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This work studies the initial-boundary value problem
(ibvp) of the two-dimensional nonlinear Schrodinger
equation on the half-plane with initial data in
Sobolev spaces and Neumann or Robin boundary
data in appropriate Bourgain spaces. It establishes
well-posedness in the sense of Hadamard by using
the explicit solution formula for the forced linear
ibvp obtained via Fokas’s unified transform, and a
contraction mapping argument.

1. Introduction

We study the initial-boundary value problem (ibvp) of
the nonlinear Schrodinger (NLS) equation on the half-
plane with a Robin boundary condition, that is

iU + Uy, + Uxyyy, = :l:|u|a71u/
(X1,X2) eR x R+r te (O/ T)r

u(x1, x2,0) = up(x1, x2),

(MXZ + yu)(xll Or t) =g(x1/ t)r (11)
where (¢ —1)/2€ N and y e R. When y =0, this is the
Neumann problem, which we examine at the end of
this work. Here, we establish the local well-posedness
of ibvp (1.1) for initial data 1y in the Sobolev space
of the half-plane H*(Ry, x R{)) and boundary data in

the Bourgain-type space B} suggested by the solution
estimate of the reduced pure linear ibvp (see (2.4)).
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We recall that H*(Ry, x R,}E) is defined as the restriction of the Sobolev space H5(R?) to Ry, X R,}Z
with norm

1115 gy, s, = INFIF ey  F € H(R?) and Flg gy =f). (12)

The boundary data space B, which can be thought as expressing the time regularity of the linear
homogeneous problem in two dimensions, is defined by

B = XOT/((2S*1)/4) n X%*(l/‘l), (1.3)
where XOT’((zs_l)/ Y and Xsf_(l/ Y are the Bourgain-type spaces defined via the norm
18115 = LGR (1+13)7[1€™18 (1, )| By, 7y A (1.4)
with g1 denoting the Fourier transform of ¢ with respect to x1, i.e.
(kg ) = LGR e kMg, f)dxy, ki €R, te(0,T). (1.5)

Furthermore, we note that the spaces X‘}’b can be regarded as restrictions on R x (0, T) of the
celebrated Bourgain spaces Xxob (Ry x R¢), which are defined via the norm [1]

1811300 = L L k)7 (1 + [t + B Igk, )2 dky
1€

2

eI (k)|

- L R dky. (16)
1€

In addition, for % <s< % the initial and boundary data satisfy the compatibility condition

HE(Ry)

(Ox,u0 + yup)(x1,0) =g(x1,0), x1€R. (1.7)
Now, we are able to state the main result of this work more precisely as follows.

Theorem 1.1 (Local well-posedness). Suppose 1 <s < % with s # % Then, for initial data ug
HS(Ry, x RY,) and Robin (y # 0) or Neumann (y = 0) boundary data g € B} satisfying the compatibility
condition (1.7) for % <s< %, the NLS ibvp (1.1) is locally well-posed in the sense of Hadamard. More
precisely, for

)—2(0{—1)}

T* = min {T/ Cs,y o (| |u0||HS(]RX1 xRY,) + 118l |B§r ; Gy >0, (1.8)

there exists a unique solution u € C([0, T*]; H*(Ry, X R;)), which satisfies the estimate

sup ||”(t)||H5(]RX1><R;2) <2cs, (||”0||H5(]Rxl><R;2) + ||g||B-”‘T)/ csy > 0. (1.9)
te[0,T*]

In addition, the data-to-solution map {1, g} — u is locally Lipschitz continuous.

Theorem 1.1 completes the picture of the NLS ibvp well-posedness on the half-plane for
smooth data initiated in our earlier work [2] for the case of Dirichlet data. In one spatial dimension
and on the half-line, the well-posedness of the NLS ibvp by using the Fokas unified transform
method was established in [3] for Dirichlet data and in [4] and [5] for Neumann and Robin data,
respectively. Furthermore, concerning the ibvp for the Korteweg-de Vries (KdV) equation on the
half-line, this approach for proving well-posedness has been implemented in [6] for Dirichlet data
and in [7] for Neumann and Robin data. We also mention that there are two other approaches in
the literature for studying the well-posedness of the ibvp for KdV and NLS on the half-line with
Dirichlet data. The first approach is due to Bona et al. [8-10] and uses the Laplace transform in
the temporal variable for analysing the linear problem (see also [11]). The second approach was
developed by Colliander & Kenig for the generalized KdV on the half-line [12], and later on by
Holmer for the NLS and KdV on the half-line [13,14], and is based on expressing the linear ibvp as
a superposition of initial value problems. Moreover, besides [2], two other works in the literature
on the well-posedness of the two-dimensional NLS equation on the half-plane are those by Ran
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Figure 1. The regions D and D with their positively oriented boundaries 80 and 3D, which assume the role of the contour C in
formula (1.17) for y < 0and y > 0, respectively.

et al. [15] and Audiard [16] (the latter work includes the case of Neumann data with a function
space similar to the one obtained in the present work).

