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Typically, animal locomotion studies involve consecutive strides,
which are frequently assumed to be independent with
parameters that do not vary across strides. This assumption is
often not tested. However, failing in particular to account
for dependence across strides may cause an incorrect estimate
of the uncertainty of the measurements and thereby lead to
either missing (overestimating variance) or over-evaluating
(underestimating variance) biological signals. In turn, this
impacts replicability of the results because variability is
accounted for differently across experiments. In this paper, we
analyse the changes of a couple of measures of human leg
stiffness across strides during running experiments, using a
publicly available dataset. A major finding of this analysis is
that the time series of these measurements of stiffness show
autocorrelation even at large lags and so there is dependence
between individual strides, even when separated by many
intervening strides. Our results question the practice in
biomechanics research of using each stride as an independent
observation or of sub-selecting strides at small lags. Following
the outcome of our analysis, we strongly recommend caution
in doing so without first confirming the independence of the
measurements across strides and without confirming that
sub-selection does not produce spurious results.
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1. Introduction
In biomechanical studies of human or animal locomotion, in particular in the analysis of terrestrial gaits,
it is common practice for researchers to take measurements and compute variables of interest for each
stride and then average or analyse the values of those variables across strides, often considering each
stride an independent and identically distributed (iid) observation [1–5]. As a general rule, an effort is
made to keep all possible strides available. Most of the experiments in the comparative and human
locomotion literature are based on sample sizes of less than 50, and often even smaller, less than 10
(e.g. [6–10]), and so researchers want to keep as much information as possible from the experiments
performed. Enlarging the study is often either costly or not feasible because of characteristics of the
species (e.g. rapid growth rate, challenging/rare behaviours) or the conditions of the equipment or
because the population to be sampled does not allow for larger testing procedures. For example,
enlarging a sample for a comparative study could mean going back to the field and taking a new
sample, a very cumbersome path to follow [11]. Extending the data collection for longer periods of
time would not be a solution as that would require complicating the model and, therefore, the extra
inflow of data may not keep up with the extra-complexity required to model a growth study. These
small sample issues for biomechanical studies are an ubiquitous feature of the field, even in this big
data era. Note that the practice of treating the strides as independent is diffuse across different areas
of the locomotion literature. Researchers studying humans [3,6,12–14], bipedal birds [5,8,10,15,16],
lizards [9,17–20] and other animals as well [2,4,21–23], estimate parameters of biomechanical relevance
by averaging measurements across consecutive locomotor cycles and using statistical methods based
on the independence hypothesis.

Sometimes, to avoid the extra challenges posed by correlated data, researchers choose to only use
measurements from every two or three strides for their average estimate [12,24]. In extreme cases,
only one single stride per trial is considered [25–27]. This strategy has distinct disadvantages: it
reduces the total number of strides that can be used in the study and disrupts the natural correlation
structure present in the data, between strides. In many cases, researchers do not rely on the structure
of the data to decide how many strides to drop or how many can be considered independent and, for
those which are not independent, to determine which type of dependence structure there is [12,24–26].
When steady-state locomotion is being studied, the first and last strides from a given trial are often
excluded or take place off-camera and so are not recorded [1]. Such decisions to exclude strides are, in
general, made by the single researcher and they are not standardized across laboratories. Using
personalized stride exclusion criteria does not only risk to preclude the correct reporting of the results
of the experiments, to miss the opportunity to learn about the irregular biomechanics at the beginning
of a cyclical motion, and to jeopardize the replicability of the experiments across laboratories, but also
is questionable from the data science perspective. It is hard to justify the decision to exclude some
strides from analysis simply because they might be dependent, particularly considering that any
dependence present in a time series may arguably be the most important feature.

The main objectives of this manuscript are, first, to underline that it is incorrect to not account for
variability of measurements across strides in the analysis of data from locomotion experiments and,
then, discuss the possible consequences of doing so. For these objectives, we concentrate on one
relevant example and study it extensively, but we believe that our considerations are valid in general
for terrestrial locomotion experiments which involve multi-stride data. We study the variability of
human leg stiffness across strides during running on a treadmill at different velocities and use a
publicly available dataset [28] to illustrate our argument. Note that this topic has not received
extensive attention in human locomotion studies and so our results also provide new insights on this
important problem.

Most commonly, human running is modelled as a spring-mass/spring loaded inverted pendulum (SLIP)
[29–32]. This model is reductionist and tries to extract the most fundamental features of the complex
dynamics of human running with a low-dimensional system of ordinary differential equations
describing bouncing gaits. The resulting model has qualitative validity in the sense that trajectories of
the SLIP system resemble those of bipedal runners and many other multi-pedal runners ([29,30,33]
and the large body of literature that cites these papers). As far as we know, there are no proven
mathematical theorems that guarantee under which regimes (e.g. small joint angles, low horizontal
velocity) the high-dimensional dynamical system describing an animal running can be accurately
determined by a low-dimensional model, such as the two-dimensional SLIP system. One of the
consequences of the lack of guarantees of these reductionist models is the difficulty in establishing
the best methodology for estimating parameters of interest, such as leg stiffness, through models like
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the SLIP model [34–38]. The basic idea of this spring-mass model is to use a linear spring that follows
Hooke’s law and compute the stiffness by dividing the maximum (max) vertical ground reaction force
(GRF), typically measured using kinetic data from force platforms, and the compression of the leg
deduced using kinematic data, such as the position of the centre of mass (CoM) [29,30].

Considerable discussion in the literature has centred around how to calculate leg stiffness during
human running and the validity of the various methods has been questioned [34]. Some methods
include the measurements of the leg length and GRFs at touch down, such as those employed in
[35,36,39], and the use of a mechanical arm to track the movement of the CoM [40]. In some
situations, the stiffness is a parameter estimated from a chosen model and, in such cases, it simply
comes from the model assumptions rather than existing as a biological parameter itself. In the SLIP
model, the stiffness represents some sort of summary measure of the properties of the individual
which appears to globally possess a spring-mass behaviour, but it is not a direct measurement of the
elasticity of any specific muscle/tendon. In [41], the authors noted that the stiffness of the leg cannot
be calculated directly neither in humans nor in bipedal birds and that an effective leg stiffness can be
estimated only if assuming that the entire body behaves like a spring-mass system during running. It
does make sense to estimate such a parameter from the data, but the interpretation of such an
estimate needs to be used with caution. As mentioned, there are many methods used to estimate
stiffness, some of them described in [42] (see also [43]), in which authors compare five methods for
the estimation of the stiffness parameter based on kinematic and kinetic data. The authors in [34]
noticed that reductionist models often require untested assumptions for their mathematical analysis to
be carried out, but that those assumptions are not tested and comparisons with the consequences
derived from different assumptions are rarely made. Furthermore, [44] noted that the method in [30]
underestimated leg stiffness compared to their own method and that, in [30], the authors did not note
a dependence of leg stiffness with velocity, whereas [42] reported similar leg stiffness values to those
following the method proposed in [30]. Also, the authors in [34] compared leg stiffness values
measured using direct kinematic and kinetic methods with leg stiffness values calculated using the
most common methods present in the literature. They found that stiffness estimates are highly
variable across methods and studies. In addition to the challenge of estimating parameters of interest,
a further difficulty comes from the fact that, in most models, the human body is assumed to be rigid,
but GRFs do not directly act on the CoM of the body. Such a simplification neglects dissipative forces
in the transmission of the GRFs from the centre of pressure of the foot in contact with the ground to
the CoM. There is actually not a strong argument to assume that the GRFs act on the CoM directly [45].

The authors in [46] found that human runners adjust their leg stiffness [36,47] to accommodate changes
in surface stiffness, allowing them to run with similar dynamics on different surfaces. Several studies have
investigated the way in which leg stiffness is adjusted to accommodate changes in ground level. In
particular, the authors in [48] studied how runners modulate ankle and knee joint stiffness, finding,
among their other results, that the ankle joint stiffness depends on the vertical height of a step, similar
to the global leg stiffness. In [49], the author addressed the problem of joint level compliance during
human walking and how joint stiffness is modulated during human walking on flat surfaces, inclined
surfaces, and stairs. The results found that stiffness estimation was much lower than those found in
running ([50]; see also [51,52]. As far as we know, there has not been an extensive study of how stiffness
changes across strides at different running velocities. Leg stiffness is also of interest in animal
biomechanics [34,53–56] (and papers referring to these) and the variability of leg stiffness as a function
of speed has been a source of discussion in comparative biomechanics as well. Some experimental
studies have reported that animal leg stiffness is independent of speed [36,46,57].

