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ABSTRACT: Upon cooling, semicrystalline polymers experience
crystallization and form alternatively stacked layers consisting of
thin crystal lamellae and amorphous ones. The unique
morphology, crystallinity, and crystallization kinetics highly depend
on the molecular weight. Therefore, it is deduced that
entanglement impacts crystallization kinetics, as well as hierarchi-
cally crystalline structures. However, the impact of entanglement
on folded crystalline chains has not been well understood due to
experimental difficulties. In this work, chain-folding structures for seven '*C CHj labeled poly(L-lactic acid)s with various molecular
weights (M,,s) were investigated by '*C—"C double quantum NMR spectroscopy. As a result, chain-folding events were categorized
into three different M,, regimes: (i) The lowest M,, sample (2K g/mol) adopts an extended chain conformation (folding number, n =
0) (regime I); (ii) Intermediate M,, ones possess mixtures of non- and once-folded structures, and the once-folded fraction suddenly
increases above the entanglement length (M,), up to M,, = 45K g/mol (regime II); (iii) The high M,, ones (M,, > 45K g/mol) adopt
the highest chance for an adjacent re-entry structure with n = 1.0 in the well-developed entangled network (regime III). It was
suggested that entanglement induces folding of the semicrystalline polymer.

wo thirds of polymers are semicrystalline.'™ Excellent

thermal and mechanical properties of various semicrystal-
line polymers play important roles in our lives. One good
example is polyethylene, which is widely used in our lives from
convenient plastic bags to bullet proof materials. Many
researchers have focused on understanding crystallization
mechanisms as well as the crystalline structures of semicrystal-
line polymers in the past decades. Upon cooling, semicrystal-
line polymers form isolated single crystals in a dilute solution
and form alternatively stacked layers from a melt.” The radius
of gyration (Rg) in the single crystal is much smaller than that
for the melt-grown crystal.>~’ Furthermore, viscosity of
polymer melts® as well as crystallinity,” crystal—crystal
transition,'° morphology,z_4 and toughness/brittlenessIl of
semicrystalline polymers highly depend on molecular weight
(M). The accumulated results imply that crystallization and
crystalline structures are significantly influenced by entangle-
ment.* Various theories have been developed to understand
polymer crystallization at the molecular level.””~"* Amon%
them, the well-known secondary nucleation theory'>"
deduced the molecular events of long polymer chains on the
growth surface as follows: Polymers are dragged into the
existing crystal surface and experience partial disentangle-
ments; the disentangled chains fold on the growth front, and
the single chain process via folding (intramolecular event)
competes with other chains (intermolecular one). Therefore, it
is believed that intrachain and interchain crystallization
processes highly depend on kinetics.'”'® However, under-
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entanglement density

folding number i‘>

standing the folding structure itself has been a debatable matter
in the past decades.'®”"" Therefore, it is not understood how
entanglement impacts the folding structure of a long polymer
chain during crystallization.

Recent progress of computation methods/power”’** as
well as experimental tools”*~ >’ could allow one to evaluate the
chain-folding structure of semicrystalline polymers. It was
indicated that (i) flexible polymer chains adopt a long-range
order of adjacent re-entry structure in the solution-grown
crystals®”*°~** and monolayer films,>***” whereas the mean
number for adjacent re-entry structure, #, is limited to a few
times in the melt-grown crystals.”"””®*” Among several
advanced techniques, *C—'3C double quantum (DQ)***
NMR spectroscopy combined with '3C selective isotope
labeling enabled one to study the chain-folding structure in
wide supercooling (ATs). It was demonstrated that exper-
imentally available kinetics does not change the folding
number of isotactic-poly(1-butene),”" isotactic-polypropylene,*
and poly(r-lactic acid) (PLLA)* in the melt-grown crystals.
Furthermore, Jin et al. studied the chain-folding structure of
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PLLA in an extreme case, so-called, a rapidly quenched glass. It
was found that polymer chains fold prior to crystallization."'
Luo and Sommer, usin% a coarse-grained (CG) poly(vinyl
alcohol) (PVA) model,”” ** reported that (i) the entangle-
ment length (M,) decreases due to chain stiffening during
cooling and increases due to partial disentanglements during
crystallization,” (ii) PVA-CG chains adjacently fold and the
adjacent re-entry number (n = 1.0—1.2) is invariant as a
function of crystallization temperature (T.),”" (iii) lamellae
thickness (L) and folding number, n, are directly related to
M," The recent results inferred the important role of
entanglement in polymer crystallization at the molecular levels.
To further understand polymer crystallization, M dependence
of the folding structure, especially across M, and the critical
entanglement length (M,), is necessary.