The well-posedness of the nonlinear ibvp (1.1) will be established via a contraction mapping
argument using the unified transform solution formula and the estimates obtained for the forced
linear version of that ibvp. Therefore, the first step of our approach is to derive the Fokas unified
transform solution for the forced linear ibvp

iut + uX1X1 + uXZXZ :f(X1,X2, t) € C([OI T]/ Hs(Rxl X R;—z))/
u(xq,x0,0) = ug(x1, x2) € H (Ry, x R (1.10)

X2 /7
(uxZ + Vu)(xlr 0, t) :8(9(1/ t) € B%‘

This formula is given by (see §6 for an outline of its derivation)

u(xy, xa,t) = S[ug, & f](x1, x2, )
_ 1 J J eik1x1+ikzxz—i(k%+k§)ta0(k1’kz) dk2 dk1
27)? Jier Jryer

1 ; ; ; ko +1iy ~
+— J J e1k1x1+1k2x2—1(k§+k§)tLp’uo(kl, —kp) dky dky
(27)* Jkyer Jroec ky —iy

t

_ ;2 J J eik1x1+ikzx27i(k%+k%)fj ei(k%+k%)t’7(k1,k21 t/) 4r dk2 dkl
27)? Jiyer Joer v—o

. o
_ ;zj J ek ik -8+ k2 + 1Y J ST e ey, ) ke ey
(277) k1eR Jk,eC k2 —1iy Jy—o

i ik kv —ieH2)e 2k2 - 2
- e 222 Sk, K2+ K2, T) dky dky, (1.11)
(277)2 JkleJR szec ko _U’g !
where the complex contour C is either dD (for y <0) or 9D (for y > 0), as shown in figure 1, the
terms 7 and f denote the half-plane Fourier transforms of 1y and f defined according to

B0k ko) =J

X1 eR

oo . .
J e, o) di (112)
Xp =l

the transform g is defined in terms of the boundary data g by

T
30,2+ 12, T) = f

ei(k%-ﬁ-k%)t J e_iklxlg(xl, t) dxdt. (113)
t=0

x1eR
We note that the indented contour 3D as the path of integration C in (1.11) appears only for y > 0.
In particular, that contour is not present in the analysis of the Dirichlet problem given in [2].

The second step of our approach consists in estimating the solution (1.11) of the forced linear
ibvp (1.10). The estimate derived is described in the following result.

Theorem 1.2 (Linear ibvp). Suppose1 <s < % with s # % Then, the Fokas unified transform formula
(1.11) defines a solution u= S[ug, g;f] to the forced linear Schrodinger ibvp (1.10) with initial data uy €
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H5(Ry, x RY), Robin (y #0) or Neumann (y =0) boundary data g € B satisfying the compatibility
condition (1.7) for % <s< %, and forcing f € C([0, T]; H¥(Ry, x R},)), which satisfies the estimate

sup ||S[uo,g;f](t){ HS(Ry, xRY) =Csy (”uOHHS(lR{xlx]R;r) + ||g||B‘T +~T sup |V(t)||H5(RX xRy, )
te[0,T] 17 2 t[0,T] !

¥

(1.14)

The unified transform providing the solution formula (1.11) for the forced linear ibvp studied
in this work was introduced in 1997 by Fokas [17] (see also the monograph [18]). The method was
originally motivated through an effort to develop an ibvp counterpart for the inverse scattering
transform used for studying completely integrable nonlinear equations in the initial value problem
setting. However, it was immediately realized that Fokas’s transform had significant implications
also at the level of linear ibvps, in particular, taking into account its applicability to linear evolution
equations of arbitrary spatial order and dimension, formulated with any kind of admissible
boundary conditions. In this regard, the unified transform provides the direct, natural analogue
in the linear ibvp setting of the classical Fourier transform used for solving linear initial value
problems. For additional results on the ibvp of NLS, KdV and related equations via the Fokas
method; see, for example, [19-30] as well as the review articles [31,32].

The NLS equation has an extensive literature. Concerning its physical significance, it arises
as a universal model in mathematical physics, e.g. in nonlinear optics [33], water waves
[34,35], plasmas [36] and Bose-Einstein condensates [37]. Moreover, the cubic NLS in one spatial
dimension is a prime example of a completely integrable system and can be studied via the
inverse scattering transform [38]. Finally, concerning the well-posedness of the initial value
problem for NLS in Sobolev spaces, we refer the reader to [1,39—48] and the references therein.

Organization. In §2, we estimate the solution to the reduced pure linear Robin problem, which
has zero forcing, zero initial data and boundary data compactly supported in time. Section 3 is
devoted to the estimation of the linear Schrodinger initial value problem. In §4, we combine the
results of the previous two sections to prove theorem 1.2 for the forced linear ibvp (1.10) and,
in turn, theorem 1.1 for the well-posedness of the nonlinear ibvp (1.1). Section 5 provides the
modifications required in the proofs in the case of the Neumann problem. Finally, in §6, we give
a brief derivation of the Fokas unified transform solution formula (1.11).

2. The reduced pure linear ibvp

The basis for proving the nonlinear well-posedness theorem 1.1 is provided by the linear estimate
of theorem 1.2 for the forced linear ibvp (1.10). In order to establish this crucial estimate, we begin
our analysis from a simplified version of problem (1.10) which involves zero forcing, zero initial
data and compactly supported in time boundary data. We call this problem the reduced pure linear
ibup, as its non-boundary components are both zero and, furthermore, its boundary datum is
reduced to the class of functions with compact support in t.

More precisely, for the Robin problem (y # 0), the reduced pure linear ibvp is given by

ivr + vy + Uy =0, (x1,x2) eRx RY, £€(0,2),
U(Xl,X2, 0)201 (21)
(UXZ + )/U)(Xl, O/ t) :g(-xlr t)/ Supp(g) C Rx1 X (0/ 2)/

where g(x1, t) is a globally defined function with compact support in t. For the Neumann problem
(y =0), the analysis of the reduced pure linear ibvp is provided in §5. We note that, since T <1,
the interval (0, 2) for the t-support of g could be replaced by any fixed interval of the form (0, a),
a > 1. In the case of problem (2.1), the Fokas unified transform formula (1.11) simplifies to

i . : 22y 2k
Jxo )= ———— ik1xq +ikoxo —i(ky+k3)t i k1, _k2 _ k2 dk, dkq, 22
Ve, 22, 8) (2m)? Jkle]R szec ¢ ko —ng( 1k — k) dky diy @2)
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where the transform § defined by (1.13) has now been replaced by the Fourier transform g of ¢ in
x1 and f since, thanks to the compact support of gin ¢,

31, 13 +k§,2):J

x1€R

L § e hnHE D o(x) 1) dt dxy =G(k1, -2 — KB). (2.3)
€

Next, we will use the Fokas formula (2.2) in order to estimate the solution of the reduced pure
linear ibvp (2.1) in the Hadamard space C([0,2]; H*(Ry, x th))- Through this process, we will
discover the correct function space for the boundary datum g(x1,t). In particular, our analysis
will reveal the Bourgain spaces X?((2~1/4) and X*~(1/4) as the global analogues of the spaces
XOT’((ZS_D/ Y and X;_(l/ 9 given in the introduction for the boundary data of the non-reduced
problem (1.10). The precise statement of this result is as follows.

