@ CrossMark
Forum of Mathematics, Sigma (2023), Vol. 11:¢60 1-30
doi:10.1017/fms.2023.53 CAMBRIDGE
UNIVERSITY PRESS

RESEARCH ARTICLE

Weights in a Benson-Solomon block

1 2

Justin Lynd ™ ' and Jason Semeraro

IDepartment of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504; E-mail: lynd @ louisiana.edu.
2Department of Mathematical Sciences, Loughborough University, LE11 3TU, United Kingdom;
E-mail: j.p.semeraro@lboro.ac.uk.

Received: 26 March 2023; Revised: 10 May 2023; Accepted: 28 May 2023
2020 Mathematics Subject Classification: Primary — 20D06, 20D20; Secondary — 20C20, 20C33

Abstract

To each pair consisting of a saturated fusion system over a p-group together with a compatible family of Kiilshammer-
Puig cohomology classes, one can count weights in a hypothetical block algebra arising from these data. When
the pair arises from a genuine block of a finite group algebra in characteristic p, the number of conjugacy classes
of weights is supposed to be the number of simple modules in the block. We show that there is unique such pair
associated with each Benson-Solomon exotic fusion system, and that the number of weights in a hypothetical
Benson-Solomon block is 12, independently of the field of definition. This is carried out in part by listing explicitly
up to conjugacy all centric radical subgroups and their outer automorphism groups in these systems.

1. Introduction

Let k be an algebraically closed field of characteristic p > 0, and let G be a finite group. Associated to
each block b of kG, there is a saturated fusion system F = Fg(b) over the defect group S of the block
in which the morphisms between subgroups are given by conjugation by elements of G preserving the
corresponding Brauer pairs [AKO11, Crall]. Several questions in the modular representation theory of
finite groups concern the connection between representation theoretic properties of kG b and the category
F. However, it is known that for many purposes F does not, in general, retain enough information about
kGb-mod. For example, it does not determine the number of simple modules in b, in part because it
retains too little of the p’-structure of p-local subgroups. On the other hand, the block b also determines
a family of degree 2 cohomology classes ap € H*(Autz(Q), k*), for Q € F¢ an F-centric subgroup,
by work of Kiilshammer and Puig (see [AKO11, IV.5.5]). This family is expected to supply the missing
information away from the prime p. The Kiilshammer-Puig classes are compatible in the sense that, by
[Lin19, Theorem 8.14.5], they determine an element

a€e lim A%,
[s(Fo)1” 7

where [S(F€)] is the partially ordered set of F-isomorphism classes of chains o = (Xp < Xj < -+ <
X,,) of F-centric subgroups, and Azf is the covariant functor which sends a chain o to H(Aut = (o), k*).
Here, Autr (o) < Autr(X,) is the group of automorphisms in F of X,, preserving all members X; of the
chain. For example, if b is the principal block of kG, then « is always the trivial class [AKO11,IV.5.32].

Thus, by a Kiilshammer-Puig pair, we mean a pair (F, @), where F is a saturated fusion system on
a p-group S and « is an element of lim[g(Fc); .A2f. Given such a pair (F, ) arising from a block b, the
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quantity
w(F,a)i= > z(kagp Outz(Q)),
QeFer|F

counts the number of kGb-weights. Here, ko, Outz(Q) is the algebra obtained from the group algebra
k Outx(Q) by twisting with @p [AKO11, IV.5.36], z(—) denotes the number of projective simple
modules, and the sum is taken over a set of representatives for the conjugacy classes of F-centric and
F-radical subgroups. Thus, Alperin’s Weight conjecture says that w(JF, @) is the number of simple
kGb-modules [AKO11, IV.5.46].

There is always a natural map H>(F¢, k*) — lim[g(Fe) Ag_-, and the gluing problem asks whether
this map is surjective (see [Lin09] and [Lib1 1] for further details). Linckelmann has shown that Alperin’s
conjecture has a structural reformulation in terms of algebras constructed from p-local finite groups,
provided the gluing problem always has a solution [Lin04]. However, while the weight conjecture has
relevance for actual blocks only, the gluing problem is a question about the Kiilshammer-Puig pair itself
and can be considered: (1) when F is the fusion system of a block, but of no block with the specified
compatible family @, and (2) when F is the fusion system of no block at all. Thus, we are interested
in investigating such pairs disembodied from an actual block as a way of gauging the degree to which
certain questions, and potential answers to those questions, are p-locally determined. A direct study of
Kiilshammer-Puig pairs might reveal, for example, that there is an exotic pair as in (1) or (2) that does
not satisfy the gluing problem. At this stage, such a possibility seems unlikely. On the other hand, and
conversely, we would be very interested in a structural explanation why the gluing problem should hold
in general, and it seems reasonable to expect that such an explanation would apply to all such pairs,
exotic or not.

In this paper, we consider Kiilshammer-Puig pairs associated with the exotic family Sol(q) of Benson-
Solomon 2-fusion systems [LO02, AC10]. Although these are defined for any odd prime power g, the
fusion systems Sol(g) and Sol(g’) are isomorphic if > — 1 and g’> — 1 have the same 2-part. A Benson-
Solomon system is known not to be the fusion system of any genuine block. This is a result of Kessar
for the smallest such system [Kes06], while Craven extended Kessar’s proof to the general case [Crall,
Theorem 9.34]. Thus, there exists no genuine “Benson-Solomon block™ of the title. For the purposes
of this paper, we simply regard a Kiilshammer-Puig pair of the form (F, @) with F a Benson-Solomon
system as an avatar of the nonexistent block, one which allows us still to compute some local invariants,
such as the number of weights, that such a block would have if it existed.'

Our first theorem determines the possible Kiilshammer-Puig classes that these fusion systems support.

Theorem 1.1. Let F = Sol(q). Then

lim A% = 1lim A% =0.
sF1” T T sFEe T

That is, each Benson-Solomon system supports a unique Kiilshammer-Puig pair.

Theorem 1.1 is shown by explicitly computing the F-conjugacy classes of centric radical subgroups
along with their outer automorphism groups in F. The results of [AC10, Section 10] go a long way
towards accomplishing such a task, but more details are required for the present applications. In Section 2
we refine the results of [AC10] to prove the following.

Theorem 1.2. Let F = Sol(q). Representatives for the F-conjugacy classes of F-centric radical
subgroups, together with their F-outer automorphism groups, are listed in Tables | and 4.

Theorem 1.3. The number of weights in the unique pair of Theorem 1.1 is

w(Sol(g),0) = 12,

independently of q.

1See later work of Kessar, Malle, and the second author [KMS20, Section 6] for evidence that a Benson-Solomon block should
be “the principal block of a Z-spets for the 2-adic reflection group Go4”.
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The Benson-Solomon systems are finite versions of the simply connected 2-compact group DI(4)
of Dwyer and Wilkerson [Ben94]. As such, they have an associated 2-adic reflection group W =
W(Sol(g)) = C, x GL3(2), which in Sol(gq), appears as the automorphism group of a finite 2-torus
of rank 3, and w(Sol(g),0) = 12 = |Irr(W)|. This was later proved for all finite versions of simply
connected £-compact groups as long as ¢ is “very good” for W [KMS20, Theorem 1]. But note that the
prime 2 is bad for W(Sol(g)).

We prove Theorem 1.3 in Section 4 by explicitly computing z(k Out=(Q)) for each of the groups Q
appearing in Tables | and 4 of Theorem 1.2.

Beyond the weight conjecture, and assuming its validity, we have in mind other counting questions
that can be considered for Kiilshammer-Puig pairs without reference to a group or a block. For example,
Malle and Robinson recently conjectured that if b is a p-block associated to a finite group G, then the
number of simple kG-modules in b should be bounded by p*‘S), where S is a defect group of b and
s(S) denotes the sectional rank of S, namely, the largest rank of an elementary abelian section [MR17].
Moreover, they verified their conjecture in a large number of cases where the weight conjecture holds.
In Lemma 2.19, we observe that the sectional rank of § is 6, and so the following conjecture, which was
suggested to us by Kessar and Linckelmann, also holds easily for Sol(g).

Conjecture 1.4. Let (F, @) be a Kiilshammer-Puig pair, where F is a saturated fusion system on S.
Then w(F,a) < p*®).

This conjecture is just one small example in a host of other conjectures which are certain purely
local analogues of the various local-to-global conjectures in the modular representation theory of
finite groups. The local conjectures by their nature do not discriminate between realizable and exotic
Kiilshammer-Puig pairs. They are discussed more fully in a sequel to this paper [KLLLS19].

Outline and notation for the tables

After recalling certain initial results about fusion systems and the 2-local structure of SL,(g), we set up
in Section 2 notation for working in the Benson-Solomon systems and identify the important subgroups
of the Aschbacher-Chermak free amalgamated product which realizes the systems. Section 2.7 provides
an initial classification of some centric radical subgroups, namely, the centric radical subgroups lying
above the 2-torsion in a maximal torus.

Section 3 contains the proof of Theorem .2, where the smallest Benson-Solomon system is handled
separately (Section 3.1) from the larger ones (Section 3.2). The results are summarized in Tables | and 4.
Those tables give a list of subgroups whose notation was fixed previously in Notation 2.11, Notation
2.12, Section 2.6, (3.1), or Notation 3.3.

Theorem 1.3 is proved in Section 4. Finally, in Section 5, we compute the Schur multipliers of the
outer automorphism groups to give a proof of Theorem 1.1.

2. The Benson-Solomon fusion systems
2.1. Fusion system preliminaries

Throughout this paper, our group-theoretic nomenclature is standard and follows [Wil09], and we are
usually consistent with the fusion-theoretic terminology and notation of [AKO11]. One exception to
this is that we use exponential notation for images of subgroups and elements under a morphism in
a fusion system, as described below. A fusion system on a finite p-group S is a category with object
set the set of subgroups of S and with morphisms that are injective group homomorphisms, subject
to two weak axioms. The standard example of a fusion system is that of a finite group G with Sylow
p-subgroup S, where the morphisms are the conjugation homomorphisms between subgroups of §
induced by elements of the group G, and which is denoted Fg5(G). Due to the validity of Sylow’s
theorem in G and its p-local subgroups, the standard example satisfies two additional saturation axioms,
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the Sylow and Extension axioms [BLOO3, Definition 1.2]. All fusion systems in this paper are assumed
to be (or known already to be) saturated unless otherwise stated, and we will sometimes drop that
adjective and speak simply of a fusion system when there is no cause for confusion. For this subsection,
we fix a saturated fusion system JF over the p-group S. By analogy with the standard example, two
subgroups of § are said to be F-conjugate if they are isomorphic in the category F. For a morphism
¢: P — Qin F, we write P¥ for the image of ¢. Similarly, x¥ denotes the image of an element x under
a morphism whose domain contains x.

Definition 2.1. Fix a subgroup P < S. We say that P is

(a) fully F-normalized if |[Ns(P)| = |[Ns(Q)| whenever Q is F-conjugate to P,
(b) F-centric if Cs(Q) = Z(Q) for each F-conjugate Q of P,

(c) F-radical if O,(Outz(P)) = 1,

(d) F-centric radical if it is both F-centric and F-radical, and

(e) weakly F-closed if P is the only F-conjugate of P,

(f) strongly F-closed if each F-conjugate of a subgroup of P is contained in P.

Denote by F¢, ", and F¢" the collection of F-centric, F-radical, and F-centric radical subgroups of
S, respectively.

The collections F€¢, F", and F¢" are all closed under F-conjugacy. Also, the F-centric subgroups
are closed under passing to overgroups.

Remark 2.2. Let G be a finite group with Sylow p-subgroup S. A p-subgroup P of G is said to be
p-radical in G if O,(Ng(P)/P) = 1. By contrast, a subgroup P is Fgs(G)-radical if and only if
0, (NG (P)/PCg(P)) = 1. The collection of p-radical subgroups of G contained in S does not coincide,
in general, with the collection of Fg(G)-radical subgroups.

