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This work studies the initial-boundary value problem
(ibvp) of the two-dimensional nonlinear Schrödinger
equation on the half-plane with initial data in
Sobolev spaces and Neumann or Robin boundary
data in appropriate Bourgain spaces. It establishes
well-posedness in the sense of Hadamard by using
the explicit solution formula for the forced linear
ibvp obtained via Fokas’s unified transform, and a
contraction mapping argument.

1. Introduction
We study the initial-boundary value problem (ibvp) of
the nonlinear Schrödinger (NLS) equation on the half-
plane with a Robin boundary condition, that is

iut + ux1x1 + ux2x2 = ±|u|α−1u,

(x1, x2) ∈ R × R+, t ∈ (0, T),

u(x1, x2, 0) = u0(x1, x2),

(ux2 + γu)(x1, 0, t) = g(x1, t), (1.1)

where (α − 1)/2 ∈ N and γ ∈ R. When γ = 0, this is the
Neumann problem, which we examine at the end of
this work. Here, we establish the local well-posedness
of ibvp (1.1) for initial data u0 in the Sobolev space
of the half-plane Hs(Rx1 × R+

x2 ) and boundary data in
the Bourgain-type space Bs

T suggested by the solution
estimate of the reduced pure linear ibvp (see (2.4)).

2022 The Author(s) Published by the Royal Society. All rights reserved.
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We recall that Hs(Rx1 × R+
x2 ) is defined as the restriction of the Sobolev space Hs(R2) to Rx1 × R+

x2

with norm
||f ||Hs(Rx1 ×R+

x2 ) = inf{||F||Hs(R2) : F ∈ Hs(R2) and F|Rx1 ×R+
x2

= f }. (1.2)

The boundary data space Bs
T, which can be thought as expressing the time regularity of the linear

homogeneous problem in two dimensions, is defined by

Bs
T = X0,((2s−1)/4)

T ∩ Xs,−(1/4)
T , (1.3)

where X0,((2s−1)/4)
T and Xs,−(1/4)

T are the Bourgain-type spaces defined via the norm

||g||2
Xσ ,b

T
=

∫

k1∈R

(
1 + k2

1
)σ ∣∣|eik2

1 t̂gx1 (k1, t)
∣∣|2Hb(0,T) dk1 (1.4)

with ĝx1 denoting the Fourier transform of g with respect to x1, i.e.

ĝx1 (k1, t) =
∫

x1∈R
e−ik1x1 g(x1, t) dx1, k1 ∈ R, t ∈ (0, T). (1.5)

Furthermore, we note that the spaces Xσ ,b
T can be regarded as restrictions on R × (0, T) of the

celebrated Bourgain spaces Xσ ,b(Rx × Rt), which are defined via the norm [1]

||g||2Xσ ,b =
∫

k1∈R

(
1 + k2

1
)σ (1 +

∣∣τ + k2
1
∣∣2)b |̂g(k1, τ )|2 dk1

=
∫

k1∈R

(
1 + k2

1
)σ ∥∥∥eik2

1 t̂gx1 (k1, t)
∥∥∥

2

Hb(Rt)
dk1. (1.6)

In addition, for 3
2 < s < 5

2 the initial and boundary data satisfy the compatibility condition

(∂x2 u0 + γu0)(x1, 0) = g(x1, 0), x1 ∈ R. (1.7)

Now, we are able to state the main result of this work more precisely as follows.

Theorem 1.1 (Local well-posedness). Suppose 1 < s < 5
2 with s %= 3

2 . Then, for initial data u0 ∈
Hs(Rx1 × R+

x2 ) and Robin (γ %= 0) or Neumann (γ = 0) boundary data g ∈ Bs
T satisfying the compatibility

condition (1.7) for 3
2 < s < 5

2 , the NLS ibvp (1.1) is locally well-posed in the sense of Hadamard. More
precisely, for

T∗ = min
{
T, cs,γ ,α

(
||u0||Hs(Rx1 ×R+

x2 ) + ||g||Bs
T

)−2(α−1)}, cs,γ ,α > 0, (1.8)

there exists a unique solution u ∈ C([0, T∗]; Hs(Rx1 × R+
x2 )), which satisfies the estimate

sup
t∈[0,T∗]

||u(t)||Hs(Rx1 ×R+
x2 ) ≤ 2cs,γ

(
||u0||Hs(Rx1 ×R+

x2 ) + ||g||Bs
T

)
, cs,γ > 0. (1.9)

In addition, the data-to-solution map {u0, g} (→ u is locally Lipschitz continuous.

Theorem 1.1 completes the picture of the NLS ibvp well-posedness on the half-plane for
smooth data initiated in our earlier work [2] for the case of Dirichlet data. In one spatial dimension
and on the half-line, the well-posedness of the NLS ibvp by using the Fokas unified transform
method was established in [3] for Dirichlet data and in [4] and [5] for Neumann and Robin data,
respectively. Furthermore, concerning the ibvp for the Korteweg-de Vries (KdV) equation on the
half-line, this approach for proving well-posedness has been implemented in [6] for Dirichlet data
and in [7] for Neumann and Robin data. We also mention that there are two other approaches in
the literature for studying the well-posedness of the ibvp for KdV and NLS on the half-line with
Dirichlet data. The first approach is due to Bona et al. [8–10] and uses the Laplace transform in
the temporal variable for analysing the linear problem (see also [11]). The second approach was
developed by Colliander & Kenig for the generalized KdV on the half-line [12], and later on by
Holmer for the NLS and KdV on the half-line [13,14], and is based on expressing the linear ibvp as
a superposition of initial value problems. Moreover, besides [2], two other works in the literature
on the well-posedness of the two-dimensional NLS equation on the half-plane are those by Ran
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Figure 1. The regions D and D̃with their positively oriented boundaries ∂D and ∂ D̃, which assume the role of the contour C in
formula (1.11) for γ ≤ 0 and γ > 0, respectively.

et al. [15] and Audiard [16] (the latter work includes the case of Neumann data with a function
space similar to the one obtained in the present work).

The well-posedness of the nonlinear ibvp (1.1) will be established via a contraction mapping
argument using the unified transform solution formula and the estimates obtained for the forced
linear version of that ibvp. Therefore, the first step of our approach is to derive the Fokas unified
transform solution for the forced linear ibvp

iut + ux1x1 + ux2x2 = f (x1, x2, t) ∈ C([0, T]; Hs(Rx1 × R+
x2

)),

u(x1, x2, 0) = u0(x1, x2) ∈ Hs(Rx1 × R+
x2

),

(ux2 + γu)(x1, 0, t) = g(x1, t) ∈ Bs
T.

(1.10)

This formula is given by (see §6 for an outline of its derivation)

u(x1, x2, t) = S
[
u0, g; f

]
(x1, x2, t)

= 1
(2π )2

∫

k1∈R

∫

k2∈R
eik1x1+ik2x2−i(k2

1+k2
2)tû0(k1, k2) dk2 dk1

+ 1
(2π )2

∫

k1∈R

∫

k2∈C
eik1x1+ik2x2−i(k2

1+k2
2)t k2 + iγ

k2 − iγ
û0(k1, −k2) dk2 dk1

− i
(2π )2

∫

k1∈R

∫

k2∈R
eik1x1+ik2x2−i(k2

1+k2
2)t

∫ t

t′=0
ei(k2

1+k2
2)t′ f̂ (k1, k2, t′) dt′ dk2 dk1

− i
(2π )2

∫

k1∈R

∫

k2∈C
eik1x1+ik2x2−i(k2

1+k2
2)t k2 + iγ

k2 − iγ

∫ t

t′=0
ei(k2

1+k2
2)t′ f̂ (k1, −k2, t′) dt′ dk2 dk1

− i
(2π )2

∫

k1∈R

∫

k2∈C
eik1x1+ik2x2−i(k2

1+k2
2)t 2k2

k2 − iγ
g̃(k1, k2

1 + k2
2, T) dk2 dk1, (1.11)

where the complex contour C is either ∂D (for γ ≤ 0) or ∂D̃ (for γ > 0), as shown in figure 1, the
terms û0 and f̂ denote the half-plane Fourier transforms of u0 and f defined according to

ϕ̂(k1, k2) =
∫

x1∈R

∫∞

x2=0
e−ik1x1−ik2x2ϕ(x1, x2) dx2 dx1, (1.12)

the transform g̃ is defined in terms of the boundary data g by

g̃(k1, k2
1 + k2

2, T) =
∫T

t=0
ei(k2

1+k2
2)t

∫

x1∈R
e−ik1x1 g(x1, t) dx1dt. (1.13)

We note that the indented contour ∂D̃ as the path of integration C in (1.11) appears only for γ > 0.
In particular, that contour is not present in the analysis of the Dirichlet problem given in [2].

The second step of our approach consists in estimating the solution (1.11) of the forced linear
ibvp (1.10). The estimate derived is described in the following result.

Theorem 1.2 (Linear ibvp). Suppose 1 ≤ s < 5
2 with s %= 3

2 . Then, the Fokas unified transform formula
(1.11) defines a solution u = S[u0, g; f ] to the forced linear Schrödinger ibvp (1.10) with initial data u0 ∈
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Hs(Rx1 × R+
x2 ), Robin (γ %= 0) or Neumann (γ = 0) boundary data g ∈ Bs

T satisfying the compatibility
condition (1.7) for 3

2 < s < 5
2 , and forcing f ∈ C([0, T]; Hs(Rx1 × R+

x2 )), which satisfies the estimate

sup
t∈[0,T]

∥∥S
[
u0, g; f

]
(t)

∥∥
Hs(Rx1 ×R+

x2 ) ≤ cs,γ

(
||u0||Hs(Rx1 ×R+

x2 ) + ||g||Bs
T

+
√

T sup
t∈[0,T]

||f (t)||Hs(Rx1 ×R+
x2 )

)
.