It is a very hard problem to determine how age influences the changes across strides of leg stiffness while
running at different velocities [58]. Even when considering a single individual, there may be many
confounding factors (e.g. history of injury, typical footwear etc.) which need to be taken into consideration
to properly address the problem. Note that being able to understand how the dynamics of older versus
younger individuals changes, in particular how leg stiffness is modulated through stride as a function of
age, can have important consequences in fields such as kinesiology, rehabilitation and prosthetics. With
longer life expectancy, many more people encounter orthopaedic problems [59], including those with
moving, particularly those related to optimal running modes. How these problems arise is still poorly
understood. Muscle stiffness has been reported to be associated with the reduction of force generation
capability of quadriceps in older populations [60]. Such a decrease in muscle strength has been associated
with the slowing of movements in elderly people, together with this rigidity or increased stiffness of
muscles ([60]; see also the work in [58,61]. None of these results seem to address if there is a significant
change of leg stiffness through strides or prolonged running experiments across age groups. The problem
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of how changes in stiffness across strides depend on mass is complex as well, as there are no simple physical
principles that help in the modelling of such a change. Many experiments and analyses need to be done.
Some studies have investigated how leg stiffness scales with respect to mass in bipedal and quadripedal
mammals in both running and hopping, using experimental and simulated data [35,62–65], but, as far as
we know, none have discussed how mass impacts the change in stiffness across strides.

In summary, the goals of the paper are the following: (i) to determine the influence that neglecting the
dependence structure of strides can have on the results from the analysis of kinetic and kinematic data,
using measurements of leg stiffness averaged across strides as a running example; and (ii) to provide a
better understanding of the variability across strides of human leg stiffness during treadmill running.
/journal/rsos
R

2. Methods
In this section, we describe the methods we used for our analysis.
.Soc.Open
Sci.10:230597
2.1. Dataset
The dataset that we used is publicly available [28]. As explained in the data repository [28], the dataset
collects multivariate time series of the trajectories of signals from sensors applied to the human body
while running on a treadmill at 2.5 m s−1, 3.5 m s−1 and 4.5 m s−1. The time series include both
kinematics and kinetics of 28 subjects and also includes metadata with age and mass among the
variables considered. Although, we will analyse only the dynamics in the sagittal plane, the data
comprise three-dimensional coordinates collected from a motion-capture system.
2.2. Pre-processing of the data
Before starting the analysis, we pre-processed the data. The frequency of collection of kinematic and kinetic
measurements were different; the time series of the forces were collected at 300Hz while the time series of
the markers were collected at 150Hz. For our analysis, we sub-selected every other datapoint in the ground
reaction force data and paired them with the full kinematic data. During the aerial phase, the vertical
components of the forces exerted on the foot is zero, and so the only force applied to the CoM is the
gravitational force. This is true because the foot is not touching the treadmill and so force platforms cannot
record any force. We excluded the aerial phase from our analysis, as we are interested in understanding the
elastic properties of the leg and in the aerial phase those elastic forces are zero. To do so, we extracted from
the full kinematic and kinetic time series of each subject the measurements of the forces for all instants
constituting only the stance phases as determined by the condition that the vertical force recorded was
positive (Fy> 0). Furthermore, the kinematic data consisted of several time series of markers placed on the
body of the participants recorded during the experiments. Not all of these markers were useful for
understanding the reaction of the individual (e.g. change in leg stiffness) to the collision of the foot onto the
treadmill. As we only needed the information about the CoM, which is located approximately at the height
of the hips, we retained and averaged only the coordinates of the left and right markers (in the sagittal
plane with positive x concordant with the running direction and positive y in the direction foot-to-head) that
were closest to this position: the anterior superior Iliac spine, the posterior Iliac spine and the Iliac crest coordinates.

Then, we extracted each single stride and stored the time series of these strides in separate variables.
Finally, the coordinate system in which the dataset was collected was centred at an origin static with
respect to the treadmill. Therefore, we performed a change of variables that allowed us to recentre the
data: x0 = x + v�t, y0 = y + v�t with (x, y) the coordinates with respect to the treadmill origin, t the time index
and v the velocity of the treadmill in that trial. Note that the way in which we computed the CoM is just
one of the ways available in the literature. For example, the authors in [66] estimated the vertical and
relative adaptation of the CoM using three different markers: the coordinates of the fifth lumbar vertebrae
and the seventh cervical vertebrae and the average of the coordinates of the right and left greater
trochanter from the upper leg.
2.3. Calculations of leg stiffness
Leg stiffness can generally be defined as k= ∂F/∂L, with F being the vertical component of the GRF and L the
leg length during the stance phase [42]. As mentioned in [42,43], there are many ways to define that quantity,
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both in a linear and nonlinear way. Here, we do not argue in favour or against any of the methods, but we
consider a sub-selection of those methods. We compute the leg stiffness in two different ways:

— method 1: the maximal leg stiffness kmax was computed as the resultant force in the direction of the
leg spring Fleg divided by the leg compression ΔL : kleg = Fleg/ΔL (see for example, [34]). Fleg was
computed as the value of the vertical GRF, Fy, computed at the lowest height y of the centre of
mass, after correcting Fy for the weight of the individual. The leg compression ΔL was computed as:

DL ¼ maxðyÞ �minðyÞ þ l0� 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� maxðxÞ �minðxÞ

ð2�l0Þ
� �2

s0
@

1
A:

Here, max (y), min (y) are the maximal and minimal vertical position, with respect to the height of the
centre of mass during the stance phase, while max (x), min (x) are the maximal and minimal x
coordinates of the centre of mass during that particular stance phase and l0 is the height of the CoM
at rest. Here, x and y are calculated after the change of variable performed in the pre-processing
step; and

— method 2: we computed kOLS using the ordinary least-squares method for a linear model without
intercept. The independent variable was the GRF defined using a spring-mass model:

GRFy ¼ y� l0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p � 1

 !
,

and the dependent variable was the vertical component of the recorded GRF plus the weight (m�g,
with g = 9.81 m s−2) of the individual.

2.4. Hypothesis tests for stride independence
In this subsection, we describe the procedures that we followed to test the hypothesis H0: strides are
independent versus Ha: strides are not independent, and in particular the hypothesis that the leg stiffness
measurements kOLS, kmax are or not stride independent. Note that if summary statistics calculated from
different populations are dependent, then the two populations are dependent as well [67]. Therefore, the
dependence of the stiffness on stride indicates a dependence of the stance phases themselves within
experimental trials. We concentrated on tests which measure the possibility of autocorrelation in the
time series of the stiffness measurements. All tests were performed at significance level α = 0.05.
Yule test
The simplest method to test for autocorrelation in a time-series dates back to Yule [68,69]. For a given
sample Y1, . . . , Yn, the population autocorrelation function (ACF) ρY(k) is estimated by the sample
ACF r̂YðkÞ for k ¼ 1, 2, . . .. Note that the ACF r̂YðkÞis well defined for all t, k = 1, 2,…, even for
non-stationary processes (but with finite first and second moments). The ACF is given by

r̂YðkÞ :¼
ĝYðkÞ
ĝYð0Þ

, ĝYðkÞ ¼
1
n

Xn�k

t¼1

ðXt � �XTÞðXtþk � �XnÞ, t ¼ 0, 1, . . . , n� 1:

The asymptotic distribution of the sample autocorrelations r̂YðkÞ for various lags k = 1, 2,… for a general
stationary linear process [70,71] takes the formffiffiffi

n
p

(r̂Yð1Þ � rYð1Þ, . . . , r̂YðmÞ � rYð1Þ) ! N ð0, WÞ,
as n→ +∞ with W given by Bartlett’s formula [72], which, in the case of a null hypothesis given by iid
random variables, reduces to the identity matrix W = Idm and soffiffiffi

n
p

(r̂Yð1Þ, . . . , r̂YðmÞ) ! N ð0, IdmÞ,
with Idm the identity matrix in dimension m and m, the maximum lag considered. Therefore, to test the
hypothesis

H0 : rk ¼ 0 vs HA : otherwise,

at level α, it is enough to verify that jr̂YðkÞj . za=2=
ffiffiffi
n

p
with n the size of the sample observed [73].