For example, let p = 3 and G = G| X G, with G; = Dg. The subgroup P = S N G has order 3 with
NG (P)/P = Cy X Dg, so P is not 3-radical in G. However, Outz¢ (G)(P) = Ng(P)/PCgG(P) = C3,s0 P
is Fs(G)-radical. Conversely, take p = 2, but instead G = Dy4, and P of order 4 in the cyclic maximal
subgroup. Then Outr () (P) = C; so P is not Fs(G)-radical, but Ng(P)/P = Dg, so P is 2-radical
in G. This distinction is important in Lemma 2.7 below, where both concepts appear simultaneously. It
is also relevant in Chevalley groups G = G(gq) with ¢ odd, which have an element in the Weyl group
inverting a split maximal torus. When such a torus has a nontrivial odd order normal subgroup (often
the case), a Sylow 2-subgroup 7 of such a torus is 2-radical in G but not radical in Fs(G), where S is a
Sylow 2-subgroup of G(g) containing 7. This situation occurs, for example, when G (g) = Spin,(q), ¢
odd, g # 3,5.

Definition 2.3. Fix a subgroup P < S.

(a) The normalizer Nx(P) of P is the fusion system on N (P) consisting of those morphisms ¢: Q — R
in F for which there exists an extension ¢: PQ — PR of ¢ in F, such that P? = P.

(b) The centralizer C=(P) of P is the fusion system on Cs ( P) consisting of those morphisms ¢: Q — R
in F for which there exists an extension ¢: PQ — PR of ¢ in F, such that the restriction @|p is
the identity on P.

(¢) The subgroup P < S is normal in F if F = Nx(P).

(d) Fis constrained if F has a centric normal subgroup.

These centralizer and normalizer fusion systems are not always saturated, but they are both saturated
provided P is fully F-normalized.

Lemma 2.4. If P is F-centric, then Cr(P) = Fzpy(Z(P)).

Proof. Assume that P is F-centric. The centralizer system Cx(P) is a fusion system over the abelian
group Cs(P) = Z(P), and Z(P) is normal in Cx(P) from the definitions. As each morphism between
subgroups of Z(P) in Cx(P) extends to act as the identity on P, each such morphism is an identity
map. m]
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Lemma 2.5. Suppose that P < S is normal in F. Then P is contained in every JF-centric radical
subgroup.

Proof. Let Q € F°". Then Autpp(Q) is normal in Autr(Q), and so Autpp(Q) < Inn(Q) since Q is
radical. Then P < PQ < QCs(Q) = Q with the equality because Q is centric. o

The next two lemmas give applications of the Extension axiom. The second is useful for locating the
F-centric radicals that contain a given weakly F-closed subgroup.

Lemma 2.6. Let P’ < S be fully F-normalized, and let P be a subgroup of S which is F-conjugate to
P’. Then there exists a morphism @« € Homz(Ng(P), Ns(P’)), such that P* = P’.

Proof. See [AKOI1,1.2.6(c)]. ]

Lemma 2.7. Let W be an F-centric and weakly F-closed subgroup of S. For any subgroup P of S
containing W, restriction induces an isomorphism

Autr(P)/Auty (P) — Noui, (w)(Outp(W))
and therefore an isomorphism
Outx(P) — Noutx(w) (Outp(W))/Outp (W).

Hence, the map P w— Outp(W) is a bijection between the collection of F-centric radical subgroups
containing W and the collection of subgroups of Outg (W) which are p-radical in the group Outxz(W).

Proof. Consider the restriction map p: Autz(P) — Nau,(w)(Autp(W)), under which Auty (P)
maps onto Inn(W) and under which Inn(P) maps onto Autp(W). Since W is weakly closed, it is fully
F-normalized by Lemma 2.6. A direct application of the Extension axiom [BLLO03, Definition 1.2(II)]
then gives that p is surjective. Since W is F-centric, the centralizer in F of the centric subgroup W is
the fusion system of Z(W) by Lemma 2.4, so the kernel of p is Autzw)(P), which is contained in
Auty (P) C Inn(P). The induced map

Autz(P)/Auty (P) — Nauz(w) (Autp(W))/Auty (W) = Nou, (w) (Outp (W)
is an isomorphism, and therefore upon factoring by Autp (P)/Auty (P), the induced map
Outz(P) — Nauty(w) (Autp(W))/Autp (W) = Nou, (w) (Outp(W))/Outp (W) 2.1

is an isomorphism.

Observe that W is normal in S because it is weakly F-closed. So Outp (W) = P/W since Cs(W) < W.
The map P — Outp (W) is therefore a bijection between the subgroups containing W and the subgroups
of Outg (P). By (2.1), Out £ (P) corresponds to Noy - (w) (Outp (W)) /Outp (W) under the bijection, so P
is F-radical if and only if Outp (W) is p-radical in the group Out (W) (Remark 2.2). The last statement
now follows because the collection of F-centric subgroups is closed under passing to overgroups. O

2.2. Quaternion groups and the 2-local structure of SL;(q)

It will be convenient to recall here standard facts about the 2-local structure of SL; (g), where g is an odd
prime power. For reasons that will become apparent in a moment, we set / > 0 and take ¢ = g; = 5% for
simplicity of exposition. Given this notation, SL;(g) has generalized quaternion Sylow 2-subgroups of
order 2/*3, and this can be seen as follows. First, the size of a Sylow 2-subgroup can be deduced from

the order g(q — 1)(g + 1) of SL,(q), together with the fact that the 2-adic valuation vz(52[ —1)isl+2.
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By the choice of ¢, the multiplicative group ]P'; contains a primitive root of unity w of order 2:*2. Thus,

a:=(‘“ 0) and b:=(97))

0 w!
generate a Sylow 2-subgroup of SL;(g) by order considerations. Since a and b satisfy the relations
2P =pr=1, & =p?, blab=a), (2.2)

we see that R := (a, b) is a generalized quaternion group of order 2/*3. The following lemma records

some basic facts about the subgroup structure of a generalized quaternion group.

Lemma 2.8. The following hold:

(a) each element of R is of the form a'b? with0 < i <22 —1and0 < j < 1;

(b) each element in R\{a) is of order 4;

(c) a'b is conjugate to a’b if and only ifi = jmod 2, where 0 < i, j < 22 — 1;

(d) the ser Q of subgroups of R isomorphic with Qg is given by { (azl, aby|0<i<2"2 -1},

(e) when | > 0, there are two R-conjugacy classes, each of size 2!, of subgroups isomorphic to Qg,
and Q = (azl ,b) and Q' = (azl, ab) are representatives of these classes; and

(f) when | >0, Ns(Q) = (Q,a* ') and Ns(Q') = (Q’,a* ).

Proof. Part (a) is clear, and (b) follows since, for each i,
(a'b)? = d'ba'b = ba~'a'b = b?
has order 2. A general element a/b™ as in (a) conjugates a'b to

bMa albal b™ = (b™"al= p™yp = {“2 .i].b’ ifm =0
a”7'b, ifm=1
from which the claim in (c) follows.

Let Q be the set of subgroups of R isomorphic to Qg as in (d), and fix Q € Q. As (a) is cyclic of
index 2 in R, we have Q{a) = R,and so Q N {a) = (aZI) by order considerations. This shows that Q is of
the form (a2[ ) aib> for some i. Conversely, for each i, the elements a® and a'b satisfy the relations (2.2),
applied with [ = 0, in place of a and b, respectively. Hence, (azl, a'by = Qg, and so (azl, a'by € Q.
This completes the proof of (d).

Note that exactly four elements of the form a’b lie in a given member of Q. Since there are
choices for i, Q has cardinality 2/*?/4 = 2!. Part (e) now follows from the conjugacy information in (c),
while (f) follows from the observation that ¢ = a~2b so that b* = a~2b. |

Zl +2

Since va(¢—1) = [+2 and w is a primitive 2"** root of unity, v ¢ F. So p(1) := t*—w is irreducible

inF,, and Fy := F, [¢]/p(¢) is a finite field of order ¢ containing F,.Setc := (6 z(-)l ) € SL,(Fp).Then

straightforward computations show that ¢> = a (so ¢ has order 2/*3) and that ¢ ™' b¢ = ba and chc™ = ab.
Hence, by Lemma 2.8 (d),(e), ¢ fuses the two conjugacy classes of subgroups of R isomorphic with QOg.

Finally, we will need the following lemma, which we will usually use in Section 3 without further
comment. For a discussion of (2), see, for example [Cral |, Theorem 4.54].

Lemma 2.9. For g = 5%, as above, let F = Fr(SLy(q)) be the 2-fusion system of SL;(q).

1. If I = 0, then F is constrained with centric normal subgroup R, Nsi,q)(R) = SL»(3), and
Outrz(R) = Cs.

2. Ifl > 0, then {R, Q, Q’} is a complete set of F-conjugacy class representatives of F-centric radical
subgroups. Moreover, Nsi,(4)(Q) = Nsi,(¢)(Q") = GLy(3), Outr(Q) = Outz(Q’) = S3, and
Outz(R) = 1.
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2.3. Spin,(q)

Let g be an odd prime power, and let V be an odd dimensional vector space over F,. Let q be a
nondegenerate quadratic form on V and b the associated symmetric bilinear form, which determine each
other viaq(v) = b(v,v) andb(v,w) = %(q(v +w)—q(v)—q(w)).Let (V, q) be the associated geometric
space, and O(V) = O(V, q) the isometry group. There are two such forms b up to equivalence, and the
corresponding isometry groups are isomorphic. We may therefore take b to be of square discriminant
when convenient. We have O(V) = {£1} X SO(V). The spinor norm SO(V) — Fy/ F;z is defined by
writing an element of SO(V) as a product of reflections, and then taking the product of the discriminants
of the —1-eigenspaces of those reflections. The kernel of the spinor norm is the simple subgroup Q(V).
Let Spin(V) be the perfect double cover of Q(V), and write Z for the center of Spin(V). Thus, Z = (z)
is of order 2. We sometimes speak of the action of an element of Spin(V) on V, we mean the action of
the image of the element in Q(V).

We generally refer to [LO02, Appendix A] and [AC10, Section 4] for information on the construction
and subgroup structure of the Spin groups but record the following basic lemma for use in Section 3.

Lemma 2.10. An involution in Q(V) lifts to an involution in Spin(V) if and only if the dimension of its
—1-eigenspace is a multiple of 4.

Proof. See [1LO02, Lemma A.4(b)]. m]

From now, take V to be of dimension 7. To help motivate some of the definitions in the next
subsection, we describe very roughly the structure of the normalizer of a four subgroup containing Z in
Spin, (q). For more information and proofs, we refer the reader to Proposition 2.5(b) of [LO02] (which
views Spin(V) classically) or Lemma 4.3(b) of [HL.L.23] (for a Lie theoretic approach). Lemma 2.10
implies that Spin;(g) := Spin(V) has two classes of involutions, namely, those with representatives
given by the central involution z € Z(Spiny(q)) and by the preimage of an involution with —1-
eigenspace of dimension 4. Let V; be a nondegenerate subspace of dimension 4 (and Witt index 2),
and let V, be its orthogonal complement. Let z; € Spin(V) be an element whose image in (V) is an
involution with —1-eigenspace V (thus, z; is an involution by Lemma 2.10). Setting U = (z, z1), the
normalizer B := Ngyin(v)(U) contains the normal subgroup Cg(V2)Cp(V}) with index 4, isomorphic
to the commuting product

Spin(V1)  Spin(V2) = (SLa(g) X SLa(g) x SLa(¢))/{((=1,-1,-1)).

There is a four group complementing Cg(V2)Cp(V}) in B, which contains an involution interchanging
the first two SL;(g)’s and centralizing the third (and whose image in Q7(g) acts as —1 on V5), and which
contains an involution acting simultaneously as a diagonal automorphism on each SL;(g) factor.

All additional information about Spin,(g) that we require directly will be collected later in Lemmas
2.14 through 2.18, in Proposition 3.2, and in the proof of Lemma 3.8.

