where , := x; % = [x,,wy] € T also powers to e.
Denote by .4 the set of T's-conjugacy classes of elementary abelian subgroups of T'¢(w,,) of order
16. Then as E < Tg and [Ty, wy] = @(T'g), there are Auty(Tg(w,))-equivariant bijections
A — Tg/®(Tg) — E

AlS s 1, (Tg) —> e = t?kil.

As Inn(T¢{w,)) acts trivially on these sets, by Lemma 4.6(3), Autz(T¢(w,)) has two orbits on
&4(Ts(w,y)) with representatives A = A; and A, with e # 1.

Lemma 4.7. &,(S) is the disjoint union of Af and Aer, where e is any nonidentity element of E. All
A, with e # 1 are Auty(Ts(w,))-conjugate, and Auty(A,) = Cpyya,)(e) foreach e € E.
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Proof. This is [1, Lemma 7.12(c)], except for the statement on Auty(T¢(w,))-conjugacy, which
contained in the proof of 7.12(c) and observed above. An equivalent description of the F-
conjugacy classes of elementary abelian subgroups of S of rank 4 was given in [35, Proposition A.8,
Lemma 3.1]. See also [36, p. 3018]. O

Lemma 4.8. &(S) is the disjoint union of E” and E'", and we have Auty(E) = Aut(E) and
Autp(E") = Aut(E").

Proof. In Lemma 4.5, we defined E’ = U(d) where d = cw,,. It was shown there that E and E’
are representatives for the two H-conjugacy classes of elementary abelian subgroups of order 8
containing Z. Recall that ¢ was defined as hﬁl (/,L)Ifzﬁz(/,t)lflﬁ3 (u) at the end of Subsection 4.1.5, and

in Lemma 4.2(2) it was shown that ¢ € Ty and 2 eE-U.In particular, c € Tg — ®(Ts).

Take e = ¢*' and consider A, = A% = E(t,w,). As both f, = [x,,w,] and ¢ have 2+~!st
power e, there is s € ®(T) = ON(T) with ¢ = t,s. Choose ¢ € Tg with =2 =s. Then Aé =
E'{(t,wp)') = E{(t,wy)"), and (t,wp)" = t,w) = t,[t,wylwy = t,t">wy = t,sw, = cwy. This shows
A, is Tg-conjugate to the elementary abelian subgroup

A" 1= E{cw,) = EE’ (4.10)

of order 16. Alternatively, we could have chosen the coset representative x, at the outset to satisfy
[x,, wo] = x;? = c and in doing so arrange for A, = A’, and thus for A, to contain E’.

Assume to get a contradiction that E and E’ are Fg,(q)-conjugate. As E is normal in S, it is
fully F-normalized, hence fully F-centralized by saturation. So, there is a morphism ¢ : C4(E’) —
C4(E) in F with E'? = E by [2, 1.2.6]. By (4.10), ¢ is defined on A’ and A’? < C4(E) = Tg{wy).
By Lemma 4.7, we may choose a € Aut;(Ts(w,)) with A’?* = A’. Then as pa € Autp(A’) =
Cauty.(ay(€) by the same lemma, we have e?* = e. On the other hand, as E is characteristic in
Tg{w,), we have U?* < E'?* = E% = E. Thus, E?® = (U(e))?* = U¥*(e%*) < E, a contradiction.
Now we appeal to [1, Lemma 7.8] for the structure of the F-automorphism groups. O

Remark 4.9. Lemma 4.8 says that there are two conjugacy classes of elementary abelian subgroups
of order eight in a Benson-Solomon system, and is therefore incompatible with the part of [35,
Lemma 3.1] which states that there is a single conjugacy class. We thank the referee for alerting
us to this, and we refer the reader to [43].

4.4 | Proofof Theorem 4.1

We now turn to the proof of Theorem 4.1. As an initial observation, note that if £ is a punctured
group for Fy,(q") for some odd prime power ¢’, then C.(Z) is a group whose 2-fusion system is
isomorphic to that of Spin,(g’). It is in this context that we use the following lemma.

By a field automorphism of Spin,(q), we mean an automorphism acting on the root groups via
x, (1) = x,(A¥) where 9 is an automorphism of Fyq-

Lemma 4.10. Let G be a finite group whose 2-fusion system is isomorphic to that of Spin,(q’)
for some odd q'. Then G/04(G) = Spin,(q){p) for some odd q with v,(q*> — 1) = v,(q'*> — 1), and
where ¢ induces a field automorphism of odd order.
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Proof. It was shown by Levi and Oliver in the course of proving Fy;(q) is exotic that o? (G/04(G))
is isomorphic to Spin,(gq) for some odd q [35, Proposition 3.4]. If S" and S are the corresponding
Sylow 2-subgroups, then S’ and S are isomorphic by definition of an isomorphism of a fusion
system. If k and k’ are one less than the valuations of g> — 1 and q’? — 1, then the orders of S and S’
are 24+3k and 24+3K | 50 k = k’. The description of G /0, (G) follows, as Out(Spin,(q)) = C, X C,,
where g = p® and C,, is generated by the class of a field automorphism. O

The extension of Spin,(q) by a group of field automorphisms of odd order has the same 2-fusion
system as Spin,(q), but we will not need this.

Lemma 4.11. Let q be an odd prime power with the property that GL;(2) has a faithful 3-
dimensional representation over [, for each prime divisor r of q> — 1. Then each such r is a square
modulo 7, and q = 3'*% for some a > 0. In particular, ¢ = 3 (mod 8).

Proof. Set G = GL5(2) for short. We first show that GL;(2) has a faithful 3-dimensional repre-
sentation over F, if and only if r is a square modulo 7. If r = 2, 3, or 7, then as |SL;(3)| is not
divisible by 7 and G = PSL,(7) = Q5(7), the statement holds. So, we may assume that p does not
divide |G|, so that F,GL;(2) is semisimple. Let V be a faithful 3-dimensional module with char-
acter @, necessarily irreducible. From the character table for GL;(2), we see that ¢ takes values
inF,.((1+ \/—_7) /2). By [21, 1.19.3], a modular representation is writable over its field of character
values, so this extension is a splitting field for V. Thus, V is writable over F, if and only if -7 is a
square modulo r, which by quadratic reciprocity is the case if and only if r is a square modulo 7.
Now fix an odd prime power g with the property that g> — 1 is divisible only by primes that
are squares modulo 7. As g(q — 1)(g + 1) is divisible by 3 and 3 is not a square, we have q = 3!
for some I. Now g — 1 and q + 1 are squares, so ¢ = 1 or 3 (mod 7). Assume the former. Then 6
divides,s0q = 3! = +1 (mod 5). But then g — 1 s divisible by the nonsquare 5, a contradiction.
So,q =3 (mod 7),l =1 + 6a for some a > 0, and hence g = 3 (mod 8). O

We write G’ = [G, G] for the commutator subgroup of a group G.

Lemma 4.12. Let G be a finite group and W I M <G such that G/M = GL;(2), |W| =2 and
M /W is cyclic of odd order. Then E(G) = G’ is isomorphic to GL;(2) or L,(7). In the latter case, G
has quaternion Sylow 2-subgroups.

Proof. If we pick a generator xW of M /W, then M = (x)W is abelian as W < Z(M). As M /W
is of odd order and |W| = 2, it follows indeed that M is cyclic. In particular, Aut(M) is abelian.
As C;(F*(G)) £ F*(G) and G/M is non-abelian simple, it follows that F*(G) # M = F(G) and
so E(G) # 1. As GL;(2) is the only non-abelian composition factor in a composition series for G,
it follows that K := E(G) is quasisimple with K /Z(K) = GL;(2) = L,(7). In particular, G = KM
where M = F(G) is abelian and commutes with K = E(G) = K’. Hence, G’ = K = E(G).

As the Schur multiplier of GL;(2) = L,(7) has order 2, we have K =~ GL;(2) or K = SL,(7). In
the latter case, Z(K) = W and K contains a Sylow 2-subgroup of G. As SL,(7) has quaternion
Sylow 2-subgroups, the assertion follows. [l

If@isa partial normal p’-subgroup of a locality (£, A, S) at the prime p, then the restriction of
the natural projection £ — L/ © to S is a monomorphism. Thus, we may identify S with its image
in £/©. This is used to formulate the following proposition.
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Proposition 4.13. Suppose F = Fs.(q") is a Benson-Solomon fusion system and (L, A,S) is a
punctured group over F. Set Z := Z(S) and G = C,(Z).

(1) There exists a partial normal 2/ -subgroup © of L such that, identifying S with its image in £ /©
in the natural way, (E/@, A, S) is a punctured group over F and NE/@(Z) ~G/0,(G)is 2'-
reduced.

(2) 0?(G/0,(G)) = Spin,(q), where q = 31+ for some a > 0, and every prime divisor of g* — 1
is a square modulo 7. In particular, ¢ = 3 (mod 8) and ¢’ = +3 (mod 8).

Proof. Set G:=G /Oy(G)and H := 0?(G). As L is a locality on F = Fg;(q"), it follows from
Lemmas 2.9(b) and 4.6(1) that Fg(@) = F4(G) = Fs(Np(Z)) = Np(Z) is isomorphic to the 2-
fusion system of Spin,(q’). Hence, by Lemma 4.10 there is an odd prime power g with (g —
1), = (¢'*> — 1), such that H can be identified with Spin,(q), and such that G = H{gp) for ¢
a field automorphism of odd order. Where convenient, we adopt below the notation from
Subsections 4.1-4.3.

(1) We will show the existence of a suitable signalizer functor on elements of order 2 (as
introduced in Definition 1.2). For that we set

8(a) = 0,(C,(a)) for each involution a € S.

By Lemma 2.7(b), 8 is conjugacy invariant. Let a,b € S be two distinct commuting invo-
lutions. By Lemma 4.6(2) and conjugacy invariance, to verify the balance condition in
Definition 1.2, we can assume b=z anda=u € U — Z. Set X = O5(C,(u)) N G and note

that X is an odd order normal subgroup of C.(U) = C;(U). By a Frattini argument C(U) =
C;(0), so X is normal in the latter group. We use now that G is an extension of H = Spin,(q)
by a cyclic group generated by a field automorphism ¢ of odd order. As each component
L, = SL,(q) of Cy(U) is generated by a root group and its opposite (Subsection 4.1.4 and
Lemma 4.3(2)), it follows that ¢ acts nontrivially as a field automorphism on each such L;, and
hence X < 0,(C3(U)) < O5(L,L,Ly) = 1. Equivalently, X = 0,/ (C,(u)) N G < O»(G). This
shows that the balance condition holds. For each P € A, set

o) =| [] 6 |nc.P.

X€I,(P)

Then by Theorem 2.39, © defines a signalizer functor on objects. By Theorem 2.36, © =
Upea ©(P) is a partial normal p’-subgroup of £, and (£/ ©, A, S) is again a punctured group
for F = Fg. (q") with NC/@(Z) ~ G/O(Z). Writing Z = (z), note that 7,(Z) = {z} and ©(Z) =
0(z) N Cr(Z) = 05(C,(2)) = O5(G). This proves (1).

(2) For the proof of (2), part (1) allows us to assume O,(G) = 1. Then G = G, H = 0¥ (G) =
Spin,(q), and G/H is cyclic of odd order. Recall that H has Sylow 2-subgroup S, € € {1} is
suchthatg = ¢ (mod 4),and E, := E and E_; := E’ are the representatives for F-conjugacy
classes of elementary abelian subgroups of order 8 in S (Lemmas 4.5 and 4.8). For § = +1,
let Ts be the maximal torus containing E5 of Lemma 4.5. For each positive integer r dividing
q — &¢, write T, for the r-torsion in Ts. Moreover, set Ts g = Ts N S. Thus, Ty g = Ty = Ty x
is homocyclic of order 23, and T_, ¢ = E_.
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Now fix § and let N = N (T 5). By Lemmas 4.4(2) and 4.5(3),
Ch(Es) = Tsw), (4.11)
where w is an involution inverting T's. In particular, as
0y(T5) = [0x(T5), (w)]
and 0% (G) = H, we have
Ciy(Es) = 0% (Cy(Ey)) = 0% (Co(Es)).

Also, C,(Es) = C5(Es) as Es contains Z. It follows that Cp(Es) = 02/(C£(E5)) is normal in
N,(Es), so

Cy(Es) and Oy (Cy(Es)) are normal in N (Ej). (4.12)
Next we show
N = N, (Ejs). (4.13)
We may assume T5 g > Es,and so 6 = 1, T5 5 = Tg, and E5 = E. Certainly N (Ts) < N(E). For
the other inclusion, note N(E) acts on Cy(E) by (4.12) so it acts on T because T is the unique
abelian 2-subgroup of maximum order in Cy;(E). Thus, N.(E) < N,(Ts), completing the proof of
(4.13).

Using (4.11) one observes easily that Ts = T50(Ts) = Ts5 50,/(C(Es)). Hence, it follows
from (4.12) and (4.13) that

Ts<N. (4.14)

Notice that Cn(Es)/Cy(Es) < Cg(Es)/Cy(Es) = Co(Es)H/H < G/H and recall that G/H is
cyclic of odd order. Hence, by (4.11), (4.12), (4.13), and (4.14), we are given a normal series

Ts < Cy(Es) < Cn(Es) = Cp(Es) < Np(Es) =N,
where C(Es)/Ts = C,, Cy(Es)/Cy(Es) is cyclic of odd order, and (by Lemma 4.8)
N/Cy(Es) = Np(E5)/Cr(Es) = Autp(Es) = Aut(Es) = GL;(2).
SetN := N/Ts.By Lemma4.5,C, X S, & N;TTg) < N.Inparticular, N does not have quaternion

Sylow 2-subgroups. Applying Lemma 4.12 with (N, Cn(Es), Cy(Es)) in place of (G, M, W), we see
now that

N’ = GL,(2).

