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ABSTRACT

Advances in artificial intelligence have enabled unprecedented tech-
nical capabilities, yet making these advances useful in the real world
remains challenging. We engaged in a Research through Design
process to improve the ideation of Al products and services. We
developed a design resource capturing Al capabilities based on 40
Al features commonly used across various domains. To probe its
usefulness, we created a set of slides illustrating Al capabilities and
asked designers to ideate Al-enabled user experiences. We also in-
corporated capabilities into our own design process to brainstorm
concepts with domain experts and data scientists. Our research
revealed that designers should focus on innovations where mod-
erate Al performance creates value. We reflect on our process and
discuss research implications for creating and assessing resources
to systematically explore AI's problem-solution space.
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1 INTRODUCTION

Advances in artificial intelligence (AI) have enabled many unprece-
dented capabilities: Al systems drive cars, translate between lan-
guages, and discover new drugs. The prevalence of Al in everyday
products and services suggests that our community has a robust
Al innovation process. Interestingly, research indicates the oppo-
site. Today, more than 85% of Al innovation projects fail; they fail
to co-create value for users and services for a variety of reasons
[25, 43, 84]. Many breakdowns stem from a lack of human-centered
design; HCI is often not involved until the choice of what innova-
tion to make has already happened [50, 62, 70]. Practitioners report
repeatedly experiencing Al project failures due to working on the
wrong problem - solutions that do not address real needs [94].
Researchers point out that many Al failures can be traced back
to problem selection and formulation [68, 94]. Data science teams
often do not systematically elicit needs from domain experts (users)
and product managers. Without this input, they envision Al systems
users do not want [50, 52, 89, 94]. Practitioners in product roles (e.g.
designers, product managers) lack an understanding of what Al can
reasonably do. They envision Al concepts that cannot be built [19,
89, 91]. Teams tend to envision complex solutions and seem to miss
low hanging fruit - situations where simple Al would improve user
experience (UX) [91]. In addition, engaging domain stakeholders in
early phase Al development remains a great challenge [50, 76, 97].
In recent years, resources in the form of human-AI guidelines
and design patterns have become available [1, 2, 67]. However, prac-
titioners report that guidelines mostly help with prototyping and
refining — making the thing right [11]. What designers and product
managers most strongly lack are resources to help with ideation
and problem framing: “What are the problems that we can solve for
these users by employing AI?” [94]. Designers also reported tensions
when following a user-centered approach to create Al innovations
[86, 94, 96]. To overcome these challenges, internal resources cap-
turing Al capabilities and examples that demonstrate how Al gets
utilized in existing products and services have been created [93, 94].
While the resources seem to be useful for brainstorming and en-
visioning Al innovations, they are only internally available for a
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few, select teams, and they are limited to capabilities and examples
relevant to an individual team’s product domain.

As ateam of HCI researchers and designers, we set out to improve
the process of envisioning Al products and services. We thought
that more effective ideation would reduce the risk of producing
Al innovations that cannot be built or that do not address real
needs. We took a Research through Design approach, engaging in
an expansive design process that spanned four years. We conducted
three design experiments where the outcome of each experiment
reframed our research goals and questions:

Design Experiment 1 focused on creating a resource that cap-
tures Al capabilities and examples. We focused on capabilities re-
peatedly found in commercial products and services to keep design
ideation within a space of what is possible. We curated a collection
of 40 Al features used in many products and services across a wide
range of domains (e.g., spam filter, language translation, product re-
view analytics). Using a bottom-up process, we iteratively analyzed
this collection of examples. This resulted in a resource of 8 high-
level capabilities, 40 Al examples with many detailed capabilities,
and a grammar for describing and extending the resource with new
capabilities and examples. This experiment led us to speculate on
how the resource might impact ideation.

Design Experiment 2 focused on understanding the useful-
ness of this resource. How and when should it be considered in
the design process? What should more successful ideation and re-
lated outcomes look like? To explore these questions, we created
a set of slides documenting high-level Al capabilities and exam-
ples. We asked designers to ideate new Al features before and
after reviewing the slides. Our resource helped them to consider
more Al capabilities, but designers still generated ideas that would
be difficult to build. They mostly focused on situations that re-
quire near-perfect model performance. This experiment revealed Al
model performance as a key consideration, implying that innovators
should search for places where moderate model performance is
useful. We also observed that a user-centered approach (identifying
pain points prior to considering what Al can do) unintentionally
limited the ideation of buildable concepts and the exploration of
the problem-opportunity space.

Design Experiment 3 explored a different ideation process. De-
signers facilitated ideation with domain experts and data scientists
instead of ideating on their own. The process blended user-centered
and technology-centered approaches to simultaneously consider
both AI capabilities (what Al does well) and user needs. We con-
ducted ideation sessions exploring how Al might improve critical
care medicine practiced in the intensive care unit (ICU). We drew
from our resource a subset of Al examples where moderate model
performance produced value. We probed domain experts (i.e., physi-
cians, nurses, fellows) to identify needs that matched Al capabilities,
and we probed data scientists to understand if the concepts could
be built. This approach yielded many ideas that were both low-risk
in terms of technical feasibility and medium to high value for clini-
cians. The process seemed to provide many better ideas that could
function as the starting place of an Al innovation development
effort.
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Our paper makes four contributions:

(1) an extensible resource of Al examples, capabilities, and a
grammar for describing the capabilities and extending the
resource;

(2) discovery of model performance as a critical yet overlooked
consideration when ideating Al concepts and mapping AI’s
problem-opportunity space;

(3) an improved ideation approach for overcoming the tension
between user-centric and technology-centric innovation ap-
proaches;

(4) and a first-person case demonstrating the potential impact of
this improved brainstorming approach to generate low-risk,
high-value AI concepts.

The resources we produced — examples, capabilities, and gram-
mar - are released as open-source! for the research community
to create new design tools, methods, and exercises that support
designers in envisioning Al concepts. We discuss the implications
for future research aiming to support the ideation and problem
selection within the context of Al innovation.

2 RELATED WORK

HCI distinguishes sketching, generating many ideas for making the
right thing, and prototyping, iterative refinement for making the
thing right [11]. In the early days of technology development, many
software products failed as they did not address a real human need
[11, 14]. Human-centered design became widely adopted as it effec-
tively reduces the risk of developing technology people do not want
through sketching many different solutions. Recent work revealed
that similar to early software development, Al projects increasingly
fail due to a lack of human-centered design [84, 94]. Against this
backdrop, our work draws from research that explores sketching
methods and approaches for new technologies, and research that
investigates designing with data and Al as design materials.

2.1 Ideating with Technology

HCI employs many methods and activities for sketching, such as
brainstorming, wireframing interaction flows, and writing scenar-
ios [11]. HCI and design practitioners gain an understanding of the
capabilities and limitations of a technology as they explore novel
design spaces using these methods [71, 85]. Sketching and ideating
with new or partially understood technologies remains challenging
[11]. To ease these challenges, UX designers and researchers have
generally followed one of two approaches. First, they engage emerg-
ing technologies (e.g., internet of things [80], haptics [60], software
[66]) through design-led inquiry, including research through design
and speculative design [30]. These first-person accounts of envision-
ment typically result in design exemplars, case studies, and concepts
that illustrate the technology’s capabilities and experiential possi-
bilities to practitioners. For example, Moussette investigated the
design space of haptics through haptic sketches, a set of physical
prototypes that embodied a wide range of haptic sensations [60].
A second, complementary approach is when design researchers
develop a conceptual understanding of technology as a design mate-
rial, often through a meta-analysis of multiple design-led inquiries.

!aidesignkit.github.io.
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Here, researchers analyze the experiential attributes of technology
as it relates to interaction design, and provide abstractions of the
technology’s capabilities and experiential qualities. The result is
intermediate-level design knowledge in the form of conceptual
frameworks and abstractions that support designers in effectively
envisioning with emergent technologies [17, 38, 55, 63, 65].

2.2 Ideating with Data and Al

Data and Al are challenging materials for UX design. HCI literature
has explored AI’s design challenges, including explainability [53],
trust [46, 73], algorithmic bias that creates harm [6, 87], privacy
[18], and inference errors [36, 59]. In response, practitioner-facing
resources in the form of design patterns and guidelines have became
available to help address many of these challenges (e.g., [1, 2, 67]).
A recent study investigating how product teams use these resources
shows that guidelines mostly help with prototyping and refining -
making the thing right [11]. What designers and product managers
need now are new resources that help with ideation and problem
framing, asking “how can we discover problems where Al might offer
an effective solution?” [94].

Researchers have investigated AI's design challenges around
envisioning and ideation, mainly by conducting design-led inquiry
[4, 8, 9, 20, 54, 56, 64, 69, 78]. For example, Yang et al. [89] ideated
with NLP capabilities to generate many novel concepts for an intel-
ligent writing assistant. These first-person accounts of sketching
with data and Al provide case studies and design concepts that offer
generative lenses. Other research investigated how design practi-
tioners engage data and Al as design materials [13, 19, 90, 93, 99].
These studies show that designers find it difficult to grasp what Al
can and cannot do, and they frequently envision ideas that exceed
AT’s capabilities and cannot be built. Instead of leveraging Al ca-
pabilities that are immediately available, designers seem to often
focus on emergent Al capabilities where there might not be any
existing Al libraries, pre-built models, or labeled datasets [91].

A growing number of studies investigated the emergent industry
best practices for designing with data and AI [16, 31, 44, 79, 86, 90,
93, 94, 96]. This line of work revealed that designers who effectively
envision Al products and services work with designerly abstractions
of Al capabilities and product examples that embody a capability
(e.g., predicting user intent, as in chatbots). Some design teams cre-
ated internally available resources detailing Al capabilities and ex-
amples to scaffold brainstorming [93, 94]. These resources captured
Al capabilities as action verbs (e.g., discover, identify, create, recom-
mend) instead of technical Al terms (e.g., supervised learning, neural
networks). For example, they described an Al capability where the
system could “see” text on packaging, and “read” text to find ingre-
dients that the user might be allergic to. These abstractions and
exemplars supported designers in gaining an understanding of what
Al can do. Al capability resources also made brainstorming sessions
more accessible, allowing designers to collectively brainstorm with
data scientists, Al engineers, and domain stakeholders. Studies also
noted tensions with user-centered design and technology-centered
development (e.g., matchmaking [7]), observing emergent design
practices that blend these two approaches [91, 94, 96].