2.4. Construction of Sol(q)

Following work of Solomon [Sol74], the Benson-Solomon systems were predicted to exist by Benson
[Ben98c], and then later constructed by Levi and Oliver [LO02, LO05]. They are exotic in the sense
that they are not of the form Fg(G) for any finite group G with Sylow 2-subgroup S. They are also not
the fusion system of any 2-block of a finite group [Kes06], [Crall, Section 9.4], an a priori stronger
statement. After Levi and Oliver, Aschbacher and Chermak gave a different construction of the Benson-
Solomon systems as the fusion system of a certain free amalgamated product of two finite groups
having Sylow 2-subgroup isomorphic to Spin,(q) [AC10]. We primarily view Sol(g) through the lens
of [AC10], so we consider it as the 2-fusion system of an amalgamated product G = H *p K, where
H := Spin,(q).
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The isomorphism type of the Benson-Solomon system Sol(q) depends not on ¢, but only (uniquely)
on the 2-adic valuation of g> — 1 by [COS08, Theorem 3.4]. For reasons of exposition, it will be helpful
therefore to fix the following choice of g: unless otherwise specified, for the remainder of this section
and the next, we

let | be a fixed but arbitrary nonnegative integer, and set q = 5%

We have described how B arises as a subgroup of H in Subsection 2.3 (but the explicit embedding
B — H in the amalgam is not the “obvious” one). We now take a more abstract approach to obtain a
working description of K in Aschbacher-Chermak free amalgamated product, as follows. Consider the
natural inclusion SL;(¢) < SL;(g?) induced by an inclusion of fields, and define N := N1, (42 (SL2(q))
so that [N : SL,(g)| = 2 and N and SL;(q) both have generalized quaternion Sylow 2-subgroups, as
explained more fully in Subsection 2.2. Form the wreath product W := NS5, and let N := N; X N2 X N3
and X := S3 be the base and acting group respectively. Note that O>(Ny) < W is a direct product
Ly x L, x L3 of three copies of SL,(g) permuted transitively by X.

Define K := 0?(Ny)Chn, (X)X regarded as the group generated by the wreath product O%(Np) > X,
and an element of Ny\O?(Np) acting in the same way simultaneously on each factor L; of O0%(Ny).
Thus, Z(0*(No)) = Z(0*(No)Cn, (X)) = (1, %1, 1)) and Z(K) = ((—1,-1,-1)). Here, we write
1 for the identity matrix. Finally, set

K = K/Z(K).

We will write [a1, az, as], for example, for the image in K of an element (a1, as, az) of OZ(NO)CN0 (X).
Notation 2.11. We fix the following notation for certain subgroups of K.

(a) L; = SLy(gq) fori=1,2,3 are the images in K of the subgroups Z,- of I?;
(b) Lo:=LiLyL3;

(c) X = S3is the image in K of the subgroup with the same name;

(d) T € X is the permutation (1, 2) on the indices of the L;;

(e) Sis a Sylow 2-subgroup of K containing 7;

(f) U=Z(Log) = {[£], %1, %1]) = C; X C; and

(g) B:=LyS.

Thus, the subgroup B in Notation 2.11(g) is a subgroup of K of index 3, and BN X = (7). As was
shown in [AC10], there is a four subgroup U < H, such that B = Ny (U), and a choice of injection
t : B — H, such that the free amalgamated product G = H *g K has finite Sylow 2-subgroup S and
determines a saturated fusion system Sol(g) over S that was constructed by Levi and Oliver by different
means [LO02, LO0O5]. An incorrect choice of ¢ can lead to a fusion system which is not saturated (see
[AC10, Section 5] and [LOO5] for more details, but generally, this subtlety will be unimportant in our
computations).

It will be helpful to introduce some more notation. Some of it follows the notation of [AC10, Section
10] in preparation for the application in Section 3 of some of the results there.

Notation 2.12. We fix the following additional notation for subgroups and elements of K.

(@) R; = Qs is a Sylow 2-subgroup of L; for i = 1,2,3, chosen so that X = S3 acts on the set
{R1, R2, R3};

(b) Ry := RiRyR3 € Syl,(Lo);

(c) Q; is the set of subgroups of R; isomorphic to Qg fori = 1,2, 3; thus, Q; = {R;} if [ = 0, while Q;
is a union of two R;-conjugacy classes of subgroups if / > 0 by Lemma 2.8(e);

(d) when! >0, Q;, Q] € Q; are representatives for the two R;-conjugacy classes of subgroups chosen
so that X = §3 acts by permuting the sets {Q1, 02, 03} and {01, 0}, 0}};

(e) ¢ := [c,c,c], where ¢ is as in Section 2.2, so that ¢ acts simultaneously on L; = SL,(g) by
conjugation in the way described there;
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(f) d :=[b, b, b]c € K, where b is as in Section 2.2, an involution commuting with 7; and
(g) v’ =dr.

Note that (d, 7) is a four group which intersects Ry trivially. Thus, refining Notation 2.11(e), we fix
the following Sylow 2-subgroup of K throughout the remainder of this section and in Section 3:

S = Ro(d, T).

Then S is isomorphic with a Sylow 2-subgroup of H, Ry is normal in S with complement (d, 7), R3 is
normal in S, and d interchanges the two R;-conjugacy classes of subgroups isomorphic with Qg when
[ > 0. Finally, we define

K:=Fs(K), H:=Fs(H) and F := Fs(G).

We note that F is the fusion system generated by H and K by [Sem14, Theorem 3.3], namely, F is the
smallest fusion system on S containing all morphisms in H and K.

2.5. The torus of F

The next lemma calls attention to the 2-power torsion subgroup 7 < S in a maximal torus of H. As a
subgroup of K, it may be generated by the elements [a, 1, 1], [1, a, 1], [c, ¢, ¢] in the notation of Section
2.2, and it is inverted by the involution d. In the lemma and elsewhere, we refer to Borel and parabolic
subgroups of C; x GL3(2), as an algebraic group over F, with unipotent radical C,. Thus, a Borel
subgroup is the stabilizer of a maximal flag in the three-dimensional [F»-representation of C X GL3(2)
which is natural for GL3(2) and has C; in its kernel, and the two maximal parabolic subgroups are
similarly stabilizers of proper subspaces and isomorphic to Cs X S4.

Lemma 2.13. There is a unique subgroup T of S isomorphic to (Cy2)3. The centralizer Cy (T) is a
split maximal torus of H; in particular, Cs(T) = T. The subgroup T is F-centric and weakly F-closed.
Moreover, Outg(T) = S/T = Cy xDg, Outz(T) = Cy X GL3(2), and Outy (T) = Cy X Sy is the maximal
parabolic in Outx(T), lying over the Borel subgroup Outs(T'), given by the stabilizer of Z in the action
of Outx(T) on Q(T).

Proof. By [AC10, Lemma 4.9(c)], there is a unique homocyclic subgroup of S of rank 3 and exponent
4, T is the centralizer in S of that subgroup, and Cy (T) is a split maximal torus of H. Since T is abelian,
this shows that 7 is the unique subgroup of § of its isomorphism type. Then [AC10, Lemmas 4.3 and
4.8] show that S/T = C, X Dg, and Outy (T) = C, X S4. The structure of the outer automorphism group
Out £ (T) follows from the construction of the Aschbacher-Chermak amalgam in [AC10, Lemma 5.2].
All other points follow. O

2.6. The standard elementary abelian chain in S
We refer to Sections 4 and 7 of [AC10] for more discussion on the following items. Set z := [-1,—1,1] =
[1,1,-1] € S, s0 z € Z(Spin,(g)) as in Section 2.3. There is a chain of elementary abelian subgroups

Z<U<E<A

of ranks 1, 2, 3, and 4, respectively, where Z = Z(S) = (z), U is the unique normal four subgroup of S
of Notation 2.11(f), E = Q,(T) = ([-1,1,1],[1,-1, 1], [a*,a*,a?]), and A = E(d). For a member
X,, of the above chain of rank n, Autr(X,) = Outr(X,) = GL,(2) by [LO02, Lemma 3.1]. Also,
H =Cx(Z) and K = Nx(U) by [AC10, Proposition 9.2].
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2.7. Centric radicals containing the torus

In the next five lemmas, we identify, using Lemma 2.7, the outer automorphism groups of the centric
radical subgroups that contain the 2-torus 7.

Lemma 2.14. The subgroup Cs(E) of S is F-centric and weakly F-closed, Cs(E) = T{(d), and
Cu(Cs(E)) = Z(Cs(E))) = E. Moreover, Outs(Cs(E)) = S§/Cs(E) = Ds, Outz(Cs(E)) = GL3(2),
and Outy (Cs(E)) = Sy is the maximal parabolic in Outx(Cs(E)) given by the stabilizer of Z under
the natural action of Outx(Cs(E)) on E.

Proof. Since E = Q(T), we have Cs(E) > T. As T is F-centric, so is Cs(E). Let ¢ €
Homz(Cs(E),S). By Lemma 2.13, T¥ = T, so also E¥ = E. Hence, Cs(E)¥ < Cs(E¥) = Cs(E),
and so Cs(E) is weakly F-closed. From the description of Outz(7") in Lemma 2.13, the kernel of the
action of §/T on E is of order 2. Now d € § inverts 7, so centralizes E = Q;(T). Hence, d represents
the lone nontrivial coset of Cy (T) in Cy (E), whose elements invert the maximal torus Cy (T) of H
containing T (see [AC10, Lemma 4.3(a,d)]). So Cs(E) = T{d), and Cy(Cs(E)) < T from Lemma
2.13. Hence, the center Z(Cs(E)) is Cy (Cs(E)) = Cr(d) = E.

As 02(Outz(T)) = Outcy (k) (T), the descriptions of the outer automorphism groups in F and H
follow from Lemmas 2.7 and 2.13. |

Lemma 2.15. Ny (S) = S and Outy (S) = Outz(S) = Outx(S) = 1.

Proof. Since Cs(E) contains its centralizer in H from Lemma 2.14, so does S. Then as the Sylow
2-subgroups of S4 and GL3(2) are self-normalizing, the lemma now follows from Lemmas 2.7 and
2.14. m]

Lemma 2.16. The subgroup Cs(U) of S is F-centric and weakly F-closed, and Z(Cs(U)) = U.
The quotient Cs(U)/Cs(E) is the unipotent radical of the stabilizer in Outz(Cs(E)) of U. Thus,
Outg (Cs(U)) = Outy (Cs(U)) = C; is induced by (t), and Outx(Cs(U)) = S3 is induced by X.

Proof. From the structure of Outr(Cs(E)) in Lemma 2.14, Outcg ) (Cs(E)) = Cs(U)/Cs(E) is
the unipotent radical of the stabilizer of U in the action of Outr(Cs(E)) on E, so, in particular,
Z(Cs(U)) = Ce(Cs(U)) = U. The descriptions of the outer automorphism groups now follow from
Lemmas 2.7 and 2.14 and the structure of GL3(2). O

Lemma 2.17. The subgroup Cs(E/Z) = {s € S | |[E,s] < Z} is F-centric and weakly F-closed,
and Z(Cs(E/Z)) = Z. The quotient Cs(E/Z)/Cs(E) is the unipotent radical of the stabilizer in
Outx(Cs(E)) of Z in the natural action on E. Thus, Outy (Cs(E/Z)) = Outr(Cs(E/Z)) = S3.

Proof. Observe that, Cs(E) < Cs(E/Z) and that Cs(E/Z)/Cs(E) is the group of transvections in
Outz(Cs(E)) on E with center Z. So Cs(E/Z)/Cs(E) is the unipotent radical of the stabilizer of Z.
Also, as Z(Cs(E)) = Z from Lemma 2.14, we have Z(Cs(E/Z)) = Ce(Cs(E/Z)) = Z. Since Cs(E)
is F-centric, weakly F-closed, and Auty (Cs(E)) = Cautr(cs(E)) (Z), all points follow from Lemmas
2.7 and 2.14 as in the previous lemma. O

Lemma 2.18. The collection of F-centric radical subgroups containing T is
{Cs(E),Cs(U),Cs(E/Z),S}. The collection of H-centric radical subgroups containing T is
{Cs(E/Z), S}

Proof. There are four 2-radical subgroups in GL3(2) inside a fixed Sylow 2-subgroup: the identity
subgroup and the unipotent radicals of the three associated parabolics. So the lemma follows from the
bijection of Lemma 2.7 together with Lemmas 2.14-2.17. O

2.8. The sectional rank of S

Before continuing, we record the sectional rank of S using the later Proposition 3.2, which locates an
extraspecial subgroup of order 27 in S.
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Lemma 2.19. The sectional rank of S is 6.