There is a vast literature on testing for significant autocorrelation in time series, starting from tests not
only at one single lag k, but for a series of lags, such as H0 : rYð1Þ ¼ . . . ¼ rYðmÞ ¼ 0 [74,75]. We
considered these cases too.
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Ljung-Box test for independence
The Yule test detects if there are correlations at single lags. Sometimes single autocorrelations oscillate
and dependency in a time series can be detected only by grouping autocorrelations together and
verifying their magnitudes. The Ljung-Box test [75] aims at detecting if a group of autocorrelations of
a time series is significantly different from zero. The Ljung-Box test statistic is given by:

Q ¼ nðnþ 2Þ
Xm
k¼1

r̂YðkÞ2
n� k

,

where n is the sample size and m is the number of lags being tested. We performed a Ljung-Box test
with maximum lag 40 at each velocity and for both measures of stiffness, kmax and kOLS. We collected
the p-values for each of the tests. We considered a Bonferroni-type adjustment with significance level
α/N with α = 0.05 and N = 28. As a follow-up to the Ljung-Box test, we used linear models to
determine how the dependency of stride was influenced by age and mass, using the p-values of the
Ljung-Box test for maximum lag equal to 40 as the dependent variable and age and mass as
independent variables.
Linear mixed effects models
We analysed how the stiffness was influenced by stride and velocity (see appendix A 4). To do so, we
developed several linear mixed effects models (LMEMs) with subject dependency as a random effect
[76]. We developed LMEMs including the velocity as a fixed effect, but also separate models for each
single velocity. We restricted our attention to the case where β1,j = β1, namely the case in which only
the intercept of the model includes random effects accounting for between subject variations. More
specifically, we considered the following models for both k = kmax and k = kOLS:

kij ¼ bi,0 þ b1Sij þ 1ij,

for each of the three velocities (v = 2.5 m s−1, v = 3.5 m s−1 and v = 4.5 m s−1). Here, j = 1,…, 28 and i = 1,
…, nj with nj the number of strides for subject j for each single velocity. Sij represents stride number j for
subject i. Furthermore, we considered the models with velocity included for both k = kmax and k = kOLS:

kij ¼ bi,0 þ b1Sij þ b2vij þ 1ij,

for each of the three velocities. As before, j = 1,…, 28 and i = 1,…, nj with nj the number of strides for
subject j across velocities. Larger models including random effects affecting the inclination were not
considered because, in such models, the estimation procedure was unstable, given that the complexity
of those models was too high with respect to the sample size available in this study. Parameter
estimation was performed using the restricted maximum likelihood criterion [77,78]. We fitted all
LMEMs using the R-package lmer (see [79]).
3. Results
In this section, we outline the results of our analysis.

3.1. Dependence of stiffness across strides within individual subjects
In all of the six conditions analysed (two stiffness measures and three velocities), the Yule test
revealed the presence of significant autocorrelation in the stiffness measurements that persists
across strides even for lags larger than 5 in 5/28, 4/28, 6/28, 7/28, 8/28 and 8/28 subjects
(figure 1, panels a–f, respectively). With the notation ‘X/Y’, we mean ‘X out of Y’. Note that a
large number of locomotion studies consider each stride as independent and so, even just
correlation at lag 1 would be a significant finding. The Ljung-Box test also found significant
dependence across strides for many individuals. It determined that 11/28, 12/28, 8/28, 13/28, 16/
28 and 6/28 individuals (figure 2, panels a–f, respectively) showed a dependence in stiffness
across strides (only for those up to 40 lags apart) and so the strides are not iid; in particular they
are not independent.

3.2. Dependence of strides with age and mass
The analysis of age dependence of the Ljung-Box test indicates an increased dependence across strides
with increasing age, but the estimates show high variability and none of the tests rejected the null
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Figure 1. Yule test showing autocorrelation across strides at v = 2.5 m s−1 (a,d ), v = 3.5 m s−1 (b,e), and v= 4.5 m s−1 (c,f ) for kmax
(a–c) and kOLS (d–f ). The y-axis of each plot corresponds to the lags, while the x-axis indexes the subjects. The vertical bars represent the
largest lag which shows correlation across strides for each of the 28 subjects, while the horizontal line is fixed at a lag of 5 for illustrative
purposes. In each of the conditions and for both kmax and kOLS, there is correlation across strides for a relevant number of subjects.
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Figure 2. Ljung-Box test showing dependence across strides for the three velocities, v = 2.5 m s−1 (a,d ), v = 3.5 m s−1 (b,e), and
v = 4.5 m s−1 (c,f ), and the two measures of stiffness, kmax (a–c) and kOLS (d–f ). The y-axis of each plot corresponds to the Ljung-
Box p-value, while the x-axis indexes the subjects. The vertical bars represent the p-value of the Ljung-Box test for maximum lag
equal to 40 for that subject, while the horizontal line is fixed at the level of significance (α = 0.05) for illustrative purposes.
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hypothesis of p-value independent of age (p ¼ 0:3574, 0:7737, 0:3982, 0:6224, 0:3203 and 0:8704 in
figure 3a–f, respectively. In the analysis of mass dependence of the Ljung-Box test p-values, only one
test rejected the hypothesis of independence (figure 4d: kOLS, v = 2.5 m s−1) (p ¼ 0:2372, 0:1779, 0:6282,
0:002395, 0:279 and 0:9537 in figure 4a–c,e,f, respectively).
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Figure 3. Dependence of the Ljung-Box test p-value with age. The y-axis represents the p-value of the Ljung-Box test at max lag
40, while the x-axis represents the age of the corresponding individuals. All of the plots show a decreasing trend but none of the
relationships were statistically significant (p ¼ 0:3574, 0:7737, 0:3982, 0:6224, 0:3203 and 0:8704 in (a–f ), respectively).
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Figure 4. Dependence of the Ljung-Box test p-value with mass. The vertical axis represents the p-value of the Ljung-Box test at
max lag 40, while the x-axis represents the mass of the corresponding individuals. Only one of the relationships was statistically
significant (p ¼ 0:2372, 0:1779, 0:6282, 0:002395, 0:279 and 0:9537 in (a–f ), respectively).
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3.3. Dependence of stiffness with stride and speed
The LMEMs for kmax and kOLS with stride and velocity as fixed effects showed significant dependence of
stiffness with both stride and velocity (tables 1 and 2). When we considered separate models per velocity,
all models for kmax showed significant dependence across stride, whereas for the models for kOLS, only
the model for v = 4.5 m s−1 showed significant dependence (see tables in appendix A 4).



Table 1. Results from linear mixed effects models with kOLS as the measure of stiffness. (Stride and velocity were fixed effects,
and subject was a random effect. Bold indicates p < 0.05.)

kmax: linear mixed effects model

fixed effects estimate s.e. d.f. t-value p-value

(intercept) 15671.077 330.367 33.393 47.435 <0.0001

stride −6.628 0.923 7171.831 −7.181 <0.0001

speed 279.633 28.404 7171.027 9.845 <0.0001

Table 2. Results from linear mixed effects models with kOLS as the measure of stiffness. (Stride and velocity were fixed effects
and subject was a random effect. Bold indicates p < 0.05.)

kOLS: linear mixed effects model

fixed effects estimate s.e. d.f. t-value p-value

(intercept) 19542.831 560.299 30.892 34.879 <0.0001

stride −2.850 1.258 7171.518 −2.266 0.0235

speed 1261.722 38.711 7171.017 32.593 <0.0001
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4. Discussion
Our analyses demonstrate that individual strides, even when separated by several intervening strides,
cannot be assumed to be independent, unless proven otherwise. Therefore, our analysis leads to the
recommendation that researchers test for dependence of strides in locomotion studies with multiple
strides or consider consecutive strides as dependent. Below, we discuss several aspects of this result.