(1.14)

The unified transform providing the solution formula (1.11) for the forced linear ibvp studied
in this work was introduced in 1997 by Fokas [17] (see also the monograph [18]). The method was
originally motivated through an effort to develop an ibvp counterpart for the inverse scattering
transform used for studying completely integrable nonlinear equations in the initial value problem
setting. However, it was immediately realized that Fokas’s transform had significant implications
also at the level of linear ibvps, in particular, taking into account its applicability to linear evolution
equations of arbitrary spatial order and dimension, formulated with any kind of admissible
boundary conditions. In this regard, the unified transform provides the direct, natural analogue
in the linear ibvp setting of the classical Fourier transform used for solving linear initial value
problems. For additional results on the ibvp of NLS, KdV and related equations via the Fokas
method; see, for example, [19–30] as well as the review articles [31,32].

The NLS equation has an extensive literature. Concerning its physical significance, it arises
as a universal model in mathematical physics, e.g. in nonlinear optics [33], water waves
[34,35], plasmas [36] and Bose-Einstein condensates [37]. Moreover, the cubic NLS in one spatial
dimension is a prime example of a completely integrable system and can be studied via the
inverse scattering transform [38]. Finally, concerning the well-posedness of the initial value
problem for NLS in Sobolev spaces, we refer the reader to [1,39–48] and the references therein.

Organization. In §2, we estimate the solution to the reduced pure linear Robin problem, which
has zero forcing, zero initial data and boundary data compactly supported in time. Section 3 is
devoted to the estimation of the linear Schrödinger initial value problem. In §4, we combine the
results of the previous two sections to prove theorem 1.2 for the forced linear ibvp (1.10) and,
in turn, theorem 1.1 for the well-posedness of the nonlinear ibvp (1.1). Section 5 provides the
modifications required in the proofs in the case of the Neumann problem. Finally, in §6, we give
a brief derivation of the Fokas unified transform solution formula (1.11).

2. The reduced pure linear ibvp
The basis for proving the nonlinear well-posedness theorem 1.1 is provided by the linear estimate
of theorem 1.2 for the forced linear ibvp (1.10). In order to establish this crucial estimate, we begin
our analysis from a simplified version of problem (1.10) which involves zero forcing, zero initial
data and compactly supported in time boundary data. We call this problem the reduced pure linear
ibvp, as its non-boundary components are both zero and, furthermore, its boundary datum is
reduced to the class of functions with compact support in t.

More precisely, for the Robin problem (γ %= 0), the reduced pure linear ibvp is given by

ivt + vx1x1 + vx2x2 = 0, (x1, x2) ∈ R × R+, t ∈ (0, 2),

v(x1, x2, 0) = 0,

(vx2 + γ v)(x1, 0, t) = g(x1, t), supp(g) ⊂ Rx1 × (0, 2),

(2.1)

where g(x1, t) is a globally defined function with compact support in t. For the Neumann problem
(γ = 0), the analysis of the reduced pure linear ibvp is provided in §5. We note that, since T < 1,
the interval (0, 2) for the t-support of g could be replaced by any fixed interval of the form (0, a),
a > 1. In the case of problem (2.1), the Fokas unified transform formula (1.11) simplifies to

v(x1, x2, t) = − i
(2π )2

∫

k1∈R

∫

k2∈C
eik1x1+ik2x2−i(k2

1+k2
2)t 2k2

k2 − iγ
ĝ(k1, −k2

1 − k2
2) dk2 dk1, (2.2)
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where the transform g̃ defined by (1.13) has now been replaced by the Fourier transform ĝ of g in
x1 and t since, thanks to the compact support of g in t,

g̃(k1, k2
1 + k2

2, 2) =
∫

x1∈R

∫

t∈R
e−ik1x1+i(k2

1+k2
2)tg(x1, t) dt dx1 = ĝ(k1, −k2

1 − k2
2). (2.3)

Next, we will use the Fokas formula (2.2) in order to estimate the solution of the reduced pure
linear ibvp (2.1) in the Hadamard space C([0, 2]; Hs(Rx1 × R+

x2 )). Through this process, we will
discover the correct function space for the boundary datum g(x1, t). In particular, our analysis
will reveal the Bourgain spaces X0,((2s−1)/4) and Xs,−(1/4) as the global analogues of the spaces
X0,((2s−1)/4)

T and Xs,−(1/4)
T given in the introduction for the boundary data of the non-reduced

problem (1.10). The precise statement of this result is as follows.

Theorem 2.1 (Basic linear estimate for the Robin problem). Let s ≥ 0 and γ %= 0. Then, the
solution v(x1, x2, t) of the reduced pure linear ibvp (2.1), as given by the Fokas formula (2.2), satisfies
the Hadamard space estimate

sup
t∈[0,2]

||v(t)||Hs(Rx1 ×R+
x2 ) ≤ cs,γ

(
||g||X0,((2s−1)/4) + ||g||Xs,−(1/4)

)
, (2.4)

where the Bourgain spaces Xσ ,b are defined by (1.6).

In the remaining of this section, we prove theorem 2.1. We start from the case γ < 0, for which
we provide the proof in detail, and continue to the case γ > 0, for which we give the modifications
required due to the presence of the simple pole at iγ along the positive imaginary k2-axis.

Proof of theorem 2.1 for γ < 0. Parameterizing the contour C = ∂D (figure 1), we write v = v1 + v2
with

v1(x1, x2, t) = − 1
(2π )2

∫

k1∈R

∫∞

k2=0
eik1x1−k2x2−i(k2

1−k2
2)t 2k2

k2 − γ
ĝ(k1, −k2

1 + k2
2) dk2 dk1 (2.5)

and

v2(x1, x2, t) = − i
(2π )2

∫

k1∈R

∫∞

k2=0
eik1x1+ik2x2−i(k2

1+k2
2)t 2k2

k2 − iγ
ĝ(k1, −k2

1 − k2
2) dk2 dk1, (2.6)

and estimate v1 and v2 individually. We begin with v2, which involves a purely oscillatory
exponential and hence can be handled as a globally defined function via Plancherel’s theorem
for the Fourier transform. Then, we proceed to v1, which does not make sense for x2 < 0 and
hence requires a different treatment via the L2 boundedness of the Laplace transform. !

Estimation of v2. Since v2 makes sense for all (x1, x2) ∈ R2, by the definition of the Hs(R2) norm
and the fact that (1 + k2

1 + k2
2)s " (1 + k2

1)s + (k2
2)s for any s ∈ R (we write a " b if there exists C > 0

such that a ≤ Cb), we have

||v2(t)||2Hs(Rx1 ×R+
x2 ) ≤

∫

k1∈R

∫∞

k2=0

(
1 + k2

1 + k2
2
)s 4k2

2
|k2 − iγ |2

∣∣̂g(k1, −k2
1 − k2

2)
∣∣2 dk2 dk1

"
∫

k1∈R

∫∞

k2=0

[(
1 + k2

1
)s + (k2

2)s
] k2

2
k2

2 + γ 2

∣∣̂g(k1, −k2
1 − k2

2)
∣∣2 dk2 dk1.

Furthermore, making the change of variable k2 = (−τ − k2
1)(1/2) and breaking the resulting τ

integral near and away from −k2
1, we obtain

||v2(t)||2Hs(Rx1 ×R+
x2 ) "

∫

k1∈R

∫−1−k2
1

τ=−∞

[(
1 + k2

1
)s +

∣∣τ + k2
1
∣∣s

] ∣∣τ + k2
1
∣∣(1/2)∣∣̂g(k1, τ )

∣∣2
∣∣τ + k2

1
∣∣ + γ 2

dτ dk1 (2.7a)

+
∫

k1∈R

∫−k2
1

τ=−1−k2
1

[(
1 + k2

1
)s +

∣∣τ + k2
1
∣∣s

] ∣∣τ + k2
1
∣∣(1/2)∣∣̂g(k1, τ )

∣∣2
∣∣τ + k2

1
∣∣ + γ 2

∣∣ dτ dk1. (2.7b)
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For |τ + k2
1| ≥ 1, we have (|τ + k2

1|
(1/2))/(|τ + k2

1| + γ 2) " (1 + |τ + k2
1|)

−(1/2) and |τ + k2
1|

s " (1 +
|τ + k2

1|)
s, s ∈ R. Thus, noting also that 1 + |τ + k2

1| / (1 + |τ + k2
1|

2)(1/2) (we write a / b if a " b and
b " a), the first of the above integrals becomes

(2.7a) "
∫

k1∈R

(
1 + k2

1
)s

∫−1−k2
1

τ=−∞
(1 +

∣∣τ + k2
1
∣∣2)−(1/4)∣∣̂g(k1, τ )

∣∣2 dτ dk1

+
∫

k1∈R

∫−1−k2
1

τ=−∞
(1 +

∣∣τ + k2
1
∣∣2)(2s−1)/4∣∣̂g(k1, τ )

∣∣2 dτ dk1, s ∈ R. (2.8)