Theorem 2.1 (Basic linear estimate for the Robin problem). Let s>0 and y #0. Then, the
solution v(x1,x2,t) of the reduced pure linear ibvp (2.1), as given by the Fokas formula (2.2), satisfies
the Hadamard space estimate

sup ||U(f)||17(s(]1§Yl xR3,) = Csy (1181 Ixoxes-1/m + 1181 xs-a/9), (24)
te[0,2]

where the Bourgain spaces X* are defined by (1.6).

In the remaining of this section, we prove theorem 2.1. We start from the case y < 0, for which
we provide the proof in detail, and continue to the case y > 0, for which we give the modifications
required due to the presence of the simple pole at iy along the positive imaginary k»-axis.

Proof of theorem 2.1 for y < 0. Parameterizing the contour C = dD (figure 1), we write v =v1 4 12
with
1

© . 2k
)= — ik ko i)t _22 o 2 4 k2) dk, dk 25
) =—5 JkleR szzo e Sk Rtk dkda 25

and
i

v(x1, X0, 1) = a2

© ikmkn i+ 2k >
e RS2 gk, -k~ B)dkadky,  (26)
kieR Jk=0 ky — iy
and estimate vy and vy individually. We begin with vy, which involves a purely oscillatory
exponential and hence can be handled as a globally defined function via Plancherel’s theorem
for the Fourier transform. Then, we proceed to vi, which does not make sense for x, <0 and
hence requires a different treatment via the L2 boundedness of the Laplace transform. |

Estimation of vy. Since vy makes sense for all (x1,x2) € R2, by the definition of the H® (R2) norm
and the fact that (1 + k% + k%)s <A+ k%)s + (k%)s for any s € R (we write a < b if there exists C > 0
such that a < Cb), we have

00 4k2
HIA, < T+ +K2) ——2 |3k, -k — k2| dky dk
||UZ( )lle(Rxl XR;Z) = ,[kleR sz:o( + 1 + 2) |k2 _ 1y|2 ’g( 1 1 2)| 2 1

oo k2
S 1+ K.Y + () | =2 [3(ky, -2 — K2)[? dky dky.
NJklERJ]Q:Ol:( ) (2)]k%+yz|g(1 1 k)| dka dky

Furthermore, making the change of variable k) = (—7 — k%)(l/ 2 and breaking the resulting
integral near and away from —k2, we obtain

1K o + 8" [k, o)
“L’ + kﬂ +y2

o+ K" gk, o)
’1’ +kﬂ +y2

[lv2 ()] Ifj,s(RX1 <B) S JkleR J [(1 +2) |+ kﬂﬁ] drdky (2.7a)

T=—00

—K2
+J J 1 [@+R) +[c+ K] |drdk;.  (2.7b)
kleR

rzflfk%

6120720811 Y 205§ 204g edsyjeumol/ioBulysiigndiaaposiefos
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For |t —|—k%| >1, we have (|t + k%l(l/Z))/(lr —|—k%| +y) <A+t +k%|)_(1/2) and |t + k%ls <@+
T+ k%l)s, s € R. Thus, noting also that 1 + |t + k%l ~(1+ |+ k%|2)(1/2) (wewritea~bifa <band
b < a), the first of the above integrals becomes

17
(2.7a),§J (1 +k§)5J YA+ Rk, 1) dr diy
kle]R T=—0
—1-H 2 2
+J J A+ | +B[)E V45K, 7)| de dky, seR. (2.8)
kieR Jt=—0c0

For |t +k%| <1land y #0, we have

(I —l—k%l—l—yz)flSmax{%,l}(l—i—|r—|—k%|)71 (2.9)

(this is not true for y =0, which is why the Neumann problem is treated separately in §5) and
It + k%ls*‘(l/z) <(1+|t+ k%|)5+(1/2) fors > —%.Thus, sincel + |t + k%l ~(1+|t+ k%lz)(l/z),fors >
—% we obtain

ki ~(1/4)
(2.7b)5J (1+13)° J (14 +K) gk, 1) dr dky
k]ER T=—1— k2
- (2s-1)/4
+J J 1 (1+ k3 +k§}2) T Rk, 1) dr . (2.10)
kieR r:—l—k%

Combining estimates (2.8) and (2.10), for s > —1 'y <0andte0,2], we deduce

aky[ "

T=—00

—a/9)
1021 e, s, 5J (1 +r +k§|2) 30k, 7)[* dr diy

k] eR

=—00

-4 (/2-(1/4)
+J J L (144 BP)” Rk, 0P drdk.  @11)
kle]R T

Estimation of vi. As the expression (2.5) for v1 only makes sense for x > 0, we will estimate
it by employing the definition of the Sobolev norm in terms of derivatives in L2. In particular,
restricting s > 0, we have

01Ol e, gy = 2 1K O, gy + Do 105 01OIF (2.12)
[nl=<ls] lul=ls]

where for x = (x1,x2), u=(u1, n2), we denote 9y =y, dy,’, || =1 + po, and for B=s— [s] €
(0,1), we define the fractional norm