4.1. Non-independence of strides
The Yule tests that we performed underlined that correlation across strides is present even at large lags
(figure 1). We detected the presence of correlation of the stiffness across strides at lags over 10 for at least
one of the subjects in all the scenarios that we analysed (kmax, kOLS for v = 2.5 m s−1, 3.5 m s−1, 4.5 m s−1).
Given a single subject and some measurements of biomechanical parameters (e.g. CoM height, mass,
age), it is not simple to determine a priori if the measurements across strides will be independent or
not, so rigorous statistical hypothesis testing is needed. Dependence of locomotion behaviour across
strides seems to be a diffuse phenomenon in our sample population as correlation was detected for
many individuals in multiple conditions. This dependence structure of strides during the running gait
was confirmed by a lag-aggregate analysis performed with the Ljung-Box test with a maximum lag of
40 (figure 2). In some of the conditions analysed, close to 50% of the individuals performed running
trials with strides that were not independent. This dependence seems greater at higher velocities,
which could potentially be explained by the central nervous system having insufficient time at higher
velocities to respond (i.e. alter stride characteristics) fast enough to sensory feedback from
environmental perturbations. In such situations, the central nervous system would rely more heavily
on preflexes and on pre-determined strategies for optimal locomotion, decentralized modes, and
feedforward instead of feedback control [80]. Such a scenario would result in broad similarities in the
characteristics of long time series of consecutive strides. In fact, relying on centralized feedback
circuits would seem to be disadvantageous because of the intrinsic time delays, especially for
locomotion at high speed [80]. This explanation seems in agreement with the very fundamental
structure of models such as SLIP, which show passive stabilization properties based on preflexes [80].

4.2. Stride-dependence across ages, masses, and velocities
All six conditions analysed hint at a decreasing trend of the p-value of the Ljung-Box test with age, but
possess quite a high variability across individuals, especially in relative terms for those individuals with
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ages between 30 and 40 years, and so no p-values were found significant at level α = 0.05 (see figure 3).
This finding is in agreement with the results of [34]. Note that it is possibly harder to observe a significant
relationship between age and stiffness over the limited age range represented in this dataset.
Speculatively, having a range of ages spanning life periods from childhood to older ages would help
detect a stronger relationship and determine what role the interaction between reaction time and age
play in the locomotor behaviour across strides. Note that we are still quite far from having an accurate
neuromechanical model of human locomotion and, as far as we know, there are few results on full
neuromechanical models of animal locomotion available, most of which concentrate on insects [80,81].
Speculatively, an elderly individual with respect to a younger individual running at the same speed
might pay more attention at each single step and so she/he might decouple the motion of one stride
from the next, which in turn would result in a lack of autocorrelation in the time series of leg stiffness
or other variables calculated per stride. Given the limits of the data available (e.g. small sample size
per age-range), we did not try to optimize the model and merely chose the simplest possible
hypothesis class (univariate linear regression; figure 3).

Mass was not correlated with the p-value of the Ljung-Box test for any condition except one, the case
of kOLS and v = 3.5 m s−1 (figure 4). We do not believe the significance of this one single test is particularly
meaningful and we recommend also in this case further investigation with improved sampling across a
wider range of masses to better determine the relationship between mass and stride dependence during
running. It is largely unknown how to describe the complex relationship between age, mass, and other
variables that can come together to contribute to determining stiffness. Altogether, our analysis of the
relationship between variables such as age and mass with the modulation of leg stiffness across
strides while running is inconclusive. Still, it can be considered at least exploratory and makes a case
for the need for further investigation into this problem.

The LMEMs determined a strong effect of both stride and velocity on leg stiffness. The models with
both stride and speed as fixed effects showed statistically significant correlation at level α = 0.05 (see
tables 1 and 2). The models for each fixed velocity were all significant other than the model with kOLS

and v = 2.5 m s−1 (see appendix A 4 for more details about this). The dependence on velocity that we
observed seem in agreement with the findings of [44], who found that the running velocity influences
leg spring stiffness. However, the authors in [44] did not analyse the effect of consecutive strides on
stiffness. This part of our analysis solidifies the understanding that measurements of stiffness across
strides (and so strides themselves) are not independent.
4.3. Impact of ignoring dependence across strides
The variance of a sample mean from Y1,…, Yn observations, which are iid, from a population with
E[Y1] = μ and Var(Y1) = σ2 is given by Var½�Y� ¼ s2

Y=n. This formula is no longer valid when there are
correlations between observations. For example, in the case in which a time series is observed from a
stationary stochastic process, we have:

Var½�Y� ¼ s2
Y

n
1þ 2

Xn
k¼1

1� k
n

� �
rk

" #
,

with ρk the autocorrelation function at lags k ¼ 1, . . ., n. If we take the ratio between these two variances
(the one for a general stationary process and the iid one), we get a quantity which contains information
about the gain/loss of variance caused by neglecting possible autocorrelations in the data. This variance-
to-variance ratio R(ρ1,…, ρk) is given by

Rðr1, . . . , rkÞ :¼ 1þ 2
Xn
k¼1

1� k
n

� �
rk:

In general, positive autocorrelation is related to an increase in the variance of the mean and negative
autocorrelation to a decrease in the variance of the mean. See figure 5 for some examples on how
R(ρ1,…, ρk) depends on its parameters.

Example 4.1. Suppose that ρk = ρ for k = 1,…, n. In this case for ρ = 0.05 and n = 101, we have R = 6,
which means that, if we do not account for autocorrelation in the time series, we underestimate the
variance of the sample mean by 6 times. Instead, if ρ =−0.01 and n = 11, then R = 0.9, which means
that, without accounting for autocorrelation in the time series, the variance of the sample is



3

2

1

0

–1

3

2

1

0

–1

n = 3

n = 2

n = 1

ρ

ρ
k
= –1

ρ
k
= –0.5

ρ
k
= 0

ρ
k
= 0.5

ρ
k
= 1

–1.0 –0.5 0.5 1.00

va
ria

nc
e-

to
-v

ar
ia

nc
e 

ra
tio

 (R
)

0 20 40 60
lag (k)

80 100

(b)(a)

Figure 5. Variance-to-variance ratio R(ρ1,…, ρk) with different values of the parameters ρk, n, and k. (a) R(ρ,…, ρ) for n = 1, 2,
3. (b) R(0,…, 0, ρk, 0,…, 0) for k = 1,…, n and ρk =−1,− 0.5, 0, 0.5, 1.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230597
11

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 A

ug
us

t 2
02

3 
overestimated by 10%. Note that the formula for R would not capture the full variation if ρk = ρ for every
k [ N, as the time series would not be stationary [82].

Example 4.2. Suppose that ρk = ρ for one single k and zero otherwise. In this case, for ρ = 0.5, n = 80
and k = 20, we have R = 7/4, which means that, if we do not account for autocorrelation in the time series,
the variance of the sample mean is underestimated by 75%. Instead, if ρ =−0.5 and n = 60 and k = 10, then
R = 1/3, which means that, without accounting for autocorrelation in the time series, we overestimate the
variance of the sample mean by 67%.

Example 4.3. If we consider subject 2 at v = 2.5 m s−1 from our dataset and the measurements of kOLS

(n = 75 strides), the only significant autocorrelation is at lag k = 14 with ρ14 = 0.2408617. If we use the
formula for R with only one correlation lag different from zero, we get R = 1.391802. Therefore,
neglecting in toto the autocorrelation structure of the time series would fail to account for nearly 40%
of the variance of the average stiffness estimate across strides, even with one single lag showing
significant correlation.

Example 4.4. If we consider subject 27 at v = 4.5 m s−1 from our dataset and the measurements of kmax

(n = 89 strides), and consider only the largest significant lag in the first 40 lags, namely lag k = 8 with ρ8 =
0.2111892, we get R = 1.384412. Therefore, neglecting in toto the autocorrelation structure of the time
series would again fail to account for nearly 40% of the variance of the average stiffness estimate
across strides.