Let r be a prime divisor of ¢ — 8¢ and note that N acts on Ts,. By Lemma 4.5, N (Ts) = C, X S,
—_—— ~ ~
acts faithfully on T's . and thus A, = N (Ts) < N’actsnontriviallyon T . As Cj/(Ts,) <N’ and
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N’ = GL;(2) is simple, it follows that Cg/(T5,) = 1 and N’ = GL;(2) acts faithfully on T, = C3.
As this holds for each § = +1 and prime r, Lemma 4.11 implies that g = 3'+%¢ for some a > 0 and
g =3 (mod 8). As ¢’ = +q (mod 8), this shows (2). O

Note that the conclusion of the following lemma does not hold if H = Spin-(q) for some q # 3.

Lemma 4.14. Let H = Spin,(3) and Z = Z(H). If P > Z is a 2-subgroup of H of 2-rank at least 2,
then N (P) and C(P) are of characteristic 2.

Proof. Let P < S with Z <V <P and V a four group. By Lemma 4.3(2), we may conjugate in
H and take V = U, and C(U) = L;L,L;{c), where c induces a diagonal automorphism on each
L; = SL,(3). Thus, 0,(Cy(U)) is a commuting product of three quaternion subgroups of order 8
that contains its centralizer in C;(U), and hence Cy(U) is of characteristic 2.

Recall that Ny;(P) is of characteristic 2 if and only if Cy;(P) is of characteristic 2 and that
the normalizer of any 2-subgroup in a group of characteristic 2 is of characteristic 2 (see, e.g.,
[28, Lemma 2.2]). It follows that NCH(U)(P) is of characteristic 2, so Cy(P) = CCH(U)(P) is of
characteristic 2, so N (P) is of characteristic 2. O

Lemma 4.15. Let F = Fg(3) be a fusion system over S. Then every subgroup of S of 2-rank at least
2 is F-subcentric.

Proof. Set Z = Z(S). By Lemma 4.6(1), we have H := N(Z) = Fq(H) where H = Spin,(q) and S
can be identified with the Sylow 2-subgroup of H defined in Subsection 4.1.6. Define U as before
so that &,(S) = U” by Lemma 4.6(2). As F* is by [28, Proposition 3.3] closed under passing to F-
conjugates and overgroups, it is enough to prove that U is F-subcentric. Indeed, as Z < U, we have
Cr(U)=CyU) = FCS(U)(CH(U)). Hence, Cr(U) is constrained by Lemma 4.14 and so U € F*
by [28, Lemma 3.1]. O

We may now prove the main theorem of this section.

Proof of Theorem 41. (=): If (£,A,S) is a punctured group over F := Fg,(q) for some odd
prime power g, then it follows from Proposition 4.13(2) (applied with g in place of ¢’) that g = +3
(mod 8).

(&) :Nowlet F = Fg,(3) and H = Cr(Z) = F4(H) with H = Spin,(3). Set

A ={P € F’ | Pis of 2-rank at least 2},

and A, = {P € A | P > Z}. Then A is closed under F-conjugacy and passing to overgroups by [28].
So, it is also closed under H-conjugacy. We show now

Every element of H¢" U F¢" is of 2-rank at least 2. (4.15)

Indeed, assume there exists Q € H" U F" of 2-rank 1. Then Q # S and so C¢(Q) < Q implies
Inn(Q) < Autg(Q) < Auty(Q) < Autx(Q). Suppose first that Q is cyclic, or generalized quaternion
of order atleast 16. Then Aut(Q) is a 2-group and so Out;, (Q) and Outx(Q) are nontrivial 2-groups,
which contradicts the assumption that Q is radical in H or . Assume now that Q is quaternion of
order 8. As U is anormal subgroup of S, we have [Q, U] < Z = Z(S) £ Q,s0 U < Ng(Q). But Ng(Q)
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is a 2-group containing Q self-centralizing with index at most 2, and so N¢(Q) is quaternion or
semidihedral of order 16. But neither of these groups has a normal four subgroup, a contradiction.
This shows (4.15).

Each element of 7" U H" contains Z. It follows moreover from (4.15) and Lemma 4.15 that
FTUHT CA. Also F* C HS by [28, Lemma 3.16]. Thus, we have shown

FrUHY CA, CACFS CH (4.16)

The hypotheses of [28, Theorem A] are thus satisfied, so we may fix a linking locality £ on F with
object set A, and this £ is unique up to rigid isomorphism.

We shall verify the conditions (1)-(5) of [14, Hypothesis 5.3] with Z in the role of “T” and H in
the role of “M”. Conditions (1), (2) hold by construction. Condition (4) holds because Z is normal
in H and F¢(N;(Z)) = H by [35]. To see condition (3), first note that Z is fully normalized in F
because it is central in S. Let Z’, Z"" be distinct F-conjugates of Z. Then (Z’, Z"") contains a four
group V. By Lemma 4.6(2), V is F-conjugate to U, and O,(N(U)) € F¢ is a commuting product
of three quaternion groups of order 8. Thus, V € A, and hence (Z’,Z"") € A. So, Condition (3)
holds. It remains to verify Condition (5), namely that N(Z) and £ Ay (H) are rigidly isomorphic.
By (4.16) and Lemma 4.14, £, _(H) is a linking locality over  with A, as its set of objects.

On the other hand, by [14, Lemma 2.19], N-(Z) is a locality on H with object set A, in which
Ny, (2)(P) = Cy,(p)(Z) for each P € A,. As L a linking locality, N(P) is of characteristic 2, and
hence the 2-local subgroup N NC(Z)(P) of N(P) is also of characteristic 2. So, again this together
with (4.16) gives that N.(Z) is a linking locality over H with object set A,. Thus, £ AZ(H ) and
N/(Z) are linking localities over the same fusion system and with the same object set, thus rigidly
isomorphic by [28, Theorem A]. This completes the proof of (5).

So, by [14, Theorem 5.14], there is a locality £* over F with object set

AT :={P < S| Z? < P for some ¢ € Hom(Z,S)},

such that £*|, = £ and N;+(Z) = H, and L* is unique up to rigid isomorphism with this
property. As each nontrivial subgroup of S contains an involution, and all involutions in S are
F-conjugate (by Lemma 4.6(1)), At is the collection of all nontrivial subgroups of S. Thus, L7 is
a punctured group for F. O

Remark 4.16. Theorem 4.1 leaves open the question whether there is a punctured group (£, A, S)
over Fg,(3) such that, setting Z := Z(S), the centralizer C(Z) is not isomorphic to Spin,(3).
Indeed, we show in Proposition 4.13 that always 02/(CE(Z) /05(C(Z))) = Spin,(q), where q =
31464 for some a > 0 with the property that g> — 1 is divisible only by primes that are squares
modulo 7. Although there are at least several such nonnegative integers a with this property (the
firstfeware0,1,2,3,5,7,8,13,15,... ), we are unable to determine whether a punctured group for
Fso1(q) exists when a > 0.

5 | PUNCTURED GROUPS FOR EXOTIC FUSION SYSTEMS AT ODD
PRIMES

In this section, we survey some of the known examples of exotic fusion systems at odd primes in
the literature, and determine which ones have associated punctured groups.
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Let F be a saturated fusion system over the p-group S. A subgroup Q of S is said to be F-
subcentric if Q is F-conjugate to a subgroup P for which O,(N7(P)) is F-centric. Equivalently, by
[28, Lemma 3.1], Q is F-subcentric if, for any fully 7-normalized F-conjugate P of Q, the normal-
izer N-(P) is constrained. Write F* for the set of subcentric subgroups of 7. Thus, F* contains
the set of nonidentity subgroups of S if and only if 7 is of characteristic p-type (and F* is the set
of all subgroups of S if and only if F is constrained).

A finite group G is said to be of characteristic p if C;(0,(G)) < 0,(G). A subcentric linking
system is a transporter system L associated to 7 such that Obj(£%) = F* and Aut,s(P) is of char-
acteristic p for every P € Obj(L"). By a theorem of Broto, Castellana, Grodal, Levi, and Oliver [4],
the constrained fusion systems are precisely the fusion systems of finite groups of characteristic
p- The finite groups of characteristic p, which realize the normalizers of fully normalized subcen-
tric subgroups, can be “glued together” to build a subcentric linking systems associated with F.
More precisely, building on the unique existence of centric linking systems, the first author [28,
Theorem A] has used Chermak descent to show that each saturated fusion system has a unique
associated subcentric linking system.

For each of the exotic systems F considered in this section, it will turn out that either F is of
characteristic p-type, or S has a fully 7-normalized subgroup X of order p such that N-(X) is
exotic. In the latter case, there is the following elementary observation.

Lemma 5.1. Let F be a saturated fusion system over S. Assume there is some nontrivial fully F-
normalized subgroup X such that N(X) is exotic. Then a punctured group for F does not exist.

Proof. If there were a transporter system £ associated with 7 having object set containing X, then
Aut,(X) would be a finite group whose fusion system is Nz (X). O

We restrict attention here to the following families of exotic systems at odd primes, considered
in order: the Ruiz-Viruel systems [48], the Oliver systems [42], the Clelland-Parker systems [17],
and the Parker-Stroth systems [46]. The results are summarized in the following theorem.

Theorem 5.2. Let F be a saturated fusion system over a finite p-group S.

(a) IfF is a Ruiz-Viruel system at the prime 7, then F is of characteristic 7-type, so has a punctured
group.

(b) If F is an exotic Oliver system, then F has a punctured group if and only if F occurs in cases
(@)@, (a)(iv), or (b) of [42, Theorem 2.8].

(c) If F is an exotic Clelland-Parker system, then F has a punctured group if and only if each
essential subgroup is abelian. Moreover, if so then F is of characteristic p-type.

(d) IfF is a Parker-Stroth system, then F is of characteristic p-type, so has a punctured group.

Proof. This follows upon combining Theorem 2.21 or Lemma 5.1 with Lemma 5.4, Proposition 5.7,
Propositions 5.9 and 5.11, and Proposition 5.12, respectively. O

When showing that a fusion system is of characteristic p-type, we will often use the following
elementary lemma.

Lemma 5.3. Let X be a fully F-normalized subgroup of S such that C(X) is abelian. Then Nr(X)
is constrained.

d ‘1 “€T0T ‘986¥TSOT

AU £Q $SOT1"EWN/TTT T01/10p oo Kajia Axeaqy

o] Jo nsia

o AreIqr] QuiuQ Ao[1A “OnokeyE e BUTS

UONIPUOD) PUE SWLIdT, 3y} 23S *[€£20T/L0/LO]

dny) s

Krwiqr aurguQ £afip vo

QI SA[IIE () $ASN JO Sa[NI 10}

oA08

su00IT suowwoD) aaneaI) sqeardde oy £q pour



PUNCTURED GROUPS FOR EXOTIC FUSION SYSTEMS | 73

Proof. Using Alperin’s Fusion Theorem [2, Theorem I1.3.6], one sees that Cs(X) isnormal in C(X).
In particular, Cr(X) is constrained. Therefore, by [28, Lemma 2.13], N»(X) is constrained. O

5.1 | The Ruiz-Viruel systems

Three exotic fusion systems at the prime 7 were discovered by Ruiz and Viruel, two of which are
simple. The other contains one of the simple ones with index 2.

Lemma 5.4. Let F be a saturated fusion system over an extraspecial p-group S of order p> and
exponent p. Then Nr(Z(S)) = Nx(S). In particular, F is of characteristic p-type.

Proof. Clearly Nr(S) C Nr(Z(S)). Note that Nx(Z(S)) is a saturated fusion system over S as well.
So, by [48, Lemma 3.2], if a subgroup of S is centric and radical in Nx(Z(S)), then it is either ele-
mentary abelian of order p? or equal to S. Moreover, by [48, Lemma 4.1], an elementary abelian
subgroup V of order p? is radical in N»(Z(S)) if and only if Aut.(V) contains SL,(p). How-
ever, if Auty(V) contains SL,(p), then it does not normalize Z(S). This implies that S is the only
subgroup of S that is centric and radical in N (Z(S)). Hence, by Alperin’s Fusion Theorem [2, The-
orem 1.3.6], we have N(Z(S)) C Nx(S) and thus N»(Z(S)) = Nx(S). In particular, N-(Z(S)) is
constrained. If X is a nontrivial subgroup of F with X # Z(S), then C4(X) is abelian. So, it follows
from Lemma 5.3 that F is of characteristic p-type. O

In Section 6, it is shown that for the three exotic Ruiz—Viruel systems, the subcentric linking
system is the unique associated punctured group whose full subcategory on the centric subgroups
is the centric linking system.

5.2 | Oliver’s systems

A classification of the simple fusion systems F on p-groups with a unique abelian subgroup A of
index p is given in [16, 42, 44]. Here we consider only those exotic fusion systems in which A is
not essential in 7, namely those fusion systems appearing in the statement of [42, Theorem 2.8].

Whenever F is a saturated fusion system on a p-group S with a unique abelian subgroup A of
index p, we adopt [42, Notation 2.2]. For example,

Z=2Z(S), Z,=2Z,S), S'=IS,S], Zy=2ZnS', and A,=2zS,
and also
H={Z{x)|xeS—A} and B={Z,(x)|xeS—-A}

Lemma 5.5. Let F be a saturated fusion system on a finite p-group S having a unique abelian
subgroup A of index p.

(a) IfP < SisF-essential, then P € {A}UH U B, [INg(P)/P| = p,andeacha € NAutr(P)(AutS(P))
extends to an automorphism of S.
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Assume now in addition that A is not essential in F.