— 2
a3 = | o1 8) = o1y, D

dy dx. 213
xeRxR+ JyERXR+ |x — y|2(1+5) Yy ( )

We begin with the integer part of the norm (2.12) and, more specifically, with
[0 v1 ()] 2R, xRY,) for || =1 + np2 € NU {0} and |u| < |s]. Differentiating the unified transform
expression (2.5) for v, we find

A vi(x1, xp, ) J

ro elf —kaxz =ik~ kz)tk’“k"z 5 8tk =k +3) dkz k.
k1E]R k2 0

Hence, Plancherel’s theorem between the x; and k; integrals implies

Jr

K2
||8£U1(t)||i2<Rx1 XR;Z) ~ Jk (k2 251 J.k . —k2X2+1k t"2 (klr kl + kZ) dk2
1€ 2=

dky.

k2 2 (R+ )

Identifying the k; integral as the Laplace transform of the function eikgtk’; 2(ka/(ky — ¥ )g(k1, —k3 +
k%), we estimate the L2 norm of that integral by using the fact (see [49] and lemma 3.2 in [3])
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that the Laplace transform £: g(ky > [2 e*k"ga(k) dk is bounded from L2(R*) into L2(RT) with
1£{o}2r+) < VT ll@ll[2r+)- Thus, we obtain

2

v ()7 <J K3k
|| X 1( )HLZ(RHXR;Z)N kleR( 1)

. ky
ity ﬁ Sk, —I2 +13)

dky
I2(Ry,)

and, since (ko — )/)2 > k% +yZfork;>0and y <0 (note that this is not true when y > 0),

ERG1 J J CRCE B, —K + B dkadk.  (214)
L (R.ﬂqXsz) kieR Jk,= VZ

Inserting this estimate in the integer part of the Sobolev norm (2.12) and recalling that |u| =1 +
2 € NU {0} and || < [s], we find

Z ||ajfu1(t‘)\liz(mx1 xRY,) S J

lul<ls) kiR

© 1+ + ) VR[EHk, -+ i)
J ( + 1+ 2) 2|g( 1 ]+ 2)‘ dedkll (215)

k=0 I3+ y?

where we have used the binomial theorem twice in order to compute the two sums over p and
|]. Noting that (1 + k% + k%)w ~(1+ k%)LSJ + (k%)LSJ and making the change of variable ky = (7 +
k%)(l/ 2, we handle the right-hand side of (2.15) similarly to (2.7) for v, i.e. by splitting the range
of the 7 integral near and away from —k3. Eventually, this yields

> P, ns) S |

o 2 2
J A+ A+ [t + By VD5, o) dr diy
Il <Ls) kneR

2
T=—kj

00 21s|—1)/4
+J J (1+y y)( S Gk, 7))*drdk;  (2.16)
kieR Jr=—I3

forall s > 0 and y <0 (as for v, the Neumann case y =0 is treated separately in §5).

Having completed the estimation of the integer part of the Sobolev norm (2.12), we turn our
attention to the fractional norms |84 vy (#)|| g with 1 + uo = [s] e NU {0}. Note that (2.13) can be
expressed in the convenient form ||v1(t)||% > [rersrs Jaerxrs ((V1(x +2,8) —v1(x, H12)/(|z|21+A)
dzdx)). Then, differentiating (2.5) and employing Plancherel’s theorem for the integrals with
respect to x; and k; as well as (once again) the Laplace transform boundedness in L*(R*) for
the integrals with respect to xp and k», we obtain

o0
wnoGs| e ]ks‘z
k1 eR k2=0

2+ K2 )] Iy, ko, B)dko dky,  (2.17)

where I(k1,k2, B) = [, g f;:zo(leiklzl_kzzz - 1|2/(z% +23)148) dz;, dz1. By lemma 2.2 of [2], for B €
(0,1), we have I(k1, kp, B) < (k% + k%)/3 . Hence, (2.17) becomes

[o.¢]
s | @ [ 0 R g, + ) diadk
1€ 2=

and, using the inequality (ko — ) > k% + y? together with the binomial theorem, we find

o0 k2
> tnols| | @Ry, R, R + B dad
lul=Ls] k1€R Tk =0 B+

The term on the right-hand side can be handled like the one in (2.15) to yield

” ~(1/4)
> IIBJ‘fvl(t)II%ng J (1+5) <1+|T+k%|2> @k, 7)P dr dky
|pl=s] kieR I=7k%

0 2s—1)/4
+J J (1 mp +k%|2)( Tk, R drdki, s20, 7 <0. (218)
kle]R ‘L’=—k%
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Overall, estimates (2.16) and (2.18) combined with the Sobolev norm definition (2.12) imply

1/4)

o0 ~(
HI2. < 1+12)° (1 K2? S(ky, 7)[% dr dk
||v1()||H>(RX1XR;2)NJ1€RL__}<%( +K) ( + |+ 1|> [§(k1, T)17 dt dky

k
00 @s—1)/4 _
+J J (1 +]r +kﬂ2) R(ky, 7)1 dr dky (2.19)
kleR ‘L’*—k%

for all s>0, y <0 and t €[0,2], which together with estimate (2.11) for v, yields the desired
Hadamard estimate (2.4) in the case y < 0.