Example 4.5. If we consider subject 20 at v = 2.5 m s−1 from our dataset and the measurements of kOLS

(n = 88 strides), and consider all possible lags, we get R = 0.4162655. Therefore, neglecting in toto the
autocorrelation structure of the time series would overestimate the variance of the average stiffness
estimate across strides by nearly 60%.

Example 4.6. If we consider subject 26 at v = 3.5 m s−1 (n = 79 strides) from our dataset and the
measurements of kmax, we get the coefficient R = 0.3135405, which implies an overestimate of the
variance of the average stiffness across strides of almost 70%.

We illustrated the risk of ignoring the correlation structure in the measurements using these several
examples. The most direct consequence lies in mis-evaluating the magnitude of the variability of the
estimate of the average stiffness across strides. Note that in the iid case, it is well known that the
variance of the sample mean decreases on the order of 1/n, with n the sample size [67]. With
correlation, things can go better or worse [82]. Positive correlation is associated with an increase in the
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variance (observations tend to depart from the mean and show stochastic trend), while negative
correlation is associated with a decrease in the variance (observations tend to oscillate around the
mean and stay at a bounded distance from the mean over time). In our examples, we show that
ignoring correlation between strides can result in either scenario. Underestimating the variance can
cause spurious results (e.g. not being able to assume independence of strides), whereas overestimating
the variance can prevent the detection of the fixed effects that often motivate the study in the first
place (e.g. stride and/or speed association with stiffness).

One of the consequences of broad impact of the mis-estimation of the variance is the difficulty in
combining the results of different laboratories. If the variance of an average measurement of a
variable of interest in one experiment at one single laboratory is miscalculated, the effect could be
catastrophic when results are combined across laboratories [83,84]. This is the so-called batch effect and
it is a major and interesting problem in machine learning. Often such a problem is addressed using
transfer learning [85–87], a subfield of machine learning which aims at using information extracted
from one population of interest for another population of interest. Further research in this direction is
required in order to mitigate possible batch effects and study replicability problems in biomechanics.
These problems have not received in biomechanics the attention that they have received in other
fields, such as epidemiology, public health, neuroscience and genetics [83,88,89]. More research on
uncertainty quantification (e.g. estimation of the variance), together with amassing large repositories
of publicly available data, could potentially facilitate the interaction of multiple laboratories and lead
to faster research progress in biomechanics and locomotion.

Altogether, this analysis underlines the necessity of determining the correlation structure across
strides before modelling or performing hypothesis tests. Recall that if two random variables computed
by different samples are dependent, then also the samples must be dependent [67]. Therefore, the
dependence of stiffness on stride indicates a dependence of the stance phases themselves within
experimental trials. This is quite important information as many biomechanical studies do not
perform a dependency analysis before further testing and before assuming independence. It can
happen, but it is quite a ‘rare’ occurrence, that two random variables computed from the same sample
(and that are not constructed using only one distinct element of the sample each) are independent,
even if the single observations of the sample are independent. This is clearly described with rigorous
mathematical theorems in [67] and it depends on a classical result in statistical inference called Basu’s
theorem [90]. In simple terms, the theorem states that under some regularity assumptions, minimal
sufficient statistics for a parameter are independent of any ancillary statistics for that parameter. For
example, the normal distribution is characterized by the condition that the sample mean (which is
minimal sufficient for the population mean) is independent of the sample variance (which is ancillary
for the population mean). With the word ‘characterized’ we mean that no other distribution possesses
this property.
4.4. Overground experiments and the case of few strides per bout
In our analysis, we discussed to what extent autocorrelation between consecutive strides within a given
trial of an experiment is present. We did not discuss extensively what happens to the variability of a
measurement like leg stiffness in the case a researcher decides to estimate the parameter using a single
stride per bout and to use multiple bouts. Using strides from different trials might require
assessments such as: which stride of each bout shall we select? The one in the middle? Why? Is there
a way to fairly compare bouts that have different numbers of strides? We believe that the answers to
these questions require further data-driven research. Still, the strategy of using only one stride per
bout risks to be sub-optimal because it does not seem reasonable to decide a priori to throw away a
significant portion of the data merely because there might be a statistically yet-to-be-confirmed
dependency across strides or because one does not want to deal with the dependency structure. Even
just considering the experimental effort and the cost in terms of time, it is important to get the most
out of the data collected. As shown in this manuscript, the statistical tools to harness stride
dependency and to give a correct uncertainty quantification of the estimate of the parameter of
interest are available. We recommend assessing the dependency structure of the sample also in the
case in which an investigator decides to choose one single stride per bout and consider multiple
bouts, but also in every other estimation method used. Again, failing to correctly assess the variability
of a measurement (e.g. stiffness) might result in spurious findings or in losing the possibility to
uncover important biological information. The determination of what the greatest sources of
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dependency (e.g. variation across strides versus variation across trials) are can have an important impact
on the design of locomotion experiments and surely deserves further attention.

If multiple strides are available, it is really valuable information and, unless there has been some
experimental failure owing to which some strides need to be excluded, it is important to keep them and
evaluate them. We potentially understand the use of a single stride in the case in which the study is
concentrated on that single stride, but even in such a case there is something to say. Suppose that a
researcher wants to understand the behaviour of individuals during the first stride of a locomotor trial.
Then, there is one single first stride in each experiment. Especially if the strides are independent, it is a
reasonable choice to use only the first stride of the experiment for any estimate related to the first stride.
However, the situation here is also tricky because if there is autocorrelation at lag 1, some information
about the first stride is shadowed in the second stride, too. In a similar way, there is potentially some
information about the first stride in other strides as well. Note that autocorrelation at lag 1 does not
mean that stride 1 is correlated to stride 2 or that stride 2 is correlated to stride 3 on an individual stride-
by-stride basis. Rather, it means that there is correlation between consecutive strides globally in the data.
In the simplest autoregressive model AR(1) [82], there are two parameters: the variance of the noise and
the correlation coefficient ρ between one observation and the next. In such a case, ρk = ρk, with k the lag
considered. This means that the correlation predicted by the AR(1) model decays exponentially with the
lag, but it is present at every lag. If, for example, the correlation is 0.7 at lag 1, at lag 2 the correlation is
0.49. The implication of this is that, removing only a bunch of strides from the sample might not remove
in full the autocorrelation among the remaining strides. The case of correlation at large lags is a
statistically more interesting case, but also very interesting from the biomechanical perspective because,
although one might intuitively expect a relationship from one stride to the next, one might not expect to
see a relationship between one stride and strides that take place 5 to 10 strides later.

It is more common for data containing large numbers of strides to be available during running on a
treadmill than overground or on uneven ground [48]. Therefore, the implications of the present study
may be most relevant to treadmill-based locomotion studies. In overground studies with stationary
trackways and force plates, the animal moves across the field of view just once and so the number of
strides per bout available for analysis is more limited. The dataset that we analysed [28] is of treadmill
running and so we concentrated more on uncertainty quantification in that type of experiment.
However, parts of our discussion also apply to the case in which fewer strides are available. In fact,
although we highlight in figure 1 those subjects whose strides showed autocorrelation at large lags (we
put a threshold at lag 5), figure 1 shows that autocorrelation was also present at lower lags.

If relatively few strides are available (e.g. overground running), then the variance can be computed only
using those strides, with calculations analogous to those in the examples of §4.3 (e.g. example 2, but with a
smaller lag). Still, if there is dependence between one stride and another, many strides can provide
information about many others. As noted in our analysis, some strides might be outliers. If it is
determined that a stride is an outlier via a careful verification with a test for outliers, the exclusion of
that stride is recommended. Care must be taken, especially in the case in which only a few strides are
available. A popular test for outliers is Grubbs’s test [91], but such a test gives reasonable results only
when there are enough observations, as makes intuitive sense. In the case in which too few strides are
available, Grubbs’s test will, most likely, overcount outliers. It is a general fact that when the sample is
small, the estimation of the variance has limited validity. The extreme case of considering one stride per
trial is essentially kind of equivalent to implicitly assuming that there is no variability across strides. In
this paper, we provided evidence that such an assumption might be invalid. When it is not necessary to
consider only one single stride per trial, such a decision should not be made lightly because there is no
physical principle or mathematical law that explains the relationship between the value of many
locomotor parameters like stiffness and the stride number in a locomotor bout. The problem of correctly
extracting information about the variability of an estimate in overground locomotion may be first
experimental, and relate to data collection, before potentially being statistical. In the case of human
locomotion, until the instrumentation to record more than a few dozen metres of overground running is
widely available, then researchers will always have relatively few strides available for study and
comparatively little information about uncertainty quantification for parameters of interest. In turn, this
will negatively impact the replicability of overground studies across laboratories.