(b) IfO,(F) =1, then F* N H # @, Z; = Z is of order p, S’ = A, is of index p? in S, and S has
maximal class.
(c) If P € H U B is F-essential, then P =~ C; or pi“ according to whether P € H or P € B, and

Op/(OutP(P)) = SL,(p) acts naturally on P/[P, P].
(d) IfP e F*NH, theneacha € NAutF(P)(Z) extends to an automorphism of S.
(e) A subgroup P < S isessential in Np(Z) ifand only if P € F¢ n B.
(f) Thereisx € S — A such that Ay(x) is Autr(S)-invariant.

Proof. Parts(a), (b), and (f) are shown in [42, Lemma 2.3,2.4], and (c) follows from [42, Lemma 2.7].
Suppose asin (d) that P € F¢ n H. By (c), Aut(P) is a subgroup of GL,(p) containing SL,(p), and
the stabilizer of Z in this action normalizes OP,(C Autr(P)(Z )) = Autg(P). So, (d) follows from (a).

It remains to prove (e). If P € F¢ N BB, then as Z = [P, P] is Autp(P)-invariant in this case,
OutNF(Z)(P) = Outz(P) has a strongly p-embedded subgroup, and so P is essential in Nx(Z).
Conversely, suppose P is N (Z)-essential. By (a) applied to Nx(Z), P € {A} U H U B and Outy(P)
is of order p, so by assumption NOUtNF (Z)(P)(OutS(P)) is strongly p-embedded in Outy, ;) (P)
by [2, Proposition A.7]. Now each member of N Aut,.(P)(Auts(P)) extends to S by (a), so Z is
N put,.(py(Autg(P))-invariant. Thus, Ny, py(Outg(P)) = NOUth (Z)(P)(OutS(P)) is a proper sub-
group of Outx(P), and hence strongly p-embedded by [2, Proposition A.7] again. So, P is essential
in F. By assumption P # A, and P ¢ H by (d). So, P € B. O

For the remainder of this subsection, we let 7 be a saturated fusion system on a p-
group S with a unique abelian subgroup A of index p. Further, we assume that 0,(F) = 1
and A is not essential in 7.

We next set up some additional notation. Fix an element x € S — A such that A,(x) is Aut-(S)-
invariant, as in Lemma 5.5(f). As O,(F) = 1, S is of maximal class by Lemma 5.5(b). In particular,
Z = Z,isoforder p, A/ A, is of order p, and S’ = A, so we can adopt [42, Notation 2.5]. Asin [42,
Notation 2.5], let a € A\A,, and define H; and B; to be the S-conjugacy classes of the subgroups
Z{xa'y and Z,(xa') fori = 0,1,..., p — 1, and set

H.,=H,U-+UH, ; and B,=BU-UB,,

sothat H = Hy U H, and B = B, U B,.
Set

A=(z/pD)*x(z/pz)y* and A ={(r.r)|re(z/pz)*}.
Define p: Autz(S) > Aand i : Outp(S) — Aby u([a]) = u(a) = (r,s), where
(xAp)* =x"A, and z% =2z

The following lemma looks at the image of homomorphisms analogous to u and {i that are defined
instead with respect to Nx(Z)/Z and Cr(Z)/Z.

Lemma 5.6. Assume |S/Z| = p™ withm > 4. Let £ € {N(Z),Cr(Z2)}, and let s be the restriction
of p to Autg(S). Let ug/z © Aute,7(S/Z) — A be the map analogous to 1 but defined instead with
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respect to S/Z. Then

(g ) = {r, 7™ | (r,s) € Im(ug)}.

In particular, if Im(ue) = A, then Im(ug /7)) = A. And if Im(ug) = A; for some i, then Im(pg ) =
A;_, where the indices are taken modulo p — 1.

Proof. This essentially follows from [16, Lemma 1.11(b)]. By assumption, £/Z is a fusion system
over a p-group S/Z of order at least p*. So A/Z is the unique abelian subgroup of S/Z of index
p by [42, Lemma 1.9]. As S is of maximal class, so is the quotient S/Z. In particular, Z(S/Z) is of
order p, so we can define ¢/, as suggested with xZ in the role of x and ¢gZ in the role of z, where
g € Z, — Z is a fixed element.

Let o € Aut,(S) with u(a) = (r,s), let & be the induced automorphism of S/Z, and let t €
(Z/pz)* be such that a*A, = a' A, (which exists because A and A, are Auty(S)-invariant and
|A/Ay| = |Zy| = p). By [16, Lemma 1.11(b)], « acts on the ith upper central quotient Z;(S)/Z;_,(S)
by raising a generator to the power trm~ifori=1,..,m—1.Thus,s = tr" ! and (¢2)* = ¢°Z =
¢"" 7. Hence, e z(@) = (r, sr~1). Conversely if pe (@) = (r,5), then ug(a) = (r,5r). O

In the following proposition, we refer to Oliver’s systems according to the itemized list (a)(i-iv),
(b) given in [42, Theorem 2.8].

Proposition 5.7. Assume F is one of the exotic systems appearing in [42, Theorem 2.8]. Write
|S/Z| = p™ withm > 3.

(a) F isof characteristic p-type whenever F¢ C H. In particular, this holds if F occurs in case (a)(i),
(a)(iv), or (b).

(b) If F is in case (a)(ii) and m > 4, then Nr(Z) is exotic. Moreover, F is of component type, and
Cr(Z2)/Z is simple, exotic, and occurs in (a)(iv) in this case. If F is in case (a)(ii) with m = 3
(and hence p = 5), then N;(Z)/Z is the fusion system of 5°GL,(5), and F is of characteristic
5-type.

(c) IfFisin case (a)(iii), then N(Z) is exotic. Moreover, F is of component type where Cr(Z)/Z is
simple, exotic, and of type (a)(i).

Proof. Each of Oliver’s systems is simple on S with a unique abelian subgroup A of index p that is
not essential, so it satisfies our standing assumptions and the hypotheses of Lemmas 5.5 and 5.6,
and we can continue the notation from above. In particular, Z, = Z is of order p, S’ = A;, and S
is of maximal class. Set

£:=Cp(Z),S=S/Zand € = £/Z.

If G is a group realizing N»(Z), then C(Z) realizes € = Cy, (7)(2) and so C;(Z)/Z realizes E.
Hence

if £ is exotic, then N £(Z) is exotic. (5.1)

The £-automorphism group of S is the centralizer of Z in Autz(S). Thus, if Im(u) = A, then by
definition of the map u, we have

Im(ug) ={(r,1) | r € (Z/p2)*} = A,
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which implies Im(ug) = A_; by Lemma 5.6. So,
if Im(u) = A, then Im(u,) = Ay and Im(uz) = A_;. (5.2)

For each fully 7-normalized subgroup X < S of order p and not equal to Z, C(X) is abelian: if
X < A this follows because Cq(X) = A (X is not central), while if X £ A, this follows because
C4(X) = Z by Lemma 5.5(b). Thus, N»(X) is constrained in this case by Lemma 5.3. Hence,

F is of characteristic p-type if and only if Nx(Z) is constrained. (5.3)

By Lemma 5.5(e), if ¢ C H, then Nx(Z) has no essential subgroups. By the Alperin-Goldschmidt
Fusion Theorem [2, 1.3.5], each morphism in Nr(Z) extends in this case to S, and hence S is
normal in N-(Z). So,

if F¢ C H, then Nx(Z) is constrained. (5.4)

In particular, the first part of (a) holds.

Case: F occurs in (a)(i), (a)(iv), or (b) of [42, Theorem 2.8]. We have F¢ C H precisely in
these cases. So, F is of characteristic p-type by (5.4). This completes the proof of (a).

Case: F occurs in (a)(ii). Here, m = —1 (mod p — 1), Im(u) = A, and F°¢ = By U H,. By
assumption F is exotic, so as F is the fusion system of >D,(q) when p = 3, we have p > 5.

By Lemma 5.5(e), the set of N(Z)-essential subgroups is 7¢ N B = B,. A straightforward argu-
ment shows now that the elements of /3, are also essential in & = C.(Z), and their images in S
are essential in €. Thus, B, C ¢, where B, = {P | P € B,}.

Subcase: m > 4. By (5.1), it is sufficient to show that Eis simple, exotic and occurs in case (a)(iv)
of Oliver’s classification. As S has order p™, we know that A is the unique abelian subgroup of S
of index p by [42, Lemma 1.9]. As A is not F-essential, it follows from the Alperin—-Goldschmidt
Fusion Theorem that every element of Autz(A) extends to an F-automorphism of S. From this
one sees that A is not radical and thus not essential in &.

We will prove first that £ is reduced. As Op(é_') is contained in every £-essential subgroup, we
have 0,(€) < [ B, = Z(S). By Lemma 5.5(c), Z, is not Autg(P)-invariant for any P € B, and
hence Z, = Z(S) is not Autz(P)-invariant for any P € B,,. So, 0,(€) = 1.

We next show that OP(€) = €. By [42, Proposition 1.3(c,d)], the focal subgroup of € is generated
by [P, Autz(P)] for P € B, U{S}, and OP(€) = £ if and only if foc(€) = S. As P is a natural mod-
ule for Op,(Autg(P)) =~ SL,(p) for each P € B, (Lemma 5.5(c)), the focal subgroup of € contains
(By) = Ay(x). Thus, foc(€) = Sif a € [S, Autg(S)]. By (5.2), Im(ug) = A_;. Further, if & is an &-
automorphism of S with ugs(&) = (r,r™1), then for the class t € (Z/pz)* with (a4,)* = a'A,,
we have r~! = 72 by [42, Lemma 2.6(a)], and hence t = r~""D Asm+1=0 (mod p —1)
and p > 5, we have —(m — 1) # 0 (mod p — 1). So Autg(S) acts nontrivially on A/A,. Hence,
foc(€) = Sand € = OP(€).

We next show that OP'(€) = € using [42, Lemma 1.4]. Set P = Z(S)(x) = Z,(x) € B,, and let
& be an £-automorphism of S. Recall that x was chosen such that Ay(x) is Aut(S)-invariant.
Moreover, Bis Autr(S)-invariant and /3, consists of the elements of /3 that lie in Ay{x). Hence, 3,
is Aut,(S)-invariant and so & preserves the S-class B, under conjugation. Thus, upon adjusting &
by an inner automorphism of S (which does not change the image of & under ), we can assume
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that & normalizes P. The restriction of & to P acts via an element of SL,(p) on P because Im(uz) =
A_;, and so this restriction is contained in o”’ (Autg(P)). Thus, OPl(é_‘ ) = € by [42, Lemma 1.4].
Thus, € is reduced. Step 1 of the proof of [42, Theorem 2.8] then shows that £ is the unique
reduced fusion system with the given data, and then Step 2 shows that € is simple. So, € is exotic
and occurs in case (a)(iv) of Oliver’s classification,asm — 1 = -2 # 0,—1 (mod p — 1).
Subcase: m = 3. Asm = —1 (mod p — 1), we have p = 5. So, S is extraspecial of order 53 and
exponent 5. We saw above that N(Z)¢ = B, which is of size 1 in this case. That is Z,(x) is the
unique essential subgroup of Nx(Z), which is therefore invariant under Aut-(S) = AutNr(Z)(S).

By the Alperin—-Goldschmidt Fusion Theorem, this subgroup is normal Nx(Z) and so Z(S)(x)
is normal in Nx(Z)/Z. This implies that Nx(Z) and Np(Z)/Z are constrained. In particular, F
is of characteristic 5-type by (5.3). As Im(MN,.(Z)) = Im(u) = A, it follows from Lemma 5.6 that
Im(uNF(Z) /z) = A. Using this and Lemma 5.5(c), one sees that N»(Z)/Z is indeed isomorphic to
the fusion system of 52GL,(5). This completes the proof of (b).

Case: F occurs in (a)(iii). Then m =0 (mod p — 1), F¢ = H, U B,, and Im(u) = A. Again,
by (5.1), it is sufficient to show that Eis simple, exotic and occurs in case (a)(i) of Oliver’s classi-
fication. Similarly as in the previous case, by Lemma 5.5(e), the set of N(Z)-essential subgroups
isF*NB=B,and B, ={P|PEB,ICE .

As m > 3, we have p > 5, and hence in fact m > 4. In particular, A is the unique abelian sub-
group of S. Moreover, A is not essential in &, and Op(é_‘) =1 by a similar argument as in the
previous case. Also as the previous case, the focal subgroup of £ contains (55, ), which this time is
equal to S. So, OP(€) = £.

Notice that m =0 (mod p — 1) implies Ay = A, and thus Im(ug) = A, by (5.2). It follows
therefore from [42, Lemma 2.6(b)] that ; is Autg(S)-invariant fori = 1,2, ..., p — 1. Hence, argu-
ing as in the previous step (but with some 73; instead of ), one sees that OP'(€) = €. Hence, &
is reduced.