Proof of theorem 2.1 for y > 0. We now provide the modifications necessary for proving estimate
(2.4) when y > 0. Recall that the difference between the cases ¥ < 0 and y > 0 is that, in the latter
case, the complex contour of integration C in the unified transform formula (2.2) is given by 3D
instead of 3D (figure 1), so that the singularity at k, =iy (which for y > 0 lies along 9D) is avoided
by means of C, »(iy), which denotes the right half of the negatively oriented circle of radius y /2
and centre at iy. Hence, for y > 0, the solution of the reduced pure linear ibvp (2.1) consists of
three parts, v =11 + v1,2 + v2, where

vz e okix ki3 2
via (1,52, 1) J J +J b gk, <+ ) dka iy, (220)
kieR | Jko=0 Gr/2) kz
o ky
v12(x1, X2, ) = J J ek 2 _sq g2 1) ap) iy, (2.21)
kieR JkoeC, pliy) ko —iy
o0
va(x1, X2, t):J J etk —igHior__ 22 (kl, — K2) dky dky. (2.22)
kieR Jk= kz

The term (2.22) can be estimated exactly like the term (2.6) from the case y < 0. Also, the first

integral in (2.20) is similar to the term (2.5). Indeed, since k7 € [0, y / 2], we have (k; — y)? > 3 (k2

¥?). This inequality plays the role of inequality (ko — y)? > k3 + y? that was valid for k, > 0 and
y <0, and hence allows us to handle the first integral in (2.20) just like vy from the case y <0,
eventually obtaining estimate (2.14) and, in turn, estimate (2.16). For the second integral in (2.20),
since |k, — iy| >y /2, we have k3 5/ (k2 — )2 <24 2y2/(ky — y)?) < 10. We remark that this crude
bound can be used for the integral over k; € [3y/2, 00) but not for the one over k; € [0, y/2]. This
is because, in the former range, we can handle the term |t + k2| (1/2) arising from the change
of variable ky = (—7 — kz) via the inequality |t + k2| 1/2) < max{}ll 11+ |t + k2 [2)~(/% which
follows from the fact that k, > 3y /2. Overall, we conclude that the term (2.20) admits the same
estimate with the term v appearing in the case y <0.

The remaining component v, of the reduced pure ibvp solution, which is defined by (2.21),
has not appeared before, since it involves for the first time the semicircular contour C,, 2(iy). This
is a finite contour that stays a fixed distance y/2 away from the singularity at k =iy and so,
in principle, the estimation of vy » should go through without any issues. However, it turns out
that some technical details are needed. The main reason for this is that the changes of variable
T =—k? £ k3, which have been used in all of the previous estimations, would now result in
complex values for 7, thus making it difficult to relate the relevant integrals to the Bourgain norms
(1.6). Thus, instead of making these changes of variables, we will exploit the boundedness of the
contour C,, o(iy) together with the compact support in t of the reduced pure linear ibvp datum
g(x1,t) in order to estimate vq> in a different way. More specifically, parametrizing C,, 2(iy) by
ky =ko(0) =iy + (y/2) e?, we have

/2
J T kO O 0330, — kp(0)) 40 diy

v12(x1, X2, 1) = J
0=—(/2)

kl eR
We will estimate this integral by using the norm (2.12). For the integer part of that norm, we have
oy =3y, 0y, with |u| = 1 + u2 € NU {0} and || < [s]. Thus, differentiating the above expression
for vy » and then using Plancherel’s theorem in xq and k1, Minkowski's integral inequality for the
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xp and 0 integrals, and the fact that f;::O |ef2®)2212 gy = [y (2 4 sind)] "L = ¢, < 00, we can bound
10501212, crs ) BY

(/2) _ 2

J (kK [ J | e H Oty (0)2+13(ky, —I2 — k(0)?)] (2 + sin0) 2 d@] dk;.  (2.23)
kieR 0=—(/2)

Since 0 < p1 < [s], the right-hand side of the above inequality will have to be controlled by the

norm of the Bourgain space X*~(1/4) (as opposed to X*(@=1)/4) Tn order to accomplish this, we

will introduce a multiplier >~ 1 in the above 6 integral. More specifically, let

e
1+irt

et, te(0,2)
0, te0,2]°

1 — e—2(1+ir)

w(t) = { } = P(1)=

and observe that, for k» € C, ja(iy), we have |/ (—k3)| = |(1 — €2@-D) /(1 — ik3)]> =~ ¢, ~ 1. Indeed,
since Im(k3) > 0 along C,, 2 (iy), it follows that |1 — 20k

1| ~ 1. Moreover, |1 — ik%| =c, ~1 since
1+ (y*/16))1/2) < |1 —ik3| =1 + (9% /4). Therefore,

/2
(k%)ﬂl“ ey G k@)

0=—(/2)

2.23)< J

k1 eR

2
Gk, =12 — ka(0)D)|2 + sin )2 d@} dky
S|@r s k6P 3k, -k — kPP, (224)
kieR 0e[—(r/2),7/2]

since the 6 integral remaining after taking the above supremum is bounded by some ¢;, < oo.
The supremum in (2.24) can be bounded after noting that, by the convolution property of the
Fourier transform and the compact support in t of both ¥ and g,

4
F(—13) -3k, —13 —K3) = j TR e kE () 31 (ky, )} (1) d.
t=0

Hence, by the Cauchy-Schwarz inequality, the fact that Im(k%) > Oalong C,, 2(iy), and Plancherel’s
theorem, we obtain

10—k 30, =K — )1 5 | Aile M w0} (0) - 2lk, 1)

L2(R,)

Then, substituting Fle Rty ())(r) = (1 — e 20+HEHD /(1 4 i(r + k%)) and noting that for t,k; €
R, we have |1 — e 20+(T+K)| <1 1+ e=2 we find

T(-R) -3k, B — B2 < j

TE

2y -1~
R(l + (r +K)) gk, 7)1 dr.
Inserting this estimate in (2.24), we deduce
T 2
||8x U1,2(t)| |L2(Rxl X]R;rz) S ,[kl e]R(k%)'ul JT

~ (1811 < 118151 < 1181155/ (2.25)

R(l + (r + )Gk, 1)1 dr dky

€

forall t € (0,2) and || = 1 + 12 € NU {0} with |u| < [s], which gives the desired estimate for the
integer part of the norm (2.12).