Current designer-facing Al resources developed often detail how
Al functions [24, 35, 45], or operationalize Al capabilities to enable
designers to “play with” AL for example, allowing users to build
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their own classifiers to recognize gestures [12, 23, 27, 57, 81]. Other
work focused on creating tools, processes, or datasets to facilitate
design-oriented data exploration [26, 32, 51, 64, 74]. Building on
evidence from studies of practitioners, researchers investigated ex-
tracting Al capabilities from HCI literature [88] and from patents
[41]. A recent study proposed a tangible Al capability toolkit to
support design students in learning and ideation [39]. However, it
is unclear whether these capability abstractions can support practi-
tioners or how, when, and in what form they might be integrated
into Al product development. Our work makes an advance by cap-
turing Al capabilities and examples that are commonly used in
real world products and services, and detailing how these might be
useful for designers.

3 OVERVIEW OF THE DESIGN PROCESS

We wanted to improve the ideation of Al products and services.
We wanted to overcome problems of envisioning things users do
not want and envisioning things that cannot be built. We chose
to use Research through Design (RtD), a reflective approach to
research that focuses on reframing a problematic situation through
making and critiquing [29, 72, 98]. RtD generates knowledge as
a proposal. HCI literature has a rich history of design research
proposing new methods and approaches that improve the practice
of design (e.g., [15, 28]). Similarly, we set out to advance design
practice by improving the ability of designers to engage Al - a new,
challenging design material.

Two important concepts when capturing and articulating knowl-
edge while using RtD are design experiments and drift [5, 48, 49, 100].
A design experiment includes any design move researchers make to
explore, investigate, and gain insight into their research questions.
RtD programs often involve several design experiments that repeat-
edly probe the same problem space. Design experiments often create
friction with the research question. They cause RtD researchers to
reframe, to change their perspective and ask new questions. In this
way, RtD programs drift with intention [48, 100].

Our team involved HCI researchers and designers with back-
grounds in interaction design, service design, and computer science
who had many years of experience designing human-Al interac-
tions. We set out to investigate the preferred future for envisioning
and ideating AI products and services. To explore this problem
space, we conducted three design experiments over the course of
four years. Each experiment caused drift, leading us to reframe our
research goals. Design Experiments 1 & 2 draw from prior research
that explored the experiential qualities of new technology materials
to produce abstractions and conceptual frameworks that support
ideation [63, 65]. Design Experiment 3 builds on design-led inquiry
that investigated Al as a design material to provide first-person
accounts of ideation [18, 89]. Below, we provide a brief overview
of each design experiment and a summary of findings. We unpack
each experiment in subsequent sections by detailing the research
goals, our design process, and our reflections on the insights gained.

Design Experiment 1: Can we identify Al capabilities in ways
that are useful for designers? In this section, we detail how we
created a resource capturing Al capabilities and examples. This
experiment resulted in a resource of 8 high-level capabilities, collec-
tion of 40 Al examples with granular capabilities, and a grammar
for capturing and extending this resource with new capabilities and
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examples. The experiment led us to further probe the usefulness of
the resource we collected and curated.

Design Experiment 2: Can designers use Al capability abstrac-
tions and examples to improve their ideation process? How can we
assess whether ideation is better? We detail a failed pilot study involv-
ing ideation sessions with HCI students. This experiment revealed
the importance of AI model performance, and resulted in a Task
Expertise-Al Performance matrix. The analysis of Al examples on
the matrix suggested the need to search for situations where mod-
erate performance creates value. The experiment also surfaced
tensions around the user-centered design process when designers
have predetermined that Al is the solution.

Design Experiment 3: Can designers sensitize innovation teams
to look for opportunities where moderate model performance might be
valuable? We assembled an interdisciplinary team of data scientists
and critical care clinicians, and we brainstormed AI concepts for
the intensive care unit (ICU). We found that starting with examples
of Al systems that create value with moderate model performance
helped the team generate concepts that were valuable and low-
risk. The experiment revealed that an innovation process blending
user-centered and technology-centered approaches leads to better
ideation.

4 DESIGN EXPERIMENT 1: COLLECTING AI
EXAMPLES AND CAPABILITIES

We wanted to create a collection of Al examples and capabilities to
help designers more effectively ideate Al concepts. We wanted to
create a public resource, building on successful resources used in
industry practice [93, 94]. We had three requirements:

(1) Capabilities over mechanisms. We wanted to capture
capabilities; what Al can do. This is in contrast to most AI
literature that focuses on describing mechanisms; how Al
makes an inference (e.g., deep neural networks, etc).

(2) Useful. We wanted a useful collection that could guide de-
signers and non-data scientists away from envisioning things
that cannot be built. We cared less about capturing everything
AI might possibly do. We wanted this resource to capture
what designers could reasonably ask Al to do.

(3) Extensible. We wanted the resource to be extensible. Al
keeps growing and changing, and we wanted to make it easy
to add new examples and capabilities to keep up with the
advances in technology.

4.1 Design Process

Our iterative process involved three main activities: collecting ex-
amples, drawing out and abstracting capabilities, and critiquing our
emerging resource. This process took four years and involved sev-
eral complete restarts. We kept working on this until we achieved
what felt like a stable collection of Al examples, detailed low-level
capabilities, and links showing how these lead to eight high-level
capability abstractions. As part of the process, we met with Al ex-
perts to discuss and critique our collection in order to discover gaps
and missing capabilities.

One continuous challenge was defining what counts as Al a
point the experts repeatedly raised. Prior research noted an absence
of discussion on “what Al means as it relates to HCI or UX design”

2329

Yildirim, et al.

Table 1: Our collection of 40 AI Examples across 14 domains.

Domain

Al Example

Education

Energy & Infrastructure
Finance

Governance & Policy

Healthcare

Hospitality

Human Resources

Leisure, Content & Media

Manufacturing
& Agriculture

Marketing & Sales

Office Productivity

& Business Workflow
Risk Mitigation & Security

Science

Transportation

Automated Essay Scoring
Personalized Lesson Plans

Home Energy Optimization
Predictive Maintenance

Robotic Invoice Processing
Stock Trading Recommendations
Child Welfare Risk Assessment
Infectious Disease Forecasting
Drug Discovery

Medical Imaging Analysis
Synthetic Health Data Generation
Smartwatch Workout Detection
Review Analytics

Smart Pricing

Resume Screening

HR Chatbot

Workforce Scheduling

Smart Speaker Question Answering
Media Feed

Game Player

Image Style Transfer

Mobile App Face Filter
Deepfakes

Crop Monitoring

Defect Detection

Robotic Pick and Place

AR Item Viewer

Personalized Advertisements
Web Usage Analytics

Text Generation

Spam Filter

Language Translation

Meeting Summarization
Biometric Security

Fraudulent Transaction Detection
Aerial Wildlife Monitoring
Weather Prediction

Lane Departure Prediction
Navigation Route Planner
Autonomous Parking

[91]. Unfortunately, there is no agreed upon definition of Al even
within the Al research community. While the term is broadly used,
it is also disputed and its meaning remains in flux [77]. In our
search for Al examples and capabilities, we chose not to employ
any specific definition of AL Instead, we used “artificial intelligence”
as a search term and accepted the search results we got back. We
view this as an operational definition of AI [91] that collectively
comes from people writing about and discussing Al

4.1.1 Collecting Al Examples. We first generated a small set of Al
examples by drawing on our personal experience designing human-
Al interaction. The initial set included 15 products and product
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Capability Level 1
i Action + Inference + Data

Al Example
Detect face in image
Identify face inimage
Detect face in depth map
Identify face in depth map

Biometric Security

Detect fingerprint inimage
Identify fingerprint in image

Detect voice in audio

Identify voice in audio

Level 2
Action + Inference

DIS °23, July 10-

Level 3
Action + Inference

14, 2023, Pittsburgh, PA, USA

Level 4
Action

Detect face
Detect person Detect
Identify face
Detect fingerprint
Identify fingerprint Identify person Identify

Detect voice

Identify voice

Figure 1: Al example Biometric Security has eight unique capabilities converging into high-level capabilities Detect and Identify.

features across various tech companies (e.g. Amazon Alexa, Google
Translate, etc). Our critique of this initial set raised several criteria
we used for the remainder of the project to improve our selection
of examples: granularity, generality, and breadth.

Granularity. Our initial set of examples mixed whole products,
like Amazon’s Alexa, and product features, like a spam filter found
in most email clients. Products proved to be way too complicated.
They often involved many unrelated Al capabilities as well as lots
and lots of non-Al technology. We refocused on Al-enabled fea-
tures within products and services (e.g. email spam filter, smart
speaker question answering, fraudulent transaction detection). For
the remainder of the project, when we critiqued the examples, we
focused on if the feature felt self-contained and if it matched the
level of granularity of the other examples.

Generality. Our initial set of examples included Al specific to
a single company and Al features found across companies. For
example, Alexa was specific to Amazon while spam filters could be
found in many email applications. Given our focus on supporting
ideation, we decided to focus on Al features that were not bound
to any specific company. The fact that a feature repeatedly showed
up across companies and products offered a soft guarantee that it
could be financially viable and technically achievable. We felt this
quality could increase the ideation of buildable Al concepts.

Breadth. We noticed our initial set of examples almost exclu-
sively contained consumer-facing products and services. We had
examples from mostly mobile apps and online services. We did not
have things like Defect Detection used in manufacturing nor any
business-to-business services. We realized we needed to broaden
our search beyond our personal Al experience to better capture
more of the ways Al could co-create value for different stakeholders.

We shifted our search strategy, first focusing on identifying a set
of industrial domains. We conducted online searches for industries
most impacted by AL We synthesized the various lists we found. Our
lists came from industry-focused news and media, research articles,
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and white papers. Our synthesis resulted in a list of 14 domains
(Table 1). Next, we searched for the most common Al applications
and features for each domain. From these lists, we selected two to
four examples for each domain. We then searched across all of the
examples and eliminated ones that had a large overlap. Our process
was impacted by critiques to examine granularity and generality,
and by our meetings with AI experts to find gaps. Our final list
included 40 examples related to the 14 domains. For each example,
we created a short definition, described how value was co-created
between the service and the customer, and we classified the example
as being either business-to-business or business-to-consumer [see
supplementary materials].