In this work we investigate the chain-folding structure for
seven *C CHj-labeled (I) PLLAs with various weight-average
molecular weights (M,s) across M, = 7.7—8.0K g/mol and
M.*** by using 3C—'>C DQ NMR spectroscopy. Seven I-
PLLA samples with M,, = 2K—300K g/mol were successfully
synthesized by using two recycling routes of I-polymers and I-
intermediate compounds (see details in the Supporting
Information (SI) and Figure S2). To study the chain-folding
structure, I-PLLA was diluted by 90% with nonlabeled (n)-
PLLAs with similar M, s. The M,, and PDI of /- and n-PLLAs
are listed in Table 1. A small supercooling, AT = melting

Table 1. M,, PDI, Chain Length (Lycc) under the
Assumption of a Fully Extended 10; Helix, and a Mean
Number for Successive Adjacent Re-Entry Structure (n) of I-
PLLAs and L, of I-/Nonlabeled (n-) PLLA Blends Used in
This Work”

M, L, Lpcc

sample name (K g/mol) PDI (nm) nm) n
12k (n-2k) 20 (2.3) 124 (126) 7.9 78 0

14k (n-5K) 4.4 (48) 154 (135) 132 169 02
19k (n-10k) 87(100) 178 (1.62)  16.0 340 06
124k (n20k) 243 (204) 200 (153) 181 945 07
145k (n-44k) 450 (43.6) 145 (1.66) 240 175 09
174k (n71K) 735 (711) 154 (190) 260 286 1.0
1-300k 300 (248) 226 (228) 283 1167 10

(n-248K)

“The inside bracket represents the corresponding values for n-PLLA.
M, was corrected by a factor of 0.58 by using polystyrene as the
standard.

temperature (T,,) — T. of 25—30 °C, was used for isothermal
crystallization to minimize a potential kinetics effect.
Crystallization conditions are provided in the SL

Figure 1la depicts the first heating DSC profiles for seven I-/
n-PLLA blends after the isothermal crystallization. The [-2k
blend shows broad and complex melting peaks at 120—140 °C.
l-4k depicts doublet T, peaks at 152 and 156 °C. A higher M,,
than [-9K g/mol leads to a singlet T, peak, which shifts to a
higher temperature with increasing M,,. It is understood that
the melting behaviors for the low M,, samples are influenced by
PDI. Figure lc shows small-angle X-ray scattering (SAXS)
patterns for seven I-/n-PLLA blends. Long periods (L,) are
listed in Table 1. L, increases with increasing M,,, as similarly
observed in T,,. As opposed to M,, dependences of T, and L,
the polarized optical microscope (POM) image shows a
unique M,, dependence of morphology. Small M, samples of
the I-2k and -4k blends show needlelike morphology (Figures
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1b and S3). The image for the [-9k blend shows a mixture of
needles and spherulites. The relative ratio of the former and
latter is almost 1:1. Therefore, coexistence of two types of
morphology is not attributed to isotope effect but to PDL
Larger M,, samples > [-9K g/mol show only spherulites. These
morphological transitions may be related to entanglement (M,
= 7.7-8.0 K* g/mol). Figure 1d provides a "*C cross-
polarization (CP) magic angle spinning (MAS) NMR
spectrum for [-24k/n-20k blends with a mixing ratio of 1:9
measured at ambient temperature. Detailed NMR experimental
conditions are given in SL. '*C CHj signals give ~3.8-fold
higher peak area than the CH and CO signals due to the '*C
isotope effect. The same intensity ratio of CH; to CH carbon
guarantees the same blending ratio in seven blends (Figure
S4). All CH;, CH, and CO groups show fine splitting with
numbers of 2, 4, and 5, respectively.”** These peaks
correspond to inequivalent conformation sites in 105 helix in
the thermodynamically stable @ crystal.** Sharp and broad
Lorentzian peaks corresponding to the crystalline and
amorphous signals, respectively, were applied to either the
CO or CH peak. Crystallinity for the /-24k blend is determined
to be 84%. It was found that crystallinity decreases to 74% with
increasing M,, (Figure S4).