For |τ + k2
1| ≤ 1 and γ %= 0, we have

(
|τ + k2

1| + γ 2)−1 ≤ max
{ 1
γ 2 , 1

}(
1 + |τ + k2

1|
)−1 (2.9)

(this is not true for γ = 0, which is why the Neumann problem is treated separately in §5) and
|τ + k2

1|
s+(1/2) ≤ (1 + |τ + k2

1|)
s+(1/2) for s ≥ − 1

2 . Thus, since 1 + |τ + k2
1| / (1 + |τ + k2

1|
2)(1/2), for s ≥

− 1
2 we obtain

(2.7b) "
∫

k1∈R

(
1 + k2

1
)s

∫−k2
1

τ=−1−k2
1

(
1 +

∣∣τ + k2
1
∣∣2

)−(1/4) ∣∣̂g(k1, τ )
∣∣2 dτ dk1

+
∫

k1∈R

∫−k2
1

τ=−1−k2
1

(
1 +

∣∣τ + k2
1
∣∣2

)(2s−1)/4 ∣∣̂g(k1, τ )
∣∣2 dτ dk1. (2.10)

Combining estimates (2.8) and (2.10), for s ≥ − 1
2 , γ < 0 and t ∈ [0, 2], we deduce

||v2(t)||2Hs(Rx1 ×R+
x2 ) "

∫

k1∈R

(
1 + k2

1
)s

∫−k2
1

τ=−∞

(
1 +

∣∣τ + k2
1
∣∣2

)−(1/4) ∣∣̂g(k1, τ )
∣∣2 dτ dk1

+
∫

k1∈R

∫−k2
1

τ=−∞

(
1 +

∣∣τ + k2
1
∣∣2

)(s/2)−(1/4) ∣∣̂g(k1, τ )
∣∣2 dτ dk1. (2.11)

Estimation of v1. As the expression (2.5) for v1 only makes sense for x2 > 0, we will estimate
it by employing the definition of the Sobolev norm in terms of derivatives in L2. In particular,
restricting s ≥ 0, we have

||v1(t)||2Hs(Rx1 ×R+
x2 ) =

∑

|µ|≤0s1
||∂µ

x v1(t)||2L2(Rx1 ×R+
x2 ) +

∑

|µ|=0s1
||∂µ

x v1(t)||2β (2.12)

where for x = (x1, x2), µ = (µ1, µ2), we denote ∂µ
x = ∂

µ1
x1 ∂

µ2
x2 , |µ| = µ1 + µ2, and for β = s − 0s1 ∈

(0, 1), we define the fractional norm

||v1(t)||2β =
∫

x∈R×R+

∫

y∈R×R+

|v1(x, t) − v1(y, t)|2

|x − y|2(1+β) dy dx. (2.13)

We begin with the integer part of the norm (2.12) and, more specifically, with
||∂µ

x v1(t)||L2(Rx1 ×R+
x2 ) for |µ| = µ1 + µ2 ∈ N ∪ {0} and |µ| ≤ 0s1. Differentiating the unified transform

expression (2.5) for v1, we find

∂
µ
x v1(x1, x2, t) /

∫

k1∈R

∫∞

k2=0
eik1x1−k2x2−i(k2

1−k2
2)tkµ1

1 kµ2
2

k2

k2 − γ
ĝ(k1, −k2

1 + k2
2) dk2 dk1.

Hence, Plancherel’s theorem between the x1 and k1 integrals implies

||∂µ
x v1(t)||2L2(Rx1 ×R+

x2 ) /
∫

k1∈R
(k2

1)µ1

∥∥∥∥

∫∞

k2=0
e−k2x2+ik2

2t kµ2+1
2

k2 − γ
ĝ(k1, −k2

1 + k2
2) dk2

∥∥∥∥
2

L2(R+
x2 )

dk1.

Identifying the k2 integral as the Laplace transform of the function eik2
2tkµ2

2 (k2/(k2 − γ ))̂g(k1, −k2
1 +

k2
2), we estimate the L2 norm of that integral by using the fact (see [49] and lemma 3.2 in [3])
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that the Laplace transform L : ϕ(k) (→
∫∞

k=0 e−kxϕ(k) dk is bounded from L2(R+) into L2(R+) with
||L{ϕ}||L2(R+) ≤

√
π ||ϕ||L2(R+). Thus, we obtain

||∂µ
x v1(t)||2L2(Rx1 ×R+

x2 ) "
∫

k1∈R
(k2

1)µ1

∥∥∥∥eik2
2tkµ2

2
k2

k2 − γ
ĝ(k1, −k2

1 + k2
2)

∥∥∥∥
2

L2(R+
k2

)
dk1

and, since (k2 − γ )2 ≥ k2
2 + γ 2 for k2 ≥ 0 and γ ≤ 0 (note that this is not true when γ > 0),

||∂µ
x v1(t)||2L2(Rx1 ×R+

x2 ) "
∫

k1∈R

∫∞

k2=0
(k2

1)µ1 (k2
2)µ2

k2
2

k2
2 + γ 2

∣∣̂g(k1, −k2
1 + k2

2)
∣∣2 dk2 dk1. (2.14)

Inserting this estimate in the integer part of the Sobolev norm (2.12) and recalling that |µ| = µ1 +
µ2 ∈ N ∪ {0} and |µ| ≤ 0s1, we find

∑

|µ|≤0s1
||∂µ

x v1(t)||2L2(Rx1 ×R+
x2 ) "

∫

k1∈R

∫∞

k2=0

(
1 + k2

1 + k2
2
)0s1k2

2
∣∣̂g(k1, −k2

1 + k2
2)

∣∣2

k2
2 + γ 2

dk2 dk1, (2.15)

where we have used the binomial theorem twice in order to compute the two sums over µ2 and
|µ|. Noting that (1 + k2

1 + k2
2)0s1 / (1 + k2

1)0s1 + (k2
2)0s1 and making the change of variable k2 = (τ +

k2
1)(1/2), we handle the right-hand side of (2.15) similarly to (2.7) for v2, i.e. by splitting the range

of the τ integral near and away from −k2
1. Eventually, this yields

∑

|µ|≤0s1
||∂µ

x v1(t)||2L2(Rx1 ×R+
x2 ) "

∫

k1∈R

∫∞

τ=−k2
1

(
1 + k2

1
)0s1(1 +

∣∣τ + k2
1
∣∣2)−(1/4)∣∣̂g(k1, τ )

∣∣2 dτ dk1

+
∫

k1∈R

∫∞

τ=−k2
1

(
1 +

∣∣τ + k2
1
∣∣2

)(20s1−1)/4 ∣∣̂g(k1, τ )
∣∣2 dτ dk1 (2.16)

for all s ≥ 0 and γ < 0 (as for v2, the Neumann case γ = 0 is treated separately in §5).
Having completed the estimation of the integer part of the Sobolev norm (2.12), we turn our

attention to the fractional norms ||∂µ
x v1(t)||β with µ1 + µ2 = 0s1 ∈ N ∪ {0}. Note that (2.13) can be

expressed in the convenient form ||v1(t)||2β /
∫

x∈R×R+
∫

z∈R×R+ ((|v1(x + z, t) − v1(x, t)|2)/(|z|2(1+β)

dz dx)). Then, differentiating (2.5) and employing Plancherel’s theorem for the integrals with
respect to x1 and k1 as well as (once again) the Laplace transform boundedness in L2(R+) for
the integrals with respect to x2 and k2, we obtain

||∂µ
x v1(t)||2β "

∫

k1∈R
(k2

1)µ1

∫∞

k2=0

∣∣∣kµ2
2

k2

k2 − γ
ĝ(k1, −k2

1 + k2
2)

∣∣∣
2
I(k1, k2,β) dk2 dk1, (2.17)

where I(k1, k2,β) =
∫

z1∈R
∫∞

z2=0(|eik1z1−k2z2 − 1|2/(z2
1 + z2

2)1+β ) dz2 dz1. By lemma 2.2 of [2], for β ∈
(0, 1), we have I(k1, k2,β) " (k2

1 + k2
2)β . Hence, (2.17) becomes

||∂µ
x v1(t)||2β "

∫

k1∈R
(k2

1)µ1

∫∞

k2=0

(
k2

1 + k2
2
)β ∣∣∣kµ2

2
k2

k2 − γ
ĝ(k1, −k2

1 + k2
2)

∣∣∣
2

dk2 dk1

and, using the inequality (k2 − γ )2 ≥ k2
2 + γ 2 together with the binomial theorem, we find

∑

|µ|=0s1
||∂µ

x v1(t)||2β "
∫

k1∈R

∫∞

k2=0

(
k2

1 + k2
2
)s k2

2
k2

2 + γ 2

∣∣̂g(k1, −k2
1 + k2

2)
∣∣2 dk2 dk1.

The term on the right-hand side can be handled like the one in (2.15) to yield

∑

|µ|=0s1
||∂µ

x v1(t)||2β "
∫

k1∈R

∫∞

τ=−k2
1

(
1 + k2

1
)s

(
1 +

∣∣τ + k2
1
∣∣2

)−(1/4)
|̂g(k1, τ )|2 dτ dk1

+
∫

k1∈R

∫∞

τ=−k2
1

(
1 +

∣∣τ + k2
1
∣∣2

)(2s−1)/4
|̂g(k1, τ )|2 dτ dk1, s ≥ 0, γ < 0. (2.18)
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Overall, estimates (2.16) and (2.18) combined with the Sobolev norm definition (2.12) imply

||v1(t)||2Hs(Rx1 ×R+
x2 ) "

∫

k1∈R

∫∞

τ=−k2
1

(
1 + k2

1
)s

(
1 +

∣∣τ + k2
1
∣∣2

)−(1/4)
|̂g(k1, τ )|2 dτ dk1

+
∫

k1∈R

∫∞

τ=−k2
1

(
1 +

∣∣τ + k2
1
∣∣2

)(2s−1)/4
|̂g(k1, τ )|2 dτ dk1 (2.19)

for all s ≥ 0, γ < 0 and t ∈ [0, 2], which together with estimate (2.11) for v2 yields the desired
Hadamard estimate (2.4) in the case γ < 0.