4.1.2  Extracting Capabilities from Al examples. We conducted a
bottom up analysis of the examples, identifying the specific capa-
bilities each required. We searched for explanations, triangulating
across various sources including research papers, business and news
articles, marketing product descriptions, and API documentation.
In deciding what should count as a capability, we made distinctions
between the inference, and the reaction an application has following
the inference. For example, email applications classify emails as
spam or not spam and then sort them into the inbox and spam folder.
We considered the classification of the email as an Al capability. We
did not include automatically sorting classified documents, viewing
this as disconnected from the Al capability. Similarly, we worked
to separate the user interface presentation of Al output (its form)
from the capability. For example, we captured that a retail service’s
recommender compares and ranks all items for sale as an Al capa-
bility. However, we viewed the choice to present these as product
recommendations as a design choice and not as an Al capability.
We searched for an appropriate form to capture capabilities
by writing terse descriptions. As we worked across examples and
critiqued our efforts, a simple grammar emerged: Action + Inference
+ Data/Entity/Metric. Each example had several capabilities captured
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i Al Example : Capability Level 1 i Level 2 i Level 3 Level 4 :
} i Action + Inference + Data / Entity / Metric i Action + Inference i Action + Inference Action !
‘ Forecast peak price of stock X .
Forecast peak point Forecast time
Forecast price of stocks R
Stock Trading Recommendations Forecast financial attribute Forecast attribute
Discover relationships between news & stock prices . .
Discover correlations Discover relationship
Discover medical anomaly in image : ) Discover
Discover visual anomaly .
Discover anomaly
Identify anomaly as tumor in image Identity vistial anrmaly
. ) — Identify anomaly
Identify malignant tumor in image
Identify class
. . . Identify tumor type in image i i
Medical Imaging Analysis Ity tu ype inimag Identify attribute
Detect medical anomaly in image Detect visual anomaly identify
. . . " Identify activity
Estimate size of tumor Identify user intent
. X . X . . . Detect anomaly
Identify driver's intent to park in vehicle telemetry Identify object
. . . . N Identify world
Identify objects in sensor stream Estimate entity size
Detect
Detect objects in sensor stream Detect object Detect world
Autonomous Parking Detect parking space in image Detect space
Estimate
Estimate size of parking space Estimate spatial size Estimate world
Generate motion path to parking space Generate motion plan CaEEeFET
Act motion path to park by minimum moves Act motion plan
P P y P Generate
Generate text
Generate next word of sentence Generate word
jlextiechelation Generate ending of sentence Generate sentence Act plan Act
Compare phrases by partial sentence fit Compare phrases Compare entities Compare

Figure 2: An excerpt of the examples and four capability levels rendered as a Sankey diagram.

Level Count Grammar Description

1 209 Action + Inference + Data/Entity/Metric Captures all of the distinct capabilities for each example.

2 120 Action + (Abstracted) Inference Captures a more abstracted inference. Clusters at this level reveal Al capabilities
disconnected from specific data. Following the links back to Level 1 reveals different kinds
of data that might provide this capability. For example, following identify face from Level 2
to Level 1 shows that either an image or a depth map can be used to identify a face.

3 44 Action + (Further Abstracted) Inference Captures a further abstracted inference. Clusters at this level reveal higher level capabilities.
Following links back to Level 2 shows different ways to achieve the higher level inference.
For example, following identify person from Level 3 to Level 2 reveals that people can be
identified by their face, voice, name, or finger print.

4 8 Action Captures the eight distinct, high-level capabilities. The size of the cluster at this level offers

an indication of how frequently this capability is used across all of the features.

Table 2: Details the four levels of the AI capabilities. See appendix for all AI examples and capabilities.
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Capability and Synonyms

Definition

Examples

Estimate
Rate, Grade, Measure, Assess

Forecast
Predict, Guess, Speculate

Compare
Rank, Order, Find Best, Find
Cheapest, Recommend

Detect
Monitor, Sense, Notice,
Classify, Discriminate

Identify
Recognize, Discern, Find,
Classify, Perceive

Discover
Extract, Notice, Organize, Cluster,
Group, Connect, Reveal

Generate
Make, Compose, Construct,
Create, Author

Act
Do, Execute, Play, Go,
Learn, Operate

Infer a value (e.g., position, size, duration, cost, impact)
related to the current situation. This is about making an
inference about now.

Infer a value that will be true or some attribute or impact of a
future situation that may or may not happen (e.g., stock price,
sales, weather, chance of something being true).

Compare a collection of like items based on a metric (e.g., a set
of social media ads based on the likelihood a user might click).
Allows services to select, rank, or curate a collection of things.

Notice if a specific kind of a thing is in a data set or if it shows

up in a sensor stream.

Notice if a specific item or class of items shows up in a set of
like items.

Analyze a dataset and notice a pattern that allows clustering
of similar things or identification of outlying entitites.

Generate something new (message, image, sound) based on
knowledge of similar things.

Execute a strategy to achieve a specific goal and continue to
update the strategy based on advance towards the goal.

Estimate driving time (navigation planner)
Estimate chances this is spam (email)
Estimate direction sound came from (smart speaker)

Forecast best time to buy stock (financial planner)
Forecast tomorrow's weather (weather app)
Forecast max price for my house (real estate app)

Compare items by likelihood of purchase (online store)
Compare posts by likely engagement (social media)
Compare movies by likelihood of watching (media)

Detect human voice in audio (smart speaker)
Detect face inimage (camera)
Detect step in motion sensor stream (smartwatch)

Identify if message is spam (email)
Identify if Steve's face (security)
Identify the type of cancer (medical imaging)

Discover how people use this site (usage mining)
Discover unusual bank transactions (fraud detection)
Discover person's routine (energy optimization)

Generate chat response (chat agent)
Generate detail inimage (photo retouching)
Generate synthetic medical records (medical data)

Act: Park the car (autonomous parking)
Act: Play poker (gambling agent)
Act: Fly drone to location (drone pilot)

Table 3: Eight high-level AI capabilities with synonyms, definitions, and examples.

in this terse structure. For example, Biometric Security lets users
unlock things with their face. The example has the capability to
Detect (action) + a face (inference) + in an image (data). Detecting
things (e.g., is there a person or an object in this image?) is different
from Identifying things (e.g., is this Jane’s face?). Each individual
capability captured a distinct inference or data type (e.g. face in
image, face in depth map, voice in audio) (Figure 1).

We worked on two additional tasks in parallel to our efforts to
capture a precise set of capabilities: 1) We developed consistent
terms for everything labeled as an Action, Inference, or Data /En-
tity/Metric; 2) We worked to move up to higher levels of abstraction
from the terse, detailed description of the capabilities. We tried
many different verbs to describe the actions, many different terms
to describe the inference, and many terms to describe the data,
entity (the subject of an inference), and the metric. For example,
the capability Estimate size of tumor has an entity (tumor) that is
the subject of the inference (size). Through an interactive process,
we consolidated these into a non-overlapping set. This resulted in
8 high-level Actions (Level 4) and 17 inference clusters (Level 3).
See appendix for a table of Al examples and capabilities.

We were inspired by scientific work on taxonomies. We felt hav-
ing a similar hierarchy for the Al capabilities would make them
more understandable and useful. We tried various ways of visu-
alizing the connections between the AI examples, the first level
of the AI capabilities, and the higher level capabilities, eventually
settling on a Sankey diagram. This made it easy to see clusters
forming at different levels. For instance, Identifying a face (Level 2)
is ultimately about identifying a person (Level 3). A person can be
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identified by their face in an image, or by their name in text, or by
their voice in audio. All these low-level inferences would abstract
to “person” (Figure 1).

Table 2 provides a description of the different levels. Figure 2
provides an excerpt of the Al example-capability relationships ren-
dered as a Sankey diagram. A complete Sankey diagram can be
found in supplementary materials along with definitions for all of
the Actions, Inferences, and Data/Entity/Metrics. A description of
the eight high-level capabilities can be found in Table 3.

4.2 Reflection

Our design experiment produced several artifacts that collectively
provide a resource of Al examples and capabilities. These are cap-
tured in the following documents (see supplementary materials):

(1) A detailed list of all Al examples documenting the example
description, service type (B2B or B2C), how they co-create
value for customers and services,

(2) Detailed definitions of all the Actions, Inferences, Data types,
Entities, and Metrics. These definitions make it easier to add
new Al examples and to recognize when new examples will
require the creation of new Al capabilities,

(3) A Sankey diagram that visualizes how the features connect
to specific Al capabilities and how the capabilities abstract
across four levels.

(4) A Github repository hosting the resource files along with a
dedicated project website?.

2aidesignkit.github.io.
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Figure 3: Slides meant to communicate Al capabilities and examples to help designers ideate.

We viewed our resource of examples and capabilities as a stable
initial version that offered good enough coverage of what Al can
reasonably be expected to do. We felt the collective content we
produced could aid non-data scientists in understanding AI capa-
bilities, in ideating new product/service concepts that leverage Al
capabilities, and in collaborating with data scientists. Developing
this resource surfaced many new research questions. What com-
municative forms might make these examples and capabilities useful
and actionable in support of ideation? How could we integrate this
resource in a design process? How does access to this resource impact
ideation? How can we assess the impact on ideation? Our reflection
set us up for a new design experiment to explore these challenges.

5 DESIGN EXPERIMENT 2: MAKING THE
CAPABILITIES AND EXAMPLES USEFUL

We wanted to explore if our collection of Al examples and capabil-
ities might help designers when they ideate. Would it help them
envision concepts that were buildable and valuable? Our design
process included three main activities:

(1) New Forms. We developed new forms to make the resource
useful for ideation.

(2) Assessing Impact. We conducted an informal assessment
to gain insight on how access to the resource transformed
ideation. This forced us to consider how to assess the quality
of the concepts created during ideation.

(3) Reflection. We reflected on why ideation with the sup-
port of our resource did not change ideation in the way we
expected. It did not produce more buildable ideas. This re-
framed the problem, and it offered insights on what makes
some concepts easier or more difficult to build.