The fractional norm ||} v 2(#)||g also satisfies (2.25) for each || = 1 + p2 = |s] € N U {0}. This
can be shown via the same steps with the integer part above together with the bound

00 |eiklz1+ikzzz _ 1|2 »
————5—— dz2dz; Smax {1, (k)" },
leeR LZ:O (z% + z%)1+/3 { 1 }
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which holds for all ky € R, k € C,, 2(iy) and B € (0,1). This bound can be proved similarly to
lemma 2.2 in [2] by considering the cases |ki| > 1 and |ki| <1 separately and then employing
the inequality |e* — 1| < |z| el*|, z € C. This completes the proof of theorem 2.1 for y > 0. |

3. Estimates for the linear Schrodinger equation on the plane

In this section, we establish various estimates for the linear Schrédinger initial value problem (ivp)
on the plane. These results will be combined in §4 with those of §2 on the reduced pure linear ibvp
in order to prove theorem 1.2 for the forced linear ibvp (1.10), which is the basis for proving the
well-posedness theorem 1.1 for the NLS ibvp (1.1). In particular, besides the Hadamard solution
space, we will obtain estimates for the linear ivp in the Bourgain-type spaces (1.4) motivated by
theorem 2.1.

We begin with the homogeneous ivp

iuf + UX1X1 + uX2X2 = 0/ X = (xllxz) € IRz/ t € R/

(3.1)
U(x, 0) = Up(x) € H*(R?),
whose solution is given by
1 TN
U(x, t)= S[UO;O](x, t) = W Jk . elk'x*‘kztllo(k) dk, (3.2)
€

where ﬁo denotes the Fourier transform of Uy on the whole plane, ﬁo(k) = .[xe]RZ e kX1 (x) dx,
with k= (k1, ko) € R?, k- x =k1x1 + koxp and k? = k% + k%.

Theorem 3.1 (Homogeneous linear ivp). The solution U = S[Uy;0] to the linear Schrodinger ivp
(3.1), given by the Fourier transform formula (3.2), satisfies the isometry relation

sup [[UBgs@z) = 1Uollpsrz), SER, (33)
te[0,T]

as well as the Bourgain-type estimates

sup [[(Ux, + y U)(2)llyoesvm <csllUollpswz), s=1, (3.4)
x€R T

sup [[(Ux, +y U)O2)l -0 < sy [Uolls(g2), 5= 0. (3.5)
XzGR ’

Proof. The isometry relation (3.3) follows directly from formula (3.2) and the definition of
the Sobolev norm. Estimate (3.4) can be deduced by estimate (3.5) in [2], according to which
SUp,, cr ||U(x2)|lx<%,(zs+1)/4 = 6l|Uollps(rz), s = 0. In particular, observe that Uy, = S[0x,Uo; 0] so it
suffices to employ that estimate with Uy, in place of U and with s replaced by s — 1.

Concerning estimate (3.5), we note that (3.5) in [2] additionally implies the estimate
SUPy, R [U(x2)]] XS <cs||Upl| H¥(R2) for s > 0, which takes care of the second term in the norm

on the left-hand side of (3.5). Furthermore, denoting by H~(1/4 the homogeneous counterpart of
the Sobolev space H~(1/4) and using the fact that H~(1/4) ¢ H=(1/4), we have

2 2\ 1| LikZ 73 2
[[Ux, (x2)] |X5T,7(1/4) =< JkleR (1 + kl) [le™ U;; (k1, x2, ')HI:I‘“/“)(R,) dk;. (3.6)

Then, we use the solution formula (3.2) together with the change of variable t = —k% to write

PR 1 i i 5 i a /—7
T (ky, 30, 1) = EJ et [e“ﬁxzuo (ki —v/=7) = V70U (K, _7)] dr.
T=—00

Hence, by the usual definition of the H~-1/4) (R) norm, we find

ik2-7yx 2
Ilel 1 Ux; (klr X2, )| |I:I*(1/4

0 -~ -~
SJ ) [yuo(kl, V=0 + |U0(k1,«/—t)|2] dr
T=—00

J(Ry)

6120720811 Y 205§ 204g edsyjeumol/ioBulysiigndiaaposiefos



Downloaded from https://royalsocietypublishing.org/ on 14 September 2022

and, changing variable from ¢ back to k,, we obtain

el T (ke x2, )13 Tk, ka)|* dks.

AR, ~ J

In turn, (3.6) yields ||Usx, ()l s < [ (1 + K" [iger [Uo(kt, k) > dkz dky < ||Uol . gz with
the second inequality due to the fact that s > 0. |
We proceed to the forced linear ivp with zero initial data,

iWi 4+ Wy, + W, = F(x, ), x=(x;, %) €R?, teR, (3.7a)
W(x,00=0, xeR? (3.7b)

whose solution is given by

i ! ik-x—ik>(t—t)Tx 7. 4 /
W(x, t) = S[O; F](x, )= - e FY(k,t')dkdt’, (3.8)
(27) Jr=0 Jker?

where T (k,t)= fxeRZ e YF(x, 1) dx is the spatial Fourier transform of F on the whole plane.