Proof. By Lemma 3.2(a) below, S contains an extraspecial subgroup with central quotient of rank
6, and hence s(S) > 6. On the other hand, the sectional rank of a group is at most the sum of
the sectional ranks of a normal subgroup and corresponding quotient, so Lemma 2.13 shows that
s(S) <s(T)+s(S/T)=3+3=6. O

3. Centric radicals in Sol(g)

The aim of this section is to refine the description of the centric radical subgroups of a Benson-Solomon
system that results from a combination of [AC10, Section 10] and [COS08, Section 2]. A starting point
is the next result due to Aschbacher and Chermak, which allows us to work in the groups H and K
separately. Adopt the notation from Section 2, and, in particular, from Notations 2.11 and 2.12 and
Sections 2.5 and 2.6. Recall that G is the Aschbacher-Chermak free amalgamated product, and that
F = Fs(G).

Proposition 3.1. Up to F-conjugacy, a subgroup P < S is F-centric radical if and only if

(a) P = A is elementary abelian of order 2* and Outx(P) = GL4(2);
(b) P =Cs(E) and Outx(P) = GL3(2);
(c) Either:

(i) Ng(P) < Kand P € K"; or

(ii) Ng(P) < Hand P € H*".

Proof. See [AC10, Lemma 10.9]. O

For the smallest Benson-Solomon system, the results of [COS08], when combined with Proposition
3.1, supply sufficiently precise information for our needs, as we make clear in Section 3.1. For the
larger systems, Proposition 3.2 below yields a sufficiently detailed description for the centric radicals
occurring in Proposition 3.1(c)(ii), whose normalizer in G is not contained in K.

Recall that (V, q) is the orthogonal space from Section 2.3; q(v) is referred to as the norm of the vector
v. Following [AC10, Section 10], we write A(V) for the collection of all sets of pairwise orthogonal
subspaces whose sum is V. For A € A(V), the frype of A is the nondecreasing list of dimensions of
the members of A. Write Ny (A) for the subgroup of H which permutes the members of A, and write
Cy (A) for the subgroup of H which acts on each member of A. We use exponential notation for the type,
writing, for example, 17 for (1,...,1) and 1°2 for (1, ..., 1,2). Also, we write 2Jlr+2k and 2142k for the
extraspecial 2-groups of width k and plus and minus type, respectively. Finally, if Y is a finite group and 7
is a set of primes, we write (as usual) O . (Y) for the unique maximal normal 7-subgroup of Y, O »_» (Y)
for the preimage in Y of O /(Y/O (Y)), and O  » . (Y) for the preimage in Y of O (Y /O x /(Y)).

Proposition 3.2. Suppose that P € H" with Ny (P) £ K. Then, using * to denote a central product,
one of the following holds.

(@) P = Cg(A) for some A € A(V) of type 17 with each member of A spanned by a vector of square

A7ifl=0

S7ifl > 0;

(b) P =Cg(A)forsome A € A(V) of type 17 with exactly six 1-spaces spanned by a vector of nonsquare
norm. Moreover, P = Cy * Dg % Qg = Cy % 2!** = C4 % 21** and Out = (P) = Outy(P) = Se;

(¢) I >0, and P = O2(Ng (N)(t) for some A € A(V) of type 1°2 with each 1-space spanned by a
vector of square norm and with the 2-space a hyperbolic line. Moreover, t acts as —1 on the 1-spaces
and as a reflection on the line, P = Dg * Qg % Qyns, and Outx(P) = Outy (P) = Ss;

(d) P=Cs(E/Z), |S: P| =2, and Outx(P) = Outy (P) = S3.

norm. Moreover, P = Dg  Dg * Dg = 21*% and Outz(P) = Outy, (P) =

Moreover, there is exactly one H-conjugacy class of subgroups of S of each of the given types.
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Proof. Except for the last statement and the alternative descriptions of the groups P in (c) and (d), this
is proved in [AC10, Lemma 10.7] (note each subgroup in (a)—(d) has center Z, so Out z(P) = Outy (P)
in all cases). To see that P = Dg % Qg * Q43 in (c), we recall the setup of Aschbacher and Chermak as
follows. Set H := H/Z = Q(q). The description of the subgroup in part (c) is discussed at and around
[AC10,p.937,1.5]. For such a subgroup P asin (c), P preserves adecompositionV =V, L --- L V5 L W,
where dim V; = 1 and where W is a hyperbolic line. Set Vo = Vi +-- -+ V5, H| = Cyg (W), H, = Cy (Vp),
and let 7 be an element which acts as —1 on the V; and which induces a reflection on W. The subgroup
of H preserving the above decomposition is of the form HjH,(t), where O>(H]) = Dg * Qg has center
Z,H{/O,(H|) = S5, and H is cyclic of order 2(¢g — 1). Further, P = P P,(t), where P; = O(H}),
Py = 0,(H;), and [Py, P>{t)] = 1. The image of ¢ in H has —1-eigenspace of dimension 6, so ¢ squares
to z in H by Lemma 2.10. Likewise, an element s € P, acting as —1 on W and as the identity on Vj
squares to z. This shows P, (t) = Qo3 and Z(P1) = Z = Z(P»(t)), so that P has the structure as claimed
in (c). The subgroup in (d) appears in the proof of 10.7 as the only subgroup P satisfying the conditions
that contains an elementary abelian normal subgroup Py of rank at least 3. Having such Py of rank > 4
is ruled out on [ACI10, p. 957, lines 19-22]. Let P € H " with Ny (P) £ K, and assume that there is
an elementary abelian normal subgroup Py of P of 2-rank 3. Then [AC10, p. 973, lines 22-29] shows
that Py = E and Cs(E) < P. As Ny (S) =S < K from Lemma 2.15, we have P = Cs(E/Z) by Lemma
2.18. Lemma 2.17 then gives Outxz(P) = Outy (P) = S;.

Finally, we must verify the last statement. For P in (a)—(b), this follows from a slight extension of
Witt’s lemma, as stated in [GLS98, Lemma 2.7.2], and induction on dimension. Consider a subgroup
satisfying the conditions in (c). From the description of P in the first paragraph, we see that P is
a Sylow 2-subgroup of Oy »(Ngy(A)). By [GLS98, Lemma 2.7.2] again, Oy »(Ng (A)) is uniquely
determined up to H-conjugacy, so P is uniquely determined up to H-conjugacy by Sylow’s theorem in
Oy 2(Nu (A)). For uniqueness of the subgroup in (d), there is nothing to do. This completes the proof
of the proposition. O

Notation 3.3. We denote a member of the F-conjugacy class of a subgroup appearing in Proposition
3.2 parts (a), (b), and (c) by Ry7, RI7, and R;s,, respectively, to best indicate their origins. The reader
should not confuse these with the generalized quaternion groups R;, R, and R3. When [ = 0, the
subgroups R;7 and Ri7 correspond with the subgroups R and R* of Section 2 of [COSO08].

We next describe the centric radical subgroups arising in case (c)(i) of Proposition 3.1. Recall
Notations 2.11 and 2.12. In addition, for any subgroup Y of K, we set Yy =Y N Ly, and let ¥; be the
projection of Yy in L; for 1 < i < 3. That is, ¥; is the image in L; of the projection of the preimage of
Yy in Zi (cf. Notation 2.11(a)) under the quotient map K > K.

Proposition 3.4. Fix P < S. Then P € K" if and only if

(@) PN Ly= P PyP3, and for eachi € {1,2,3}, either P; € Q; or P; = R;; and
(b) one of the following holds. Either,
(i) Pe{Cs(U),S},
(ii) P = P P,P3 < Ry with P; € Q; for at least two indices i, or
(iii) P = Py(s) for some s € P\Cp(U), such that
(1) s* € Py,
(2) either P3 € Q3 or P; € Q,; for bothi =1 and 2, and
(3) if P3 € Q3, then Outy, (P) is not a 2-group.

Proof. Thisis part of [AC10, Lemma 10.2], namely, (c) and (d) of that lemma together with the statement
beginning “Conversely”. The requirement here in (b)(iii)(1) that s square into Py does not appear in
[ACI10], but it is needed for the “if”” part of the proposition to hold in general. A patch for the proof of
the “if” part in [AC10, Lemma 10.2] is given later in Remark 3.10. O
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3.1. Thecasel =0

An important distinguishing feature of the smallest Benson-Solomon system is that Ry is normal in
the fusion system /C. When [ = 0, this is most naturally seen over Fs, where a Qg Sylow 2-subgroup
is normal in SL;(3). Over Fs, the normalizer of a quaternion Sylow 2-subgroup of SL;(5) is SL,(3),
which still controls 2-fusion in SL; (5) (c.f. Lemma 2.9). It will therefore be convenient to treat the cases
[ =0and! > 0 separately. So assume here that / = 0. We adopt the previous notation, except that we set

0 :=Ry=RiRR3 = 010203 3.D

in this smallest case so that O, R;7, and Ri7 correspond with the groups “Q,” “R,” and “R*” considered
in [COSO08, Section 2].
The next proposition lists the /C-centric radicals when / = 0, and does not require Proposition 3.4.

Proposition 3.5. Let [ = 0 and P € K. Then exactly one of the following holds.
(a) P=3S, andOutx(P) = 1;

(b) P = Q, andOutx(P) = (C3)* X (C2xS3), where here, and in Table 1, the notation —1 X2 indicates
that the C; factor acts by inversion while S3 acts by wreathing;

(¢) P =Q(r), and Outc(P) = (C3 X C3) B Co;
(d) P=0Q(1"), and Outic(P) = S3, or
(e) P=Cs(U) =Q{(d), and Outyc(P) = S3.

Proof. As Q is a centric normal 2-subgroup of /C, it is contained in every member of K¢ by Lemma
2.5. Now S/Q is a four group (the four group (d, 7) is a complement to Q in S), so there are only five
possible centric radical subgroups. Since O?(K) N S = Q, if two distinct subgroups of S containing Q
were C-conjugate, then two distinct subgroups of the abelian group S/Q would be K/O*(K) = S/Q-
conjugate. Since this is not the case, no two distinct subgroups of S containing Q are K-conjugate. Next,
from the definition of U, both Q and d centralize U while 7 does not, so we must have Q(d) = Cs(U).
This shows the equality in (e).

The structure of the outer automorphism groups are computable from knowledge of Outx (Q): note
that from the structure of K (cf. Lemma 2.9),

Outx (Q) = (C3)® > (Cy X S3)

is a split extension of the wreath product C3 ¢ S3 by the group generated by the class [cq] € Outx(Q)
of conjugation by d acting by inversion on the base. As Q is weakly K-closed and centric, Outx (P) =
Nou (o) (Outp(Q))/Outp(Q) for each overgroup P of Q in S by Lemma 2.7. From a computation in

the group (C3)? &8 (C; X S3), one sees, for example, that

Noute () ({[e2])) = Cour (o) ({[e])) = (C3)? = (C2 x ),

where the acting group is given by ([cq]) X ([c¢]). This shows that Outx(Q(r)) =

Nouge (o) (Le=1)) /{[c<]) = (C3 x C3) p* C; as claimed. Cases (d) and (e) are handled similarly. Vis-
ibly, no resulting outer automorphism group has a nontrivial normal 2-subgroup, so all the candidate
subgroups are KC-centric radical. O

Proposition 3.6. Let [ = 0. Then, up to conjugacy, the K-, H-, and F-centric radical subgroups of S
together with their orders and automorphism groups appear in Table 1, where a “—"" indicates that the
subgroup is not centric radical in that fusion system.

Proof. By Proposition 3.5, the column for K is correct. By [COS08, Lemma 2.1] and [L.LO02, Lemma
A.11(e,f)], the column for H is correct. We work up to F-conjugacy in what follows. Let P € F°".
By Proposition 3.1, either P is listed in the last two rows of Table 1, or one of the following holds: (1)
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Table 1. Sol(5)-conjugacy classes of Sol(5)-centric radical subgroups.

P |P| Outy (P) Outic (P) Outx (P)
N 210 1 1 1
0 28 (C3)3 = (Cr x Cy) (C3)% > (C, x S3) (C3)% = (C2 % S3)
o(7) 2 (C3xC3) « (@) (C3xC3) = C (C3 xC3) Efe)
o(7’) 2 S3 Ss S3
Cs(U) 2 - S; S3
Ry 27 Aq - Aq
R, 26 Se - Se
Cs(E/Z) 2 S3 - S3
Cs(E) 27 - - GL;3(2)
A 24 - - GL4(2)

P € K¢ and Outz(P) = Outx(P), or 2) Ng(P) £ K, P € H", and Outx(P) = Outy(P). If (1)
holds, then P is listed in the first five rows of the table by Proposition 3.5. If (1) does not hold, then (2)
holds, P is listed in the next three rows of the table, where the entries follow from Proposition 3.2(a,b,d).