Proof of theorem 2.1 for γ > 0. We now provide the modifications necessary for proving estimate
(2.4) when γ > 0. Recall that the difference between the cases γ < 0 and γ > 0 is that, in the latter
case, the complex contour of integration C in the unified transform formula (2.2) is given by ∂D̃
instead of ∂D (figure 1), so that the singularity at k2 = iγ (which for γ > 0 lies along ∂D) is avoided
by means of Cγ /2(iγ ), which denotes the right half of the negatively oriented circle of radius γ /2
and centre at iγ . Hence, for γ > 0, the solution of the reduced pure linear ibvp (2.1) consists of
three parts, v = v1,1 + v1,2 + v2, where

v1,1(x1, x2, t) /
∫

k1∈R

[∫ γ /2

k2=0
+

∫∞

k2=(3γ /2)

]

eik1x1−k2x2−i(k2
1−k2

2)t k2

k2 − γ
ĝ(k1, −k2

1 + k2
2) dk2 dk1, (2.20)

v1,2(x1, x2, t) /
∫

k1∈R

∫

k2∈Cγ /2(iγ )
eik1x1+ik2x2−i(k2

1+k2
2)t k2

k2 − iγ
ĝ(k1, −k2

1 − k2
2) dk2 dk1, (2.21)

v2(x1, x2, t) /
∫

k1∈R

∫∞

k2=0
eik1x1+ik2x2−i(k2

1+k2
2)t k2

k2 − iγ
ĝ(k1, −k2

1 − k2
2) dk2 dk1. (2.22)

The term (2.22) can be estimated exactly like the term (2.6) from the case γ < 0. Also, the first
integral in (2.20) is similar to the term (2.5). Indeed, since k2 ∈ [0, γ /2], we have (k2 − γ )2 ≥ 1

8 (k2
2 +

γ 2). This inequality plays the role of inequality (k2 − γ )2 ≥ k2
2 + γ 2 that was valid for k2 ≥ 0 and

γ ≤ 0, and hence allows us to handle the first integral in (2.20) just like v1 from the case γ < 0,
eventually obtaining estimate (2.14) and, in turn, estimate (2.16). For the second integral in (2.20),
since |k2 − iγ | ≥ γ /2, we have k2

2/(k2 − γ )2 ≤ 2 + (2γ 2/(k2 − γ )2) ≤ 10. We remark that this crude
bound can be used for the integral over k2 ∈ [3γ /2, ∞) but not for the one over k2 ∈ [0, γ /2]. This
is because, in the former range, we can handle the term |τ + k2

1|
−(1/2) arising from the change

of variable k2 = (−τ − k2
1) via the inequality |τ + k2

1|
−(1/2) " max{ 1

γ , 1}(1 + |τ + k2
1|

2)−(1/4), which
follows from the fact that k2 ≥ 3γ /2. Overall, we conclude that the term (2.20) admits the same
estimate with the term v1 appearing in the case γ < 0.

The remaining component v1,2 of the reduced pure ibvp solution, which is defined by (2.21),
has not appeared before, since it involves for the first time the semicircular contour Cγ /2(iγ ). This
is a finite contour that stays a fixed distance γ /2 away from the singularity at k2 = iγ and so,
in principle, the estimation of v1,2 should go through without any issues. However, it turns out
that some technical details are needed. The main reason for this is that the changes of variable
τ = −k2

1 ± k2
2, which have been used in all of the previous estimations, would now result in

complex values for τ , thus making it difficult to relate the relevant integrals to the Bourgain norms
(1.6). Thus, instead of making these changes of variables, we will exploit the boundedness of the
contour Cγ /2(iγ ) together with the compact support in t of the reduced pure linear ibvp datum
g(x1, t) in order to estimate v1,2 in a different way. More specifically, parametrizing Cγ /2(iγ ) by
k2 = k2(θ ) = iγ + (γ /2) eiθ , we have

v1,2(x1, x2, t) /
∫

k1∈R

∫ (π/2)

θ=−(π/2)
eik1x1+ik2(θ)x2−i(k2

1+k2(θ)2)tk2(θ )̂g(k1, −k2
1 − k2(θ )2) dθ dk1.

We will estimate this integral by using the norm (2.12). For the integer part of that norm, we have
∂

µ
x = ∂

µ1
x1 ∂

µ2
x2 with |µ| = µ1 + µ2 ∈ N ∪ {0} and |µ| ≤ 0s1. Thus, differentiating the above expression

for v1,2 and then using Plancherel’s theorem in x1 and k1, Minkowski’s integral inequality for the
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x2 and θ integrals, and the fact that
∫∞

x2=0 |eik2(θ)x2 |2 dx2 = [γ (2 + sin θ )]−1 = cγ < ∞, we can bound
||∂µ

x v1,2(t)||2L2(Rx1 ×R+
x2 ) by

∫

k1∈R
(k2

1)µ1

[ ∫ (π/2)

θ=−(π/2)

∣∣ e−ik2(θ)2tk2(θ )µ2+1̂g(k1, −k2
1 − k2(θ )2)

∣∣ (2 + sin θ )−
1
2 dθ

]2
dk1. (2.23)

Since 0 ≤ µ1 ≤ 0s1, the right-hand side of the above inequality will have to be controlled by the
norm of the Bourgain space Xs,−(1/4) (as opposed to X0,((2s−1)/4)). In order to accomplish this, we
will introduce a multiplier / 1 in the above θ integral. More specifically, let

ψ(t) =
{

e−t, t ∈ (0, 2)
0, t ∈ [0, 2]c

}

⇒ ψ̂(τ ) = 1 − e−2(1+iτ )

1 + iτ

and observe that, for k2 ∈ Cγ /2(iγ ), we have |ψ̂(−k2
2)| = |(1 − e2(ik2

2−1))/(1 − ik2
2)|2 / cγ / 1. Indeed,

since Im(k2
2) ≥ 0 along Cγ /2(iγ ), it follows that |1 − e2(ik2

2−1)| / 1. Moreover, |1 − ik2
2| = cγ / 1 since

(1 + (γ 4/16))(1/2) ≤ |1 − ik2
2| ≤ 1 + (9γ 2/4). Therefore,

(2.23) "
∫

k1∈R
(k2

1)µ1

[ ∫π/2

θ=−(π/2)

∣∣e−ik2(θ)2tk2(θ )µ2+1ψ̂(−k2(θ )2)

· ĝ(k1, −k2
1 − k2(θ )2)

∣∣(2 + sin θ )−
1
2 dθ

]2
dk1

"
∫

k1∈R
(k2

1)µ1 sup
θ∈[−(π/2),π/2]

|ψ̂(−k2(θ )2) · ĝ(k1, −k2
1 − k2(θ )2)|2 dk1, (2.24)

since the θ integral remaining after taking the above supremum is bounded by some cs,γ < ∞.
The supremum in (2.24) can be bounded after noting that, by the convolution property of the

Fourier transform and the compact support in t of both ψ and g,

ψ̂(−k2
2) · ĝ(k1, −k2

1 − k2
2) =

∫ 4

t=0
ei(k2

1+k2
2)t{e−ik2

1·ψ(·) ∗ ĝx1 (k1, ·)
}
(t) dt.

Hence, by the Cauchy–Schwarz inequality, the fact that Im(k2
2) ≥ 0 along Cγ /2(iγ ), and Plancherel’s

theorem, we obtain

|ψ̂(−k2
2) · ĝ(k1, −k2

1 − k2
2)| "

∥∥∥Ft
{
e−ik2

1tψ(t)
}
(τ ) · ĝ(k1, τ )

∥∥∥
L2(Rτ )

.

Then, substituting Ft{e−ik2
1tψ(t)}(τ ) = (1 − e−2(1+i(τ+k2

1)))/(1 + i(τ + k2
1)) and noting that for τ , k1 ∈

R, we have |1 − e−2(1+i(τ+k2
1))| ≤ 1 + e−2, we find

|ψ̂(−k2
2) · ĝ(k1, −k2

1 − k2
2)|2 "

∫

τ∈R
(1 +

(
τ + k2

1
)2)−1 |̂g(k1, τ )|2 dτ .

Inserting this estimate in (2.24), we deduce

||∂µ
x v1,2(t)||2L2(Rx1 ×R+

x2 ) "
∫

k1∈R
(k2

1)µ1

∫

τ∈R
(1 +

(
τ + k2

1
)2)−1 |̂g(k1, τ )|2 dτ dk1

/ ||g||2Xµ1,−1 ≤ ||g||2X0s1,−1 ≤ ||g||2Xs,−(1/4) (2.25)

for all t ∈ (0, 2) and |µ| = µ1 + µ2 ∈ N ∪ {0} with |µ| ≤ 0s1, which gives the desired estimate for the
integer part of the norm (2.12).