5.1 Exploring communicative forms

Our resource of examples and capabilities provided a hierarchical,
extensible structure. However, the collection of artifacts making up
this resource seemed too abstract and overwhelming to effectively
sensitize designers to Al capabilities. To jump start the process of
exploring different forms, we first created a one-page table (Table
3). This functioned as a sort of cheat sheet for thinking about new
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forms. The table holds a listing of the eight high-level capabili-
ties along with synonyms commonly used. They are organized in
subgroups, using color to visually group similar capabilities. For ex-
ample, Detect and Identify both address how Al can classify things.
Next, the table holds a brief, high-level definition that describes the
types of inferences this capability might make. Finally, it holds a
small set of examples, illustrating common forms this capability
takes in current products and services.

Next, we sketched various communicative forms. We explored
making a deck of capability cards, an interactive website where
visitors could explore the connections between capabilities and
examples, mood boards, high-level capability posters, and slides.
Based on recent research that documented practitioner-created Al
design resources in the form of playbooks and slide decks [94],
we decided to focus on slides. Our set of slides included capability
definitions (Table 3) and each high-level capability as a slide within
a 10-page slide deck (see Figure 3 and supplementary materials).

5.2 Assessing the Impact on Ideation

We discussed what it meant to improve ideation, and different ways
of measuring the impact of the Al capability slides. We focused
on the general idea of envisioning “better” Al concepts. As the
discussions progressed, three specific criteria emerged:

o Breadth. Researchers noted that designers learning to work
with Al often had a very limited range of ideas. Many seemed
to consider only familiar applications, such as chatbots or
recommenders [90]. More effective ideation produces a di-
verse range of alternatives and solutions [11, 22]. We wanted
to assess if access to the slides helped designers envision
concepts that drew upon more of the capabilities.

o Effort. Designers tend to envision Al concepts that cannot
be built, and they fail to notice situations where simple, low-
risk inferences co-create value for customers and service
providers [19, 91]. We wanted to assess how much effort
would be needed to create the envisioned Al concepts. While
our example and capability resource did not capture any
information about development effort, we felt our choice to
limit examples to things that had been commercially viable
could guide designers towards more buildable ideas.
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e Impact. One of the main reasons Al initiatives fail is that
they do not generate enough value for the service provider;
they do not generate more revenue than it costs to develop
and deploy [25, 43, 84]. Similarly, Al initiatives also fail when
they do not generate enough value for users, and users do
not accept and use the technology as intended [84, 94]. We
wanted to assess the impact of an envisioned concept. How
much value might it co-create?

We designed a within-subjects study to assess the impact of the
slides on ideation. We asked designers to first ideate solutions to a
design challenge without the slides. Next, they ideated solutions to a
different design challenge with the slides. We chose within-subjects
over between-subjects for two reasons. First, prior literature eval-
uating design resources with between-subjects studies noted that
it is challenging to control the variance between experiment and
control groups [21]. Second, we wanted the designers to compare
and reflect on their experiences after brainstorming. One limitation
of the within-subjects approach is the session order: we could not
switch the order of the conditions. Once designers had seen the
slides with the capabilities, they would not be able to forget this
when ideating without the slides.

We created two similar design briefs: designing Al-enabled inter-
actions for a ride hailing service and for a vacation rental service.
We chose to focus on designing for predefined services — as op-
posed to imagining new service concepts from scratch — as it more
closely resembled the majority of day-to-day design practice. We
selected the services based on people’s familiarity with them as
users. We did not want to select a service that would require ad-
ditional domain expertise, such as healthcare. We created a single
slide for each brief that detailed the available data that could drive
the potential Al-enabled features. It also listed a set of pain points,
something that typically drives a human-centered design process.

We conducted a literature review to gain insights into the needs
and pain points. We looked at the needs of drivers and riders (ride
sharing) as well as the needs of hosts and travelers (vacation rental).
We prepared personas and user journey maps for each design brief,
detailing current experience (e.g., before, during, and after a ride)
[see supplementary materials]. We created a Figma workspace,
displaying the design brief, persona, and the user journey as well
as sticky notes for ideation.

Before running a full study with professional designers, we first
conducted a pilot with 10 HCI students. We conducted 2-hour
ideation sessions consisting of a brief study introduction, two con-
secutive ideation sessions, and a post study interview. Participants
were asked to generate as many ideas as they could for each phase
of the user journey (20 min), and select and refine five concepts (10
min). Next, a member of the research team introduced the slides and
the next brief for participants to ideate using slides. After this ses-
sion, we interviewed participants about their experience, probing
on whether they felt the slides impacted their ideation.

We analyzed the interviews, our observation notes, and the AI
concepts pilot participants generated using affinity diagramming.
We specifically looked at breadth and quality (impact and effort). To
assess breadth, we compared the capabilities in the concepts during
the first and second sessions. To assess quality, we created impact-
effort matrices [33], a standard prioritization tool commonly used
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in innovation [93]. We looked at the five concepts delivered at the
end of each session, and rated how difficult they would be to make
(effort) and how much value they might co-create (impact). We paid
attention to the availability and reliability of data, and how easy it
would be to produce good enough inferences. We considered the
relevance and usefulness of the Al for the user. We then worked to
agree on where a concept should go on the matrix.

5.3 Pilot Findings

Access to the slides seemed to increase the breadth of Al capabilities
incorporated into the concepts participants generated. Their inter-
views echoed this finding. Almost all shared that the slides helped
them come up with a larger variety of ideas. Several participants
shared that the structure (i.e. action + inference) helped them to
both generate and communicate concepts. Most found the detailed
capabilities (Level 1) the most useful.

Surprisingly, we saw no real difference in the quality of concepts
between the two sessions. Almost none of the concepts were easily
buildable. The impact-effort matrices showed mostly high effort-
low impact ideas: things that are difficult or impossible to build
with unclear value co-creation. Interestingly, participants who had
the most experience with Al were more able to ideate low effort-
medium impact concepts for both sessions.

We noticed that most concepts were created without an aware-
ness of whether the data needed was available. Concepts also gen-
erally focused on difficult problems, situations where Al would not
likely perform well, and near-perfect performance was needed for
an Al system to be valuable. Interestingly, two participants shared
that the examples in the slides sensitized them to consider situations
where Al would still be useful with moderate model performance.
They noted that Al could make things faster with moderate perfor-
mance and still create value. We found this observation interesting.

We observed that a human-centered design approach — the in-
clusion of the design brief, persona, and journey map — seemed
to conflict with effective Al ideation. Most participants gave their
greatest attention to user needs and spent less time considering
what Al can do and do well. For example, several participants
came up with the idea of predicting rider or traveler reliability (i.e.,
whether they will cancel) based on historical data. This pain point
captured in the user journey would not be easily addressed with an
Al prediction. It has too much uncertainty. The human-centered
materials seemed to push participants to think of Al as magic and
to ignore the value it might generate for users that was not specifi-
cally documented in the materials. Similar to recent literature that
reported tensions between user-centered design (UCD) and Al de-
velopment process [94, 96], some participants reflected that the
ideation process felt different compared to UCD as they had to
consider both Al capabilities and human needs.

5.4 Reflection

This design experiment exemplifies Krogh et al’s claim that RtD
is often about drifting with intention, the idea that experiments
often challenge and change research questions more than they
answer them [48]. On the surface, our pilot study failed. We did not
get designers to generate more buildable AI concepts. However, it
revealed the importance of AI model performance and the tensions
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Figure 4: The Task Expertise-Al Performance matrix analysis of 40 AI examples.

between UCD and Al ideation as two unarticulated challenges that
we need to overcome. Prior work investigating the challenge of
engaging with Al as a design material noted that designers struggle
to understand Al capabilities [19], and that they seem to focus on
situations where there is both great uncertainty around a capability
and great complexity in the output of an Al system [91]. Our design
experiment managed to get a bit more below the surface of this
problematic situation.

5.4.1 Al Model Performance. Our discussions about the pilot led
us to an interesting metaphor used by Google for training product
teams on how to search for Al use cases [47]. Their internal course
asks teams to think of “Al is an island of drunk people”. Al can do
things quickly and handle an inhuman quantity of information, be-
cause there are a lot of people. But drunk people can make mistakes,
so teams should not expect a lot of intelligence. This motivated us
to go back and re-examine the examples in our resource.

We noticed that many Al examples did not have excellent model
performance, but they were still valuable to users and service
providers. For instance, Smart Speaker Question Answering cap-
tured that Al can detect human speech and convert the speech
into words. But it did not capture that the generated transcript has
errors. Automatic speech recognition has typically about 90-95%
accuracy [3], so around one word per sentence will be incorrect.
However, this was good enough to find an answer the user wanted
from a corpus of pre-written answers [61]. Applications such as
voicemail transcripts or video captions provided other examples
where moderate model performance is good enough. These are
situations where there is currently no person performing the task,
so a moderate quality transcript is better than no transcript. We
realized that our resource did not capture how well the Al system
needs to perform for co-creation of value.

We revisited each Al example. We decided that in addition to
capturing the model performance, we also wanted to capture the hu-
man expertise required for the task. Through discussion, we broke
each of these dimensions into three bins. For model performance,
we chose to categorize examples as excellent (e.g., above 99% ac-
curacy), good (e.g., 90-99% accuracy), or moderate (e.g., below 90%
accuracy). In creating these bins our focus was not on capturing the
maximum quality an Al system might produce, nor on the technical
assessment of performance using certain metrics (e.g., precision,
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recall, F1 scores, etc). Instead, we captured performance from a UX
perspective to understand “the minimum quality needed for users
to experience Al as useful” [61]. What is the minimum amount of
accuracy or performance needed for this to be acceptable? Similarly,
we captured how much expertise each task would require for peo-
ple to perform. Based on the drunk island metaphor, we ignored
issues of speed and scale. We discussed if the task required more
expertise than a typical adult (e.g., diagnosing cancer); expertise of
a typical adult (e.g., parking a car); or less expertise than a typical
adult, meaning a child could complete the task (e.g., recognizing the
exercise someone was doing). We added task expertise and model
performance to our description of each example.