It follows now from Steps 1 and 2 of the proof of [42, Theorem 2.8] that £ is simple and
uniquely determined. As every essential subgroup of € has order p? and |S/Z(S)| = p™~! where
m—1=-1 (mod p — 1), it follows moreover that € occurs in case (a)(i) of Oliver’s classification.
In particular, € is exotic. This completes the proof of (¢) and thus the proof of the proposition. []

5.3 | The Clelland-Parker systems

We now describe the fusion systems constructed by Clelland and Parker in [17]. Throughout, we fix
a power g of the odd prime p, a natural number n < p — 1, and we setk :=F,. Let A := A(n, k)
be the (n + 1)-dimensional space of homogeneous polynomials of degree n in two variables with
coefficients in k. The group D := k* X GL,(k) actson A via f(x,y) - (4,[¢ 3 )=Af(ax+b,cy +
d). The subgroup SL, (k) of D acts irreducibly on A. Write G for the semidirect product DA. Let U
be a Sylow p-subgroup of D and let S := S(n, k) := UA be the semidirect product of A by U.
The center Z := Z(S) is a 1-dimensional k-subspace of A and by [17, Lemma 4.2(iii)], we have

C4(X) = Z(S) for each subgroup X not contained in A. (5.5)
The second center Z,(S) is a 2-dimension k-subspace of A.LetR = ZU and Q = Z,(S)U. ThenR =

g* and Q is special of shape q'*2. Let Hy, be the stabilizer in GL,(k) of a 1-dimensional subspace,
and identify its unipotent radical with R. Let H, be the stabilizer in GSp,(k) of a 1-dimensional
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subspace and identify the corresponding unipotent radical with Q. It is shown in [17] that N;(R)
is isomorphic to a Borel subgroup GL;(k), and that N;(Q) is isomorphic to a Borel subgroup of
GSp,(k). This allows to form the free amalgamated products

F(l, n, k,R) =G *NG(R) HR

and
F(1,n,k,Q) :=G *N,Q) Ho-
Set
FQ,n,k,R) := Fg(F(1,n,k,R))
and

F(1,n,k,Q) := Fs(F(1,n,k,Q)).

More generally, for each X € {R,Q} and each divisor r of g —1, subgroup F(r,n,k,X) of
F(1,n, k, X) of index r, which contains OP'(G) and OP' (H v)- They set then

F(r5 n, k,X) = FS(F(FS n, kyX))‘

As they show, distinct fusion systems are only obtained for distinct divisors r of (n + 2, g — 1) when
X = R, and for distinct divisors r of (n,q — 1) when X = Q. By [17, Theorem 4.9], for all n > 1
and each divisor r of (n + 2,q — 1), F(r,n, k,R) is saturated. Similarly, F(r, n, k, Q) is saturated
for each n > 2 and each divisor r of (n,q — 1). It is determined in [17, Theorems 5.1 and 5.2 and
Lemma 5.3] which of these fusion systems are exotic. It turns out that F(r, n, k, R) is exotic if and
only ifeither n > 2 orn = 2 and q & {3, 5}. Furthermore, F(r, n, k, Q) is exotic if and only if n > 3,
inwhichcase p#3asn<p—1.

For the remainder of this subsection, except in Lemma 5.10, we use the notation
introduced above.

For the problems we will consider here, we will sometimes be able to reduce to the case r =1
using the following lemma.

Lemma 5.8. For any divisor r of q — 1, the fusion system F(r,n,k,R) is a normal subsystem
of F(1,n,k,R) of index prime to p, and the fusion system F(r,n,k,Q) is a normal subsystem of
F(@1,n,k,Q) of index prime to p.

Proof. For X € {R, Q}, the fusion systems F(r, n, k,X) and F(1, n, k, X) are both saturated by the
results cited above, As F(r,n, k,X) is a normal subgroup of F(1,n, k,X), it is easy to check that
F(r,n,k,X) is F(1,n, k,X)-invariant. As both F(1,n,k,X) and F(r,n, k,X) are fusion systems
over S, the claim follows. O

Proposition 5.9. F(r,n, k,R) is of characteristic p-type for all 1 < n < p — 1 and for all divisors r
of(n+2,q—1).
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Proof. Fix1<n< p—1and a divisor r of (n + 2,9 —1). Set F = F(1,n,k,R). By Lemma 5.8,
F(r,n, k,R) is a normal subsystem of F of index prime to p. So, by [28, Proposition 2(c)], it suf-
fices to show that F is of characteristic p-type. By [17, Lemma 5.3(i,ii)], F is of realizable and of
characteristic p-type when n = 1, so we may and do assume n > 2.

Using the notation above, set F; = F¢(G), S, = Ng(R), and F, = Fs, (Hg). The fusion system
F is generated by 7, and F, by [17, Theorem 3.1], and so as 7, and F, are both constrained
with O,(F;) = A and O,(F,) = R, it follows that ¥ is in turn generated by Auty, (A), Auty, (S),
Auty (R), and Auty (S,). However, the last automorphism group is redundant, as Ny (S,) =
N;(R) induces fusion in 7. Hence,

= (Autg, (5), Auty, (A), Auty (R)). (5.6)
Observe also that the following property is a direct consequence of (5.5):
IfX < Swith X £ Z, then either X < A and C4(X) = A, or |Cs(X)| < (5.7)

We can now show that F is of characteristic p-type. Let first X € 7/ such thatX ¢ Z. We show that
Nz(X) is constrained. If X is not F-conjugate into A or into R, then every morphism in N»(X)
extends by (5.6) to an automorphism of S. So, Np(X) =N NF(S)(X ). As N(S) is constrained, it
follows thus from [28, Lemma 2.11] that N (X) is constrained. So, we may assume that there exists
an F-conjugate Y of X with Y < A or Y < R. We will show that Cy(X) is abelian so that N-(X)
is constrained by Lemma 5.3. Note that |C4(X)| > |C(Y)| as X is fully normalized and thus fully
centrahzed in F. As X is not contained in Z = Z(S), we have in particular Y £ Z. If Y < A, then

< C4(Y) and, as X is fully centralized and n > 2, |C¢(X)| > |Cs(Y)| > |A| > ¢%. So, by (5.7),
CS(X ) = Aisabelian. Similarly, by (5.7),if X < Athen CS(X ) = Aisabelian. Thus, we may assume
Y <Rand X £ A. Then R < Cg4(Y) and (5.7) implies g2 > |C¢(X)| > |Cs(Y)| > |R| = ¢*. So, the
inequalities are equalities, C¢(Y) = R and |Cg(X)| = g®. By the extension axiom, there exists ¢ €
Hom(C4(Y), Cs(X)). So, it follows that C5(X) € R” is abelian. This completes the proof that
N(X) is constrained for every X € F/ with X ¢ Z.

Let now 1 # X < Z. It remains to show that Nx(X) is constrained. If Nx(X) C Nx(S), then
again by [28, Lemma 2.11], Np(X) =N NP(S)(X ) is constrained because N(S) is constrained.
We will finish the proof by showing that indeed N-(X) C N(S). Assume by contradiction that
Nz(X) € Nx(S). Then there exists an essential subgroup E of Nx(X). Observe that Z < E, as E is
Np(X)-centric. As Autg(E) is not normal in Auty,_(7)(E), there exists an element of Auty_)(E)
that does not extend to an F-automorphism of S. So, by (5.6), E is F-conjugate into A or into R.
Assume first that there exists an F-conjugate E of E such that E < A. Property (5.5) yields that
RN A =Z. So E is conjugate to E < A via an element of Auty, (S) by (5.6). Thus, as C4(E) <
we have A < CS(E) <E. Hence, A=E by (5.7). As A is Auty, (S)-invariant, it follows E = A.
Looking at the structure of G, we observe now that N;(X) = N;(S) and so Autg(A) is normal in
Auty, x)(A) = Npy,)X) =N Auty ( 4)(X)- Hence, A cannot be essential in N-(X) and we have
derived a contradiction. Thus, E is not 7-conjugate into A. Therefore, again by (5.6), E is conju-
gate into R under an element of Auty, (S).Leta € Auty, (S) such that E* < R. As C4(E) < E, we
have then C¢(E%) < E¥. AsR s abehan it follows E® = R. Thus, we have

Auty, 00 (E)* = N )X = Nau,@X)-
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Asl # X% < Z% = Z < Rand Autp(R) = Auty (R) actsk-linearly on R, N, () (X*) hasa normal
Sylow p-subgroup. Thus, Auty x)(E) = Ny, (X“) has a normal Sylow p-subgroup, contra-
dicting the fact that E is essential in N-(X). This final contradiction shows that Nx(X) C N-(S)
is constrained. This completes the proof of the assertion. O

Our next goal will be to show that F := F(r, n, k, Q) does not have a punctured group for n > 3
(i.e., in the case that F is exotic). For that we prove that, using the notation introduced at the
beginning of this subsection, Nx(Z)/Z is exotic. The structure of N (Z) /Z resembles the structure
of F(r,n — 1, k, R) except that the elementary abelian normal subgroup of index q is not essential.
Indeed, it will turn out that the problem of showing that N-(Z)/Z is exotic reduces to the situation
treated in the following lemma, whose proof of part (c) depends on the classification of finite
simple groups.

Lemma 5.10. Fix a power q of p as before. Let S be an arbitrary p-group such that S = U X A splits
as a semidirect product of an elementary abelian subgroup A with an elementary abelian subgroup
U. Assume |U| = q, and |A| = q" forsome3<n<p—1.SetP :=Z(S)U, T :=[S,S]U, and let
F be a saturated fusion system over S. Assume the following conditions hold.

(i) Z(S) hasorder q, [S,S] £ Z(S), and Z(S) = C,(u) forevery 1 # u € U.

(ii) OP,(Aut;»(P)) =~ SL,(q) and P is a natural SL,(q)-module for OP,(AutF(P)).
(iii) F is generated by Auty(P) and Autx(S).
(iv) Auty(S) acts irreducibly on A/[S, S], |A/[S,S]| = q.

(v) there is a complement to Inn(S) in Aut(S) that normalizes U.

Then the following hold.

(a) The nontrivial strongly closed subgroups of F are precisely S and T.
(b) Neither S nor T can be written as the direct product of two nontrivial subgroups.
(c) F isexotic.

Proof. Observe first that (iii) implies that P is fully normalized. In particular, Auts(P) €
Syl,(Autz(P)). As Z :=Z(S) has order g, it follows from (ii) that Z(S) = Cp(Ng(P)) =
[P, Ns(P)] < [S, S]. In particular, P < T. We note also that C¢(P) = P as C,(U) = Z(S) by (i).

(a) We argue first that T is strongly closed. Observe that T is normal in S, as T contains [S, S].
As [S, S] is characteristic in S, it follows thus from (v) that T is Auty(S)-invariant. Thus, as
P < T, (iii) implies that T is strongly closed in 7. Let now S, be a nontrivial proper subgroup
of S strongly closed in 7. As S, is normal in S, it follows 1 # S, N Z(S) < P. By (ii), Autz(P)
acts irreducibly on P. So, P < S,,. Hence, [S,S] = [A,U] < [S,P] < [S,Sy] €Sy and thus T =
[S,S]U = [S,S]P £ S,,. Suppose T < Sy. As U < Sy < S = AU, we have S, = (S, n A)U and
thus [S,S] < Sy N A < A. So Autx(S) does not act irreducibly on A/[S, S], contradicting (iv).
This shows (a).

(b) Let S* € {S,T} and assume by contradiction that S* = S; X S, where S; and S, are nontriv-
ial subgroups of S*. Notice that in either case Z = Z(S*) by (i). Moreover, again using (i),
we note that [S;,S;] X [S,,S,] =[S, S] £ Z = Z(S). So, there exists in either case i € {1,2}
with [S;, S;] ] £ Z and thus S; N A £ Z. We assume without loss of generality that S, N A £
Z. Setting S* = §*/Z, we note that S; NA is a nontrivial normal subgroup of S*, and
intersects thus nontrivially with Z = Z(S*). Hence, ((S1NA)Z)NZ,(S*) £ Z and so S; N
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©

ANZy,(S*) £ Z. Choosing s € (S; N AN Z,(S*))\Z, we have s € Ng(P)\P as ANP = Z and
[s,P] < [Z,(S"),P] < Z < P. Using (ii) and C4(P) < P, it follows Z = [P, s]. So, Z = [P, 5] <€
[P,S;]1<S; as P <S*and S, is normal in S*. As S, is a nontrivial normal subgroup of S*,
we have S, N Z = S, N Z(S*) # 1. This contradicts S; N S, = 1. Thus, we have shown that S*
cannot be written as a direct product of two nontrivial subgroups, that is, property (b) holds.
Part (c) follows now using the classification of finite simple groups. Most notably, we use
knowledge of the automorphism groups of finite simple groups, Oliver’s work on fusion sys-
tems over p-groups with an abelian subgroup of index p [42], and the work of Flores—Foote
[22] determining the simple groups having a Sylow p-subgroup with a proper nontrivial
strongly closed subgroup. To argue in detail, assume that F is realizable. By (b), neither S
nor T can be written as a direct product of two nontrivial subgroups. By (a), S and T are the
only nontrivial strongly closed subgroups. The subgroup T is F-centric because T is strongly
closed and P < T is self-centralizing in S. Clearly, S is F-centric. So, as F is realizable, it follows
from [19, Proposition 2.19] that F* = F(G) for some almost simple group G with S € Syl,(G).
Set

If S < Gy, then note that T is a proper subgroup of S that is strongly closed in S with respect
to G and thus with respect to G,. Hence, it follows work of Flores-Foote [22] that p = |T| =
3, which contradicts our assumption. (We refer the reader to [2, Theorem I1.12.12], which
summarizes for us the relevant part of the work of Flores-Foote.) Hence, S # SN G;. As S N
G, is strongly closed in F, it follows thus from (a) that

SNG, =T,

thatis, 7, is a fusion system over T. In particular,as T < S, the prime p divides G/G; and thus
the outer automorphism group of the simple group G,. As p > 5, it follows that G, is not alter-
nating or a sporadic simple group. Hence, by the classification of finite simple groups, G, is of
Lie type. We identify G now in the natural way with a subgroup of Aut(G,); in particular, we
identify G; with Inn(G, ). Write D for the subgroup of Aut(G,) generated by G, and the diago-
nal automorphisms of G, and let E be the subgroup of Aut(G,) generated by D and the group
of field automorphisms of G; with respect to some fixed maximal torus and root structure. By
[26, Theorem 2.5.12], D and E are normal in Aut(G,), |Aut(G,) : E| is not divisible by p > 5,
E/D is cyclic, and D/G, is either cyclic or of order 4. In particular, G, := o’ (G)<ENG,
Go/D N G, is cyclic, and D N G, /G, is cyclic or of order 4.