The fractional norm ||∂µ
x v1,2(t)||β also satisfies (2.25) for each |µ| = µ1 + µ2 = 0s1 ∈ N ∪ {0}. This

can be shown via the same steps with the integer part above together with the bound

∫

z1∈R

∫∞

z2=0

∣∣eik1z1+ik2z2 − 1
∣∣2

(z2
1 + z2

2)1+β dz2 dz1 " max
{
1, (k2

1)β
}
,
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which holds for all k1 ∈ R, k2 ∈ Cγ /2(iγ ) and β ∈ (0, 1). This bound can be proved similarly to
lemma 2.2 in [2] by considering the cases |k1| ≥ 1 and |k1| ≤ 1 separately and then employing
the inequality |ez − 1| ≤ |z| e|z|, z ∈ C. This completes the proof of theorem 2.1 for γ > 0. !

3. Estimates for the linear Schrödinger equation on the plane
In this section, we establish various estimates for the linear Schrödinger initial value problem (ivp)
on the plane. These results will be combined in §4 with those of §2 on the reduced pure linear ibvp
in order to prove theorem 1.2 for the forced linear ibvp (1.10), which is the basis for proving the
well-posedness theorem 1.1 for the NLS ibvp (1.1). In particular, besides the Hadamard solution
space, we will obtain estimates for the linear ivp in the Bourgain-type spaces (1.4) motivated by
theorem 2.1.

We begin with the homogeneous ivp

iUt + Ux1x1 + Ux2x2 = 0, x = (x1, x2) ∈ R2, t ∈ R,

U(x, 0) = U0(x) ∈ Hs(R2),
(3.1)

whose solution is given by

U(x, t) = S
[
U0; 0

]
(x, t) = 1

(2π )2

∫

k∈R2
eik·x−ik2tÛ0(k) dk, (3.2)

where Û0 denotes the Fourier transform of U0 on the whole plane, Û0(k) =
∫

x∈R2 e−ik·xU0(x) dx,
with k = (k1, k2) ∈ R2, k · x = k1x1 + k2x2 and k2 = k2

1 + k2
2.

Theorem 3.1 (Homogeneous linear ivp). The solution U = S[U0; 0] to the linear Schrödinger ivp
(3.1), given by the Fourier transform formula (3.2), satisfies the isometry relation

sup
t∈[0,T]

||U(t)||Hs(R2
x) = ||U0||Hs(R2

x), s ∈ R, (3.3)

as well as the Bourgain-type estimates

sup
x2∈R

||(Ux2 + γU)(x2)||X0,((2s−1)/4)
T

≤ cs||U0||Hs(R2
x), s ≥ 1, (3.4)

sup
x2∈R

||(Ux2 + γU)(x2)||Xs,−(1/4)
T

≤ cs,γ ||U0||Hs(R2
x), s ≥ 0. (3.5)

Proof. The isometry relation (3.3) follows directly from formula (3.2) and the definition of
the Sobolev norm. Estimate (3.4) can be deduced by estimate (3.5) in [2], according to which
supx2∈R ||U(x2)||X0,(2s+1)/4

T
≤ cs||U0||Hs(R2

x), s ≥ 0. In particular, observe that Ux2 = S[∂x2 U0; 0] so it
suffices to employ that estimate with Ux2 in place of U and with s replaced by s − 1.

Concerning estimate (3.5), we note that (3.5) in [2] additionally implies the estimate
supx2∈R ||U(x2)||Xs,(1/4)

T
≤ cs||U0||Hs(R2

x) for s ≥ 0, which takes care of the second term in the norm

on the left-hand side of (3.5). Furthermore, denoting by
.

H−(1/4) the homogeneous counterpart of
the Sobolev space H−(1/4) and using the fact that

.
H−(1/4) ⊂ H−(1/4), we have

||Ux2 (x2)||2
Xs,−(1/4)

T
≤

∫

k1∈R

(
1 + k2

1
)s||eik2

1·Ûx1
x2 (k1, x2, ·)||2.

H−(1/4)(Rt)
dk1. (3.6)

Then, we use the solution formula (3.2) together with the change of variable τ = −k2
2 to write

eik2
1tÛx1

x2 (k1, x2, t) = 1
4iπ

∫ 0

τ=−∞
eiτ t

[
e−i

√
−τx2 Û0

(
k1, −

√
−τ

)
− ei

√
−τx2 Û0

(
k1,

√
−τ

)]
dτ .

Hence, by the usual definition of the
.

H−(1/4)(R) norm, we find

||eik2
1·Ûx1

x2 (k1, x2, ·)||2.
H−(1/4)(Rt)

"
∫ 0

τ=−∞
|τ |−(1/2)

[∣∣Û0(k1, −
√

−τ )
∣∣2 +

∣∣Û0(k1,
√

−τ )
∣∣2

]
dτ
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and, changing variable from τ back to k2, we obtain

||eik2
1·Ûx1

x2 (k1, x2, ·)||2.
H−(1/4)(Rt)

"
∫

k2∈R

∣∣Û0(k1, k2)
∣∣2 dk2.

In turn, (3.6) yields ||Ux2 (x2)||2
Xs,−(1/4)

T
"

∫
k1∈R(1 + k2

1)s ∫
k2∈R |Û0(k1, k2)|2 dk2 dk1 ≤ ||U0||2Hs(R2

x) with

the second inequality due to the fact that s ≥ 0. !

We proceed to the forced linear ivp with zero initial data,

iWt + Wx1x1 + Wx2x2 = F(x, t), x = (x1, x2) ∈ R2, t ∈ R, (3.7a)

W(x, 0) = 0, x ∈ R2, (3.7b)

whose solution is given by

W(x, t) = S
[
0; F

]
(x, t) = − i

(2π )2

∫ t

t′=0

∫

k∈R2
eik·x−ik2(t−t′)F̂x(k, t′) dk dt′, (3.8)

where F̂x(k, t) =
∫

x∈R2 e−ik·xF(x, t) dx is the spatial Fourier transform of F on the whole plane.

Theorem 3.2 (Forced linear ivp with zero initial data). The solution W = S[0; F] to the forced
linear Schrödinger ivp (3.7), given by the Fourier transform formula (3.8), satisfies the Hadamard space
estimate

sup
t∈[0,T]

||W(t)||Hs(R2
x) ≤ T sup

t∈[0,T]
||F(t)||Hs(R2

x), s ∈ R, (3.9)

and the Bourgain-type estimates

sup
x2∈R

||(Wx2 + γW)(x2)||X0,((2s−1)/4)
T

≤ cs
√

T sup
t∈[0,T]

||F(t)||Hs(R2
x), 1 ≤ s ≤ 5

2 , s %= 3
2

, (3.10)

sup
x2∈R

||(Wx2 + γW)(x2)||Xs,−(1/4)
T

≤ cs,γ
√

T sup
t∈[0,T]

||F(t)||Hs(R2
x), s ≥ 0. (3.11)

Before giving the proof of the above results, we remark that estimates (3.4), (3.5), (3.10) and
(3.11) along with estimate (2.4) for the reduced pure linear ibvp confirm that the space Bs

T defined
by (1.3) is the correct space for the boundary data g of the forced linear ibvp (1.10) (and hence of
the nonlinear ibvp (1.1)).

Proof. Estimate (3.9) is (3.21) from [2]. Estimate (3.10) follows from (3.25) in [2], which reads

sup
x2∈R

||W(x2)||X0,(2s+1)/4
T

≤ cs
√

T sup
t∈[0,T]

||F(t)||Hs(R2
x), 0 ≤ s ≤ 3

2
, s %= 1

2
, (3.12)

after noting that Wx2 = S[0; Fx2 ] and employing (3.12) for W and Wx2 with s − 1 instead of s.
Concerning estimate (3.11), we first note that (3.26) in [2] yields

sup
x2∈R

||W(x2)||Xs,−(1/4)
T

≤ sup
x2∈R

||W(x2)||Xs,1/4
T

"
√

T sup
t∈[0,T]

||F(t)||Hs(R2
x), s ≥ 0. (3.13)

Moreover, as in the proof of theorem 3.1, we have

||Wx2 (x2)||2
Xs,−(1/4)

T
≤

∫

k1∈R

(
1 + k2

1
)s||eik2

1tŴx1
x2 (k1, x2, t)||2.

H−(1/4)(0,T)
dk1. (3.14)

For k1, x2 ∈ R and t ∈ [0, T], formula (3.8) implies eik2
1tŴx1

x2 (k1, x2, t) = R(k1, x2, t), where

R(k1, x2, t) = − i
2π

∫ t

t′=0
χ[0,T](t′) eik2

1t′
∫

k2∈R
eik2x2−ik2

2(t−t′)∂̂x2 Fx(k1, k2, t′) dk2 dt′ (3.15)
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where χ[0,T] denotes the characteristic function of the interval [0, T]. The important observation is
that, for each k1 ∈ R, R(k1, x2, t) satisfies the one-dimensional ivp

iRt + Rx2x2 = χ[0,T](t) eik2
1t∂̂x2 Fx1 (k1, x2, t), x2 ∈ R, t ∈ R,

R(k1, x2, 0) = 0, x2 ∈ R.
(3.16)

In this connection, from the proof of lemma 11 in [13], we have

sup
x2∈R

||R(k1, x2)|| .
H−(1/4)(Rt)

≤ cs||χ[0,T](t) eik2
1t∂̂x2 Fx1 (k1, x2, t)||L1(Rt;

.
H−1(Rx2 )). (3.17)

Combining this bound with (3.14) and Minkowski’s integral inequality, we find

sup
x2∈R

||Wx2 (x2)||Xs,−(1/4)
T

"
∫T

t=0

(∫

k1∈R

(
1 + k2

1
)s

∫

k2∈R

∣∣̂Fx(k1, k2, t)
∣∣2 dk2 dk1

) 1
2

dt,

which completes the proof of estimate (3.11) in view of (1 + k2
1)s ≤ (1 + k2

1 + k2
2)s for s ≥ 0. !