To gain new insight on our resource, we developed the Task
Expertise-Al Performance matrix (Figure 4). We thought of this as
AT’s opportunity space. When ideating, do designers come up with
ideas that cover the entire space, or do they largely focus on envi-
sioning things that are difficult tasks and need near-perfect model
performance? The vertical axis represents the level of expertise, not
counting issues of speed and scale. The horizontal axis represents
how well the Al system must perform in order to co-create value.
The upper left region holds Al applications such as Language Trans-
lation. These are tasks that require people to have high expertise,
and moderate quality output has proven useful (while highly con-
text dependent, often better than nothing). The upper right holds
examples such as detecting cancer in a medical image. This requires
a highly trained professional, and the performance must be excel-
lent for Al systems to be useful. The lower right holds examples
such as Biometric Security. This is fairly easy for people (match a
person’s face to their driver’s license photo), and the model per-
formance must be high for things like unlocking someone’s phone.
The lower left holds examples like smartwatch step counters. A
child could count someone’s steps (if they could maintain their
attention). The quality only needs to be good enough to compare
days. It does not need to be accurate to the individual step.

When we viewed all forty of our Al examples as a heat map,
it revealed that only a few examples were in the upper right cor-
ner (Expertise-High/Performance-Excellent). Most examples (25
out of 40) appeared on the left side (Performance-Moderate). This
suggested we needed a new approach to brainstorming, one that
encourages people to envision situations where moderate model
performance creates value.
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5.4.2  Tension between Al ldeation and Human-Centered Design.
Reflecting on the struggles people had in ideating Al concepts, we
realized that user-centered design brainstorming does not work well
when the solution must utilize Al Needs uncovered in user research
most often point to issues where Al will not help. In addition, this
approach does not privilege what Al can do or what it does well.
We considered matchmaking [7], a technology-centered innovation
approach that starts with a technical capability and systematically
searches for the best customer across many domains. However,
work on Al innovation almost always focuses on a single domain,
as the dataset that is available points to a specific set of users and
contextual issues. This pre-selection of users and contexts seemed
to conflict with matchmaking.

What we needed was a new innovation approach, one that blends
user-centered design and matchmaking. Recent studies report that
this hybrid process blending user-centric and tech-centric innova-
tion is already emergent in industry best practices [86, 94, 96]. We
began to rethink the role of design in this innovation process. We
drew insight from research showing communication breakdowns
between data scientists, domain experts and product managers
[62, 70]. Instead of asking designers to envision Al concepts in
isolation, we considered designers as experts in ideation who could
“facilitate ideation between data scientists and domain experts” [93].
We wondered if priming teams with examples of Al capabilities
where moderate performance creates value would lead to better
concepts, low-risk yet high-value opportunities.

6 DESIGN EXPERIMENT 3: BLENDING UCD &
MATCHMAKING

We wanted to improve the process of brainstorming Al concepts.
We had three questions to investigate:

(1) How can ideation blend UCD and matchmaking?

(2) Can designers effectively scaffold data scientists and domain
experts in brainstorming, in generating ideas that broadly
cover the problem-opportunity space?

(3) Does priming ideation with examples of moderate model
performance help to generate concepts that are lower-risk
in terms of technical feasibility yet still high-value?
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6.1 Design Process

We had an ongoing collaboration with a team of clinicians and data
scientists to improve critical care medicine in the intensive care unit
(ICU). The team had access to a rich dataset collected across 39 ICUs
from 18 hospitals. The project goal was to broadly explore research
opportunities for analytics and Al to improve critical care practice.
Prior to the project, none of the clinical nor data science team
members used formal, structured ideation methods nor engaged in
human-centered design. In this section, we provide a brief overview
of the team, research procedure and activities, and data analysis.

Our research team (n=22) consisted of 6 data scientists, 10 health-
care professionals, and 6 HCI and design experts. The data science
team members had backgrounds in data analytics, healthcare analyt-
ics, and Al research. The healthcare members all had experience in
critical care medicine and included 4 attending physicians, 2 fellows,
2 nurses, and 2 non-clinical healthcare experts. The HCI/design
members had backgrounds in interaction design, service design,
human-Al interaction, and data visualization.

We conducted two ideation workshops to generate Al concepts.
A major challenge for Al innovation in healthcare is ensuring clini-
cian acceptance [40, 92, 95]. Thus, our goal was to produce ideas
that are feasible and clinically relevant. Each workshop had 15-17
participants involving at least one participant from each role (i.e.
physician, nurse, healthcare expert, data scientist, HCI researcher,
designer). Workshops were conducted in-person. The HCI/design
team facilitated and participated in the brainstorming.

Workshop 1. We followed a traditional, user-centered approach
to provide a baseline for measuring the impact of our modified
approach. The workshop consisted of introductions (10 min), two
rounds of ideation sessions (30 min each), concept assessment (40
min), and debriefing (10 min). Ideation ran parallel in two groups,
where groups swapped stations at the end of the first round to build
on each others’ ideas. Team members first ideated individually,
then shared their ideas and brainstormed as a group. We probed
clinicians to draw on their lived experiences to recall pain points
and envision potential Al-enabled solutions. Data science team
members expanded on whether training data existed and if the
concept could be built. Following ideation, we collectively assessed
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of workshop 1 and 2 (c).

and reflected on the concepts, mapping them on an impact-effort
matrix [34].

Workshop 2. The second workshop started with a slide
overview of Al examples and capabilities generated from our re-
source. We adapted the capability language to be less precise and
more familiar. None of the examples were medical, and most in-
volved situations where moderate model performance co-creates
value. The capabilities included observe and surface information
(contextual web search); classify things (email spam filter); listen
and type (real-time meeting transcription); read text (text message
entity recognition); predict text (email sentence completion); clus-
ter similarities (online shopping recommender system); discover
patterns (smartwatch activity trends). We created a slide for each
capability (see Figure 5 and supplementary materials), presenting
the slides and also hanging them on the wall.

We conducted two rounds of ideation. As we ideated, we asked
clinicians if they could think of situations where a capability might
be useful. Data science team members elaborated on what might
be feasible. We pushed back on concepts that required near-perfect
model performance, probing for situations where moderate model
performance would still be valuable. After the second round of
ideation, we collectively assessed the concepts and held a debriefing.

We recorded and transcribed both workshops (three hours of
recordings per workshop with ideation sessions running in par-
allel, six hours in total). We documented the artifacts produced
during the workshops, including ideation outcomes and impact-
effort matrices from the assessment activities. We also conducted a
post-workshop analysis using the Task Expertise-Al Performance
matrix. We analyzed the workshop transcripts and outcomes using
affinity diagramming [34] to identify key themes and gain insights
into how the design activities impacted the workshop outcomes.

6.2 Findings

Both workshops were successful in facilitating ideation. All team
members reported that they felt engaged and that they brain-
stormed successfully. However, there was a contrast between the
workshop outcomes. Figure 6 shows the assessment of the concepts
produced in each workshop.
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Workshop 1, where we followed a traditional brainstorming
approach, produced almost no concepts that were low-effort. Many
ideas were actually high effort-low impact, only about half seemed
relevant and useful for critical care medicine (Figure 6a). Overall,
the ideation lacked breadth. A majority of ideas focused on improv-
ing clinical decision making, particularly around trust, feedback,
and explainability (e.g., Al can take feedback on why it is wrong; rec-
ommendation rationale should be clear). The second largest theme
was around automated documentation (e.g., automatically generate
notes from clinical conversations; autofill or autocomplete notes and
orders; learn and document only what is most important). Ideas often
captured desired behaviors for existing Al systems (e.g., recom-
mendation is not intrusive; recommendation comes when ICU team
is together) or current pain points (e.g., placing orders is a burden;
I want to eliminate and delegate tasks). Few ideas described new
Al-enabled interactions (e.g., predict sedation dose for ventilated
patients; foresee areas of tension between clinicians; personal analyt-
ics for clinicians for self-reflection; recommend how to better adjust
workload).

Interestingly, on the Task Expertise-AI Performance matrix, most
ideas mapped to the upper right corner. Our ideas often required
near-perfect Al performance to be useful and focused on situations
with high uncertainty where the task is difficult even for highly
trained experts (Figure 6¢). For instance, one concept was about
using deep learning to help discover the right amount of sedation
for a patient on a ventilator. Too little sedation and the patient
suffers from pain and anxiety, which inhibits healing. Too much
sedation and patients run the risk of delirium, which can cause last-
ing psychological harm. This is a hard problem that needs excellent
model performance, and it requires very high quality healthcare
data, which may not exist.

Workshop 2 produced concepts that fell across the top of the
impact-effort matrix, we were able to identify high impact-low ef-
fort ideas (Figure 6b). Ideas also mapped to a broader set of themes.
Examples include Al systems that would improve coordination be-
tween clinicians (e.g., generate a schedule for nurses and respiratory
therapists for extubation); systems that improved logistics and re-
source allocation (e.g., predict which medications would be needed
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based on current patients and pre-order from pharmacy); systems
that inferred workload and effort, possibly in support of dynamic
staffing (e.g., classify patients as busy or non-busy); systems that
better support attention management (e.g., classify patients based
on uncertainty); systems that anticipate and surface needed infor-
mation (e.g., learn relevant information based on patient conditions).
Ideas seemed to follow the capability descriptions in the examples
(i.e. action + inference), which resulted in way fewer non-Al ideas.

Reviewing Al capabilities and examples prior to ideation seemed
to have a great impact on healthcare members. Throughout our
ideation process, they repeatedly recognized situations where a
capability could be useful, and then effectively transferred that ca-
pability to a healthcare opportunity. Our team quickly adopted this
example-based approach and started drawing from other familiar
examples. For instance, a physician brought up Amazon’s anticipa-
tory shipping that pre-ships and stocks items when there is a high
chance that customers will soon order them [75]. Clinicians shared
that there are situations where it takes hours for medications to ar-
rive from the pharmacy, especially in busier wards. They discussed
how patient records could be used to predict which medications
would likely be needed the following day. This is a relatively low
risk idea as the worst outcome from an inference error would be
that the clinicians would need to order medicine from the pharmacy
- so never worse than the current state.

Overall, considering examples where an imperfect, moderate
performance model could create value broadened our ideation: the
Task Expertise-Al Performance matrix showed a better coverage of
the larger problem-opportunity space (Figure 6c).