If p divides the order of G;/D N G, then this group has a unique subgroup of index p whose
preimage is then a normal subgroup of G that has index p in G,. Otherwise, G, = oY (G) <D
and p must divide the order of G,/G, < D/G,. Thus, in this case G, /G; is cyclic and so there is a
unique subgroup of G, /G, of index p. So, in either case we find a normal subgroup N of G that
has index p in G, = OP/(G). As N N S is strongly closed in F = F(G), it follows now from (a)
that NN S =T and p = |S/T|. Using (iv) we see now that p = |S/T| = |A/[S, S]| > q and hence

q:

p- In particular, A has index p in S, and similarly, A, : = [S, S] is an abelian subgroup of T of

index p.
Assume now first n > 4 and thus |4,| > p>. Our goal is to apply [42, Lemma 1.6] with (G,, T) in
place of (G, S), so we verify now the hypotheses of this lemma. It follows from the last condition
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in (i) that any abelian subgroup of T is either contained in A, = [S,S] = AN T or has order at
most p2. Hence, A, is the unique abelian subgroup of T of index p. Moreover, by (i), Z(T) = Z has
order p and |[T, T]| = |[A4,, U]| = |A0/CA0(U)| = |Ay/Z|. This implies that [T, T] has index p in
A, and thus index p? in T. As |A,| > p* > |P|, it follows from (iii) that every F-automorphism of
Ay lifts to an F-automorphism of S. In particular, Aut;(A,) is normal in Aut(A,) and thus also in
Auty, (Ay). Therefore, A, is not essential in 7. Now [42, Lemma 1.6] implies p = 3, contradicting
our assumption.

We have thus n = 3. So, |4,| = p? and T is extraspecial of order p> and exponent p. In par-
ticular, P is normal in T and so (ii) together with C4(P) < P implies T = Ng(P). As T is strongly
F-closed, every F-conjugate of P is in T. If Q € P” is fully normalized, then P is conjugate to Q
under some element of Hom(Ng(P),S), and thus by (iii) under some element of Autx(S). So,
P itself is fully normalized and a similar argument yields P*" = PAu#(S)_ In particular, for every
P* € P, the fact that T is strongly closed implies that Ng(P*) = T and so

OF (Aut,-(P") = (Aut;(PHA®)) < Auty, (PY).

In particular, Auty (P*) is isomorphic to a subgroup of GL,(p) containing SL,(p) and has thus a
strongly p-embedded subgroup. Hence, the elements of P’ are essential and thus centric radical
in ;. As A, is normal in S, it follows moreover that A, is not conjugate to P. As |A4,| = |P],
property (iii) implies thus that every element of Autr(A4,) extends to an F-automorphism of
S. In particular, A, is not radical in F,. As T is extraspecial of order p* and exponent p, T
has exactly p + 1 subgroups of order p2. Moreover, as T = Ng(P) has index p in S, the conju-
gacy class P° has p elements. This shows that there are exactly p subgroups of T of order p?
that are centric and radical in 7}, namely the elements of PS = P¥. However, by the classifica-
tion of Ruiz and Viruel [48, tables 1.1 and 1.2], there is no saturated fusion system over T with
exactly p essential subgroups of order p?. This contradiction completes the proof of (c) and the
lemma. O

Recall that F(r,n, k, Q) is realizable in the case n = 2 and thus has a punctured group. So,
the case n > 3, which we consider in the following proposition, is actually the only interesting
remaining case.

Proposition 5.11. Let 3 < n < p — 1 (and thus p > 5), let r be a divisor of (n,q — 1), and set F =
F@r,n,k,Q). Then Nr(Z) and Nr(Z)/Z are exotic. In particular, F does not have a punctured group.

Proof. By Lemma 5.1, F does not have a punctured group if Nr(Z) is exotic. Moreover, if Nx(Z)
is realized by a finite group H, then N(Z) is also realized by N;;(Z), and N-(Z)/Z is realized by
Ny (Z2)/Z. So, it is sufficient to show that N»(Z)/Z is exotic.

Recall from above that S = S(n,k), A =A(n,k) and Z := Z(S). Set F; = F4(G) and F, =
Fs,(Hg) with S, = Ng(Q). Suppose first r = 1. Then one argues similarly as in the proof of Propo-
sition 5.9 that F = (Autp1 (S),Autp1 (A), Auty, (Q)). Namely, F is generated by F; and F, by [17,
Theorem 3.1, and so as F; and F, are both constrained with OP(FI) = A and OP(FZ) = Q, it fol-
lows that F is in turn generated by Auty, (A), Auty, (S), AutFZ(Q), and Auty, (S,). However, the
last automorphism group is redundant, as Ny, (S,) = N(Q) induces fusion in 7. So, indeed ¥ =
(Autr1 (S),Autr1 (A), AutFZ(Q» if r = 1. This implies Auty, (S) = Autx(S), Autr(A) = Auty, (A)
and(asNg(Q) =N H (Sy)) Autr(Q) = Auty, (Q). Moreover, the set of F-essential subgroups com-
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PUNCTURED GROUPS FOR EXOTIC FUSION SYSTEMS | 83

prises A and all Autx(S)-conjugates of Q. One easily checks that, for any saturated fusion system
G, anormal subsystem of G of index prime to p has the same essential subgroups as G itself. Note
moreover that, for arbitrary r, F is a normal subsystem of F(1,n,k, Q) of index prime to p by
Lemma 5.8. Hence, in any case, the F-essential subgroups are A and the Auty. (S)-conjugates of
Q. As there is a complement to S in N (S) that normalizes U and thus Q, the Auty. (S)-conjugates
of Q are precisely the S-conjugates of Q. So, for arbitrary r, we have

F = (Auty(S), Aut.(A), Aut-(Q)). (5.8)

Moreover, Autz(S) < Autg, (S), Autr(A4) < Auty, (A), and Autz(Q) < Auty (Q). Recall also that
OF'(Hy) < F(r,n,k, Q) and thus SL,(q) = O (Auty. (Q)) < Auty(Q).

Note that Auty(Q) normalizes Z and lies thus in Nx(Z). We will show next that N(Z)
is generated by Auty(S) and Autr(Q). By the Alperin-Goldschmidt Fusion Theorem, it suf-
fices to show that every essential subgroup of Nx(Z) is an Autz(S)-conjugate of Q. So, fix an
essential subgroup E of N»(Z) and assume that E ¢ QA7) As C(E) < E, we have Z < E. If
E < A then E = A. However, Autp(A) < Auty, (A) = Aut;(A) and one observes that S is nor-
mal in N;(Z). So, Auty 7)(A) = Npy,.(4)(Z2) has a normal Sylow p-subgroup, which contradicts
E being essential. Assume now that E < Q. Suppose first Z < Z(E). The images of the maxi-
mal abelian subgroups of Q are precisely the 1-dimensional k-subspaces of Q/Z. As Autr(Q)
fixes Z and acts transitively on the 1-dimensional k-subspaces of Q/Z, we see that Z(E) is
conjugate into Z,(S) = A N Q under an element of Aut-(Q). So, replacing E by a suitable Autx(Q)-
conjugate, we may assume Z(E) < ANQ. As Z < Z(E), it follows then from (5.5) that E < A.
As C4(E) < E and A £ Q, this is a contradiction. So, we have Z = Z(E). As [E,Q] £ [Q,Q] £
Z, it follows Auto(E) < C :=C AUtNr(Z)(E)(E /Z(E)nC Auty,, (Z)(E)(Z(E)). However, C is a normal
p-subgroup of Auty ) (E). Thus, as E is radical in Nz(Z), we have Auty(E) < C < Inn(E).
As C4(E) < E, it follows E = Q contradicting the choice of E. So, we have shown that E lies
neither in A nor in Q. As the choice of E was arbitrary, this means that E is not Autz(S)-
conjugate into A or Q. So, by (5.8), every F-automorphism of E extends to an F-automorphism
of S. This implies that Autg(E) is normal in Autz(E) and thus in AutNP(Z)(E). Again, this
contradicts E being essential. So, we have shown that N-(Z) is generated by Autz(S) and
Autr(g). .

Set S =S/Z and F = Nr(Z)/Z. We will check that the hypotheses of Lemma 5.10 are ful-
filled with 7, S, A, U and 6 in place of F, S, A, U and P. Part (c) of this lemma will then imply
that Nr(Z)/Z is exotic as required. Notice that |U| =|U| =g, |A| = ¢"*! and |A| = q". AsQ =
Z,(S)U, we have Q=2Z(S)U. By [17, Lemma 4.2(i),(iii)], hypothesis (i) of Lemma 5.10 holds. Recall
that OP/(AutHO(Q)) = SI,(q) lies in Nx(Z). In particular, hypothesis (ii) in Lemma 5.10 holds

with 7 and Q in place of 7 and P. As we have shown above that Nx(Z) is generated by Autz(S)
and Autr(Q), it follows that F fulfills hypothesis (iii) of Lemma 5.10. Observe that there exists
a complement K of S in N;(S) that normalizes U. Then Autx(S) < Autg(S) = Inn(S)Autg(S).
Thus, Autz(S) = Inn(S)(Autg(S) N Autr(S)) and Autg(S) N Autr(S) is a complement to Inn(S)
in Autp(S) that normalizes U. This implies that hypothesis (v) of Lemma 5.10 holds
for F.

It remains to show hypothesis (iv) of Lemma 5.10 for F. Notice that [S,S] = [A4, U] is a proper
F4-subspace of A and has thus index at least q in A. So, it remains to show the first condition
in (iv). Equivalently, we need to show that Autr(S) = AutNF(Z)(S) acts irreducibly on A/[S, S].
For the proof, we use the representations Clelland and Parker give for G and H), and the way
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they construct the free amalgamated product; see [17, pp. 293, 296]. Let £ be a generator of k*.
We have

1 0 0 O
0 &1 oo ,

9%lo o £ 0 € 0P (Hg) < Np(rnk.0)(2)-
0 O 0 1

In the free amalgamated product F(1, n, k, Q), the element g € Hg, is identified with

<1, <(1) g) ’OA(n,k)> € Ng(Q),

and this element can be seen to act by scalar multiplication with " on y" € A = A(n, k) and
thus on A/[S,S]. As n< p—1 and £ has order g — 1, the action of ¢ on A(n,k)/[S,S] is
thus irreducible. Hence, the action of Autz(S) on A/[S, S] is irreducible. This shows that the
hypothesis of Lemma 5.10 is fulfilled with 7 in place of 7, and thus F = N(Z)/Z is exotic as
required. O

5.4 | The Parker-Stroth systems

Let p > Sbeaprimeand m = p —4.Let A = A(m, F,) and D be as in Subsection 5.3. The Parker—
Stroth systems are fusion systems over the Sylow subgroup S of a semidirect product P = Q X D,
where Q is extraspecial of order p'*(P~3) and of exponent p, and where Q/Z(Q) = A as an F,D-

module. Then Z := Z(S) = Z(Q) is of order p, while Z,(S) < Q is elementary abelian of order

p*.

It turns out that C,(Q) has order p — 1 (cf. [46, Lemma 2.3(i)] where our D is called L) and so
S can be identified with its image in P, := P/Cp(Q). Parker and Stroth find then a subgroup W
of S such that W is elementary abelian of order p? and

W £Q. (5.9)

We refer to [46, p. 317] for more details on the embedding of W in S, where our W is denoted
W,. Choose a finite group K with K & p? : SL,(p), and let C be the normalizer in K of a Sylow
p-subgroup of K (cf. [46, p. 315]). It turns out that N p,(W) can be identified with C in such a way
that W is identified with O ,(K) (cf. [46, p. 319]). The exotic Parker-Stroth system 7" at the prime p
is then the fusion system over S of the free amalgamated product P; *. K, where we identify S €
Syl p (P) with its image in P, as before. Identifying further N P, (W) with C (and thus Ng(W) with
a Sylow p-subgroup of K), it is shown in [46, Lemma 3.1] that F is generated by F¢(P;) = Fg(P)
and FNS(W)(K). Here Autg(Ng(W)) = Aut(Ng(W)) = AutNP(W)(N (W) because of the identi-
fication in the free amalgamated product. Note that Fy(P) is generated by Autp(Q) and Autp(S),
and that FNS(W)(K) is generated by Autg(W) = SL,(p) and Autg(Ng(W)). Hence, we obtain
that

F = (Aut-(Q), Aut,(S), Aut.(W)), (5.10)
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where Autr(Q) = Autp(Q), Autx(S) = Autp(S), and Autz(W) = SL,(p). In particular, as Q < P,
we have that

Q is Auty(S)-invariant. (5.11)

Proposition 5.12. Each Parker-Stroth system is of characteristic p-type, and so has a punctured
group in the form of its subcentric linking system.

Proof. We use the notation from above. Let Y be a subgroup of order p in S that is fully 7-
centralized. We need to show that C(Y) is constrained. For that purpose fix a subgroup E €
Cr(Y).

Case:Y £ Q. Then Co/ z(Y) is of order p, so Co(Y) is elementary abelian (of order p?). Hence,
Cs(Y) = Co(Y)Y is abelian in this case, and so C(Y) is constrained.

Case:Y < QbutY £ Z. Then Cy(Y) is abelian when p = Sasthenm = 1and YZ/Z isits own
orthogonal complement with respect to the symplectic form on Q/Z. We may therefore assume
p=7.

We consider now the possibilities for E.