The packing structure of seven /-PLLAs were investigated by
using *C—"C DQ NMR spectroscopy (see details in the
Experimental Section in the SI).*" Figure 2a,b shows *C—'3C
DQ buildup curves for -4k (pink circle), 9k (blue), and 24k
(cyan), and 45k (green), 74k (orange), and 300k (red),
respectively. All six buildup curves are very consistent with
each other. Statistical spin-dynamics simulation*’
ducted based on the atomic coordinates of the CH; group for
PLLA a crystal determined by using fiber X-ray diffraction
(closest stem—stem (SS) distance is 6.1 A),*® where all
statistical dipolar interactions with a distance within 7 A were
took into consideration (see refs 29, 33, and 41). One of the
possible spin systems including a reference (red) and 13
surrounding spins (blue) is schematically depicted in Figure
2a. In addition, DQ buildup curves were further simulated
under the assumption of SS distance of 5.9 and 6.3 A. The
simulated curves with SS distance of 5.9 (dotted black), 6.1
(solid), and 6.3 A (dashed) with a relaxation parameter of T, =
9.8 ms were plotted in Figure 2a and with the distance of 6.1 A
(solid red) in Figure 2b. By comparison of the experimental
curve with the simulated ones, it is concluded that six [-4k—
300k samples adog)t the same SS distance of 6.1 A in the
crystalline region.** 3 C—"3C DQ buildup curve for I-2k (open
black circle) was slightly faster and peak maximum height was
lower than those of others, was plot in Figure 2b. The
experimental curve was reproduced by using SS = 5.9 A and T,
= 8.4 ms (black solid curve). The atomic coordinates of *C-
labeled nuclear spins and the T, values used for the packing
analysis were further used for the chain-folding analysis of
seven [-/n-PLLA blends.

In the [-/n-PLLA blends with a mixing ratio of 1:9, dipolar
interactions dominantly originate from intramolecular inter-
actions of the I-PLLA chain diluted in the n-PLLA matrix.
Figure 3a schematically illustrates one example of "*C spin
distribution of the I-PLLA chain, where '*C stems connected
via folding with n = 0, 1, and 2 being highlighted by pink
circles. Folding generates intrachain dipolar interactions and
thus increases the DQ curve’s height depending on n (Figure
3a). Note that minor effects of statistical '*C-labeled

‘was con-
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Figure 1. (a) DSC heating curves with a heating rate of 10 °C/min and (c) SAXS patterns of I-/n-PLLA blends as a function of M,. (b) POM
images for the I-4k/n-Sk (top), I-9k/n-10k (middle), and I-24k/n-20k blends (bottom). The white scale bar represents 500 um. (d) *C CPMAS
NMR spectrum for the /-24k/n-20k blend, respectively, at the MAS frequency of 10k + 5 Hz. The expanded spectrum for the CO group with the

best-fitted peaks.
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Figure 2. Experimental DQ buildup curves (open circle) for (a) -4k
(pink), -9k (blue), and 24k (cyan) and (b) 1-45k (green), I-74k
(orange), 1-300k (red), and I-2k (black), with simulated DQ buildup
curves with (a) T, = 9.8 ms and SS = 5.9 A (dotted black curve), 6.1
A (solid) and 6.3 A (dashed), and with (b) SS = 6.1 A and T, = 9.8
ms (solid red), and SS = 5.9 A and T, = 8.4 ms (solid black).

interchain® and natural abundance of '*C CH; carbon™" were
taken into consideration.

Figure 3b—d depicts DQ_buildup curves for I-/n-PLLA
blends as a function of M,,. It is found that the DQ_curve
height increases with increasing M,, up to 74K g/mol and is
finally saturated in the high M, range. Depending on the
experimental results, different three regimes could be identified
as follows: In regime I, the DQ curve for [-2k in the blend was
fitted with n = 0. Namely, the lowest M,, sample forms ECC.
Besides, the ECC structure is supported by L, = 7.9 nm, which
is like Lgcc = 7.8 nm under the assumption of 10; helical
conformation. In M,, > 4000 g/mol, Lgcc is longer than L,
(Table 1). L, no longer gives information about the chain-level
structure. In regime II (M,, = 4K—45K g/mol), the n value for
l-4k was determined to be 0.2 (Figure 3c). This structure can
be represented in terms of mixture of non- and once-folded
structure, and the former is dominant. With increasing M,
slightly larger than M,,">* the n value jumped up to 0.6 for I-
9k (Figure 3c). Further increasing M,, increased n to 0.7 for I-
24k (Figure SS) and 0.9 for I-45k (Figure 3c). These findings
indicate that intermolecular packing is gradually replaced by
intramolecular packing via folding above M, in regime IL
There is a positive correlation between the entanglement
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density and folding number. In regime III (M,, > 74 k g/mol),
DQ curve height reached a maximum and was independent of
M,, as demonstrated in Figure 3d. The best-fitting curve to the
experimental one gave n 1.0, where the chance for
intramolecular packing is the highest among seven samples
and equal to that for intermolecular packing. Note that the n
value of 1.0 in regime III is slightly lower than the previously
reported n value of 1.5—2.0 in PLLA with different M,s.”’
Current simulation includes the natural abundance effect of
13C CH, carbon and thus accurately determines the n value.*'