4. The forced linear ibvp and proof of theorems 1.2 and 1.1
In this section, we combine the estimates for the reduced pure linear ibvp (theorem 2.1) and the
homogeneous and forced linear ivps (theorems 3.1 and 3.2) in order to prove theorem 1.2 for
the forced linear ibvp (1.10) and the Hadamard well-posedness theorem 1.1 for the nonlinear
ibvp (1.1). For this purpose, we decompose ibvp (1.10) into component problems by using the
superposition principle and suitable extensions of the initial and boundary data.

Decomposition into simpler problems. Let U0 ∈ Hs(R2
x) and F(t) ∈ Hs(R2

x) be, respectively,
extensions of the initial datum u0 ∈ Hs(Rx1 × R+

x2 ) and the forcing f (t) ∈ Hs(Rx1 × R+
x2 ) of ibvp

(1.10) such that
||U0||Hs(R2

x) ≤ 2||u0||Hs(Rx1 ×R+
x2 ),

||F(t)||Hs(R2
x) ≤ 2||f (t)||Hs(Rx1 ×R+

x2 ), t ∈ [0, T].
(4.1)

Then, thanks to linearity, we can express the solution S[u0, g; f ] of ibvp (1.10) in the form

S
[
u0, g; f

]
= S

[
U0; 0

]∣∣
x2>0 + S

[
0; F

]∣∣
x2>0 + S

[
0,ψ1; 0

]
+ S

[
0,ψ2; 0

]
(4.2)

where, for U0 and F as chosen above, S[U0; 0] solves the homogeneous linear ivp (3.1), S[0; F]
solves the forced ivp with zero data (3.7) and, for boundary data ψ1 and ψ2 given by

ψ1(x1, t) = g(x1, t) − (∂x2 S
[
U0; 0

]
+ γS

[
U0; 0

]
)(x1, 0, t),

ψ2(x1, t) = −(∂x2 S
[
0; F

]
+ γS

[
0; F

]
)(x1, 0, t),

(4.3)

and S[0,ψ1; 0] and S[0,ψ2; 0] solve the pure linear ibvp

iut + ux1x1 + ux2x2 = 0, (x1, x2) ∈ R × R+, t ∈ (0, T),

u(x1, x2, 0) = 0,

(ux2 + γu)(x1, 0, t) =ψ(x1, t),

(4.4)

with ψ =ψ1 and ψ =ψ2, respectively. Note that, thanks to theorems 3.1 and 3.2 and the extension
inequalities (4.1), the boundary data ψ1 and ψ2 belong to the space Bs

T with

||ψ1||Bs
T
" ||u0||Hs(Rx1 ×R+

x2 ) + ||g||Bs
T

and ||ψ2||Bs
T
"

√
T sup

t∈[0,T]
||f (t)||Hs(Rx1 ×R+

x2 ). (4.5)

Also, by the compatibility condition (1.7) and the time regularity of the linear ivp established in
theorems 3.1 and 3.2, for 3

2 < s < 5
2 , we have

ψ1(x1, 0) =ψ2(x1, 0) = 0, x1 ∈ R. (4.6)
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In view of (3.3), (3.9) and (4.1), the decomposition (4.2) implies

sup
t∈[0,T]

||S
[
u0, g; f

]
(t)||Hs(Rx1 ×R+

x2 ) ≤ ||u0||Hs(Rx1 ×R+
x2 ) + T sup

t∈[0,T]
||f (t)||Hs(Rx1 ×R+

x2 )

+ sup
t∈[0,T]

||S
[
0,ψ1; 0

]
(t)||Hs(Rx1 ×R+

x2 )

+ sup
t∈[0,T]

||S
[
0,ψ2; 0

]
(t)||Hs(Rx1 ×R+

x2 ). (4.7)

Next, by relating the pure linear ibvp (4.4) with the reduced pure linear ibvp (2.1), we will deduce
estimates for the Hadamard norms of S[0,ψ1; 0] and S[0,ψ2; 0].

Extension of the boundary data. For 1 ≤ s < 3
2 , given ψ ∈ Bs

T define h via its x1-Fourier transform

ĥx1 (k1, t) =
{
ψ̂x1 (k1, t), t ∈ (0, T),
0, t ∈ [0, T]c,

a.e. k1 ∈ R. (4.8)

Note that supp(h) ⊂ Rx1 × (0, 2) since for the purpose of local well-posedness we take T < 1. Also,
as we show below, h ∈ X0,((2s−1)/4) ∩ Xs,−(1/4). Indeed, for each k1 ∈ R let ϕ(t) = eik2

1tψ̂x1 (k1, t) and
observe that ψ ∈ Bs

T implies ϕ ∈ H(2s−1)/4(0, T) for a.e. k1 ∈ R. Then, by theorem 11.4 of [50], the
extension Φ0 of ϕ by zero outside (0, T) satisfies

||Φ0||H(2s−1)/4(Rt) ≤ cs||ϕ||H(2s−1)/4(0,T), (4.9)

where cs = c(s) is independent of ϕ. Furthermore, since ϕ ∈ H−(1/4)(0, T), there exists an extension
Φ1 ∈ H−(1/4)(Rt) such that

||Φ1||H−(1/4)(Rt) ≤ 2||ϕ||H−(1/4)(0,T).

Then, noting that χ(0,T)Φ1 =Φ0 and employing proposition 3.5 of [51] (see also lemma 4.2 in [14]),
we infer

||Φ0||H−(1/4)(Rt) = ||χ(0,T)Φ1||H−(1/4)(Rt) ≤ c||Φ1||H−(1/4)(Rt) ≤ 2c||ϕ||H−(1/4)(0,T) (4.10)

for some universal constant c. Therefore, since ĥx1 (k1, t) = e−ik2
1tΦ0(k1, t), by the definition of the

Bourgain norms (1.6), we find

||h||2X0,((2s−1)/4) =
∫

k1∈R
||Φ0(k1)||2H(2s−1)/4(Rt)

dk1

"
∫

k1∈R
||ϕ(k1)||2H(2s−1)/4(0,T) dk1 = ||ψ ||2

X0,((2s−1)/4)
T

,

||h||2Xs,−(1/4) =
∫

k1∈R

(
1 + k2

1
)s||Φ0(k1)||2H−(1/4)(Rt)

dk1

"
∫

k1∈R

(
1 + k2

1
)s||ϕ(k1)||2H−(1/4)(0,T) dk1 = ||ψ ||2

Xs,−(1/4)
T

, (4.11)

thereby concluding that h ∈ X0,((2s−1)/4) ∩ Xs,−(1/4).
For 3

2 < s < 5
2 , suppose ψ ∈ Bs

T with ψ(x1, 0) = 0, x1 ∈ R (note that this equality holds for ψ1,ψ2

in view of (4.6)). Then, ϕ(t) = eik2
1tψ̂x1 (k1, t) belongs to H(2s−1)/4(0, T) for a.e. k1 ∈ R and ϕ(0) = 0.

Let φ ∈ H(2s−1)/4(R) be an extension of ϕ such that ||φ||H(2s−1)/4(Rt) ≤ 2||ϕ||H(2s−1)/4(0,T). Then, for
ϑ ∈ C∞

0 (R) equal to 1 on [−1, 1] and decaying smoothly so that it equals zero on (−2, 2)c, the
function ϑ(t)φ(t) belongs to H(2s−1)/4

0 (0, 2). Thus, by theorem 11.4 of [50], the extension Φ0 of
ϑφ by zero outside (0, 2) satisfies ||Φ0||H(2s−1)/4(Rt) ≤ cs||ϑφ||H(2s−1)/4(0,2) " ||ϕ||H(2s−1)/4(0,T), where we
have also used the fact ||ϑ f ||Hb(R) ≤ c(ϑ , b)||f ||Hb(R), b ∈ R. Furthermore, letting Φ1 ∈ H−(1/4)(Rt)
be an extension of ϑφ outside (0, 2) such that ||Φ1||H−(1/4)(Rt) ≤ 2||ϑφ||H−(1/4)(0,2) and noting that
χ(0,2)Φ1 =Φ0, we employ lemma 4.2 of [14] to infer similarly to (4.10) that ||Φ0||H−(1/4)(Rt) ≤
2c||ϑφ||H−(1/4)(0,2) " ||ϕ||H−(1/4)(0,T). Hence, defining h via its x1-Fourier transform as ĥx1 (k1, t) =
e−ik2

1tΦ0(t) a.e. k1 ∈ R, we have h =ψ on (0, T), supp(h) ⊂ Rx1 × (0, 2) and h ∈ X0,((2s−1)/4) ∩ Xs,−(1/4)

with inequalities (4.11) in place.
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Proof of theorem 1.2. The extension h ofψ defined above meets all of the requirements for serving
as boundary datum in the reduced pure linear ibvp (2.1). Thus, we employ estimate (2.4) along
with inequalities (4.11) and (4.5) to deduce, for ψ =ψ1 and ψ =ψ2, respectively,

sup
t∈[0,T]

||S
[
0,ψ1; 0

]
(t)||Hs(Rx1 ×R+

x2 ) " ||u0||Hs(Rx1 ×R+
x2 ) + ||g||Bs

T
,

sup
t∈[0,T]

||S
[
0,ψ2; 0

]
(t)||Hs(Rx1 ×R+

x2 ) "
√

T sup
t∈[0,T]

||f (t)||Hs(Rx1 ×R+
x2 ).