Subcase: E £ Q. As E N Q contains YZ(S) = C,XxC,, we have then |E| > p® and so E is not
F-conjugate into W. Thus, it follows in this case that from (5.10) and (5.11) that E is also not F-
conjugate into Q. Hence, again by (5.10), every F-automorphism of E extends to an element of
Auty(S). In particular, every element of Autcr(y)(E) extends to an element of Autcr(y)(CS(Y)).
As E € Cp(Y)“, this implies E = C5(Y). It follows from (5.11) that Cp(Y) is invariant under
Aute, (y)(E) = Aute, (vy(Cs(Y)).

Subcase: E < Q. AsW = C, X C, = ZY < E, it follows now from (5.9) and (5.11) that E is not
(Autz(S), Autr(Q))-conjugate into W. So, by (5.10), every morphism in a decomposition of a €
Aute, (vy(E) lies in Autz(Q) or Auty(S). Hence, using again (5.11), we conclude that a extends to
Q and thus to an element of Autcr(y)(CQ(Y)). So, C(Y) < E because a was chosen arbitrarily
and E € Cx(Y)“". Our assumption yields E < Q N Cs(Y) = Cop(Y) and so E = Cp(Y).

In the case Z # Y < Q, we have thus shown that Cg(Y) and Cp(Y) are the only candidates for
subgroups that are centric and radical in Cx(Y), and that C(Y) is Autcr(Y)(CS(Y))-invariant.
Thus, by Alperin’s Fusion Theorem, C;(Y) is normal in Cr(Y). As p > 7 and so m > 3, it follows
from the construction of Q and P that C(Y) # Z,(S) and so Cp(Y) is self-centralizing in Cg(Y)
(see [46, Lemma 2.2(i) and Lemma 2.3(iii)]). Therefore, C(Y) is constrained.

Case: Y = Z. Assume first that E is (Autz(S), Autr(Q))-conjugate into W. Note that E has
order at least p?. Hence, E is in fact (Autz(S), Autz(Q))-conjugate to W = C, xC,. We may
therefore assume that E = W. By (5.9) and (5.11), W is not Aut(S)-conjugate into Q and so, by
(5.10), every F-conjugate of W is Autx(S)-conjugate to W. In particular, W is fully 7-normalized.
As Autp(W) = SL,(p), we have Autcr(z)(W) = CAutF(W)(Z) =N AutF(W)(AutS(W)) and hence
every element of AUth(Z)(W) extends by the saturation axioms to an element of Aut,(Ng(W)).
As W £ Q, it follows from (5.10) and (5.11) that every element of Auty(Ng(W)) extends to an
element of Autr(S). This contradicts the assumption that W = E € Cr(Y)"" = Cr(Z)". So, E
is not (Autr(S), Autr(Q))-conjugate into W. Using again (5.10) and (5.11), one sees now that
a e Autcr(y)(E) extends to an element of Autr(S) if E £ Q, and to an element of Autz(Q) if
E £ Q. AsE € Cr(Y)“, it follows that E € {Q, S}. As E was arbitrary, it follows from (5.11) that
QCr(Y) =Cr(2). As C4(Q) < Q, it follows that Cr(Y) is constrained.
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Thus, in all cases, Cr(Y) is constrained. We conclude that the Parker-Stroth systems are of
characteristic p-type and therefore have a punctured group. O

6 | PUNCTURED GROUPS OVER p'*2

The main purpose of this section is to illustrate that there can be several punctured groups asso-
ciated to the same fusion system, and that the nerves of such punctured groups (regarded as
transporter systems) might not be homotopy equivalent to the nerve of the centric linking sys-
tem. Indeed, working in the language of localities, we will see that there can be several punctured
groups extending the centric linking locality. This is the case even though we consider examples
of fusion systems of characteristic p-type, and so in each case, the subcentric linking locality exists
as the “canonical” punctured group extending the centric linking locality. On the other hand, we
will see that in many cases, the subcentric linking locality is indeed the only p’-reduced punctured
group over a given fusion system. Thus, “interesting” punctured groups seem still somewhat rare.
More concretely, we will look at fusion systems over a p-group S that is isomorphic to p}r”. Here
p}jz denotes the extraspecial group of order p* and exponent p if p is an odd prime, and (using
a somewhat nonstandard notation) we write p}jz for the dihedral group of order 8 if p = 2. Note
that every subgroup of order at least p? is self-centralizing in S and thus centric in every fusion
system over S. Thus, if F is a saturated fusion system over S with centric linking locality (£, A, S),
we just need to add the cyclic groups of order p as objects to obtain a punctured group. We will
again use Chermak’s iterative procedure, which gives a way of expanding a locality by adding
one F-conjugacy class of new objects at the time. If all subgroups of order p are F-conjugate, we
thus only need to complete one step to obtain a punctured group. Conversely, we will see in this
situation that a punctured group extending the centric linking locality is uniquely determined
up to a rigid isomorphism by the normalizer of an element of order p. Therefore, we will restrict
attention to this particular case. More precisely, we will assume the following hypothesis.

Hypothesis 6.1. Assume that p is a prime and S is a p-group such that S = p}r” (meaning here
S = Dgif p =2).SetZ := Z(S). Let F be a saturated fusion system over S such that all subgroups
of S of order p are F-conjugate.

It turns out that there is a fusion system F fulfilling Hypothesis 6.1 if and only if p € {2, 3, 5, 7};
for odd p this can be seen from the classification theorem by Ruiz and Viruel [48]. More precisely,
we obtain the following lemma.

Lemma 6.2. Hypothesis 6.1 holds if and only if we are in one of the following cases.

* p =2andF isrealized by A,.

« p =3andF is realized by °F,(2) orJ,.

* p =>5andF isrealized by Th.

* p =7 and F is one of the three exotic fusion systems discovered by Ruiz and Viruel [48].

Proof. Suppose first that p = 2 so that S = Dg. Then there are precisely two elementary abelian
subgroups of order 4, which are the only candidates for F-essential subgroups. Indeed, all invo-
lutions are F-conjugate if and only if both of them are essential, in which case F is the 2-fusion
system of Ag.
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Suppose now that p is odd. In this case, the claim follows essentially from the list provided
by Ruiz—Viruel [48, table 1.1]. To see this it should be noted that all elements of order p are F-
conjugate if and only if all of the p + 1 elementary abelian subgroups of S of order p? are in the
set F¢-rad of F-centric F-radical elementary abelian subgroups. O

Assume Hypothesis 6.1. One easily observes that the 2-fusion system of Ay is of characteristic
2-type. Therefore, it follows from Lemma 5.4 that the fusion system F is always of characteristic
p-type and thus the associated subcentric linking locality is a punctured group. As discussed in
Remark 2.25, this leads to a host of examples for punctured groups £ over F that are modulo
a partial normal p’-subgroup isomorphic to a subcentric linking locality over F. One can ask
whether there are more examples. Indeed, the next theorem tells us that this is the case if and
only if p = 3. For p € {5, 7} our two theorems below depend on the classification of finite simple
groups.

Theorem 6.3. Under Hypothesis 6.1, there exists a punctured group (L™, A", S) over F such that
L*/0,(L") is not a subcentric linking locality if and only if p = 3.

It seems that for p = 3, the number of 3’-reduced punctured groups over F is probably also
severely limited. However, as we do not want to get into complicated and lengthy combinatorial
arguments, we will not attempt to classify them all. Instead, we will prove the following theorem,
which leads already to the construction of interesting examples.

Theorem 6.4. Assume Hypothesis 6.1. Suppose that L is a punctured group over F such that L | .
is a centric linking locality over F. Then L™ is p’-reduced. Moreover, up to a rigid isomorphism, L
is uniquely determined by the isomorphism type of N .+ (Z), and one of the following holds:

(a) L7 is the subcentric linking system for F; or

(b) p = 3, F is the 3-fusion system of the Tits group %F,(2)' and N+(Z) = 3S; or

(c) p =3, F is the 3-fusion system of Ru and of J,, and N +(Z) = 3#Aut(A¢) or an extension of
3L5(4) by a field or graph automorphism.

Conversely, each of the cases listed in (a)-(c) occurs in an example for L*.

Here the notation A#B is asin [26, p. 261], namely it describes a group X with normal subgroup
N = A and quotient X /N 2 B, and such that N £ Z(X) and X does not split over N. In the case
3#Aut(Ay), this is the unique extension of the quasisimple group 344 by Out(34¢) = C, X C,.

Before beginning the proof, we make some remarks. The 3-fusion systems of Ru and J, are
isomorphic. For G = Ru and S a Sylow 3-subgroup of G, one has N;(Z(S)) = 3#Aut(Ag) [26,
table 5.3r], so the punctured group £* in Theorem 6.4(c) is the punctured group of Ru at the
prime 3 (for example, as our theorem tells us that £* is uniquely determined by the isomorphism
type of N.+(Z)). Using the classification of finite simple groups, this can be shown to be the only
punctured group in (b) or (c) that is isomorphic to the punctured group of a finite group. For exam-
ple, when G = J,, one has N;(Z(S)) = (6M,,) - 2. The 3-fusion system of 6M,, is constrained and
isomorphic to that of 3M,; = 3L;(4) and also that of 3M,, = 3(A44.2), where the extension A4.2
is nonsplit (see [26, table 5.3c]). If we are in the situation of Theorem 6.4(c) and N +(Z(S)) is an
extension of 3L;(4) by a field automorphism, then N .+ (Z(S)) is a section of N5(Z(S)). Also, for
G = ?F,(2)', the normalizer in G of a subgroup of order 3 is solvable [37, Proposition 1.2].
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By Lemma 6.2, for p € {2, 5, 7}, there are also saturated fusion systems over S, in which all sub-
groups of order p are conjugate. Moreover, for p = 5, the only such fusion system is the fusion
system of the Thompson sporadic group. It should be noted here that the Thompson group is of
local characteristic 5, and thus its punctured group is just the subcentric linking locality. The three
exotic fusion systems at the prime 7, which were discovered by Ruiz and Viruel, are of characteris-
tic 7-type. As our theorem shows, for each of these fusion systems, the subcentric linking locality
is the only associated punctured group extending the centric linking locality.

We will now start to prove Theorems 6.3 and 6.4 in a series of lemmas. If Hypothesis 6.1 holds
and L7 is a punctured group over F, then M,, := N+(Z) is a finite group containing S as a Sylow
p-subgroup. Moreover, Z is normal in M,,. These properties are preserved if we replace M, by
M =M,/ Oy (M,) and identify S with its image in M. Moreover, we have Op/(M ) = 1. We ana-
lyze the structure of such a finite group M in the following lemma. Most of our arguments are
elementary. However, for p > 5, we need the classification of finite simple groups in the form of
knowledge about the Schur multipliers of finite simple groups to show in case (b) that p = 3.

Lemma 6.5. Let M be a finite group with a Sylow p-subgroup S = p1++2. AssumethatZ :=Z(S)is
normalin M and O, (M) = 1. Then one of the following holds:

(&) SEIMandCy(S)< S, or
(b) p=3,8S < F*(M), and F*(M) is quasisimple with Z(F*(M)) = Z.

Proof. Assume first that S < M. In this case we have [S, E(M)] = 1 and thus S n E(M) < Z(E(M)).
So, by [3, 33.12], E(M) is a p’-group. As we assume Op,(M) =1, this implies E(M) =1 and
F*(M) = Op(M) = S. Therefore, (a) holds.

Thus, for the remainder of the proof, we will assume that S is not normal in M, and we will
show (b). First we prove

E(M) # 1. (6.1)

Suppose E(M) = 1 and set P = O,(M). Note that Z < P. As O,y(M) = 1, we have P = F*(M), so
Cy(P) < Pand P # Z. As we assume that S is not normal in M, we have moreover P # S. If P is
elementary abelian of order p?, then M /P acts on P and normalizes Z, thus it embeds into a Borel
subgroup of GL,(p). If p = 2 and P is cyclic of order 4 then Aut(P) is a 2-group. So, S is in any case
normal in M and this contradicts our assumption. Thus, (6.1) holds.

‘We can now show that

p divides |Z(K)| for some component K of M. (6.2)

First note that p divides |K| for each component K of M. For otherwise, if p does not divide |K|
for some K, then1 < K < Op,(E(M)) < Op/(M) = 1, a contradiction.

Supposing (6.2) is false, Z(E(M)) is a p’-group and thus by assumption trivial. Hence, E(M) is
a direct product of simple groups. As Z is normal in M, [Z,E(M)] =1 and thus ZNnEM) = 1.
As the p-rank of M is two and p divides |K| for each component K, there can be at most one
component, call it J, which is then simple and normal in M. As p divides |J| and J is normal
in M, it follows that SNJ # 1. But then [SNJ,S]<JNnZ=1andsoSNJ =ZisnormalinJ, a
contradiction. Thus, (6.2) holds.
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Next we will show that
K = F*(M) is quasisimple with S < K and Z(K) = Z. (6.3)

To prove this fix a component K of M such that p divides |Z(K)|. Then p divides |K|/|Z(K)| by
[3,33.12]. If S isnot asubgroup of K, then K /Z(K) is a perfect group with cyclic Sylow p-subgroups,
so Z(K) is a p’-group by [3, 33.14], a contradiction. Therefore, S < K. If there were a component L
of M different from K, then we would have [S N L, L] < [K, L] = 1, that is, L would have a central
Sylow p-subgroup. However, we have seen above that p divides the order of each component, so
we would get a contradiction to [3, 33.12]. Hence, K = F*(G) is the unique component of M. Note
that 0,/(Z(K)) < O,/(M) = 1 and thus Z(K) is a p-group. As [Z,K] = 1, this implies Z = Z(K).
Thus, (6.3) holds.