That no additional F-conjugacy can occur between these subgroups can be seen in several ways, one of
which as follows. Only three subgroups have pairwise equal orders and isomorphic outer automorphism
groups in F, namely, Q(7’), Cs(U), and Cs(E/Z).

By Lemma 2.14, Cs(E/Z) has center Z. Likewise, since Z(Q) = U, we have Z(Q({7’)) =
Cy(t’) = Z.Soas U < Z(Cs(U)), it follows that Cs(U) is not F-conjugate to either of the other two
subgroups.

Finally, note that Cs(E/Z) contains the torus 7. On the other hand, from the description of T in
Section 2.5, we see that O N T = ([a, 1,1], [1,a, 1], [¢?, ¢%, ¢*]) is of index 2 in T. As each element in
the coset Q7' is nontrivial on Q N T and T is abelian, it follows that Q(7’) N T is still of index 2 in 7.
So Cs(E/Z) contains T, but Q(t’) does not. Since T is weakly F-closed (Lemma 2.13), the subgroups
Cs(E/Z) and Q(7’) are not F-conjugate. O

‘We end this subsection with two lemmas in the case / = 0, which will be needed later.
Lemma 3.7. Each member of F" — {A} is weakly F-closed when [ = 0.

Proof. The subgroup S is clearly weakly closed, and Cs(E), Cs(U), and Cs(E/Z) were shown to be
weakly F-closed in Lemmas 2.14, 2.16, and 2.17. Let P be one of the remaining subgroups, but not A.
By Proposition 3.6, P is centric and radical in , and either P = Q or Z(P) = Z. The quotient P/Z is
centric and radical in /Z by [LO02, Lemma A.11(e)]. Hence, P/Z is weakly H /Z-closed by [COS08,
Lemma 2.1]. It follows that P is weakly #-closed. Since Q is normal in /C, it is weakly K-closed. Hence,
Q is weakly F-closed since H and K are fusion systems over S which generate F (end of Section 2.4).

We are reduced to the case in which Z(P) = Z. Assume on the contrary that P is not weakly
F-closed. By Alperin’s Fusion theorem [BL.OO3, Theorem A.10], there is an overgroup ¥ < § of P
and an automorphism a € Autz(Y), such that P* # P. Then Z(Y) < Z(P) = Z, as P is centric, so
that Z(Y) = Z is centralized by a. That is, @ € H. But then P* = P by the previous paragraph, a
contradiction. O

Lemma 3.8. OR7 = Q(t) and QR|; = Q(t’) when | = 0.

Proof. This is a statement depending on H only. Since [ = 0, ¢ = 5. Write H for H/Z. Fix a decompo-
sition

V== L6 161 {(x7)

with the following properties ([AC10, cf. Lemmas 4.4, 4.6]):

https://doi.org/10.1017/fms.2023.53 Published online by Cambridge University Press



Forum of Mathematics, Sigma 15

1. each{; = (xp;_1, x2;) isahyperbolic line (i.e., q(x2;-1) = 0 = q(x2;), b(x2i-1,%2;) = 1),and q(x7) = 1.
2.6 L & = (x1,x4) ® (x3,x2), with each summand on the right side a natural FsL;-module; in
particular, [a, 1, 1] and [b, 1, 1] act via the matrices

2000 000
@t [t ] 1 854
00 0-2 100
with respect to the basis {x;, x2,x3,x4}.
3. 61 L & = (x1,x3) ® (x4,x2), with each summand on the right side a natural F5L,-module; in
particular, [1,a, 1] and [1, b, 1] act via the matrices
with respect to the basis {x}, x2, x3, x4 }.
4. {3 L (x7) is the three-dimensional orthogonal module for L3 = Spin;(5). We may view it as the

module in which L3 acts by conjugation on 2 X 2 trace zero matrices Mg(Fs) with quadratic form
given by the determinant, via the isometry Mg(}l%) —> {3 L {x7} defined by

0 -1
0 0
0 0
0

20 0 0
a3 4] e |
0 2 0-1

0
0

S
co—o

{[ 8]’[0 0] [%—02]} > {Xs, X6, X7}

Under this identification, [1, 1, a] acts via the matrix diag(—1,—1, 1) with respect to the ordered

020
basis {xs, xg,x7}, and [1, 1, b] acts via the matrix [—02 (0) 01].

Next, define u; and v; via

U1 = X2i—1 — 2xy;, Voio1 = Ugi—1 + Uy,
Up; = —2x2;_1 + X2, Voi = U1 — U,
uy = Xxy, V7 =Uuy.
Thus, {uy,...,u7} is an orthonormal basis for V, and {vy,...,v7} is an orthogonal basis, such that

q(vi)=2¢ F§2 for eachi = 1,...,6. The decompositions

A={@)lie{l,...,7}}, and AN ={w)lie{l,....,7}}

of V are therefore of the type appearing in Proposition 3.2(a) and (b), respectively. The centralizers of
the decompositions are

Cu (A) = {e € Spin;(5) | (u;)e = +u;,i =1,...,7}, and
Cr(A) = {f € Spiny(5) | (vi)f =+v;,i=1,...,7}.

Observe from the definition of the v; that Cy(A) < Ng(A’). Similarly, it is a straightforward
computation to see using (2)—(4) that Q acts on the sets A and A’, that is, Q < Ny (A) and Q <
Ny (A). Tt follows that QCy (A)Ch (A)’ is a 2-subgroup of H. Hence, we may choose & € H with
(QCH(A)CH(A)" < S.But Q < S, and so Q" = Q by Lemma 3. 7 Likewise, it follows from Lemma
3.7 that Cr (A)"* = Ry7 and Cy (A" = R{;. Replacing S with st necessary, we may assume that
Ry =Cu(A)and R}, = Cy (N).

For a subset I C {1,...,7}, write e; for a fixed element of Cy (A) which maps u; — —u; ifi € I,
and which fixes u; otherwise. When I C {1, ..., 6}, denote by f; an analogous element of Cy (A’) with
respect to the v;’s. A computation of the action of Q with respect to the bases {u; | 1 < i < 7} and
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{vi | 1 €i <7} using (2)—(4) yields

ONRpy=([-1,1,1],[b,ab,1], [ab, b, 1],[1,1,a], [1,1,Db])
= (€e1234, €13, €14, €56, €57)
= Cy X (Qs * 03),
and
0 ﬂRi7 ={([-1,1,1], [b, b, 1], [ab,ab,1],[]1,1,a])
= (f1234, f23, f13, f56)
= Cy X (Qsg * Cy),

where here we have used Lemma 2.10 and the identity [e, f] = (ef)? to determine the isomorphism
types. The order |Q N Ry7| = 2%, and so |QRy| = lé‘l“lﬁi;: = 2°. Similarly, |Q N R;7| = 23, 50 also
ORY, | =2°.

We have shown that {QR;7, QR;7} c {Q(d), Q(t), Q(z")}. The involution e4567 € R;7 — Q (Lemma
2.10) acts as —1 on £3 L (x7), so centralizes L3. It also interchanges the one-dimensional subspaces {x3)
and (x4) while centralizing the line €1, and hence from (2)—(3), it interchanges L, and L, by conjugation.
It follows that QR 7 = Q(T), since neither Q(d) nor Q(7’) have such an element.

Finally, we show that QR |, = Q(t’). First, since fi234 € U —Z does not commute with f4s by Lemma
2.10, it follows that QR; , isnot contained in Cs (U) = Q(d). Next, observe that in contrast to the previous
case, C, R, (L3) =C R, (€3 + (x7)) (for example, note that “ f4s567” has nontrivial spinor norm). The group

CR;7 (L3) = (fi2, f13, f14) induces the permutation group ((1,2)(3,4)) on {{x1), (x2), (x3), (x4)}, and
hence CR/l7 (L3) acts on Ly and L, by (2)—(3). Therefore, QR;7 has no element centralizing L3 and
interchanging L; and L,, and so QR}; = (7). O

3.2. Thecasel >0

In this subsection, we determine a set of representatives for the D-conjugacy classes of elements in D"
for D € {K, H, F}, in the case when [ > 0. First, we treat the case D = K.

Proposition 3.9. Suppose that [ > 0. There are 11 K-conjugacy classes of elements of K°". Represen-
tatives of these classes together with their outer automorphism groups in KC are listed in Table 2.

Proof. Let P < S be a centric radical subgroup of /C, taken up to KC-conjugacy. We proceed through the
possibilities in the description of K¢ given by Proposition 3.4 and refer to the labelings of the three
cases given there. If P occurs in (b)(i), then P is listed in the first two rows of the table. By Lemma 2.15,
Aut (S) = Inn(S), so that Outx (S) = 1. Also, Cs(U) = Rp{d), so that Outx:(Cs(U)) = S5 is induced
by X.

Consider a subgroup P in (b)(ii). First, assume that P; € Q; for all i. Upon conjugating in L, we
may assume that P; = Q; or Q; for each i. Conjugating by d, which interchanges Q; and Q; for each i,
we may assume that there is at most one Q; among the P;’s. Finally, we may conjugate by elements of
X to see that P is one of the subgroups in rows 3 and 4 of the table.

To compute Outx(P), observe that if 1 € LoX, then P’ and P have the same number of com-
ponents P! which are L;-conjugate to Q;, while PY has three minus the number for P. This shows
that Ng (P) = Nryx(P). Thus, if P = 010203, then Ng(P) = (Nr,(Q1)Nr,(Q2)Nr;(03))X,
and we see that Outic(P) = S3¢S3 by Lemma 2.9. Likewise, if P = 010,0), then Ng(P) =
Nr, (Q1)NL,(Q2) N1, (Q5)(7), so that Outyc (P) = (S3 1 C2) X S3.

Next, assume that P; € Q; for exactly two indices i. Then as before, we may conjugate so that
P = Q102R3 or Q1Q)R3 is on the table. Appealing to Lemma 2.9 again to see that Outy,(R3) = 1, we
have in the former case that Outy(P) = S3t C; with the class of T wreathing, while in the latter case,
we have a similar situation with the class of 7’ wreathing. This concludes the case (b)(ii).

https://doi.org/10.1017/fms.2023.53 Published online by Cambridge University Press



Forum of Mathematics, Sigma 17

Table 2. IC-conjugacy classes of KC-centric radical subgroups,

[>0.
P |P| Outx (P)
S 210+3l 1
Cs(U) 29+3[ S3
010,05 28 83183
010,05 28 (S31C2) X S3
Q102R; 28+ S31C
Q10)R; 28+ S30Cy
010:05(7) 2° 83X 83
010:04(7) 2° S3 X S3
Q1012R;3 (1) 294 S3
0109)R5(7") 2%+ S3
RiRQs3(7) 2o+ S3

Consider now a subgroup P in (b)(iii), and recall that Z(L¢) = U. Thus, P = Py(s) withs € P—Cp(U)
normalizing Py. Set N = Nk (P) and M = Nk (Py). Denote quotients modulo Py with bars. We set
M* = M /0> (M) and write quotients modulo O, (M) with pluses. Thus, for any subgroup ¥ < M, we
write Y* for the image of ¥ modulo the preimage of O3(M) in M.

Since Ly < K, we see that Po = PN Ly < N, so that N < M. In particular, N is defined. Also, since
5 is of order 2, N is the preimage in M of CM(E). As P is radical, we must have

(5) = 02(C37(5)). (3.2)

We consider separately the cases where Py ¢ K" and where Py € . Assume first that Py ¢ K7,
the easier case. Upon comparing the conditions in (b)(ii) and (b)(iii), we have by our assumption that
P3 € Qs and P; = R; fori = 1,2. Thus, M = (T) X Np,(P3) = Cy X S3, and so P = Po(t) by (3.2).
Hence, Outx(P) = S3, and P appears in the last row of the table.