6.3 Reflection

Design Experiment 3 confirmed our hunch that a user-centered
mindset was a hindrance for envisioning Al concepts. We were
trying to address user needs that did not need to be addressed with
Al Similar to the Al-centric fallacy that views all problems as nails
that can be solved with the Al hammer, we were trying to fix screws
with a hammer.

Taking a complementary approach, reviewing Al capabilities
and examples to probe domain experts where these could be useful,
seemed to work better. Our ideation process produced low risk-high
value ideas. We moved away from focusing on high-risk situations,
such as clinical decision making, and identified many low risk situ-
ations where moderate performance Al could support clinical tasks.
These tasks were often not difficult. They were simply too tedious
in terms of volume and with respect to the need for speed in the
work (e.g. looking at all the patients and pre-order from the pharmacy;
predicting cases where there might be a deviation from the standard
of care). This is a fruitful place for human-Al complementarity,
marking a clear space for the design innovation of AL

Overall, our modified approach provided a glimpse into what
successful ideation might look like. Workshop debrief sessions and
reflections echoed this as well. Team members expressed that the
exercise was useful to inform the research agenda: “There is a lot of
inertia towards high risk-high reward projects or low risk-low reward
areas that doesn’t move the needle in a meaningful way. ... The
exercise was really valuable to identify ideas that are worth doing, as
every research portfolio should have some of these in a balanced way.”
(Physician)
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7 DISCUSSION

Researchers noted a gap in Al innovation: Al products fail when
they fail to address a real user need or generate enough value for
the service provider to offset development and operational costs
[94]. Practitioners report Al project failures due to selecting and
working on the wrong problem. Current resources, such as human-
Al guidelines, provide little support for discovering and selecting
problems where AI might be an optimal solution [94]. We set out
to close this gap by improving the ideation process of Al products,
product features, and services.

Our work builds on prior observations showing that experienced
innovation teams created internal resources curating Al capabilities
and examples to scaffold ideation [90, 93, 94]. We engaged in a re-
flective design process to develop a design resource that delineates
what Al can do through an analysis of Al-enabled features com-
monly found in the real world. We conducted design experiments
to inform our understanding of how, when, and in what form this
resource might be used in the design process for effective ideation.

Below, we discuss how this resource addresses the challenges of
ideation, and how it might be improved and extended. We reflect
on the implications of this case for (1) developing design resources
to close the Al innovation gap, (2) mapping Al’s design space, and
(3) exploring new innovation processes for Al

7.1 Implications for Design Resources

Prior work suggested that Al capability abstractions and examples
might support envisioning [90, 93, 94], yet little work explored
how, when, and in what form these might be useful. Our work
advances these efforts; having distinct capabilities and examples
proved useful both in design experiment 2 and 3. In this section, we
discuss how future research can operationalize, extend, and mine
this resource to further its usefulness.

7.1.1  Developing Alternative Forms and Resources. We operational-
ized our resource as slides, one version that focused on more ab-
stract capabilities (experiment 2) and one on more specific capa-
bilities encapsulated in an example (experiment 3). We see several
opportunities for mining from this resource to generate alternative
forms and presentations (e.g. worksheets, flash cards, interactive
visualizations, etc). Future forms could capitalize on the rich set
of information encoded, including the multiple levels of abstrac-
tion (i.e., Levels 1-4), data types, domains, value co-creation, model
performance, etc. Below, we outline a few directions for develop-
ing forms to enable designers and innovators to browse, filter, and
scrutinize Al capabilities for the design task at hand:

(1) Exploring target inferences across levels of abstrac-
tion: Designers working on an IoT enabled smart home
system could ask “What are all the different ways to notice
if someone is at home?” Following detect person (high-level,
abstracted inference) from Level 3 to Level 2 reveals that
people can be detected by their voice, touch, motion, face,
hand, and body (low-level inference).

(2) Exploring capabilities related to specific data types:
Taking a data-driven design approach, designers working on
a customer support application could investigate how they
could make call transcripts more useful to both customers
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and support staff. They might browse capabilities and in-
ferences related to text data (e.g. identify sentiment; identify
product; identify user query; generate response to user query;
generate text summary).

(3) Exploring examples related to domains: Designers may
search through examples within specific domains to gain a
sense of what capabilities, inferences and data types have
been previously used, and what seem underutilized.

(4) Exploring examples related to value co-creation: De-
signers may use different ways AI could create value for
customers and service providers as lenses for perspective
taking (e.g. saving time, accelerating tasks, automating tedious
work, reducing cognitive load, etc).

7.1.2  Extending Examples. It is a challenging task to document Al
capabilities, as Al technologies advance rapidly. Our goal was not
capturing everything Al can do, instead we set out to provide a good
enough coverage to begin the process of sensitizing designers to
what Al can do. For this reason, we view this resource as version 1.0
- a snapshot of Al capabilities that are commonly found in current
products and services and that are immediately available. We intend
this resource to be an open source, living resource that is stable
enough for researchers to extend it. Could adding new examples
expand the set of eight high-level capabilities? What additional
data types and inferences should be captured in existing examples?
For instance, recent developments in generative Al and its more
general abilities opens the door for many new capabilities that seem
just around the corner. Future research should extend, critique, and
refine the framework and corpus of examples.

7.1.3  Capturing Additional Dimensions. Initially, our focus was on
capturing capabilities in each example, along with value co-creation
and domain information. Discovering that capabilities alone were
not enough without the consideration of model performance led us
to capture and encode this emergent dimension for each example.
Building on the broader human-AI interaction literature, we
outline a few missing dimensions that we intend to capture in our
future work. First, our resource does not detail the relative difficulty
or cost of development or maintenance. For example, generating
the next word a user might type is typically easier than generating
the remaining half of a sentence or a paragraph. Similarly, it does
not detail the sequence or interrelationships between capabilities.
For instance, forecasting demand is necessary to forecast the price
of a home listing (Smart Pricing). Future work should explore how
to encode the feasibility of a capability, a key consideration in
assessing and prioritizing early phase design concepts [93].
Second, our resource captures Al's capabilities, yet misses its
limitations. There is an ongoing extensive discussion on identifying,
anticipating, and mitigating AI's potential harm across HCI, FAccT
and Al research communities. All the examples and capabilities
in our collection have risks associated around fairness, bias, and
errors: Biometric Security applications entail disparities in race and
gender [10], Deepfakes enable the spread of misinformation and
harmful content [42]. How might innovation teams systematically
and broadly explore potential harm during early phase AI design
and development? Recent work proposed creating an “Al Incident
Database” by cataloging real world Al failures [58]. This marks a
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clear space for future research to improve Al capability resources
to encode both capabilities and limitations.

7.2 Mapping AI’s Design Space

Prior literature deliberated on what makes Al a particularly difficult
design material to work with [91]. In this work, we contribute the
discovery of model performance as a key consideration in interplay
with task expertise. Throughout our design process, we found our-
selves asking “how well does this Al concept need to perform to be
useful?”, which led us to create the task expertise-Al performance
matrix. The matrix provides a novel and actionable perspective for
describing and navigating Al's problem-opportunity space. Our
initial ideas were mostly difficult to build: we were searching places
that required a lot of human intelligence and expertise, and near-
perfect Al performance to be useful (e.g. decision support systems).
Interestingly, the heat map of 40 Al examples indicates that this
might not be the richest search space. The majority of Al applica-
tions in the real world seem to have moderate model performance;
these are situations where Al systems can still provide enough value
with imperfect results. For instance, video captions and voicemail
transcriptions are helpful for people to quickly skim information,
even when one word out of ten will be incorrect.

This understanding provides a valuable lens for generating and
assessing Al design concepts. There is a larger design space for
leveraging Al capabilities; it suggests that innovators should look
for places for making moderate performance Al systems useful
to find opportunities for innovation. Does intentionally searching
for moderate AI performance lower the risk of coming up with
infeasible and/or low-value ideas? How can we sensitize designers
and innovators to this search space, beyond sharing examples and
metaphors like “the drunk island” [47]? Future research should
investigate this proposed mapping of AI's design space to provide
new insights into effective ideation and problem selection in early
phase Al product development.

7.3 Exploring New Innovation Processes for Al

Al as a design material requires new design processes beyond user-
centered design [88, 94, 96]. Insights we gained from our design
process echo this. We felt imitations when following user-centered
approaches for ideation: the pain points we considered were often
situations where Al is not the optimal solution. We suspect that
asking domain experts what would be most valuable has uninten-
tionally led our team to focus on points of great uncertainty or edge
cases where Al is not likely to work. Our modified process, start-
ing with Al capabilities and examples, and asking domain experts
to recognize situations where these would be useful, led to more
effective ideation. It blended the strengths of user-centered and
technology-centered innovation processes. It was user-centered
in that we drew from clinicians’ lived experiences when probing
what is useful. It was technology-centered, as in matchmaking [7],
we started with a review of technical capabilities and had the data
science team lean in on what is doable.

We propose that this modified design process is better — it is more
likely to result in a broad coverage of the problem-opportunity
space. This marks a clear space for future HCI and design research:



Creating Design Resources to Scaffold the Ideation of Al Concepts

How might we create design processes that account for Al capa-
bilities and limitations as well as human needs? What roles can
designers and domain experts play in the early phase Al design and
development? Al products fail when they fail to account for human
needs [94]; on the other hand, solely following a human-centered
process ignores the value Al can bring. More work is needed to
understand how to combine UCD and matchmaking approaches.
We encourage design researchers to lean in to sketch and prototype
new design processes for innovating Al products and services.

7.3.1 Integrating Design Ideation into Al Product Development.
Probing the usefulness of the capabilities and examples enabled us
to gain insights into how such resources might be integrated into
current product development processes. We highlight four entry
points for introducing design ideation resources:

(1) Envisioning new Al-driven features for an existing product
or service,

(2) Envisioning application concepts for a core Al capability (e.g.
large pretrained models for text or image generation),

(3) Exploring potential value in datasets to enable novel Al-
based interactions,

(4) Designing a dataset with domain stakeholders with an eye
for downstream applications (e.g. see [37] for a discussion
of how data can and should be designed).