4.5. Other considerations
For what concerns the estimation of stiffness in se, there is always the question: what stiffness are we
really estimating? [42,43]. As far as we know, there is no mathematical model that describes in a
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satisfactorily quantitative way the process through which the brain modulates leg stiffness. Reductionist
models, such as SLIP, describe the most essential locomotor dynamics with the most parsimonious model
in terms of the number of variables used [29,30,80]. In our model 1—kmax, we used a method which is
biologically and mechanically well-motivated by the very definition of spring constant and elastic force.
In our model 2—kOLS, we considered the stiffness as the least square estimates of a simple linear
regression model without intercept [92]. Note that this second method might be criticizable for the
possibly more cumbersome biological interpretation. However, the first method, as well, is questionable
from the biological perspective, as the stiffness is not associated with the stiffness of any specific tissue,
but it is a resulting parameter of a complex system which collapsed from a multi-legged body with
distributed mass to a single point mass on a spring [80]. We believe that kmax and kOLS are good
examples for the purposes of our paper, as they emerge from quite alternative perspectives (biologically
driven kmax and data-driven kOLS). Incorporating a broad comparison of all possible methods for
calculating stiffness is beyond the scope of this paper. Such an analysis would possibly encounter a
similar across-strides-dependence problem and possibly lead to analogous results and consequences.

Note that for several of the subjects, there is a possible outlier in the stiffness measurements of the first
strides (figures 7–12). We did not remove those observations before fitting the model, as it is actually
relevant to know that, in some subjects, the first stride needs to be tested as a possible outlier. As
mentioned in the introduction, biomechanists often address this first-stride-problem by removing the
first and last strides of an experiment from the analysed dataset [1]. Sometimes those strides are not
even recorded because they occur off camera. Again, we consider removal strategies suboptimal; in
this case, removing initial and final strides compromises the opportunity to model the initial
transition phase. Depending on the study, researchers might not be interested in the opportunity of
modelling transitional phases. In such cases, first and last strides are removed from consideration
because they might contain a noisy signal. Note that, also in such cases, careful statistical
considerations must be made before deciding on the removal of those strides. How many strides
should be removed? This is a tricky question. In some cases, after the removal of an outlier with the
support of a rigorous statistical test, the same test (e.g. Grubbs’s test [91]) on the reduced dataset
(without the observation that was determined to be an outlier after the first test) might detect an
additional outlier that was not detected when the test was initially performed on the full dataset.
Therefore, we recommend to thoughtfully test for outliers also in studies of steady-state locomotion,
before making the decision to remove some strides from the data, and to quantitatively support the
decision to consider some strides transitional. If the first or last strides are not outliers, there is not
really a statistical justification in support of removing such observations from the analysis. Although
the removal of first and last strides is perceived as safe and convincing from a biomechanical
perspective, if those strides are not outliers, curtailing the data in this way will end up having a
negative impact on the correct estimation of variability, with the worst effects occurring when the
number of available strides is lowest (e.g. experiments taking place overground or on uneven ground).
5. Conclusion
As far as we know, this is the first paper in the terrestrial biomechanics literature dedicated to discussing
rigorously and extensively the effects of neglecting the correlation structure of consecutive strides. We
found evidence of autocorrelation of the time series of human leg stiffness across strides during running on
a treadmill and, thereby, evidence of the dependence of the time series of kinematic and kinetic data at
different strides. Therefore, our paper has implications for the diffuse practice in biomechanics of assuming
that individual strides within an experimental trial are independent and identically distributed. Lacking an
understanding of stride dependence structure invalidates estimates of uncertainty of average measurements
across strides, including the variance. Variability assessments are required for both building correct
confidence intervals and valid hypothesis testing. The incorrect quantification of uncertainty might inflate
biological signals in some cases or miss it in others. We caution against the practice of blindly assuming
stride independence and recommend that researchers first test for stride independence before assuming it.
If, after testing, the strides turn out to not be independent, we recommend exploiting the correlation
structure. By contrast, retaining only one of every few strides is a suboptimal remedy because it decreases
the sample size by an order of magnitude and risks to disrupt the correlation structure of the time series
collected from the experiment. Having an incorrect estimate of the variability of biologically important
quantities such as leg stiffness or any other measurement can negatively impact the replicability of the
study. We argue that it is important not only to include measurements of uncertainty peculiar to an
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experiment in every study, but also to have a standardizedmethodology to assess uncertainty. Not only would
this facilitate replicability and comparison, but it would also foster collaboration across research groups.
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Appendix A

This appendix contains results of some additional analyses that we performed.

A.1. Stiffness trajectories at different speeds
Figure 6 below shows the different trajectories of kOLS and kmax for all the recorded stride of every subject
for the three speeds considered v = 2.5 m s−1, 3.5 m s−1and 4.5 m s−1.
kmax and v = 2.5 m s–1 kmax and v = 3.5 m s–1 kmax and v = 4.5 m s–1

kOLS and v = 4.5 m s–1kOLS and v = 3.5 m s–1kOLS and v = 2.5 m s–1
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Figure 6. Trajectories of kmax (a–c) and kOLS (d–f ) of each subject across the three speeds considered v = 2.5 m s−1 (a,d ),
3.5 m s−1 (b,e) and 4.5 m s−1 (c,f ) for all the recorded strides. The y-axes represent stiffness k and the x-axes represent the
stride number.
A.2. Deterministic trend of stiffness across strides per subject
In this section, we checked for the presence of a deterministic trend of human leg stiffness across strides
using both the methods for calculating stiffness (kOLS and kmax). The models we fitted were

ki ¼ b0 þ b1Si þ ei, i ¼ 1, . . . , 28,

with ki being kOLS and kmax and Si, i = 1,…, 28 being the stride number. In total, we had six of these
models, one for each combination of velocity (v = 2.5 m s−1, v = 3.5 m s−1 and v = 4.5 m s−1) and
stiffness k (k = kOLS and k = kmax). The level of significance was α = 0.05 and p-values were calculated
with 4 decimals of significance. In some of the subjects and for some of the conditions and

https://figshare.com/articles/dataset/A_comprehensive_public_data_set_of_running_biomechanics_and_the_effects_of_running_speed_on_lower_extremity_kinematics_and_kinetics/4543435
https://figshare.com/articles/dataset/A_comprehensive_public_data_set_of_running_biomechanics_and_the_effects_of_running_speed_on_lower_extremity_kinematics_and_kinetics/4543435
https://figshare.com/articles/dataset/A_comprehensive_public_data_set_of_running_biomechanics_and_the_effects_of_running_speed_on_lower_extremity_kinematics_and_kinetics/4543435
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measurements of stiffness, there was what appeared to be an outlier at the beginning of the stride
considered. As mentioned in the core part of this manuscript (§4.5), we decided to keep that first
observation as it was significant for our discussion, given that its presence further supports the need
to consider dependence and variability across strides.

The analysis of the deterministic trend, always modelled as linear in our models, showed some
significant results across conditions and subjects for both stiffness measurements kOLS, kmax. The
significance of this result is not that we determined that the stiffness changes across stride linearly, but
that there might be such a change, and it is risky to neglect such a relationship.
subject 1

subject 5

subject 9

subject 13

subject 17

subject 21

subject 25

subject 18

subject 14

subject 10

subject 6

subject 2

subject 22

subject 26

subject 19

subject 3

subject 7

subject 11

subject 15

subject 23

subject 27

subject 20

subject 16

subject 12

subject 8

subject 4

subject 24

subject 28

Figure 7. Deterministic trend of kOLS across strides for each of the 28 subjects at v = 2.5 m s−1.