To prove (b), it remains to show that p = 3. Assume first that p = 2so that S = Dg. Then Aut(S)
is a 2-group and thus N (S) = SCx(S). Hence, with K = K /Z, we have N (S) = Cg(S). Therefore,
K has a normal p-complement by Burnside’s theorem (see, e.g., [34, 7.2.1]), a contradiction that
establishes p # 2.

For p > 5, we appeal to the account of the Schur multipliers of the finite simple groups given in
[26, chapter 6] to conclude that, by the classification of the finite simple groups, K /Z(K) must be
isomorphic to L,,(q) with p dividing (m, q — 1), or to U,,,(q) with p dividing (m, g + 1). But each
group of this form has Sylow p-subgroups of order at least p*, a contradiction. O

Lemma 6.6. Assume Hypothesis 6.1 and let (L, A, S) be a punctured group over F. Then the
following hold.

(a) IfP € A with |P| > p?, then N+ (P) is Sylow p-constrained and thus p-constrained.
(b) If p # 3 then, upon identifying S with its image in L+ /O (L"), the triple (L* /0, (L"), A, S)
is a subcentric linking locality over F.

Proof. If P € A* with |P| > p?, then S = N4(P) is a Sylow p-subgroup of N,+(P). As P is nor-
mal in N,+(P) and C(P) < P, it follows that N+ (P) is Sylow p-constrained. Thus, (a) holds by
Lemma 2.37.

Assume now p # 3. As all subgroups of order p are by assumption F-conjugate, we have by
Lemma 2.7(b) and Lemma 2.9(a) that N+ (P) @ M := N,+(Z) for every P € A" with |P| = p.
Moreover, by Lemma 6.5, M /O (M) has a normal Sylow p-subgroup and is thus in particu-
lar Sylow p-constrained. Hence, using (a) and Lemma 2.37, we can conclude that N +(P) is
p-constrained for every P € A*. Therefore, by Proposition 2.36, the triple (£*/0,,(£"), A*,S)
is a locality over F of objective characteristic p. As At = F$ by Lemma 5.4, part (b) follows. []

Note that Lemma 6.6 proves one direction of Theorem 6.3, whereas the other direction would
follow from Lemma 6.2 and Theorem 6.4. Therefore, we will focus now on the proof of Theo-
rem 6.4 and thus consider punctured groups that restrict to the centric linking system. If £ is such
a punctured group, then we will apply Lemma 6.5 to N +(Z). To do this, we need the following
two lemmas.

Lemma 6.7. Let M be a finite group with a Sylow p-subgroup S = p}jz. AssumethatZ :=Z(S)is
normal in M and Cy,(V)) <V for every subgroup V of S of order at least p*. Then Op(M)=1.
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90 | HENKE ET AL.

Proof. Set U = O,/(M). As Z is normal in M, it centralizes U. So, S=S/Zactson U. Let x €
S — Z(S). Then setting V = (x, z), the centralizer C),(V) contains the p’-group C;;(x). So, our
hypothesis implies C;;(%) = 1. Hence, by [34, 8.3.4(b)], U = (Cy(%) : x € S*) = 1. O

Lemma 6.8. Assume Hypothesis 6.1 and let (Lt,A%,S) be a punctured group over F such that
L)z is a centric linking locality over F. If we set M : = N+ (Z) the following conditions hold:

(a) Sisa Sylow p-subgroup of M and Z is normal in M,
(b) Fs(M) = Np(Z) = Nx(S), and
(c) Cy (V) <V foreach subgroup V of S of order p>.

Proof. Property (a)is clearly true. Moreover, by Lemmas 2.9(b) and 5.4, we have F4(M) = Np(Z) =
N£(S), so (b) holds. Set A = F¢. By assumption £ := L*], is a centric linking locality. So, by
[28, Proposition 1(d)], we have C(V) C V for every V € A. Hence, for every subgroup V € A, we
have Cp, (V) C C,+(V) = C,(V) C V, where the equality follows from the definition of £ = L£%],.
As every subgroup of S of order at least p? contains its centralizer in S, each such subgroup is
F-centric. Therefore, (¢) holds. O

Lemma 6.9. Assume Hypothesis 6.1 and let (Lt, A™, S) be a punctured group over F such that L ;=
LYy is a centric linking locality over F. Set M := N,+(Z). Then one of the following conditions
holds:

(a) S<M, the group M is a model for Np(Z) = Np(S), and (L*,At,S) is a subcentric linking
locality over F;

(b) p = 3, F is the 3-fusion system of the Tits group %F,(2)' and M = 3S; or

(c) p =3, F is the 3-fusion system of Ru and of J,, and M = 3#Aut(A,) or an extension of 3L;(4)
by a field or graph automorphism.

Moreover, in either of the cases (b) and (¢), Ngyys)(Outz(S)) is a Sylow 2-subgroup of Out(S) =
GL,(3), and every element of N 5(s)(Auty(S)) extends to an automorphism of M.

Proof. Set A = F¢. By Lemmas 6.7 and 6.8, we have Op,(M) =1, Fs(M) = Np(Z) = Nx(S) and
C,;(S) < S.Inparticular, if S < M, then M isamodel for Nr(Z) = Nx(S). Forany P € A, the group
N,+(P) = N,(P)isof characteristic p. AsA* = Au Z%,if S < M, the punctured group (£ *, A%, S)
is of objective characteristic p and thus (a) holds.

So, assume now that S is not normal in M. By Lemma 6.5, we have then p = 3,K := F*(M) is
quasisimple, S < Kand Z = Z(K).Set M := M/Zand G :=K.Let1 # X € S. Then the preimage
V of (X) in S has order at least 32. Thus, by Lemma 6.8(c), we have C,,(V) < V. A 3/-element in
the preimage of Cy;(x) = CG(I7) in K acts trivially on V and Z = Z(K). Thus, it is contained in
Cy (V) < V and therefore trivial. Hence, we have

Co(x) = Sforeveryl #Xx € S. (6.4)

Notice also that G is a simple group with Sylow 3-subgroup S, which is elementary abelian of order
32. Moreover, AutG(g) is contained in a Sylow 2-subgroup of Aut(S) = GL,(3), and such a Sylow
2-group is semidihedral of order 16. In particular, if Aut;(S) has 2-rank at least 2, then Aut;(S)
contains a conjugate of every involution in Aut(S), which is impossible because of (6.4). Hence,
Autg (S) has 2-rank one, and is thus either cyclic of order at most 8 or quaternion of order 8 (and

d ‘1 “€T0T ‘986¥TSOT

AU £Q $SOT1"EWN/TTT T01/10p oo Kajia Axeaqy

o] Jo nsia

Areaqry ouiuQ Aofi “onokeye e euws

UONIPUO)) PUE SWLIDT, 3Y) 338 *[€20T/LO/LO] U0

dny) s

asn Jo sojna 1oy K1e1qr AuIUQ KA UO

Qe SAPIIE VO ¢

oA08

su00IT suowwoD) aaneaI) sqeardde oy £q pour



PUNCTURED GROUPS FOR EXOTIC FUSION SYSTEMS | 91

certainly nontrivial by [34, 7.2.1]). By a result of Smith and Tyrer [51], Autg (S) is not cyclic of order
2. Using (6.4), it follows from [29, Theorem 13.3] that G = L,(9) = A, if Autg (S)is cyclic of order
4, and from a result of Fletcher [23, Lemma 1] that G = L;(4) (and thus AutG(E) is quaternion) if
Aut; (S) is of order 8.

It follows from Lemma 6.8(b) that Aut,,(S) = Aut,(S). As C;,(S) = Z and C;(S) = S by (6.4),

we have Aut;(S) = N;(S)/Ci(S) = Nk(S)/S = Auty(S)/ Inn(S) = Outk(S). Hence,

Out;(S) = Autg(S) = Outy(S) < Outy,(S) = Outx(S).

As p = 3, it follows from Lemma 6.2 that F is the 3-fusion system of the Tits group or the 3-fusion
system of J,.

Consider first the case that 7 is the 3-fusion system of the Tits group %F,(2), which has
Outx(S) = Dg. Then OutG(g) cannot be quaternion, that is, we have OutG(E) =~ C,and G = Aq.
So, conclusion (b) of the lemma holds, as S, is the only twofold extension of A, whose Sylow
3-normalizer has dihedral Sylow 2-subgroups. By [48, Lemma 3.1], we have Out(S) = GL,(3). It
follows from the structure of this group that N )(Outz(S)) = SDy4 is a Sylow 2-subgroup of
Out(S). As M = 35, has an outer automorphism group of order 2, it follows that every element of
N auy(s)(Auty(S)) extends to an automorphism of M.

Assume now that F is the 3-fusion system of J,, so that Outx(S) = SD;,. An extension of 34,
with these data must be 3#Aut(Ag). Suppose now Aut, (S) = Qg and G = L;(4). Then M mustbe a
twofold extension of L;(4). However, a graph-field automorphism centralizes a Sylow 3-subgroup,
and so M must be an extension of L;(4) by a field or a graph automorphism. Hence, (c) holds
in this case. If (c) holds, then Out,,(S) = Outz(S) = SD,, is always a self-normalizing Sylow 2-
subgroup in Out(S) & GL,(3). In particular, every element of N 5 ,s)(Aut(S)) extends to an inner
automorphism of M. This proves the assertion. O

Note that the previous lemma shows basically that, for any punctured group (L*, A", S) over F
that restricts to a centric linking locality, one of the conclusions (a)—(c) in Theorem 6.4 holds. To
give a complete proof of Theorem 6.4, we will also need to show that each of these cases actually
occurs in an example. To construct the examples, we will need the following two lemmas. The
reader might want to recall the definition of £, (M) from Example 2.6

Lemma 6.10. Let M be a finite group isomorphic to 3S, or 3#Aut(A) or an extension of 3L;(4) by
a field or graph automorphism. Let S be a Sylow 3-subgroup of M. Then S = 3}r+2 and, writing A for
all subgroups of S of order 3%, we have L (M) = N,,(S). Moreover, Fs(M) = Fy(N,,(S)).

Proof. Itiswell-known that M hasin all cases a Sylow 3-subgroup isomorphic to 3}r+2. By definition
of L,(M), clearly Ny, (S) C L,(M). Moreover, if g € L,(M), then there exists P € A such that
P9 < S. Note that Z := Z(S)<M and M := M/Z has a normal subgroup K isomorphic to A,
or L;(4). Denote by K the preimage of K in M. Then S < K and by a Frattini argument, M =
KN,,(S). Hence, we can write g = kh with k € K and h € N,,(S). To prove that g € N,,(S) and
thus £,(M) C N,,(S), it is sufficient to show that k € N,,(S). Note that P* = (P-‘f)h_1 <S.AsS
is abelian, fusion in K is controlled by NE@)' So, there exists x € K such that kx—! € CI?(I_J). As
K = Ag of L;(4) and P is a nontrivial 3-subgroup of K, one sees that Cf(ﬁ) = S.Hence, kx~' € S
and k € N,,(S). This shows £,(M) = Ny,(S). By Alperin’s Fusion Theorem, we have Fy(M) =
Fs(LA(M)) = Fs(Nyy(S)). 0
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Lemma 6.11. Assume Hypothesis 6.1. If (L, A, S) is a centric linking locality over F, then N (Z) =
N,(S). In particular, N -(Z) is a group that is a model for N-(S).

Proof. By Lemma 5.4, we have Np(Z) = Np(S). So, Z<S is a fully F-normalized sub-
group such that every proper overgroup of Z is in A and O,(N#(Z)) = S € A. Hence, by [28,
Lemma 7.1], N;(Z) is a subgroup of L that is a model for Nz(Z) = Nx(S). As N.(S) C N (Z)
is by Lemma 2.9(b) a model for N-(S), and a model for a constrained fusion system is by [2,
Theorem II1.5.10] unique up to isomorphism, it follows that N (Z) = N .(S). O

We are now in a position to complete the proof of Theorem 6.4.

Proof of Theorem 6.4. Assume Hypothesis 6.1. By Lemma 6.9, for every punctured group
(L*,A*,S) over F that restricts to a centric linking locality, one of the cases (a)-(c) of Theorem 6.4
holds. It remains to show that each of these cases actually occurs in an example and that moreover
the isomorphism type of N,+(Z) determines (£, A", S) uniquely up to a rigid isomorphism.

By Lemma 5.4, we have Nr(Z) = Nx(S) and F* is the set of nontrivial subgroups of S. Hence,
the subcentric linking locality (£, F*, S) over F is always a punctured group over S. Moreover,
it follows from Lemma 2.9(b) that N;s(Z) is a model for Nz(Z) = Nz(S) and thus S is normal in
N/s(Z) by [2, Theorem II1.5.10]. So, case (a) of Theorem 6.4 occurs in an example. Moreover, if
(L*,At,S)is a punctured group such that £*|, is a centric linking locality and N ;. (Z) = N zs(Z),
then N .(Z) has a normal Sylow p-subgroup and is thus by Lemma 6.9 a subcentric linking
locality. Hence, by Theorem 2.21, (£*, A*, S) is rigidly isomorphic to (£, F5, S).

We are now reduced to the case that p = 3 and we are looking at punctured groups in which the
normalizer of Z does not have a normal Sylow 3-subgroup. So, assume now p = 3. By Lemma 6.2,
F is the 3-fusion system of the Tits group or of J,. Let M always be a finite group containing S as
a Sylow 3-subgroup and assume that one of the following holds:

(b’) F is the 3-fusion system of the Tits group %,(2)’ and M = 3S; or
(¢’) F is the 3-fusion system of J,, and M = 3#Aut(A4,) or an extension of 3L;(4) by a field or
graph automorphism.