(4.12)

This completes the estimation of the two pure linear ibvps in (4.7) and hence implies the desired
estimate (1.14) of theorem 1.2 for γ %= 0. See §5 for the modifications needed when γ = 0. !

Proof of theorem 1.1. Along the lines of the argument presented in [2], the forced linear ibvp
estimate (1.14) can be combined with the algebra property in Hs(Rx1 × R+

x2 ) (which is valid for
s > 1) to show that the iteration map Φ : u (→ S[u0, g; ±|u|α−1u] is a contraction in a ball inside the
Hadamard space C([0, T∗]; Hs(Rx1 × R+

x2 )) for 1 < s < 5
2 , s %= 3

2 , with lifespan T∗ given by (1.8). This
amounts to local Hadamard well-posedness for the NLS ibvp (1.1) as stated in theorem 1.1, with a
unique solution to (1.1) understood in the sense of the integral equation u = S[u0, g; ±|u|α−1u]. We
note that the assumption (α − 1)/2 ∈ N allows us to express the difference |u1|α−1u1 − |u2|α−1u2
in the form (u1ū1)(α−1)/2 − (u2ū2)(α−1)/2 when proving the contraction inequality. !

5. The Neumann problem
In this section, we provide the modifications needed in the case of Neumann data (γ = 0). We
begin with the reduced pure linear ibvp and then proceed to the proof of theorem 1.2 for the
forced linear ibvp when γ = 0. We note that the proof of theorem 1.1 for the nonlinear problem
does not require any modifications from the case γ %= 0, since it is based solely on theorem 1.2,
which (as we shall show below) holds for both γ %= 0 and γ = 0.

The reduced pure linear ibvp. In the Neumann case γ = 0, the reduced pure linear ibvp (2.1)
becomes

ivt + vx1x1 + vx2x2 = 0, (x1, x2) ∈ R × R+, t ∈ (0, 2),

v(x1, x2, 0) = 0,

vx2 (x1, 0, t) = g(x1, t), supp(g) ⊂ Rx1 × (0, 2).

(5.1)

For this problem, the unified transform solution formula (1.11) takes the simple form

v(x1, x2, t) = − i
(2π )2

∫

k1∈R

∫

k2∈∂D
eik1x1+ik2x2−i(k2

1+k2
2)t2̂g(k1, −k2

1 − k2
2) dk2 dk1, (5.2)

where the contour ∂D is the boundary of the first quadrant of the complex k2-plane as shown in
figure 1 and ĝ denotes the Fourier transform (2.3). Using formula (5.2), we will prove the following
Neumann analogue of theorem 2.1.

Theorem 5.1 (Basic linear estimate for the Neumann problem). Let s ≥ 0. Then, the solution
v(x1, x2, t) of the reduced pure linear ibvp (5.1), as given by formula (5.2), satisfies the Hadamard estimate

sup
t∈[0,2]

||v(t)||Hs(Rx1 ×R+
x2 ) ≤ cs

(
||g|| .

X0,((2s−1)/4) + ||g|| .
Xs,−(1/4)

)
. (5.3)

Remark 5.2. In the above theorem, the homogeneous-in-time Bourgain space
.
Xσ ,b is defined

via the norm

||g||2.
Xσ ,b =

∫

k1∈R

(
1 + k2

1
)σ ∣∣τ + k2

1
∣∣2b |̂g(k1, τ )|2 dk1

=
∫

k1∈R

(
1 + k2

1
)σ ||eik2

1 t̂gx1 (k1, t)||2.
Hb(Rt)

dk1,
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where
.

Hb denotes the homogeneous Sobolev space. Importantly, for s ≥ 1
2 the space

.
X0,((2s−1)/4)

can be replaced in (5.3) by the nonhomogeneous space X0,((2s−1)/4). However, this is not possible
for the space

.
Xs,−(1/4), since the homogeneous weight is now independent of s.

Proof. Parameterizing ∂D along the positive imaginary and real axes, we write v = v1 + v2 with

v1(x1, x2, t) = − 1
(2π )2

∫

k1∈R

∫∞

k2=0
eik1x1−k2x2−i(k2

1−k2
2)t2̂g(k1, −k2

1 + k2
2) dk2 dk1,

v2(x1, x2, t) = − i
(2π )2

∫

k1∈R

∫∞

k2=0
eik1x1+ik2x2−i(k2

1+k2
2)t2̂g(k1, −k2

1 − k2
2) dk2 dk1.

These expressions are similar to (2.5) and (2.6) for the Robin problem but without the fractions
k2/(k2 − γ ) and k2/(k2 − iγ ), respectively. Thus, with the exception of inequality (2.9), which was
the key for transitioning from homogeneous to non-homogeneous weights in the Robin case, we
can follow the same steps as in the proof of theorem 2.1 to obtain the following analogues of (2.11)
and (2.19)

||v2(t)||2Hs(Rx1 ×R+
x2 ) "

∫

k1∈R

∫−k2
1

τ=−∞

(
1 + k2

1
)s∣∣τ + k2

1
∣∣−(1/2)∣∣̂g(k1, τ )

∣∣2 dτ dk1

+
∫

k1∈R

∫−k2
1

τ=−∞

∣∣τ + k2
1
∣∣s−(1/2)∣∣̂g(k1, τ )

∣∣2 dτ dk1, s ∈ R,

||v1(t)||2Hs(Rx1 ×R+
x2 ) "

∫

k1∈R

∫∞

τ=−k2
1

(
1 + k2

1
)s(τ + k2

1)−(1/2) |̂g(k1, τ )|2 dτ dk1

+
∫

k1∈R

∫∞

τ=−k2
1

(τ + k2
1)s−(1/2) |̂g(k1, τ )|2 dτ dk1, s ≥ 0.

These two estimates combine to imply the desired estimate (5.3). !

Proof of theorem 1.2 when γ = 0. Having established theorem 5.1 for the reduced pure linear ibvp
in the Neumann case, we shall now combine this result with inequality (4.7) in order to establish
estimate (1.14) for the forced linear ibvp (1.10) when γ = 0 and 1 ≤ s < 3

2 . Like in the Robin case,
this step requires us to define an appropriate extension of the boundary data (4.3), which for γ = 0
are given by

ψ1(x1, t) = g(x1, t) − ∂x2 S
[
U0; 0

]
(x1, 0, t) and ψ2(x1, t) = −∂x2 S

[
0; F

]
(x1, 0, t). (5.4)

Indeed, the remaining two components S[U0; 0] and S[0; F] that appear in (4.2) concern the
homogeneous and forced linear ivp, respectively, and have been estimated in theorems 3.1 and
3.2. Denoting ψ1 and ψ2 simply by ψ ∈ Bs

T, for each k1 ∈ R and 1 ≤ s < 3
2 we let ϕ(t) = eik2

1tψ̂x1 (k1, t)
and denote the extension of this function by zero outside (0, T) by Φ0(t). Observe that, since
ψ ∈ Bs

T, we have ϕ ∈ H(2s−1)/4(0, T) for a.e. k1 ∈ R. Next, define the global function h(x1, t) via its
x1-Fourier transform as

ĥx1 (k1, t) = θ (t) e−ik2
1tΦ0(k1, t), a.e. k1 ∈ R, t ∈ R, (5.5)

where θ ∈ C∞
0 [−1, 3] is equal to 1 on [0, 2] and decays to zero smoothly outside [0, 2]. Note

that this definition implies supp(h) ⊂ Rx1 × (0, 2) and h(t) =ψ(t) for t ∈ (0, T). Also, as we show
next, h ∈ X0,((2s−1)/4) ∩ Xs,−(1/4). Indeed, the fact ||θ f ||Hb(R) ≤ c(θ , b)||f ||Hb(R), b ∈ R, combined with
inequalities (4.9) and (4.10) yields

||θΦ0(k1)||H(2s−1)/4(Rt) ≤ cs,θ ||ϕ(k1)||H(2s−1)/4(0,T)

and ||θΦ0(k1)||H−(1/4)(Rt) ≤ cs,θ ||ϕ(k1)||H−(1/4)(0,T).
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Thus, by the definition of the Bourgain norms, we find

||h||2X0,((2s−1)/4) =
∫

k1∈R
||θΦ0(k1)||2H(2s−1)/4(Rt)

dk1 "
∫

k1∈R
||ϕ(k1)||2H(2s−1)/4(0,T) dk1 = ||ψ ||2

X0,((2s−1)/4)
T

,

||h||2Xs,−(1/4) =
∫

k1∈R

(
1 + k2

1
)s||θΦ0(k1)||2H−(1/4)(Rt)

dk1

"
∫

k1∈R

(
1 + k2

1
)s||ϕ(k1)||2H−(1/4)(0,T) dk1 = ||ψ ||2

Xs,−(1/4)
T

,

thereby deducing that h ∈ X0,((2s−1)/4) ∩ Xs,−(1/4). Therefore, h can play the role of the boundary
datum in the reduced pure linear ibvp (5.1) and so, for ψ =ψ1, estimate (5.3) yields

sup
t∈[0,T]

||S
[
0,ψ1; 0

]
(t)||Hs(Rx1 ×R+

x2 ) " ||h||X0,((2s−1)/4) + ||h|| .
Xs,−(1/4) " ||ψ1||X0,((2s−1)/4)

T
+ ||h|| .