According to the secondary nucleation theory,n’13 polymer
chains are dragged into the growth front and are partially
disentangled and fold on the growth front. The degree of
disentanglement would depend on chain mobility as well as the
entanglement number. To minimize the difference in chain
mobility, AT was set to 25—30 °C. The [-9k and [-24k samples
have smaller entanglement numbers of 1 and 2, respectively,
prior to crystallization than the 1-300k sample (ca. 38).
Considering L, and Lgcc, it was expected that [-9k and 24k
samples ideally fold more than 1 and 2 times, respectively.
However, the former and latter fold only 0.6 and 0.7 times,
which are lower than the expectation as well as n = 1.0 for the
higher M, ones. This fact means that even though
disentanglement partially occurs in the intermediate M,
samples, the disentangled chains do not prefer folding and
rather form intermolecular packing. The intermolecular
packing is simply explained in terms of the high concentration
of the PLLA chains in the highly condensed melt. Another
important finding is that hairpin structure (intramolecular
packing) is formed only in the well-developed entangled
networks. The unique M,, dependence of folding can be
naturally explained in terms of induction by entanglements.
Namely, entanglement has a positive impact on the folding of
semicrystalline polymers; however, it limits adjacent re-entry
number (n = 1.0) during crystallization. This mechanism
explains our recent observation that a rapidly quenched PLLA
glass adopts the same hairpin structure with the a crystals.”!
Traditionally, it has been believed that chain-folding structure
is located at the crystal—amorphous interface in the polymer
crystals.lz’13 However, there is no experimental evidence to

https://doi.org/10.1021/acsmacrolett.3c00364
ACS Macro Lett. 2023, 12, 1138—-1143



ACS Macro Letters

pubs.acs.org/macroletters

a g% b

5 d

s —ff i
—— —£ n} 11 _J 't t"_f H ==
T 0 S 1
IJRRLERY
0.124 0.124 0.12 0.12
= > = =
(5] O o (%)
% 0,08 F0.08- é 0.08 5008
S 0.04- D 0.04- G004+ So.04
o ] Tak
O 45k O 300k
0.004 0'00_| g . . l'.l.l}('_l-l Lk S O.OD-I ——r—
0 4 8 1 12

0 8 12

4 1] 4 8 12
Excitation Time(ms) Excitation Time(ms)

2 0 4 8
Excitation Time(ms) Excitation Time(ms)

Figure 3. (a) Schematic illustrations of the chain-folding structure of -PLLA with n = 1 and 2 along the crystallographic (110) direction and
corresponding DQ simulations curves with SS = 6.1 A and T, = 9.8 ms, and ECC structure with n = 0 and corresponding simulation curve with SS
=59 A and T, = 8.4 ms (black curve). '*C-labeled stems are illustrated by pink circles and *C atoms are highlighted by red (reference one) and
blue circles (surrounding ones). Experimental DQ buildup curves of (b) I-2k (black open circle), (c) I-4k (pink), -9k (blue), I-4Sk (green), and (d)
1-74k (orange), and I-300k (red) blends and best-fit simulation curves to I-2k, -4k, I-9k, and I-300k blends with n = 0 (black solid curve), 0.2 (pink),
0.6 (blue), 0.9 (green), and 1.0 (red). Schematic illustrations for (b) ECC (n = 0), (c) mixture of non- and once-folded structure, and (d) once-

folded structure (n = 1.0).

support a tight fold in the melt-grown crystals. The newly
established relationship between folding and entanglement
revises not only the folding mechanism, but also the locations
and roles of folding in the met-grown crystals. Our finding
suggests the following scenario in polymer crystallization.
Initially, entanglement of two chains naturally generates a loose
fold loop in the melt state. Subsequent cooling induces chain
stiffing and decreases M, This process results in tight
folding.20 Afterwords, nucleation and growth induce conforma-
tional and packing ordering accompanying partial disentangle-
ments, but they still preserve the topological constraints.
Crystallization pushes out some folding structures, as well as
entanglements from the crystalline region. As results, some
may be located at the crystal—amorphous interface but others
in the amorphous region (Figure 3c,d). Therefore, the folding
structure liked with entanglement might play a vital role for
morphological development,”™* selections of lamellar thick-
ness, "% crystal—crzrstal transition,'® deformation and me-
chanical property, > etc., of semicrystalline polymers.
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