Assume next that Py € K, so that Py is conjugate to a subgroup considered in (b)(ii), rows 3—-6
of the table. First, assume that Py itself appears in rows 3—6. Our description of the normalizer in K
of Py in a previous paragraph together with order considerations imply that Ng,(Po)(7)/Po is a Sylow
2-subgroup of Outx (Py) if Py appears in rows 3-5, and that Ng,(Pg){7")/Py is a Sylow 2-subgroup of
Outx (Py) if Py appears in row 6. This shows that Autg(Py) is a Sylow 2-subgroup of Autx (Py), that
is, Py is fully K-automized [AKO11, 1.2.2]. Since Py is K-centric, it is fully -centralized ([AKO11,
1.3.1]). Hence, Py is fully K-normalized by [AKO11, 1.2.6(c)]. Thus, by Lemma 2.6 (and since Py < P),
we may in any case replace P by a K-conjugate and assume that Py is in rows 3—6 of the table.

Case 1. Assume Py = 010,03, and recall Lemma 2.8(e).
— — _ _
Here, M = Nr,(Po)X = S3083, Ng,(P9) = O02(M™"), and Ns(Py) = Ng,(Po)(T). By assumption,
s is notin Cp(U), so it is not in Ry. Hence, 5 is not in Ng,(Po). Thus,

S € NRO (P())?. (33)

Write s = [#1, t2, 13]T, where each t; € R;, and where we take t; = 1 ift; € P; and t; = a7 if 1 & P;.
As 1 acts by swapping R; and R, and centralizing R3, it follows from (3.3) that Cm(i) is of order
0

4 generated by [a2',a? "', 1] and [1,1,a?""].
Note that 1 = 1, since 5 is of order 2. We claim that (3.2) and (3.3) imply #3 = 1. Assume
on the contrary that 13 = a* . Then 02(C3(5) = Co 37,(5) < Ni,(Q1)NL,(Q2). By (3.3),

COM’Z, (1) () = Com(ﬁ) (5). So since ([1, 1,a2']) is a normal 2-subgroup of Ng(Py), it follows that

([1,1,a%¥™"]) is a normal 2-subgroup of C37(3). By (3.2),5 = [1, 1,a?™"]. This contradicts (3.3).
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We conclude that 5 =T or 5 = [a?", a?™", 1]7, and hence

Ci(5) = () x C

Ne (00N, 00 ) X Cr g (5) = C2 X S5 X S3.

However, since the two possibilities for s are conjugate under Ng, (Q1), we may take s = 7, as desired.

Case 2. Assume Py = Q10>0}. In this case, M = §3:(T)xS3. Replacing all occurrences of Q3 by o5,
we argue verbatim as in Case 1, except that in the present situation, we have Oy 2 » (M) = Oy (M)=M

obviating the need to observe that COz/ L (W) (s) = 02, L (1) (s). Again, we may take s = 7.

— e
Case 3. Assume Py = Q1Q>R;. We have M = NLO(PO)X = S30(T), Ng,(Pp) = O2(M"), and
Ns(Pg) = Ng,(Po){T). By assumption, s is not in Cp(U), so it is not in Ry. Hence, s is not in N, (Po).

Thus, 5 € Ng,(Po)T. As in the previous cases, (3.2) forces 5 = T or [a? ', a?", 1]7, so that

Cy7(5) = (5) X CiNLI (QI)NLZ(QZ)(E) =Cy X S3.
Again, these possibilities for 5 are conjugate under Ng, (Q1), and we see that we may take s = 7, as
needed.

Case 4. Assume Py = Q1Q} R3. This time, replace 7 by 7/, and repeat the argument from the previous
case. ]

Remark 3.10. The minor omission in the proof of [AC10, Lemma 10.2] alluded to in the proof of
Proposition 3.4 occurs in the middle of page 953 with the claim “|03(N)| = 9. It is possible that
|03(N)| = 3 under the hypotheses there. More precisely, consider the subgroup P = Py(s), where
Py = 010,03 and s = [azH, 1,1]7. Then s centralizes O3(N,(Q3)), s has order 4, and 5 squares
to [a®",a?", 1]. As 5 centralizes no nontrivial element in O3(Np,1,(Po)) = C3 x C3, we have
03(C37(5)) = O3(N1,(Q3)) is of order 3. But in this case, O2(N57((5))) = Dg while (5) is cyclic of
index 2 in this subgroup, and so |0, (Outx (P))| = 2 is generated by the image of [, 1, 1]. Thus,
Py(s) satisfies Proposition 3.4(b)(iii)(2-3), but is not K-radical.

This example also indicates how to patch the proof of [AC10, Lemma 10.2]. Paragraph 3 of page
953 gives an argument for the statement that if (b)(iii)(2-3) holds (in our numbering), then P is centric
radical. Follow it until line —2 of that paragraph. In particular, one is reduced to the case in which
Py = 010,03, and M = §31S5. The Sylow 2-subgroup Ng(Py) of M has the structure Dg X C,, and
it acts on O3(M) decomposably with nontrivial summands O3 (N 1.L,(Po)) and O3(Np,(Py)). Fix any
element s € Ng(Pg) — Cs(U), such that 5 is of order 4 in M. Indeed, there are exactly two possibilities
for (5) and hence for P = Py(s), namely, ([a2'"', 1, 1]7) and ([a?""', 1,a?"']7). The latter determines a
subgroup P = Py(s) that is not K-radical because it does not satisfy Proposition 3.4(b)(iii)(3), while the
first determines a subgroup P = Py(s) that is also not K-radical (from the previous paragraph). Hence,
we must have 5 is of order 2, that is, it is necessary that (b)(iii)(1) also holds.

We next determine the set " up to H-conjugacy in the case / > 0.

Proposition 3.11. Suppose that | > 0. There are 18 H-conjugacy classes of elements of H°". Repre-
sentatives for these classes together with their outer automorphism groups in ‘H are listed in Table 3.

Proof. Let P € H".If Ny (P) £ K, then using Proposition 3.2(a)—(d), we obtain the groups in the last
four rows of Table 3. Hence, for the remainder of the proof, we may assume that

Nu(P) < K. (3.4)

By [LO02, Lemma 3.3(a)], P is F-centric, so that P is also /C-centric.
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Table 3. H-conjugacy classes of H-centric radical subgroups, | > 0.

P |P| Outy (P)
S 210+3l 1
010:03 28 S3 X 83:C
010,05 28 S31C2 X S3
010203 28 s3
Q102R; 28+ NEe)
Q1R203 28+ S3X 83
010}R; 28+ $30Cy
Q1R Q) 28+ S3 X S3
010:03(7) 2° S3 X S3
010:05(7) 2 S3 X S3
Q102R3(7) 294 S3
010, R3(7") 204 S3
RiR:Qs3(T) 2o+ S3
O1RyR;3 282 S3
Ry 27 S,
R, 20 Se
Rys; 27 Ss
Cs(E/Z) 29+31 S5

Suppose first that P is K radical, so that P € K¢. In this case, we appeal to Proposition
3.9 to obtain the first 13 entries in Table 3, as follows. A case-by-case check shows that for
each C-conjugacy class C = YX of a subgroup Y listed in Table 2, one of the following holds:
either no member of C is H-radical (¥ = Cs(U)), C meets exactly one H-radical conjugacy class
Y = 8,010203,010203(1), 010205(1), Q102R3(7), Q105 R3(7"), R1R2Q3(7)), or C is the class
of one of the entries in rows 4 through 6 of Table 2 (Y = 01020}, Q102R3, or 010/ R3). In this last
case, C meets one of two H-classes of H-radical subgroups, and corresponding representatives of these
‘H-classes appear in rows 3 through 8 of Table 3. In each of the three cases, Outy (P) is computed using
(3.4) and the descriptions K = Cy (U)X and HN K = Cx(Z) = Ng(U) = Cy (U){1) = Cx(U){t’).

We illustrate the argument of the previous paragraph with four examples. First, consider Y = Cs(U).
As Cy (U) is normal in K with Sylow Cs(U), we have Cs(U) is strongly K-closed. In particular,
Cs(U)* = {Cs(U)}. Appealing to Lemma 2.16, we see that Outy, (Cs(U)) = C3, so Cs(U) is not
‘H-radical.

Next, consider Y = Q1 0,03. Since X normalizes Y, we have that Y K =y*" and Ny (Y) is of index 3
in Nk (Y). Since Ny (U) = Cy (U){t) = Cy (U){1’), it follows that Outy (Y) = S32C;, X S3 is of index
3in Outx (Y) = S35 83.

Third, consider Y = Q1Q}R3(7’). This time, no element of K — Cx (Z) normalizes Y, so Ny (Y) =
Nk (Y) by (3.4). However, we claim that Y* = Y. For the proof, assume on the contrary that there is
k € K with Y* < § and Y* not H-conjugate to Y. Then k ¢ K — Ny (U), and k normalizes Ry = LoN S,
so (k) permutes the set {R;, Ry, R3} transitively. It follows that the element 7% € S interchanges R3
and some other R; by conjugation. This is a contradiction, as R3 is a fixed point in the action of §
on {Ry, Ry, R3} (see Section 2.4). Hence, YX meets exactly one H-conjugacy class as claimed, and
Outy (Y) = Outk (Y), so Y is H-radical.

Finally, consider Y = Q[Q»R3. Then Nx(Y) = (r) is of order 2. As L3 is Cg (U)-invariant,
R3 is strongly closed in Cs(U) with respect to Cgy (U), so no element of Cy (U)O3(X) — Cy (U)
normalizes Y. It follows that Ny (Y) = Nk (Y) from (3.4). This also shows that if we fix a nontrivial
element x € O3(X), then representatives for the H-conjugacy classes in Y* may be taken as a subset
of {Y, YX,YXZ} = {0102R3,01R>03,R10203}. As 7 € § interchanges R1Q>03 and QR,Q3, it
follows that Y meets two 7{-conjugacy classes (at most), with representatives ¥ and QR>Q3. From
Ny (Y) = Nk (Y), we have Outy (Y) = Outic (Y) = S32C,, while Outy (Q1R,Q3) = S3 X S3 is induced
by N, (Q1)Nr,(Q3). So indeed Q| R,Q3 is H-radical and not H-conjugate to Y.
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Table 4. F-conjugacy classes of F-centric radical subgroups, I > 0.

P |P| Outy (P) Outy (P) Outx(P)
S 210+3l 1 1 1
CS (U) 29+3I S3 _ S3
010,03 28 53083 S3x830C 3083
010:0; 28 S3x 831C, s3 S3 x830C,
010:R; 28+ S31C S30Cy S30Cy
Q10}R; 28+ S31C, NRLe S30Cy
010:03(7) 2° S3X 83 S3X 83 S3 X S3
010:05(7) 2 83X .83 S3 X .S3 S3 X 83
Q1O12R;3 (1) 204 S3 S3 S3
Q10Q)R3(1") 204 S3 S3 S3
RiR;Q3(T) 2+ S; S3 Ss
Ry 27 - S7 S7
R, 26 - Se Se
Rys, 27+ - Ss Ss
Cs(E/Z) 29+3L - S3 S3
Cs(E) 273t - - GL3(2)
A 24 - - GL4(2)

It remains to consider the case in which P is not K-radical. We claim here that P is H-conjugate to
Q1R R3, the last remaining entry of Table 3. Observe first that P < Cs(U) = Ry{d). Indeed, otherwise
Z(P)NU = Z would be Nk (P)-invariant, and so as Ny (P) = Nk (P) by (3.4), this would yield that
Outy (P) = Outx (P) has no nontrivial normal 2-subgroups, contradicting the assumption that P is not
KC-radical. Hence, P < Cs(U) = Ro{d) as claimed, and so U < Z(P) since P is centric.

Set Py = PN Ly, and for each i = 1, 2, 3, let P; be the projection of Py in R; as before; see the remarks
just before Proposition 3.4. A reading of the first three paragraphs of the proof of [AC10, Lemma 10.2]
reveals that the given argument applies to an H-centric radical P < § whose normalizer Ng (P) is
contained in K, our current situation (3.4). We conclude that P; = P N R; and that P; € Q; or P; = R;
for each i = 1,2, 3. In particular, Py = PP, Ps3.

We next claim that P = P. Suppose on the contrary that Py < P = Cp(U), and choosed € P—Cp(U).
Then d € Ry(d) — Ry, and since d interchanges the Ry-conjugacy classes of subgroups in Q; for each
i (c.f. Notation 2.12(e,f)), d has the same property. On the other hand, as d normalizes R; and P, it
normalizes P; = P N R;. We conclude that P; = R; for each i. But then P = Ry(d) = Cs(U) and
Outyy (P) is of order 2. Thus, P is not H-radical, contrary to the original choice of P.