We view these starting points as a continuum between UCD and
matchmaking. Our pilot experiment provides an example of (1),
whereas our design process with clinicians and data scientists is
closer to (3). Future research should further investigate how and
when to integrate design resources for effective ideation.

7.3.2  Developing Better Resources and Processes for Risk Assess-
ment. Our work provides preliminary evidence on improving the
ideation process for Al concepts. However, challenges remain in
assessing and selecting concepts to move forward to prototyping.
How can we systematically evaluate the quality of concepts? What
design processes can support a holistic assessment of risks and
harm of early phase concepts before selecting what to build? UX
practice has been evolving as practitioners need to account for
many considerations to ensure the development of responsible Al
systems [82, 83]. Current assessment and prioritization tools, such
as the impact-effort matrix, fail to account for the complexity of as-
sessing Al systems. Recent literature highlights practitioner-created
assessment tools and processes that factor in many considerations,
including risk, frequency of use, model accuracy, data quality, and
cost [83, 94]. Future research should develop better approaches to
holistically assess and prioritize Al concepts.

8 LIMITATIONS AND FUTURE WORK

Our work has three limitations. First, our corpus of Al examples
is not exhaustive. It is limited to commonly found Al features,
thus lacking new, emergent capabilities and unique commercial
capabilities only available in a few systems. Second, our team was
involved in both the development and evaluation of the resource as
part of a real world design process. Future work should assess the
use of Al capabilities and examples with design teams who are new
to this resource. Third, while our resources captures Al capabilities,
it does not currently capture limitations and potential harm. We
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note that ideating on “what Al can do” should always entail asking
“what Al should or should not do”. Because of these limitations, we
describe this resource as version 1.0, and we intend it to address
these aspects in our future work.

9 CONCLUSION

Al products fail when they fail to provide value for users and ser-
vices. HCI and design thinking can play an important role in ad-
dressing AI’s innovation gap. We took a step towards addressing
this gap by engaging in a reflective design process. We created a
resource capturing Al capabilities based on 40 features commonly
found across many products and services. Our resource captured
the high-level Al capabilities across all examples and low-level de-
tailed capabilities for each example. Our pilot assessment revealed
Al model performance as a critical consideration for ideation. We
experienced limitations when employing a user-centered approach
to Al ideation. In response, we adopted a hybrid approach blending
user-centered design and matchmaking, probing domain experts
on where a capability could be useful. We invite HCI and design re-
searchers to critique, assess, and extend the resource and approach
employed in this work.
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10

Al Feature | Domain
Biometric Security

Risk Mitigation & Security

Fraudulent Transaction Detection

Risk Mitigation & Security

Smartwatch Workout Detection

Healthcare

Drug Discovery

Healthcare

Medical Imaging Analysis

Healthcare

Synthetic Health Data Generation

Healthcare

Crop Monitoring

Manufacturing & Agriculture

Defect Detection

Manufacturing & Agriculture

Robotic Pick and Place

Manufacturing & Agriculture

Predictive Maintenance

Energy & Infrastructure

Capability Level 1

Detect face in image

Identify face in image

Detect fingerprint in image
Identify fingerprint in image
Detect voice in audio

Identify voice in audio

Detect face in depth map

Identify face in depth map
Identify fraud in transaction
Estimate fraud likelihood of transaction
Discover fraud in transactions
Detect motion in sensor stream
Identify workout in sensor stream
Detect step in sensor stream
Detect hard fall in sensor stream

Estimate energy expenditure of user

Discover relationships between drugs and treatment outcomes

Generate protein structure of drug

Generate protein interaction of drug

Generate physio-chemical reaction of drug
Generate bioactivity of drug

Estimate toxicity of drug

Estimate promise of drug

Discover new uses of drug in drug-treatment relationships
Detect medical anomaly in image

Identify anomaly as tumor in image

Identify malignant tumor in image

Estimate size of tumor

Identify tumor type in image

Discover medical anomaly in image

Generate new patient data from patient data
Generate missing elements of patient data
Generate new medical images from medical image
Generate high-res detail for low-res medical image
Generate detail for occulded area of medical image
Generate missing view for medical image

Detect crop stress in image

Identify crop stress type in image

Estimate growth of crop

Forecast yield of crops

Forecast yield impact of resource plans

Detect product defect in image

Identify defect cause in image

Identify defect type in image

Discover product defect in image

Estimate defect likelihood in product

Detect objects in image

Identify object in image

Estimate location and orientation of object
Generate motion and grasping path to object

Act motion and grasping path to pick by minimum moves
Detect machine sound in audio

Identify machine breakdown in audio

Estimate breakdown likelihood of machine
Forecast breakdown point of machine

Estimate breakdown duration of machine

Estimate breakdown cost of machine
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Capability Level 2

Detect face

Identify face

Detect fingerprint

Identify fingerprint

Detect voice

Identify voice

Detect face

Identify face

Identify transaction anomaly
Estimate entity risk
Discover transaction anomaly
Detect motion

Identify workout

Detect motion

Detect motion

Estimate consumption
Discover correlations
Generate chemical attribute
Generate chemical attribute
Generate chemical attribute
Generate chemical attribute
Estimate chemical attribute
Estimate success

Discover correlations
Detect visual anomaly
Identify visual anomaly
Identify class

Estimate object size
Identify class

Discover visual anomaly
Generate new data
Generate new data
Generate new image
Generate image detail
Generate image detail
Generate new image
Detect visual anomaly
Identify class

Estimate world activity
Forecast financial outcome
Forecast financial impact
Detect visual anomaly
Identify class

Identify class

Discover visual anomaly
Estimate entity risk

Detect object

Identify object

Estimate object orientation
Generate motion plan

Act motion plan

Detect object

Identify audio anomaly
Estimate system risk
Forecast failure point
Estimate event duration

Estimate financial impact

Capability Level 3
Detect person
Identify person
Detect person
Identify person
Detect person
Identify person
Detect person
Identify person
Identify anomaly
Estimate risk
Discover anomaly
Detect activity
Identify activity
Detect activity
Detect activity
Estimate outcome
Discover relationship
Generate attribute
Generate attribute
Generate attribute
Generate attribute
Estimate attribute
Estimate outcome
Discover relationship
Detect anomaly
Identify anomaly
Identify attribute
Estimate world
Identify attribute

Discover anomaly

Generate numeric data

Generate numeric data

Generate image
Generate image
Generate image
Generate image
Detect anomaly
Identify attribute
Estimate activity
Forecast outcome
Forecast impact
Detect anomaly
Identify attribute
Identify attribute
Discover anomaly
Estimate risk
Detect world
Identify world
Estimate world
Generate plan
Act plan

Detect world
Identify anomaly
Estimate risk
Forecast time
Estimate duration

Estimate impact
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Capability Level 4
Detect
Identify
Detect
Identify
Detect
Identify
Detect
Identify
Identify
Estimate
Discover
Detect
Identify
Detect
Detect
Estimate
Discover
Generate
Generate
Generate
Generate
Estimate
Estimate
Discover
Detect
Identify
Identify
Estimate
Identify
Discover
Generate
Generate
Generate
Generate
Generate
Generate
Detect
Identify
Estimate
Forecast
Forecast
Detect
Identify
Identify
Discover
Estimate
Detect
Identify
Estimate
Generate
Act
Detect
Identify
Estimate
Forecast
Estimate

Estimate
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22

Al Feature | Domain

Home Energy Optimization

Energy & Infrastructure

Text Generation

Office Productivity & Business Workflow

Spam Filter
Office Productivity & Business Workflow

Language Translation

Office Productivity & Business Workflow

Meeting Summarization

Office Productivity & Business Workflow

AR Item Viewer

Marketing & Sales

Personalized Advertisements

Marketing & Sales

Web Usage Analytics
Marketing & Sales

Review Analytics

Hospitality

Smart Pricing
Hospitality
Child Welfare Risk Assessment

Governance & Policy

Infectious Disease Forecasting

Governance & Policy

Capability Level 1

Forecast repair impact of machine

Detect human presence in sensor stream
Estimate preferred temperature of user
Discover person's routine in temperatures
Discover group routines in temperatures
Identify person's routine in temperatures
Forecast peak usage of energy

Generate temperature plan for user
Compare phrases by partial sentence fit
Generate next word of sentence

Generate ending of sentence

Estimate spam likelihood of email

Identify spam in email

Identify spam words in text

Detect text in image

Identify language in text

Identify word translation in text

Identify phrase translation in text

Compare phrases by partial sentence fit
Generate translation of sentence

Detect voice in audio

Identify words in audio

Identify phrase in text

Identify sentence in text

Compare words by partial sentence fit
Generate summary of transcript

Detect room in depth map

Detect room objects in depth map
Estimate size of room

Estimate object location in room

Estimate object size in room

Detect virtual-physical collision in AR
Generate room with virtual and physical objects
Identify room objects in depth map
Discover user similarities from user behavior
Discover ad similarities from user behavior
Compare ads by will-user-click

Compare users to ad fit

Compare products by will-user-click
Compare users to product fit

Discover navigation patterns from user behavior
Discover user interests from user behavior
Discover user similarities from user behavior
Identify content in web page

Identify subject in text

Identify sentiment in text

Identify user intent in text

Identify context in text

Discover topics in documents

Forecast demand for listing

Forecast maximum price for listing
Forecast maltreatment risk for child

Forecast likelihood of repeated maltreatment

Discover relationships between child maltreatment and locations

Identify words in user query

Estimate symptom-relevance of user query

Discover relationship between symptom searches and infections

Estimate number of infected people
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Capability Level 2
Forecast financial impact
Detect human presence
Estimate preference
Discover routine
Discover routine

Identify routine

Forecast peak point
Generate action plan
Compare phrases
Generate word

Generate sentence
Estimate entity risk
Identify document anomaly
Identify word

Detect text

Identify language
Identify word

Identify phrase

Compare phrases
Generate translation
Detect voice

Identify word

Identify phrase

Identify sentence
Compare words
Generate text summary
Detect space

Detect object

Estimate spatial size
Estimate object location
Estimate object size
Detect object

Generate space

Identify object

Discover similarities
Discover similarities
Compare documents
Compare consumers
Compare items
Compare consumers
Discover human behavior
Discover user interests
Discover similarities
Identify content