.org/journal/rsos
R.Soc.Open

Sci.10:230597
kOLS and v = 2.5 m s−1
Table 3. The p-values produced when testing for the presence of a significant deterministic linear relationship between the
stride number and kOLS for each of the 28 subjects at v = 2.5 m s−1. (Bold indicates p < 0.05.)

subject 1 subject 2 subject 3 subject 4

0.8411 0.0041 0.3339 0.7724

subject 5 subject 6 subject 7 subject 8

0.1727 0.6668 0.1108 0.1182

subject 9 subject 10 subject 11 subject 12

0.0001 0.1243 0.7434 0.0163

subject 13 subject 14 subject 15 subject 16

0.5029 0.7842 0.0688 0.9185

subject 17 subject 18 subject 19 subject 20

0.9087 0.4223 0.9920 0.2044

subject 21 subject 22 subject 23 subject 24

0.2409 0.6083 0.7839 0.0025

subject 25 subject 26 subject 27 subject 28

0.0382 0.2333 0.1686 0.2378
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There is a significant correlation between stride S and stiffness kOLS in 5 out of 28 subjects in the case
v = 2.5m s−1 (figure 7 and table 3).
subject 1

subject 5

subject 9

subject 13

subject 17

subject 21

subject 25

subject 18

subject 14

subject 10

subject 6

subject 2

subject 22

subject 26

subject 19
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subject 11

subject 15

subject 23

subject 27

subject 20

subject 16

subject 12

subject 8

subject 4

subject 24

subject 28

Figure 8. Deterministic trend of kOLS across strides for each of the 28 subjects at v = 3.5 m s−1.
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Sci.10:230597
kOLS and v = 3.5 m s−1
Table 4. The p-values produced when testing for the presence of a significant deterministic linear relationship between the
stride number and kOLS for each of the 28 subjects at v = 3.5 m s−1. (Bold indicates p < 0.05.)

subject 1 subject 2 subject 3 subject 4

0.8348 0.0560 0.2325 0.3368

subject 5 subject 6 subject 7 subject 8

0.4128 0.2853 bf 0.0168 0.0581

subject 9 subject 10 subject 11 subject 12

0.6165 0.9244 0.9203 0.7140

subject 13 subject 14 subject 15 subject 16

<0.0001 0.2614 0.3294 0.6886

subject 17 subject 18 subject 19 subject 20

0.7568 0.7385 0.0002 0.6169

subject 21 subject 22 subject 23 subject 24

0.2495 0.4178 0.7642 0.3234

subject 25 subject 26 subject 27 subject 28

0.1185 0.2968 0.0483 0.3173
There is a significant correlation between stride S and stiffness kOLS in 4 out of 28 subjects in the case
v = 3.5 m s−1 (figure 8 and table 4).
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Figure 9. Deterministic trend of kOLS across strides for each of the 28 subjects at v = 4.5 m s−1.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230597
18

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 A

ug
us

t 2
02

3 
kOLS and v = 4.5 m s−1
Table 5. The p-values produced when testing for the presence of a significant deterministic linear relationship between the
stride number and kOLS for each of the 28 subjects at v = 4.5 m s−1. (Bold indicates p < 0.05.)

subject 1 subject 2 subject 3 subject 4

0.8411 0.0041 0.3339 0.7724

subject 5 subject 6 subject 7 subject 8

0.1727 0.6668 0.1108 0.1182

subject 9 subject 10 subject 11 subject 12

0.0001 0.1243 0.7434 0.0163

subject 13 subject 14 subject 15 subject 16

0.5029 0.7842 0.0688 0.9185

subject 17 subject 18 subject 19 subject 20

0.9087 0.4223 0.9920 0.2044

subject 21 subject 22 subject 23 subject 24

0.2409 0.6083 0.7839 0.0025

subject 25 subject 26 subject 27 subject 28

0.0382 0.2333 0.1686 0.2378
There is a significant correlation between stride S and stiffness kOLS in 5 out of 28 subjects in the case
v = 4.5 m s−1 (figure 9 and table 5).
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Figure 10. Deterministic trend of kmax across strides for each of the 28 subjects at v = 2.5 m s−1.
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kmax and v = 2.5 m s−1
Table 6. The p-values produced when testing for the presence of a significant deterministic linear relationship between the
stride number and kmax for each of the 28 subjects at v = 2.5 m s−1. (Bold indicates p < 0.05.)

subject 1 subject 2 subject 3 subject 4

0.4520 0.6103 0.0162 0.1165

subject 5 subject 6 subject 7 subject 8

0.2355 0.4618 0.9171 0.4191

subject 9 subject 10 subject 11 subject 12

0.0184 0.3564 0.4658 0.4379

subject 13 subject 14 subject 15 ssubject 16

0.6891 0.9220 0.0176 0.6669

subject 17 subject 18 subject 19 subject 20

0.2488 0.2617 0.4096 0.1655

subject 21 subject 22 subject 23 subject 24

0.1410 0.4899 0.0862 0.0083

subject 25 subject 26 subject 27 subject 28

0.8918 0.2867 0.0119 0.1215
There is a significant correlation between stride S and stiffness kmax in 5 out of 28 subjects in the case
v = 2.5 m s−1 (figure 10 and table 6).
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Figure 11. Deterministic trend of kmax across strides for each of the 28 subjects at v = 3.5 m s−1.
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kmax and v = 3.5 m s−1
Table 7. The p-values produced when testing for the presence of a significant deterministic linear relationship between the
stride number S and kmax for each of the 28 subjects at v = 3.5 m s−1. (Bold indicates p < 0.05.)

subject 1 subject 2 subject 3 subject 4

0.2106 0.0060 0.1172 0.1994

subject 5 subject 6 subject 7 subject 8

0.0829 0.2021 0.0012 0.5693

subject 9 subject 10 subject 11 subject 12

0.4309 0.6504 0.7665 0.6102

subject 13 subject 14 subject 15 subject 16

<0.0001 0.1913 0.3728 0.6726

subject 17 subject 18 subject 19 subject 20

0.8171 0.2153 0.0031 0.7889

subject 21 subject 22 subject 23 subject 24

0.5151 0.7966 0.2783 0.2989

subject 25 subject 26 subject 27 subject 28

0.1207 0.0742 0.1075 0.1732
There is a significant correlation between stride S and stiffness kmax in 4 out of 28 subjects in the case
v = 3.5 m s−1 (figure 11 and table 7).



subject 1

subject 5

subject 9

subject 13

subject 17 subject 18 subject 19 subject 20

subject 16

subject 12

subject 8

subject 4subject 3

subject 7

subject 11

subject 15subject 14

subject 10

subject 6

subject 2

subject 21 subject 22 subject 23 subject 24

subject 25 subject 26 subject 27 subject 28

Figure 12. Deterministic trend of kmax across strides for each of the 28 subjects at v = 4.5 m s−1.
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kmax and v = 4.5 m s−1
Table 8. The p-values produced when testing for the presence of a significant deterministic linear relationship between the
stride number S and kmax for each of the 28 subjects at v = 4.5 m s−1. (Bold indicates p < 0.05.)

subject 1 subject 2 subject 3 subject 4

0.0601 0.4452 0.4808 0.5843

subject 5 subject 6 subject 7 subject 8

0.7060 0.0906 0.1709 0.0005

subject 9 subject 10 subject 11 subject 12

0.1151 0.0253 0.2640 0.9275

subject 13 subject 14 subject 15 subject 16

0.0989 0.3569 0.0777 0.5435

subject 17 subject 18 subject 19 subject 20

0.2608 0.0045 0.7787 0.1241

subject 21 subject 22 subject 23 subject 24

0.2418 0.0042 0.1774 0.3052

subject 25 subject 26 subject 27 subject 28

0.2701 0.0042 0.2739 0.1942
There is a significant correlation between stride S and stiffness kmax in 5 out of 28 subjects in the case
v = 4.5 m s−1 (figure 12 and table 8).