Xs,−(1/4) (5.6)

after replacing the norm of
.
X0,((2s−1)/4) with the one of X0,((2s−1)/4) (since s > 1

2 ). In addition,
according to lemma 2.8 in [12] (see also lemma 4.1 in [14]), for 0 ≤ b < 1

2 and any θ ∈ C∞
0 (R), we

have ||θ f || .
H−b(R) ≤ c(θ , b)||f ||H−b(R). Thanks to the presence of the function θ in the definition (5.5)

of h, we can use this result for b = 1
4 and f =Φ0 to obtain ||θΦ0(k1)|| .

H−(1/4)(Rt)
" ||Φ0(k1)||H−(1/4)(Rt) "

||ϕ(k1)||H−(1/4)(0,T), where for the last step, we have employed inequality (4.10). Hence,

||h||2.
Xs,−(1/4)

=
∫

k1∈R

(
1 + k2

1
)s||θΦ0(k1)||2.

H−(1/4)(Rt)
dk1

"
∫

k1∈R

(
1 + k2

1
)s||ϕ(k1)||2H−(1/4)(0,T) dk1 = ||ψ1||2Xs,−(1/4)

T
.

For 3
2 < s < 5

2 , the construction of h is similar after making the corresponding modifications for
that range as in the Robin case γ %= 0. Then, combining (5.6) with (4.5) for ψ1, we find

sup
t∈[0,T]

||S
[
0,ψ1; 0

]
(t)||Hs(Rx1 ×R+

x2 ) " ||g||Bs
T

+ ||u0||Hs(Rx1 ×R+
x2 ).

Along the same lines, we also have

sup
t∈[0,T]

||S
[
0,ψ2; 0

]
(t)||Hs(Rx1 ×R+

x2 ) "
√

T sup
t∈[0,T]

||f (t)||Hs(Rx1 ×R+
x2 ).

These estimates along with inequality (4.7) imply the desired estimate (1.14), completing the proof
of theorem 1.2 in the Neumann case γ = 0. !

6. Solution of the linear ibvp via the uni(ed transform of Fokas
We provide the derivation of the unified transform formula (1.11) for the forced linear Schrödinger
ibvp (1.10) under the assumption of sufficiently smooth initial and boundary values. The case of
Sobolev data can be handled via a density argument along the lines of [3]. Taking the half-plane
Fourier transform (1.12) of the forced linear Schrödinger equation and using the Robin boundary
condition along with the notation u(x1, 0, t) = g0(x1, t), we find

ût + i(k2
1 + k2

2)̂u =
∫

x1∈R
e−ik1x1 [(k2 + iγ )g0(x1, t) − ig(x1, t)] dx1 − îf , k1 ∈ R, Im(k2) ≤ 0.

We note that the domain can be extended to the lower half of the complex k2-plane thanks to the
fact that x2 > 0. Integrating this expression with respect to t yields the so-called global relation

ei(k2
1+k2

2)tû(k1, k2, t) = û0(k1, k2) + (k2 + iγ )g̃0(k1, k2
1 + k2

2, t) − ig̃(k1, k2
1 + k2

2, t)

− i
∫ t

t′=0
ei(k2

1+k2
2)t′ f̂ (k1, k2, t′) dt′ (6.1)
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with g̃0 and g̃ defined according to (1.13). Thus, by the inverse Fourier transform, we obtain

u(x1, x2, t) = 1
(2π )2

∫

k1∈R

∫

k2∈R
eik1x1+ik2x2−i(k2

1+k2
2)tû0(k1, k2) dk2 dk1

− i
(2π )2

∫

k1∈R

∫

k2∈R
eik1x1+ik2x2−i(k2

1+k2
2)t

∫ t

t′=0
ei(k2

1+k2
2)t′ f̂ (k1, k2, t′) dt′ dk2 dk1

+ 1
(2π )2

∫

k1∈R

∫

k2∈R
eik1x1+ik2x2−i(k2

1+k2
2)t

×
[
(k2 + iγ )g̃0(k1, k2

1 + k2
2, t) − ig̃(k1, k2

1 + k2
2, t)

]
dk2 dk1. (6.2)

This is an integral representation for the solution but not an explicit formula since g̃0 involves
the unknown Dirichlet boundary value g0. However, it is possible to eliminate g̃0 from (6.2)
in favour of known quantities. To accomplish this, we begin by observing that for x2 ≥ 0 and
t ≥ t′ the exponential eik2x2−ik2

2(t−t′) is bounded for k2 ∈ {Im(k2) ≥ 0} \ D, where D here denotes the
first quadrant of the complex k2-plane (figure 1). Thus, exploiting the analyticity of the half-
plane Fourier transform as well as of the transforms g̃0 and g̃ for all k2 ∈ C (which follows via
a Paley–Wiener theorem), we apply Cauchy’s theorem in the second quadrant of the complex
k2-plane to deform the contour of the k2 integral in the last term of (6.2) from R to the
positively oriented boundary ∂D of D (figure 1). This deformation is possible thanks to the
fact that, for the quartercircle γ+

ρ = {ρ eiθ : π2 ≤ θ ≤ π}, we can show along the lines of [2] that
limρ→∞

∫
k2∈γ+

ρ
eik2x2−ik2

2t[(k2 + iγ )g̃0(k1, k2
1 + k2

2, t) − ig̃(k1, k2
1 + k2

2, t)] dk2 = 0. Thus, (6.2) becomes

u(x1, x2, t) = 1
(2π )2

∫

k1∈R

∫

k2∈R
eik1x1+ik2x2−i(k2

1+k2
2)tû0(k1, k2) dk2 dk1

− i
(2π )2

∫

k1∈R

∫

k2∈R
eik1x1+ik2x2−i(k2

1+k2
2)t

∫ t

t′=0
ei(k2

1+k2
2)t′ f̂ (k1, k2, t′) dt′ dk2 dk1

+ 1
(2π )2

∫

k1∈R

∫

k2∈∂D
eik1x1+ik2x2−i(k2

1+k2
2)t

[
(k2 + iγ )g̃0(k1, k2

1 + k2
2, t) − ig̃(k1, k2

1 + k2
2, t)

]
dk2 dk1.

(6.3)

Next, note that under the transformation k2 (→ −k2 the global relation (6.1) yields the identity

ei(k2
1+k2

2)tû(k1, −k2, t) = û0(k1, −k2) + (−k2 + iγ )g̃0(k1, k2
1 + k2

2, t) − ig̃(k1, k2
1 + k2

2, t)

− i
∫ t

t′=0
ei(k2

1+k2
2)t′ f̂ (k1, −k2, t′) dt′, k1 ∈ R, Im(k2) ≥ 0. (6.4)

If γ < 0, then k2 − iγ %= 0 for all k2 ∈ ∂D, so we can use (6.4) to substitute for g̃0 in (6.3) and obtain

u(x1, x2, t) = 1
(2π )2

∫

k1∈R

∫

k2∈R
eik1x1+ik2x2−i(k2

1+k2
2)tû0(k1, k2) dk2 dk1

+ 1
(2π )2

∫

k1∈R

∫

k2∈∂D
eik1x1+ik2x2−i(k2

1+k2
2)t k2 + iγ

k2 − iγ
û0(k1, −k2) dk2 dk1

− i
(2π )2

∫

k1∈R

∫

k2∈R
eik1x1+ik2x2−i(k2

1+k2
2)t

∫ t

t′=0
ei(k2

1+k2
2)t′ f̂ (k1, k2, t′) dt′ dk2 dk1

− i
(2π )2

∫

k1∈R

∫

k2∈∂D
eik1x1+ik2x2−i(k2

1+k2
2)t k2 + iγ

k2 − iγ

∫ t

t′=0
ei(k2

1+k2
2)t′ f̂ (k1, −k2, t′) dt′ dk2 dk1

− i
(2π )2

∫

k1∈R

∫

k2∈∂D
eik1x1+ik2x2−i(k2

1+k2
2)t 2k2

k2 − iγ
g̃(k1, k2

1 + k2
2, t) dk2 dk1, (6.5)

where we have also used the fact that
∫

k2∈∂D eik2x2 ((k2 + iγ )/(k2 − iγ ))̂u(k1, −k2, t) dk2 = 0 by
analyticity and exponential decay of the integrand inside D. Formula (6.5) is true also for γ = 0,
since in that case the denominator k2 − iγ cancels out. Moreover, exploiting once again analyticity
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and exponential decay in D, we infer
∫

k2∈∂D eik2x2−ik2
2t ∫T

t′=t ei(k2
1+k2

2)t′ (2k2/(k2 − iγ ))
∫

y1∈R e−ik1y1

g(y1, t′) dy1dt′ dk2 = 0, which turns (6.5) into the equivalent form (1.11) with C = ∂D.
If γ > 0, then k2 − iγ vanishes along the positive imaginary axis, which is part of ∂D. To avoid

crossing this singularity, before using identity (6.4) to solve for g̃0 we locally deform the contour
of integration of the last k2 integral in (6.2) from ∂D to the contour ∂D̃ shown in figure 1. Then,
proceeding as for γ < 0, we obtain the unified transform formula (1.11), this time with C = ∂D̃.
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