Finally, conjugating in Lo{d) = Cy(U) < H if necessary, we have P = Q|RyR3 or R|R,(Q3. But
in the latter case, Outy (P) = C, X S3 is induced by (7) X N,(Q3), so again, P is not #-radical, a
contradiction. Thus, up to H-conjugacy, P = Q1R2R3 and Outy (P) = S3 is induced by Nz, (Q1), and
this is the only remaining entry in Table 3. O

Finally, we are able to describe the set of F-centric radical subgroups, up to F-conjugacy:

Theorem 3.12. Let F = Sol(521) with | > 0. Representatives for the F-conjugacy classes of F-centric
radical subgroups, together with their orders and automorphism groups, are listed in Table 4, where
“—” indicates that the subgroup is not centric radical in that fusion system.

Proof. This follows upon combining Propositions 3.1, 3.9, and 3.1 1. Note that Q| Ry R3 appears in Table
3, but it does not appear in Table 4 because it does not satisfy the hypotheses of Proposition 3.1(c)(ii):
there is an involution in K < G of the form 7* for a nonidentity x € O3(X) which normalizes Q1R R3
but is not contained in H. Indeed, O, (Outz(Q1R,R3)) is of order 2 and induced by conjugation by this
element, so Q| R, R3 is not F-radical. O
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4. Number of projective simple modules

In this section, we calculate the number of projective simple modules for the outer automorphism groups
in the various tables of the previous section. Let G be a finite group, and let Irr(G) be the set of ordinary
irreducible characters of G, that is, those over a splitting field of characteristic 0. A character y € Irr(G)
is said to be of p-defect d if |G|, /x (1), = p?, where n,, denotes the p-part of the integer n.

Write z(kG) for the number of projective simple kG-modules. Any projective simple module is the
unique indecomposable module in the block of kG in which it lies. Blocks of kG of defect 0 are exactly
those which contain such a module. Equivalently, blocks of defect 0 are exactly those which contain a
unique ordinary irreducible character of defect 0. Thus, one can count projective simple kG-modules
by looking at the list of irreducible character degrees for G.

Theorem 4.1. Let G be a finite group and p be a prime. Then z(kG) is the number of ordinary irreducible
characters of defect 0.

Proof. See [Nav98, Theorem 3.18]. m]

Along with Theorem 4.1, the following result will be used in order to compute the character degrees
of various solvable groups.

Theorem 4.2. Let G be a finite group with normal subgroup A, and let ©® = [Irr(A)/G] denote a set of
representatives for the G-orbits on Irr(A). Assume that each irreducible character 6 of A extends to an
irreducible character 0 of its inertia subgroup I (0). Then there is a bijection

{(6,8) | 60, Belrr(Ig(0)/A) } — Irr(G) 4.1)
given by sending (60, B) to the induced character (5ﬁ) TIGG 6y where 8 is any extension of 0, and where
B is regarded also as an irreducible character of 15 (0) with A in its kernel.

Proof. See [NT89, Chapter 3, Theorem 5.8 and Corollary 5.9]. O
Proposition 4.3. Each of the groups listed in Table 5 has the stated number of blocks of defect zero.

Proof. Let G be one of the groups listed in Table 5. It suffices by Theorem 4.1 to compute the
number of characters having degree divisible by the 2-part of the group order. The character tables of
G = GL3(2), S5, S¢, A7, S7, GL4(2) = Ag can be found in the ATLAS [ CCN+85]. For those G which
split as a direct product G = G| X G, we use the fact that the irreducible characters of G are the pairwise
tensor products of the irreducible characters of G and G».

In all remaining cases, the character degrees are computed using Theorem 4.2 by taking A to be a
normal elementary abelian 3-group which is complemented in G. Each irreducible character of A extends
to its stabilizer in G in this case by [CR90, 11.8(ii)], so Theorem 4.2 applies. For a representative 6 of
an orbit of G/A on Irr(A), we compute the 2-parts of the index in G and of the irreducible character
degrees (1) of the inertia subgroup I (6). The pairs (0, 8) with8(1), - [G : I5(0)]2-B(1); equal to the
2-part of the group order are recorded in Table 6. For example, suppose that G = (C3)3 = (C, X S3) and
set A = (C3)? < G. For each 6 € Irr(A), we have 6 = 0;, ® 6;, ® 6;, for some 1 <i; < 3. An S3 factor

Table 5. The number of projective simple modules.

G 2(kG) G z2(kG) G z2(kG)
S5 1 (C3 X C3) % G 4 Se 1
S3 %X S3 1 (C3)? % (C2 x S3) 1 83183 1
S3 X S3 % S3 1 (C3)3 % (Cy x Cy) 4 Ss 0
S30Cy 0 GL3(2) 1 A7 0
S30C, X S3 0 GL4(2) 1 S7 0
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Table 6. Characters x € Irr(G) of defect 0.

G A 0 IG(0)/A B(1) x (1)
S5 05(G) 2] 1 | 2
S31C 03(G) - - _ _
S50 03(G) 2,2,2] S5 2 16
(C3)2 % G 04(G) (1,11, [1,2], [2, 1], [2.2] LLLT LL,LT 2,222
32 "R (G X)) 0(G) (L2010, (L2,2],[1,2.3](23,2]  LLL1 L1101 44,44
(C3)3 %' (C2 x S3) (C3)? 2,2,2] S5 2 4

The dashes mean the group G listed on the line has no irreducible character of defect 0.

in G/A = §3 X C; acts on Irr(A) by permuting the 6;,, while the C; factor fixes 6; and interchanges
0, and 63 in each coordinate. One computes that there are six orbits on irreducible characters. The pair
(6,B), where 6 = 0, ® 6, ® 0, and B is the degree 2 irreducible character of I (0)/A = S3, gives rise
to the only irreducible character of G of 2-defect 0. The remaining cases are summarized in Table 6,
where a representative ;, ® 6;, ® 6;, is abbreviated to [i], i, i3], for example.

O

Using Tables 1, 3, and 4, we can give a count of the number of weights.

Corollary 4.4. For D € {H, F} and all | > O, the number of weights associated with the Kiilshammer-
Puig pair (D,0) is

w(D,0) = 12.

Note that w(#, 0) = 12 is known as a consequence of results in [An93].

5. Kiilshammer-Puig classes

We give here a proof of Theorem 1.1 essentially by direct computation. Throughout this section, we fix
an arbitrary nonnegative integer / and set ¢ = 5% We adopt the notation F, H, K from Section 2. These
systems depend implicitly on q.

Recall that the Schur multiplier of a finite group G is the cohomology group M (G) := H*(G,C>).
It is a finite abelian group. Given any algebraically closed field k of characteristic 2, the 2’-primary
part of M(G) is isomorphic to H*>(G, k*). The approach taken to showing Theorem 1.1 requires the
explicit computation of H*(G, k*) (the values of the functor .4?) for each group G appearing as the
outer automorphism group of a centric radical in Section 3. The computation of Schur multipliers of
finite groups is typically a delicate task. In our case, the task is simpler for two reasons. First, the
outer automorphism groups are relatively small finite groups. Second, the task is simpler because of the
following lemma, which allows us in many cases to reduce the computation of the odd part of the Schur
multiplier to computations of H>(G, F p) for odd primes p. A finite group is said to be p-perfect if it has
no nontrivial p-group as a quotient.

Lemma 5.1. Let D € {F,H, K}. Then for each subgroup P € D" and each odd prime p, the outer
automorphism group Outp (P) is p-perfect.

Proof. Direct inspection of the outer automorphism groups in Tables | and 4. O

The next lemma collects various standard results on group cohomology stated in the special cases in
which they will be used. We thank the referee for several simplifications in our original arguments.

Lemma 5.2. Let G and H be finite groups, and let k be an algebraically closed field of characteristic 2.
Write |G| = 2"w, where w is odd. The following hold.
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(@) For any abelian group A with trivial G-action, H' (G, A) = Hom(G, A).
(b) There is a surjective map

H*(G,Z/wZ) — H* (G, k*),

which is an isomorphism if G is p-perfect for every odd prime p dividing |G|.
(¢) If H*(G,F,) = 0 for all odd primes p, then H*(G, k*) = 0.
(d) Ifpis odd and G is a p-perfect group with cyclic Sylow p-subgroups, then H*(G, Fp) =0.
(e) If G is a p-perfect group with an elementary abelian Sylow p-subgroup V of order p®, then

HZ(G F) = F, if Autg(V) € SL(V), and
P 0 otherwise.

(f) If G and H are p-perfect, then
H*(G x H,F,) = H*(G,F,) ® H*(H,F),).

(g) Let p be an odd prime. If G is p-perfect and the p-part M(G), of the Schur multiplier of G is of
exponent at most p, then

M(G), = H(G,C*) ® Z () = H*(G,F,) = H*(G,k*) ® Z(,).

Here, Z, denotes the p-local integers.
(h) (Schur) If M(G) has exponent e, then e* divides the order of G.

Proof.

(a) This follows from the description H'(G, A) as the group of derivations G — A [Wei94, Corollary
6.4.6].

(b) Fix a Sylow 2-subgroup S of G. Since k* has all odd roots of unity, powering by w is a surjective
endomorphism with kernel Z/wZ. Thus, there is an exact sequence

H'(G,k*) - H*(G,Z/wZ) — H*(G,k*) — H*(G, k*).

The last map is multiplication by w = |G : S|, and so it factors as

Tes

H2(G, k) =5 H2(S, 609 5 H2(G, k)

by [Ben98b, Proposition 3.6.17] applied with M = M’ = k. Since H*(S, k*) = 0, we conclude
that the last map is 0. The middle map is therefore a surjection, and since H' (G, kX) = Hom(G, k*)
by (a), we see that it is an isomorphism if G is p-perfect for every odd prime p dividing |G|.

(c) This follows upon filtering Z/wZ by subgroups of prime order, considering the corresponding long
exact sequences in cohomology, and applying (b).

(d) Let P be a Sylow p-subgroup with p odd. Restriction induces an isomorphism H*(G,F,) —
H*(NG(P),F,) = H*(P,F,)A"¢(P) by [Ben98b, Corollary 3.6.19] applied with M = M’ = F,,.
Now H*(P,F,) = Fp[x,y] /(x?) with deg x = 1 and deg y = 2 [Ben98b, Proposition 3.5.5], and the
Bockstein H'(P, Fp) — H*(P, F,) is an isomorphism of Ng (P)-modules (cf. [Ben98b, p. 132,
Example]). As N (P) has no invariants in H' (P, [F,,) by assumption, it also has no invariants on
H*(P,F)).

(e) Restriction to V again identifies H*(G, F),) with the invariants H*(V, FP)A“‘G V) Now

H*(V,Fp) = Ag, (x1,x2) ® Fp[y1,¥2],
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with degx; = 1 and degy; = 2 by [Ben98b, Corollary 3.5.7(ii)], so that
H'(V,F,) = (x;,x2)p, and H*(V,F,) = (y1,y2, X1x2)5, -

Here, H'(V,F,) is the natural module for Aut(V) = GL(V), while H*(V, Fp) is the direct sum
of the natural module (yi,y2)r, and (x1x2)g, on which GL(V) acts via the determinant map.
By assumption, Autg (V) < GL(V) has no fixed points on the natural module, so H*(V, Fp) is
nontrivial generated by x;x; if and only if every element of Autg (V) has determinant 1.

(f) This follows from the Kiinneth theorem [Ben98a, Theorem 2.7.1] and the assumption.

(g) Powering by p on C* gives the exact sequence

H'(G,C*) - H*(G,F,) — H*(G,C*) & H*(G,C¥).