A.3. Autocorrelation of stiffness across strides per subject
In this subsection, we computed and plotted the sample ACF r̂YðkÞ : ¼ ĝYðkÞ=ĝYð0Þ to estimate the ACF
ρY(k) : = Corr(Yt, Yt+k) for k = 1,… , 40 and both measures of stiffness (kOLS and kmax) for each subject i = 1,
… , 28 and velocity v = 2.5 m s−1, v = 3.5 m s−1 and v = 4.5 m s−1. Our main goal was to detect if the
observations kOLS and kmax, measured at different strides, are iid or not. When k starts to be only
slightly smaller than n, the estimates r̂YðkÞ, ĝYðkÞ are unreliable since there are only a few observations
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to use for the estimates. Therefore, we stopped the lag at 40, which was reasonably less than the
minimum (across subjects) number of strides observed.

Note that ρY(k) gives the full description of the covariance structure of the time seriesYt only in the stationary
case, but not in the non-stationary case. In the non-stationary case, the ACF depends on both the lag and the
position of the random variables in the time-series order [82]. We do not enter here in the full analysis of what
more can go wrong in the case in which the time series of strides are non-stationary (to keep the paper of a
reasonable length, we did not include this analysis for our data). In the non-stationary case, the iid hypothesis
can be violated also in the case in which observations are independent (and so they must be not identically
distributed). This happens, for example, for a time series Yt � N ð0, expðtÞÞ with Yt1 independent of Yt2 for
every t1≠ t2. Note that, in this case, the variance is growing exponentially in time, and so, naturally, later
observations are more dispersed than earlier observations. This needs to be taken into account for an accurate
quantification of uncertainty. Recall, that a way to understand if a time series is not stationary is by checking if
ρY(k)→ 0. Indeed, it is well known (See Proposition 2.2 [82]) that for causal ARMA processes, ρY(k)→ 0 at an
exponential rate as |k|→+∞. By Wold decomposition theorem, a purely non-deterministic Gaussian process
is an MA(∞) process with normal white noise (See Proposition 2.2 [82]). This argument tells us that a lack of
fast decay in the ACF, is a hint of non-stationarity of the process. The lack of decay to zero of the ACF implies
an even further distance from zero of the ACF. Therefore, non-stationarity implies an even stronger deviation
from the iid hypothesis [82] and so a further complication for the analysis of uncertainty. As it is depicted in
figures 13–18, the analysis of the autocorrelation function through strides for kOLS and kmax for each subject at
all velocity conditions v= 2.5 m s−1, v=3.5 m s−1 and v= 4.5 m s−1 indicates that, potentially, some of the time
series were non-stationary [82].

kOLS and v = 2.5 m s−1 The ACF of 9 out of 28 subjects does not seem to decay, indicating that the time
series might be non-stationary.
subject 1

subject 5

subject 9

subject 13

subject 17 subject 18

subject 19 subject 20

subject 16

subject 12

subject 8

subject 4subject 3

subject 7

subject 11

subject 15

subject 14

subject 10

subject 6

subject 2

subject 21 subject 22

subject 23 subject 24

subject 25 subject 26

subject 27 subject 28

Figure 13. Autocorrelation function of kOLS across strides for each of the 28 subjects at v = 2.5 m s−1. When a green vertical bar exceeding
the blue dotted line in either positive or negative directions, it indicates the presence of significant autocorrelation at that lag.



r
23

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 A

ug
us

t 2
02

3 
kOLS and v = 3.5 m s−1 The ACF of 9 out of 28 subjects does not seem to decay, indicating that the time
series might be non-stationary.
subject 1

subject 5

subject 9

subject 13

subject 17 subject 18

subject 19 subject 20

subject 16

subject 12

subject 8

subject 4subject 3

subject 7

subject 11

subject 15

subject 14

subject 10

subject 6

subject 2

subject 21 subject 22

subject 23 subject 24

subject 25 subject 26

subject 27 subject 28

Figure 14. Autocorrelation function of kOLS across strides for each of the 28 subjects at v = 3.5 m s−1. When a green vertical bar exceeding
the blue dotted line in either positive or negative directions, it indicates the presence of significant autocorrelation at that lag.

oyalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230597



r
24

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 A

ug
us

t 2
02

3 
kOLS and v = 4.5 m s−1 The ACF of 5 out of 28 subjects does not seem to decay, indicating that the time
series might be non-stationary.
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Figure 15. Autocorrelation function of kOLS across strides for each of the 28 subjects at v = 4.5 m s−1. When a green vertical bar exceeding
the blue dotted line in either positive or negative directions, it indicates the presence of significant autocorrelation at that lag.
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kmax and v = 2.5 m s−1 The ACF of 7 out of 28 subjects does not seem to decay, indicating that the time
series might be non-stationary.
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Figure 16. Autocorrelation function of kmax across strides for each of the 28 subjects at v = 2.5 m s−1. When a green vertical bar
exceeding the blue dotted line in either positive or negative directions, it indicates the presence of significant autocorrelation at that lag.
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kmax and v = 3.5 m s−1 The ACF of 9 out of 28 subjects does not seem to decay, indicating that the time
series might be non-stationary.
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Figure 17. Autocorrelation function of kmax across strides for each of the 28 subjects at v= 3.5 m s−1. When a green vertical bar
exceeding the blue dotted line in either positive or negative directions, it indicates the presence of significant autocorrelation at that lag.
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kmax and v = 4.5 m s−1 The ACF of 4 out of 28 subjects does not seem to decay, indicating that the time
series might be non-stationary.
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Figure 18. Autocorrelation function of kmax across strides for each of the 28 subjects at v = 4.5 m s−1.
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A.4. Linear mixed effect models for each velocity, separately
The tables below show the outputs of the LMEMs built for each velocity, separately. As for the LMEMs in
which both velocity and stride were included as covariates, we fitted the models using the R-package
lmer described in [79].

All models with kmax (tables 9–11) show statistically significant effect of stride, while only the
condition v = 4.5 m s−1 for kOLS (tables 12–14) shows a statistically significant dependence on stride
(see also §3.3).



Table 10. Stride has a significant fixed effect on kmax at v = 3.5 m s−1. (Bold indicates p < 0.05.)

kmax and v = 3.5 m s−1: linear mixed effects model

fixed effects estimate s.e. d.f. t-value p-value

(intercept) 16635.470 338.322 28.750 49.171 <0.0001

stride −4.589 1.380 2356.552 −3.325 0.0009

Table 11. Stride has a significant fixed effect on kmax at v = 4.5 m s−1. (Bold indicates p < 0.05.)

kmax and v = 4.5 m s−1: linear mixed effects model

fixed effects estimate s.e. d.f. t-value p-value

(intercept) 16218.903 330.554 28.402 49.066 <0.0001

stride −4.125 1.281 2226.345 −3.221 0.0013

Table 12. Stride does not have a significant fixed effect on kOLS at v = 2.5 m s−1. (Bold indicates p < 0.05.)

kOLS and v = 2.5 m s−1: linear mixed effects model

fixed effects estimate s.e. d.f. t-value p-value

(intercept) 22439.317 651.818 28.024 34.426 <0.0001

stride −1.633 2.164 2226.256 −0.754 0.451

Table 13. Stride does not have a significant fixed effect on kOLS at v = 3.5 m s−1. (Bold indicates p < 0.05.)

kOLS and v = 3.5 m s−1: linear mixed effects model

fixed effects estimate s.e. d.f. t-value p-value

(Intercept) 24304.192 545.335 28.384 44.567 <0.0001

Stride −1.429 1.988 2356.439 −0.719 0.472

Table 14. Stride has a significant fixed effect on kOLS at v = 4.5 m s−1. (Bold indicates p < 0.05.)

kOLS and v = 4.5 m s−1: linear mixed effects model

fixed effects estimate s.e. d.f. t-value p-value

(intercept) 25089.457 588.680 28.009 42.620 <0.0001

stride −3.984 1.724 2532.462 −2.311 0.0209

Table 9. Stride has a significant fixed effect on kmax at v = 2.5 m s−1. (Bold indicates p < 0.05.)

kmax and v = 2.5 m s−1: linear mixed effects model

fixed effects estimate s.e. d.f. t-value p-value

(intercept) 16218.903 330.554 28.402 49.066 <0.0001

stride −4.125 1.281 2226.345 −3.221 0.0013
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