Theorem 3.2 (Forced linear ivp with zero initial data). The solution W = S[0; F] to the forced
linear Schrodinger ivp (3.7), given by the Fourier transform formula (3.8), satisfies the Hadamard space
estimate

sup [|W(O)!|ps Rz)sT sup NFOllpsre), SER, (3.9)
te[0,T]

and the Bourgain-type estimates

3
sup [|(Wr, +y W)(x2)llyo@-v = csVT sup |IF®)llppme), 1<s<3, 5% 5 (3.10)
xeR te[0,T]
sup ||(Wx, + VW)(xz)HX< —am <csyNT sup |[F()]|ps ®2), $=0. (3.11)

xeR te[0,T]

Before giving the proof of the above results, we remark that estimates (3.4), (3.5), (3.10) and
(3.11) along with estimate (2.4) for the reduced pure linear ibvp confirm that the space B} defined
by (1.3) is the correct space for the boundary data g of the forced linear ibvp (1.10) (and hence of
the nonlinear ibvp (1.1)).

Proof. Estimate (3.9) is (3.21) from [2]. Estimate (3.10) follows from (3.25) in [2], which reads

3 1
sup ||W(XQ)||X0(2>+1)/4 <cVT sup ||F(t)”Hs(]R2), 0<s< 5 S # 5 (3.12)

x€eR te[0,T

after noting that Wy, = S[0; F,] and employing (3.12) for W and W,, with s — 1 instead of s.
Concerning estimate (3.11), we first note that (3.26) in [2] yields

sup [[W(x2)llys-a/m < sup WGl g S VT sup [[F(t)llp=gz), 5> 0. (3.13)
xeR xeR te[0,T1]

Moreover, as in the proof of theorem 3.1, we have

2 EIM <37y 2
W (eI, 0 < L ORI 32,01y (3.14)

For k1,x; e Rand t € [0, T], formula (3.8) implies eiktt 17\/?(; (k1,x2,t) = R(k1, x2, t), where

st oy . . Ny —
Rk, x2, t):‘ﬁjf Oxm,n(t/) ekt L . etk (=) 57F () ko, #') dky dF (3.15)
. e
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where x[o 7] denotes the characteristic function of the interval [0, T]. The important observation is
that, for each k1 € R, R(k1, x2, t) satisfies the one-dimensional ivp

iRt + Ruyr, = xpo 1) (D) €' 9 F (ki,x0,1), 12 €R, teR,

(3.16)
R(kl,XQ,O) = O, Xo € R.
In this connection, from the proof of lemma 11 in [13], we have
Iy
:;Iﬁ; ||R(k1/ xZ)l |H’(1/4>(]Rt) <csl |X[0,T](t) e 1t3x2F ! (kll X2, t)l |L1(R,;H’1(RX2))' (317)
Combining this bound with (3.14) and Minkowski’s integral inequality, we find
T 2\S 7 2 %
sup || Wy, (x2)|lys-a/9 S J (J (1+k7) J |F¥(k1, ko, t)|” dk> dk1> dt,
XzER N t=0 k1 eR kz eR
which completes the proof of estimate (3.11) in view of (1 + k%)s <1+ k% + k%)s fors>0. |

4. The forced linear ibvp and proof of theorems 1.2 and 1.1

In this section, we combine the estimates for the reduced pure linear ibvp (theorem 2.1) and the
homogeneous and forced linear ivps (theorems 3.1 and 3.2) in order to prove theorem 1.2 for
the forced linear ibvp (1.10) and the Hadamard well-posedness theorem 1.1 for the nonlinear
ibvp (1.1). For this purpose, we decompose ibvp (1.10) into component problems by using the
superposition principle and suitable extensions of the initial and boundary data.

Decomposition into simpler problems. Let Uy e HS(RJZ() and F(t) e HS(R%) be, respectively,
extensions of the initial datum 1 € H¥(Ry, x R},) and the forcing f(f) € H*(Ry, x RY,) of ibvp
(1.10) such that

||U0||H5(]R§) = 2||”0||1115(Rx1 xRY,)

4.1)
IFO 2y < 2 Ollpege,, <zt £E10,TI-
Then, thanks to linearity, we can express the solution S[ug, g; f] of ibvp (1.10) in the form
S[uo, g:f] = S[U0;0]|x2>0 + 5[0; F]|x2>0 + 5[0, ¥1;0] + S[0, ¥2;0] 4.2)

where, for Uy and F as chosen above, S[Uy; 0] solves the homogeneous linear ivp (3.1), S[0; F]
solves the forced ivp with zero data (3.7) and, for boundary data /1 and v, given by

Y (x1,£) = g(x1, £) — (9, S[Uo; 0] + ¥ S[Uo; 0])(x1,0, £),
Yo(xy, t) = —(3x25[0; F] + )/5[0} F])(XL 0,1),
and S[0, ¥;0] and SO, yr2; 0] solve the pure linear ibvp

4.3)

it 4 Uy, + U, =0,  (x1,%) eR x RY, te(0,7),
u(x1,x2,0)=0, (4.4)
(1, + yu)(x1,0,5) = ¥ (x1, ),
with ¢ = y1 and ¢ = v, respectively. Note that, thanks to theorems 3.1 and 3.2 and the extension
inequalities (4.1), the boundary data /1 and ¥, belong to the space B with

1l 5 ol crs + Nl and (Ially S VT sup 1Ol iy (45)

Also, by the compatibility condition (1.7) and the time regularity of the linear ivp established in

theorems 3.1 and 3.2, for % <s< %, we have

Y1(x1,0) =2(x1,0)=0, x3€R. (4.6)
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In view of (3.3), (3.9) and (4.1), the decomposition (4.2) implies

sup |IS[uo, & f )OIk, «Byy) < |10l sy, <) + T SUP I Ollps(e,, i)
te[0,T] te[0,T]

+ sup [IS[0,¥1;0](®)] |1 (R, xRY)
te[0,T]

+ Sup ||S[O, Wz,' 0](t)||H5(R,1 XR;)' (47)
te[0,T] :
Next, by relating the pure linear ibvp (4.4) with the reduced pure linear ibvp (2.1), we will deduce
estimates for the Hadamard norms of S[0, ¥1;0] and S[0, v,; 0].
Extension of the boundary data. For 1 <s < %, given ¢ € B} define i via its x1-Fourier transform