The assumptions imply that tensoring with Z,) kills H '(G,C¥) and the last map. Hence,
H*(G,F,) = H*(G,C*) ® Z(p)- Since My (G) is isomorphic to H?(G, k*) ([Kar87, Proposi-
tion 2.1.14]) and p is odd, the p-primary part of H>(G, k) is of exponent at most p by assumption.
Thus, the exact same argument with k* in place of C* shows that H*(G, F,,) = H*(G, k*) ® Z(,).
(h) We refer to [Kar87, Theorem 2.1.5] for a proof. 0
We are interested in computing the cohomology of the functor H?(—, k) defined on the subdivision
category of the full subcategory of the fusion systems JF, H, and K, respectively, on the collection
of centric subgroups. Let C be any full subcategory of a saturated fusion system. Recall from [Lin19,
Definition 8.13.2] that the subdivision category S(C) of proper inclusions is the category with objects of
the chains o = (Xo < Xj < -+ < Xj;,) (of proper inclusions) in C; here, m is the length |o| of 0. Given
another objectt = (Yy < Y| < --- <Yy) € S(C), amorphism from o to T consists of an order preserving
function 8: {0,1...,m} — {0,1,...,n} together with isomorphisms ¢;: X; — Yg(;) in C for each
i € {0,1,...,m}, which make the evident skewed ladder commute. In particular, the automorphism
group of the chain ¢ in C may be identified with the group of automorphisms of X,, which preserve X;
forall 0 < i < m. We write [S(C)] for the partially ordered set of isomorphism classes of objects in S(C),
where [o] < [7] if there are representatives o’ € [o] and 7" € [7] and a morphism o’ — 7’ in S(C).
There is a simpler resolution than the standard bar resolution for computing cohomology of a functor
defined on the subdivision category of any El-category, which was given in [Lin05].

Lemma 5.3. Let C be any full subcategory of a saturated fusion system, and let F: [S(C)] — Ab be a
covariant functor. The cohomology groups H" ([S(C)], F), and thus the derived functors of lim F, can
be computed via the cochain complex C*(F) defined as follows:

C"(F) = P F(loD),

lo|=n

whose elements are viewed as functions « from isomorphism classes of chains of length n, and where
|| denotes the length of o. The coboundary map 6" : C™(F) — C™'(F) is defined by

o"(a)([o]) = Z(_l)iF(L[O'(i)],[o'])(a([o'(i)]))’
i=0

where o (i) denotes the chain o with its ith term removed and [, (;)],[ o] denotes the unique morphism
from [o(i)] to [o].

Proof. This is [Lin05, Proposition 3.2], applied as in [Par10, Lemma 3.1]. O
Finally, the aim of the following, highly specialized lemma is to orient the reader to the way in which

Lemma 5.3 will be used later in the proof of Theorem 5.6.
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Lemma 5.4. Let C be a saturated fusion system, and let F: [S(C")] — Ab be a covariant functor.
Then lim[gcery] F = 0 under either of the following conditions.

(a) F([X]) =0 forall subgroups X € C";

(b) F is zero on all but two distinct chains [Xo| and [X1] of length zero, and there exists a subgroup
Y € C°", such that F([Y]) =0,
() Xo< Xy >Y,and
(ii) the maps F([Xo]) — F([Xo < X1]) and F([X1]) — F([Y < Xi]) are injective.

Proof. We view lim[gcery] F as the degree 0 cohomology of the functor F. As such, it can be computed
by using the cochain complex of Lemma 5.3. The coboundary map 6°: C°(F) — C'(F) on 0-cochains
is obtained by extending linearly from

% (@) ([X < X']) = F(x, x<x ) (@([X']) = F(ex), ix<xp) (@([X])).

With this in mind, the two parts of the lemma are simply ways of saying that the kernel of 6°,
and thus limg(cery) F, is 0. This is trivial in the case of part (a). The assumption in (b) implies that
C%(F) = F([Xo]) ® F([X1]), and then (i) and (ii) ensure that the composite

0 rOi
COF) 5 €' (F) 25 F([Xo < Xi) @ F([Y < Xi])
is injective. m]
We now begin the computation of the higher limits of H>(—, k*) in the cases of interest.

Lemma 5.5. Fix an algebraically closed field k of characteristic 2, and let D € {F,H, K}. For each
P € D", one of the following holds.

(a) H*(Outp(P),k*) =0, or
(b) I =0, H*(Outp(P), kX) = H*(Outp(P),F3) = C3, and either
(i) P=QRy,
(ii) P=Qand D =H, or
(iii) P =Ry7 and D =H or F.

Proof. We first prove the lemma for [ > 0. Fix P € D" appearing in Tables 2, 3, or 4, and let
G = Outp(P) be its outer automorphism group in D, for short. In order to show that (a) holds in this
case (I > 0), it suffices to show that H(G, Fp) = 0 for all odd primes p by Lemma 5.2(c). Now G is
p-perfect for all odd primes p by Lemma 5.1. An inspection of the tables shows that one of three cases
holds: (1) G has cyclic Sylow p-subgroups for all odd primes p, (2) G has cyclic Sylow p-subgroups
for all p > 5 and elementary Sylow 3-subgroups of order 32, or (3) G = S3 ¢ S3. By Lemma 5.2(d), we
have HZ(G,IF,,) = 0 for all odd primes p in Case (1). Assume (2). Then G = Sg, S7, GL4(2), S3 X S3,
or 3¢ Cy. In all cases, H*(G, Fp,) = 0forall p > 5, again by Lemma 5.2(d). For a Sylow 3-subgroup
V of G, we have Autg (V) £ SL(V) by direct computation, and so H>(G,F3) = 0 in Case (2) as well,
by Lemma 5.2(e). Finally, assume Case (3), so that G = S3 ¢ §3. Again, we just need to show that
H?(G,F3) = 0. In this case, one can apply the Lyndon-Hochschild-Serre spectral sequence [Weio4,
Lyndon-Hochschild-Serre Spectral Sequence 6.8.2] with respect to the base B of the wreath product.
The relevant parts of the E,-page are

o HY(S3, H*(B,F3)) = 0 (the coefficients are 0);
o H'(S3, H'(B,F3)) = 0 (since the base is 3-perfect); and
o H?*(S3, H%(B,F3)) = 0 (trivial invariants).

Hence, H>(G,F3) = 0. This completes the proof in the case / > 0. We now turn to the case [ = 0. By
inspection of Table 1, either it was shown in the previous case that H(Outp(P), k) = 0, or else the
subgroup P is listed in (b)(i)—(b)(iii) of the lemma. We go through these three cases in turn, and we set
G = Outp(P) again for short.
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Case I. P = QRy» and G = (C3 x C3) = (d):
Recall that My (G) = H*(G, k) is an abelian group of odd order, so it must be M3(G). Let e be its
exponent. From Lemma 5.2(h), e divides |G| = 32.2.Hence, e = 1 or 3. By Lemma 5.2(g), we see that

H*(G,F3) = H*(G, k™) ® Z3) = H*(G, k),

and H>(G,F3) = F3 by Lemma 5.2(e) (d acts by minus the identity). This completes the proof of Case 1.

Case 2. P = Q: Suppose first that D = H. Then G := Outp(P) = Cg x (Cy x Cp) with one
factor inverting C; and the other swapping the first two C3 factors. We first claim that the exponent of
H?(G, k*) is not divisible by 3. Indeed, this follows directly from Lemma 5.2(h), as otherwise |G|
would be divisible by 3%, which is not the case. It follows that H*(G, k*) = H?(G,F3) by Lemma
5.2(g). Now

H?*(C3,F3) = (x1X2, X1X3, X2X3, Y1, Y2, ¥3)Fs» 5.1

where the y; are polynomial generators and the x; are exterior generators. Further, H>(G,F3) is the
invariants under (d, 7) here. We compute directly that the invariants are spanned by xx3 + x,x3, and so
have dimension 1. Thus, H*(G, k*) = H*(G,F3) = Cs.

Now suppose that D = K or F. Then G = Outp(P) = C33 > ({d) x S3) with d inverting, and we have

H?*(G,F3) = H*(C3 1 C3,F3) {47,

since a Sylow 3-subgroup is normal in G. Let W = C3 ¢ C3 be the Sylow 3-subgroup of G, and write W)
for the base subgroup of W. By a result of Nakaoka [Nak61, Theorem 3.3], we have

H*(C31C3,F3) = H(C3, H*(Wo, F3)) @ H' (C3, H' (W0, F3)) @ H*(C3, H' (W, F3)).
The middle term above vanishes: by Lemma 5.2(a),
H'(Wo,F3) = Homg, (F3[C3],F3) = COinICB F3

as a W/Wy-module, so that H'(C3, H (W, F3)) = Hl(Cg,CoindIC3 F3) = 0 by Shapiro’s Lemma
[Wei%4, Lemma 6.3.2]. Hence,

H*(C32C3) = H*(Wo, F3)© @ H*(C3,Fs).

With notation as in (5.1), the first summand is spanned by y1 + y» +y3 and x1x> +x2x3 +x3x1, both being
negated by the action of dr (note that 7 negates xx, + xpx3 + x3x1). Similarly, the second summand is
also negated by dr. Hence, H>(G, F3) = 0, and we conclude that H>(G, k*) = 0 by Lemma 5.2(c).

Case 3. P = R;7: Then D = H or F, and Outp(P) = A7. The odd part of the Schur multiplier is
well known to be Cs. Alternatively, apply Lemma 5.2(h) to see that the exponent of the odd part of the
Schur multiplier is 3, and then use Lemma 5.2(e,g). m]

Theorem 5.6. For g an odd prime power and F = Sol(q), we have

lim A% =0.
(s(Fery1”

Proof. Let (F, @) be a Kiilshammer-Puig pair. When [/ > 0, all minimal elements of the partially
ordered set [S(F¢")], namely, the chains o~ = (R) of length one, have a[,] = 0 by Lemma 5.5. Thus,
the theorem holds in this case by Lemma 5.4(a).
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210 S

29 Cs(E/Z) (1) o(’) Cs(U)
. 0 /
27 R17 CS(E)

26 R;7

24 A

Figure 1. Hasse diagram for [Sol(q)°"], ¢ = £3(mod 8).

It remains to consider the case I = 0. Then H>(Outx(P), k*) is nonzero (of order 3) if and only
if P = Ry7 or QRy7. For the remainder of the proof, we set R := R;7, for short. Consider the chains
o :=(R < QR)and T :=(Q < QR). All three subgroups R, Q, and QR are weakly F-closed by Lemma
3.7; hence, Autz (o) = Autr(QR) = Autr(7) and the induced map on A? is the identity in each of
these cases. We next prove that the induced map

H?(Autr(R), k*) — H?*(Autx (o), kX) (5.2)

is injective. Once this is done, Lemma 5.4(b) then yields that limg(rery) A2 =0.

By Lemmas 3.7 and 3.8, QR contains R as a normal subgroup with index 4, and QR/R = C; X C;.
Hence, Lemma 2.7 yields that the restriction map Autz(o) = Autz(QR) — Autr(R) induces an
isomorphism

Autz(QR)/Autr(QR) — Noyi, (r) (Outgr(R)).

This isomorphism identifies Autz(QR)/Autg (QR) with the normalizer in Outz(R) = A7 of the four
subgroup OR/R = Autgr(R)/Autg(R).
Since this normalizer contains a Sylow 3-subgroup of A7, we conclude that the restriction map

p3: H*(Autz(R),F3) — H*(Autz(0),Fs)

in F3-cohomology is injective by [Ben98b, Corollary 3.6.18]. By [Wei94, Functoriality of H" and
Restriction 6.7.6] on the functoriality of restriction, the diagram

H2(Autz(R), F3) —— H2(Autz(0), F3)

| i

H2(Autz(R), k¥) ® Z(3) > H2(Autz(c), k) ® Z(3)
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210+3l / S \
29+31 Cs(U) Cs(E/Z)
7431 Cs(E)
29421 R1R,Q3(1)
2941 010)R3(7’) 0102R3(1)
28+ 0102R;3 l
97+ Rysy
29 010:03() '
—
28 010203 01020}
27 Rl7
26 R}, /
24 A

Figure 2. Hasse diagram for [Sol(q)<"], g = £7(mod 16), that is, for [ = 1.

commutes. Here, the vertical arrows are given by the isomorphisms of Lemma 5.2(g), which applies
since Autz(R) and Autr(c) have Sylow 3-subgroups of order 32. Therefore, p3) is injective, as
claimed. This completes the proof in the case [ = 0 and of the theorem. O

Proof of Theorem 1.1. By [LO02], there exists a centric linking system associated with . Thus, [Lib11,
Theorem 1.2] yields that

2~

lim lim A%
[S(F)] [S(F)]

The result now follows from Theorem 5.6. O
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Appendix: Hasse diagrams

Displayed without proof are Hasse diagrams for the partially ordered set of isomorphism classes of
centric radicals in Sol(gq) that were computed with the aid of Magma [BCP97].
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