Identify text attribute
Identify text attribute
Identify user intent
Identify text attribute
Discover document attribute
Forecast demand
Forecast financial attribute
Forecast human risk
Forecast human risk
Discover correlations
Identify word

Estimate document attribute
Discover correlations

Estimate infections
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Capability Level 3
Forecast impact
Detect person
Estimate human attribute
Discover activity
Discover activity
Identify activity
Forecast time
Generate plan
Compare entities
Generate text
Generate text
Estimate risk

Identify anomaly
Identify entity

Detect entity

Identify attribute
Identify entity
Identify entity
Compare entities
Generate text
Detect person
Identify entity
Identify entity
Identify entity
Compare entities
Generate text
Detect world

Detect world
Estimate world
Estimate world
Estimate world
Detect world
Generate world
Identify world
Discover relationship
Discover relationship
Compare entities
Compare people
Compare entities
Compare people
Discover activity
Discover human attribute
Discover relationship
Identify entity
Identify attribute
Identify attribute
Identify human attribute
Identify attribute
Discover attribute
Forecast attribute
Forecast attribute
Forecast risk
Forecast risk
Discover relationship
Identify entity
Estimate attribute
Discover relationship

Estimate outcome

Capability Level 4
Forecast
Detect
Estimate
Discover
Discover
Identify
Forecast
Generate
Compare
Generate
Generate
Estimate
Identify
Identify
Detect
Identify
Identify
Identify
Compare
Generate
Detect
Identify
Identify
Identify
Compare
Generate
Detect
Detect
Estimate
Estimate
Estimate
Detect
Generate
Identify
Discover
Discover
Compare
Compare
Compare
Compare
Discover
Discover
Discover
Identify
Identify
Identify
Identify
Identify
Discover
Forecast
Forecast
Forecast
Forecast
Discover
Identify
Estimate
Discover

Estimate
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Al Feature | Domain

23  Robotic Invoice Processing

Finance

24  Stock Trading Recommendations

Finance

25  Smart Speaker Question Answering

Leisure, Content & Media

26  Media Feed

Leisure, Content & Media

27  Game Player

Leisure, Content & Media

28 Image Style Transfer

Leisure, Content & Media

29  Mobile App Face Filter

Leisure, Content & Media

30 Deepfakes

Leisure, Content & Media

Capability Level 1

Forecast rate of infection

Forecast peak of infection

Identify document type in image
Detect document structure in image
Identify document structure in image
Identify paired content in image

Identify handwritten words in image

Discover relationships between news and stock prices

Forecast peak price of stock

Forecast price of stocks

Detect voice in audio

Identify voice in audio

Identify words in audio

Identify user query in text

Identify subject in text

Compare responses to query fit

Generate human speech from response
Identify person's name in text

Detect face in image

Identify face in image

Identify content in image

Generate description of image content
Identify company, organization, or product in text
Identify place-of-interest in text

Identify sentiment in text

Estimate user engagement of media post
Compare media posts by engagement
Identify bullying in text

Identify inappropriate content in text
Identify inappropriate content in audio
Identify inappropriate content in image
Identify copyrighted content in audio
Identify copyrighted content in text
Compare game moves by game impact
Generate game strategy for game

Act game moves to win by minimum moves
Identify content in target image

Identify style in reference image

Estimate content similarity of images
Estimate style similarity of images
Generate stylized version of target image
Detect background in image

Detect face in image

Detect eye, mouth, and face landmarks in image
Detect hair in image

Identify face gesture and expression in image
Detect human body in image

Identify body pose in image

Detect hand in image

Identify hand gesture in image

Generate virtual effects on user face and body

Detect face in reference image

Detect eye, mouth, and face landmarks in reference image

Detect human body in reference image
Identify body pose in reference image
Detect face in target image

Identify face in target image
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Capability Level 2
Forecast rate
Forecast peak point

Identify class

Detect document attribute

Identify document attribute

Identify content
Identify word
Discover correlations

Forecast peak point

Forecast financial attribute

Detect voice

Identify voice

Identify word

Identify user query
Identify text attribute
Compare responses
Generate human speech
Identify person's name
Detect face

Identify face

Identify content
Generate description
Identify business entity
Identify place

Identify text attribute
Estimate internal state
Compare documents
Identify text attribute
Identify content
Identify content
Identify content
Identify content
Identify content
Compare action plans
Generate action plan
Act action plan
Identify content
Identify visual attribute
Estimate similarity
Estimate similarity
Generate new image
Detect background
Detect face

Detect face landmarks
Detect hair

Identify gesture
Detect human body
Identify body pose
Detect hand

Identify gesture
Generate image detail
Detect face

Detect face landmarks
Detect human body
Identify body pose
Detect face

Identify face

Capability Level 3
Forecast attribute
Forecast time
Identify attribute
Detect attribute
Identify attribute
Identify entity
Identify entity
Discover relationship
Forecast time
Forecast attribute
Detect person
Identify person
Identify entity
Identify entity
Identify attribute
Compare entities
Generate audio
Identify person
Detect person
Identify person
Identify entity
Generate text
Identify entity
Identify entity
Identify attribute

Estimate human attribute

Compare entities
Identify attribute
Identify entity

Identify entity

Identify entity

Identify entity

Identify entity

Compare plans
Generate plan

Act plan

Identify entity

Identify attribute
Estimate relationship
Estimate relationship
Generate image

Detect entity

Detect person

Detect person

Detect person

Identify human attribute
Detect person

Identify human attribute
Detect person

Identify human attribute
Generate image

Detect person

Detect person

Detect person

Identify human attribute
Detect person

Identify person
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Capability Level 4
Forecast
Forecast
Identify
Detect
Identify
Identify
Identify
Discover
Forecast
Forecast
Detect
Identify
Identify
Identify
Identify
Compare
Generate
Identify
Detect
Identify
Identify
Generate
Identify
Identify
Identify
Estimate
Compare
Identify
Identify
Identify
Identify
Identify
Identify
Compare
Generate
Act
Identify
Identify
Estimate
Estimate
Generate
Detect
Detect
Detect
Detect
Identify
Detect
Identify
Detect
Identify
Generate
Detect
Detect
Detect
Identify
Detect

Identify
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31

32

33

34

35

36

37

38

39

40

Al Feature | Domain

Lane Departure Prediction

Transportation

Navigation Route Planner

Transportation

Autonomous Parking

Transportation

Resume Screening

Human Resources & Management

HR Chatbot

Human Resources & Management

Workforce Scheduling

Human Resources & Management

Automated Essay Scoring

Education

Personalized Lesson Plans

Education

Aerial Wildlife Monitoring

Science

Weather Prediction

Science

Capability Level 1

Estimate similarity of images

Generate image of target person

Identify voice in target audio

Estimate similarity of audio

Generate voice of target person

Detect lane in image

Estimate lane position of vehicle

Estimate lane departure likelihood of vehicle
Identify driver's intent to depart in vehicle telemetry
Detect objects in sensor stream

Estimate collision likelihood of lane departure
Estimate street and direction of vehicle
Forecast traffic impact of route

Estimate travel time of route

Compare routes by driver preferences
Identify driver's intent to park in vehicle telemetry
Detect objects in sensor stream

Detect parking space in image

Identify objects in sensor stream

Estimate size of parking space

Generate motion path to parking space

Act motion path to park by minimum moves
Identify skills in text

Identify competence in text

Identify specialization in text

Compare resumes by job fit

Identify subject in user query

Generate response to user query

Compare responses to query fit

Forecast demand for staffing

Estimate priority of cases

Generate schedule for employees

Identify style in text

Identify organization in text

Identify coherence in text

Estimate grade of essay

Estimate skill acquisition of student

Estimate skill level of student

Compare math problems by skill acquisition
Compare unknown skills by learning impact
Generate learning plan for student

Discover student stereotypes from student behavior
Detect animal in image

Identify animals in image

Estimate number of animals

Discover animal movement patterns in image
Discover animal habitats in image

Estimate weather condition for location
Estimate intensity of weather condition

Forecast temperature for location
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Capability Level 2
Estimate similarity
Generate new image
Identify voice

Estimate similarity
Generate human speech
Detect lane

Estimate object position
Estimate system activity
Identify user intent
Detect object

Estimate action risk
Estimate object orientation
Forecast time impact
Estimate activity duration
Compare action plans
Identify user intent
Detect object

Detect space

Identify object

Estimate spatial size
Generate motion plan
Act motion plan

Identify skills

Identify competence
Identify specialization
Compare documents
Identify text attribute
Generate sentence
Compare responses
Forecast demand
Estimate priority
Generate schedule
Identify text attribute
Identify text attribute
Identify text attribute

Estimate document attribute

Estimate learning
Estimate competence
Compare items
Compare learning plans
Generate learning plan
Discover similarities
Detect animal

Identify animal

Estimate quantity
Discover animal behavior
Discover habitat
Estimate condition
Estimate intensity

Forecast temperature
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Capability Level 3
Estimate relationship
Generate image
Identify person
Estimate relationship
Generate audio

Detect world

Estimate world
Estimate activity
Identify activity

Detect world

Estimate risk

Estimate world
Forecast impact
Estimate duration
Compare plans

Identify activity

Detect world

Detect world

Identify world

Estimate world
Generate plan

Act plan

Identify human attribute
Identify human attribute
Identify human attribute
Compare entities
Identify attribute
Generate text
Compare entities
Forecast attribute
Estimate attribute
Generate plan

Identify attribute
Identify attribute
Identify attribute
Estimate attribute
Estimate human attribute
Estimate human attribute
Compare entities
Compare plans
Generate plan
Discover relationship
Detect world

Identify entity

Estimate attribute
Discover activity
Discover attribute
Estimate attribute
Estimate attribute

Forecast world

Capability Level 4
Estimate
Generate
Identify
Estimate
Generate
Detect
Estimate
Estimate
Identify
Detect
Estimate
Estimate
Forecast
Estimate
Compare
Identify
Detect
Detect
Identify
Estimate
Generate
Act
Identify
Identify
Identify
Compare
Identify
Generate
Compare
Forecast
Estimate
Generate
Identify
Identify
Identify
Estimate
Estimate
Estimate
Compare
Compare
Generate
Discover
Detect
Identify
Estimate
Discover
Discover
Estimate
Estimate

Forecast
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