In either case, one checks that Cy,(S) < S. Moreover, if (b’) holds, then Outp(S) = Dg and
Ny (S) = 3}r+2 : Dg. As Out(S) = GL,(3) has Sylow 2-subgroups isomorphic to SD;, and more-
over, SD;, has a unique subgroup isomorphic to Dy, it follows that Outy,(S) and Out-(S) are
conjugate in Out(S). Similarly, if (¢’) holds, then Out-(S) = SD, 4 and Out,,(S) are both Sylow 2-
sugroups of Out(S) and thus conjugate in Out(S). Hence, N,,(S) is always isomorphic to a model
for N-(S) and, replacing M by a suitable isomorphic group, we can and will always assume that
N,(S) is a model for N-(S). We have then in particular that Nx(S) = Fg(IN,,(S)).

Pick now a centric linking locality (£, A,S) over S. By Lemma 6.11, N.(Z) is a model for
Nz(S). Hence, by the model theorem [2, Theorem II1.5.10(c)], there exists a group isomorphism
A Np(Z) — Ny (S) that restricts to the identity on S. By Lemma 6.10, we have N,,(S) = L,(M)
and Fg(M) = Fs(Ny(S)) = Nx(S) = Nx(Z). Note that N,,(S) and £,(M) are actually equal as
partial groups and the group isomorphism 4 can be interpreted as a rigid isomorphism from N - (Z)
to L, (M). So, [14, Hypothesis 5.3] holds with Z in place of T. As A = F¢ is the set of all subgroups
of S of order at least 32 and as all subgroups of S of order 3 are F-conjugate, the set A™ of non-
identity subgroups of S equals A U Z”". So, by [14, Theorem 5.14], there exists a punctured group
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(L*(A), A%, S) over F with N+ (;y(Z) = M. Thus we have shown that all the cases listed in (a)-(c)
of Theorem 6.4 occur in an example.

Let now (£*, A%, S) be any punctured group over F such that £’ := £*|, is a centric linking
locality and N .(Z) = M. Pick a group isomorphism ¢ : M — M* := N .(Z) such that S? = S.
Then ¢|g is an automorphism of S with (¢|g)~!Auty,(S)p|g = Auty,-(S). Recall that Fg(M) =
Nz(S), Moreover, by Lemma 2.9(b), we have Fq(M*) = Nr(Z) = Nx(S). Hence, Auty,(S) =
Auty(S) = Auty.(S) and @|g € Npyys)(Autz(S)). So, by Lemma 6.9, there exists 3 € Aut(M)
such that 9| = @|g. Then u := 1~ '¢ is an isomorphism from M to M* = N .(Z) that restricts to
the identity on S = N4(Z). Moreover, by Theorem 2.20, there exists a rigid isomorphism 8 : £ —
L'. Therefore, by [14, Theorem 5.15(a)], there exists a rigid isomorphism from (£*(1),A*,S) to
(£*,A*,S). This shows that a punctured group (£L*,A*,S) over F, which restricts to a centric
linking locality, is up to a rigid isomorphism uniquely determined by the isomorphism type of
N +(2). O

Proof of Theorem 6.3. Assume Hypothesis 6.1. If p # 3, then it follows from Lemma 6.6 that
Lt/ Op,(£+) is a subcentric linking locality for every every punctured group (L*,A*,S) over S.
On the other hand, if p = 3, then Theorem 6.4 together with Lemma 6.2 gives the existence of a
punctured group (£, A*, S) over F such that Op,(£+) = 1and N,+(Z) is not of characteristic p,
that is, such that £*/0,,(L*) is not a subcentric linking locality. O

APPENDIX A: NOTATION AND BACKGROUND ON GROUPS OF LIE TYPE

We record here some generalities on algebraic groups and finite groups of Lie type that are needed
in Section 4. Our main references are [11, 26], and [9], as these references contain proofs for all of
the background lemmas we need.

Fix a prime p and a semisimple algebraic group G over [Ep. Let T be a maximal torus of G, W =
NE(T) /T the Weyl group, and let X (T) = Hom(T, ﬁ:) be the character group. Let X @ =1x, )|
Le ﬁp} denote a root subgroup, namely a closed T-invariant subgroup isomorphic ﬁp. The root
subgroups are indexed by the roots of T, the characters a € X(T) with x, (W) = x (a(t)2) for each
t € T. The character group X (T) is written additively: for each a,f € X (T) and each t € T, we
write (a + B)(t) = a(t)B(t). For each n € NE(T), a € X(T), and t € T we write ("a)(t) = a(t")
for the induced action of NE(T) action on X (T).

Let =(T) be the set of T-roots a € X(T), and let V = R ®, X (T) be the associated real inner
product space with W-invariant inner product (,). We regard X (T) as a subset of V, and write
w, € W for the reflection in the hyperplane a*.

For each root a € X(T) and each 1 € E:, let n, (1), ho(4) € (X,,X_,) be the images of the ele-
ments [9 47 ], [g .21 under the homomorphism SL,(F,) — G that sends [} 9] to x,(u) and
[§Y]tox_g(v). Thus,

n () = x,(x_(~A"Dx (1) and  h (A) = n,(1)"'n (1), (Ad)

and n, (1) represents w,, for each a € X. We assume throughout that parameterizations of the root
groups have been chosen so that the Chevalley relations of [26, 1.12.1] hold.

Although %(T) is defined in terms of characters of the maximal torus T, it will be conve-
nient to identify £(T) with an abstract root system ¥ inside some standard Euclidean space
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RL (,), via a W -equivariant bijection that preserves sums of roots [26, 1.9.5]. We’ll write also V
for this Euclidean space. The symbol IT denotes a fixed but arbitrary base of X.

The maps hg : ?: — T, defined above for each § € %, are algebraic homomorphisms lying in
the group of cocharacters XV (T) := Hom(ﬁ:, T). Composition induces a W-invariant perfect pair-
ing X (T) R, X V(T) - Z defined by a ® h — (a, h), where {a, h) is the unique integer such that
a(h(1)) = 2@ foreach 1 € E:. As X contains a basis of V, we can identify V* with R ®, XV(T),
and view XY(T) C V* via this pairing. Under the identification of V with V* via v » (—,0),
for each 8 € T there is 8V € V such that (—,BY) = (-, hg) in V*, namely the unique element
such that (8, 8Y) = 2 and such that wg is reflection in the hyperplane ker((—, BY)). Thus, when
viewed in V in this way (as opposed to in the dual space V*), 8¥ = 23/(B, B) is the abstract coroot

corresponding to 8. Write TV = {8V | 8 € £} C V for the dual root system of .
If we set (a, B) = (a, 8Y) = 2(a, B)/(B, B) for each pair of roots «, 8 € Z, then

(o, B) = (at, hg), (A2)
where the first is computed in X, and the second is the pairing discussed above. Equivalently,
X ()8 = x, (AP ) (A3)

foreacha,f € Z,each u € ﬁp, andeach A € ﬁ;.
Additional Chevalley relations we need are

X"V = x4 0 (Ca g2, (A4)
ha Y = hyy (o)A, (A5)
n, ()M = My (e (Ca s (A.6)
ny(1)* = hy(-1), (A.7)

where

wg(@) = a —(a, B)B

is the usual reflection in the hyperplane 8+, and where the Cop € {£1}, in the notation of [26,
Theorem 1.12.1], are certain signs that depend on the choice of the Chevalley generators. This
notation is related to the signs 7, g in [11, chapter 6] by ¢, g = g o-

Important tools for determining the signs ¢, g in certain cases are proved in [11, Proposi-
tions 6.4.2 and 6.4.3], and we record several of those results here.

Lemma A.l1. Let a, 8 € X be linearly independent roots.

M cgq=-landc_,,=-1
(2) C—Ot,ﬁ = Ca,ﬁ.
(3) CoCup(e,s = (D).
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(4) Ifthe B-root string through a is of the form
a—5B,..,q .., +sp

forsome s > 0, that is, if o« and 8 are orthogonal, then Cap = (—=1)5.

Proof. The first three listed properties are proved in [11, Proposition 6.4.3]. By the proof of that
proposition, there are signs ¢; € {+1} such that ¢, 5 = (—1)3%, whenever the -root string
, o1

>

through « is of the form a — s, ..., @, ..., + r3. When a and § are orthogonal, we have r — s =
(a, 8) = 0,and hence ¢, g = (—1)°. [l

Lemma A.2. The following hold.
(1) Foreacha,f € Z, we have

a(hg(2)) = AP,

(2) The maximal torus T is generated by the h,(A) fora e Zand A € FZ. If G is simply connected,
and 4, € F are such that [ cpy hoy(A,) = 1, then A, =1 for all o € 1. Thus,

T =[] n(F)).

a€ell

and h,, is injective for each a.
(3) IfB,ay,...,a € Zandny,...,n, € Z aresuchthat f¥ = nya) + - + nkoc]\{’, then

hg(1) = ho (™) - By (A").

(4) Define
©: 75 xF, —T by @a’,2)=hyQ).

Then @ is bilinear and Z[|W |-equivariant. It induces a surjective Z[|W |-module homomorphism
it e e
7%V @, F, - T that is an isomorphism if G is of universal type.

Proof. (1) is the statement in (A.2) and is part of [26, Remark 1.9.6]. We refer to [9, Lemma 2.4(c)]
for a proof, which is based on the treatment in Carter [11, pp. 97-100]. Part (2) is proved in [9,
Lemma 2.4(b)], and part (3) is [9, Lemma 2.4(d)]. Finally, part (4) is proved in [9, Lemma 2.6]. []

Proposition A.3. For each subgroup X < T,
Cx(X) = C(X )OCNE(T) X).

The connected component Cz(X)° is generated by T and the root groups X, o for those roots & € £

whose kernel contains X. In particular, if X = (hg(1)) for some B € £ and some 1 € ﬁ: having
multiplicative order r, then

C5(X)° = (T, X, | a € Z, r divides (a, 8)).
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Proof. See [9, Proposition 2.5], which is based on [12, Lemma 3.5.3]. The referenced result covers
all but the last statement, which then follows from the previous parts and Lemma A.2(1), given
the definition of r. L]

Proposition A.4. Let G bea simply connected, simple algebraic group over ﬁp, let T be a maximal
torus of G, and let T, ={teT |t =1}withr > 1 prime to p. Then one of the following holds.

(1) C5(T,) =T and N(T,) = N(T).
(2) r=2,Cx(T,) = T(w,) for some element w, € N5(T) inverting T, and N&(T,) = Nz(T).
() r=2andG = Sp2n(ﬁp)for somen > 1.

Proof. By Lemma A.2(2) and as G is simply connected, the torus is direct product of the images
of the coroots for fundamental roots:

T =[] h(F)). (A8)

aell

Thus, if 1 € ﬁ: is a fixed element of order r, then T, is the direct product of (h,(4)) as a ranges
over II.

We first look at Cz(T,)°, using Proposition A.3. By Lemma A.2(1), T, is contained in the kernel
of a root § if and only if B(h, (1)) = A¥% = 1 for all simple roots «, that is, if (8, &) is divisible by
r for each fundamental root a. Let X, be the set of all such roots . For each a € II, the reflection
w,, sends a root 8 to 8 — (B, a)a. Hence, § € Z, if and only if w,(8) € %, because (—, —) is linear
in the first component. As the Weyl group is generated by w,, « € II, it follows that %, is invariant
under the Weyl group. By [31, Lemma 10.4C], and as G is simple, W is transitive on all roots of
a given length, and so either X, = @, or X, contains all long roots or all short ones. Thus, by [31,
table 1], we conclude that either X, = @, or r = 2, each root in [T N Z, is long, and each a € I
not orthogonal to (3 is short and has angle 7 /4 or 37 /4 with . Now by inspection of the Dynkin
diagrams corresponding to irreducible root systems, we conclude that the latter is possible only if
L = A, =Cy, C,, or Cy. Thus, either Cx(T,)° = T or (3) holds.

So, we may assume that Cz(T,)° = T. Now NE(T) < N(T,) because T, is characteristic in T
As C5(T,)° = T, also T is normalized by N&(T,), so NE(T) = N(T,). For r > 3, it follows from
[9, Lemma 2.7] that CNE(T)(Tr) = T, completing the proof of (1) in this case.

Assume now thatr = 2 and (1) does not hold. Let B : = Cy,(T,) < W = NE(T) /T. To complete
the proof, we need to show B = (—1,,) or else (3) holds. Here we argue as in Case 1 of the proof of
[9, Proposition 5.13].

Let A = ZZV be the lattice of coroots, and fix A € E: of order4. Themap®; : A — T defined by

®,(a") = h, (1) is a W-equivariant homomorphism by Lemma A.2(3). As G is simply connected,
this homomorphism has kernel 4A, image T,, and it identifies A/2A with T, by Lemma A.2(2).

As B acts on T, and centralizes T, we have [T, B] < T, < C(B), so B acts quadratically on T.
As B acts faithfully on T, by (1), it follows that B is a 2-group.

Assume that B # (—1,). If Bis of 2-rank 1 with center (—1,,) then by assumption there is some
b € B with b?> = —1,,. In this case, b endows V with the structure of a complex vector space, and
so b does not centralize A/2A, a contradiction. Thus, there is an involution b € B that is not
—1y. Let V =V_ @ V_ be the decomposition of V into the sum of the eigenspaces for b, and
set A, = ANV, . Fixv e A, and writev = v, +v_withv, € V,.Then2v_=v - vP =[v,ble
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V_N2A=2A_.So,v_ € A_,andthenv, € A,.Thisshowsthat A=A, & A_with A, # 0.The
hypotheses of [9, Lemma 2.8] thus hold, and so G = Sp,,(F,) for some n > 2 by that lemma. []
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