V¥, ), te(0,T),

X1 —
kD=1, te [0, T,

a.e. k; eR. (4.8)

Note that supp(h) C Ry, x (0,2) since for the purpose of local well-posedness we take T < 1. Also,
as we show below, i € X0{(@s=1/4) n x5~(1/4) Indeed, for each k; € R let ¢(t) = eik%t{/;xl (k1,t) and
observe that ¢ € B} implies ¢ € H@=D/%0,T) for a.e. k; € R. Then, by theorem 11.4 of [50], the
extension @ of ¢ by zero outside (0, T) satisfies

[1Pollpes-na(r,) < Csll@llges-va,T), (4.9)

where ¢; = ¢(s) is independent of ¢. Furthermore, since ¢ € H —1/4) (0, T), there exists an extension
@1 € H- /9 (Ry) such that

NP1lla-ammw,) < 2ll@llg-am@,T)-
Then, noting that x 1)®1 = @9 and employing proposition 3.5 of [51] (see also lemma 4.2 in [14]),
we infer
®olla-am(r,) = X010 P1lH-am ) < cllP1lIg-am ;) < 2cll@llg-am0,T) (4.10)

for some universal constant c. Therefore, since T (ky,t) = e~k Epg(ky, t), by the definition of the
Bourgain norms (1.6), we find

2
||h| |Xo,((2571)/4) = J

2
kR | |¢)0(k1)| |H(25*1)/4(]R,) dkl

<J ok dky = |y |2
~ (25—1)/4 1 0,((25—1)/4) 7
kiR H@=D/A(0,T) Xy

W1 e = (1 + K)o k)12, g,y Ik1
LR (R)

1€

(1/4)
T

< Jk . (1K) ek, o1 = 111155 /01 (4.11)
1€

thereby concluding that /1 € X0A@s=1)/4) A x5~ (1/4)

For % <s< %, suppose ¥ € B} with ¥/(x1,0) =0, x; € R (note that this equality holds for ¥, ¥
in view of (4.6)). Then, ¢(t) = e*i!§¥ (k1 t) belongs to HZ=1/4(0, T) for a.e. ki € R and ¢(0) =0.
Let ¢ € HZD/4(R) be an extension of ¢ such that ol Hes-var,) = 2ll@llges-140,T)- Then, for
¥ € C5°(R) equal to 1 on [~1,1] and decaying smoothly so that it equals zero on (-2,2)°, the
function 9 (t)¢(t) belongs to Hézsfl)/ 4(O, 2). Thus, by theorem 11.4 of [50], the extension @ of
¥ ¢ by zero outside (0,2) satisfies ||Pg]| Hes- AR, = Csl DBl gesa02) <llell HOs-1/4(0,T)s where we
have also used the fact [[9f]] H®R) = c(@,b)If1l HO(R)/ b e R. Furthermore, letting @7 € H- /(R
be an extension of ¥¢ outside (0,2) such that ||P1]lg-0/s(r,) < 2/10¢|Ig-am 2 and noting that
X(0,2)®P1=®o, we employ lemma 4.2 of [14] to infer similarly to (4.10) that ||Po|ly-a/s(r,) <
219 @llg-am2) < llell H-a,1)- Hence, defining h via its x1-Fourier transform as i (k1,t)=
e*ik%tcbo(t) a.e.k; e R,wehaveh=1v on (0, T), supp(h) CRy, x (0,2)and h e X0A@s=1)/4) ny x5,~(1/4)
with inequalities (4.11) in place.
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Proof of theorem 1.2. The extension i of i defined above meets all of the requirements for serving
as boundary datum in the reduced pure linear ibvp (2.1). Thus, we employ estimate (2.4) along
with inequalities (4.11) and (4.5) to deduce, for ¢ = Y1 and ¢ = ¥, respectively,

sup HS[O/ W]?O](t)HHs(Rxl XR;Z) < HMOHH"(Rxl xR;z) + ||g||B~"T,
1

tel0,T

(4.12)
sup [IS[0, 2; O] ()| s, XR;)Sﬁ sup [f(O)llps(r, k)
te[0,T] e te[0,T] e

This completes the estimation of the two pure linear ibvps in (4.7) and hence implies the desired
estimate (1.14) of theorem 1.2 for y # 0. See §5 for the modifications needed when y = 0. |

Proof of theorem 1.1. Along the lines of the argument presented in [2], the forced linear ibvp
estimate (1.14) can be combined with the algebra property in H*(Ry, x RY,) (which is valid for
s > 1) to show that the iteration map @ : u+ S[uo, g; +[u|*"1u] is a contraction in a ball inside the
Hadamard space C([0, T*]; HS(Ry, x RY)) for1 <s < %, s # %, with lifespan T* given by (1.8). This
amounts to local Hadamard well-posedness for the NLS ibvp (1.1) as stated in theorem 1.1, with a
unique solution to (1.1) understood in the sense of the integral equation u = S[uy, g; +|u|*"1u]. We
note that the assumption (¢ — 1)/2 € N allows us to express the difference |u1 1211y — Jup|*Luy
in the form (11it1)@~D/2 — (i) @~1/2 when proving the contraction inequality. |

5. The Neumann problem

In this section, we provide the modifications needed in the case of Neumann data (y =0). We
begin with the reduced pure linear ibvp and then proceed to the proof of theorem 1.2 for the
forced linear ibvp when y = 0. We note that the proof of theorem 1.1 for the nonlinear problem
does not require any modifications from the case y # 0, since it is based solely on theorem 1.2,
which (as we shall show below) holds for both y # 0 and y =0.

The reduced pure linear ibup. In the Neumann case y =0, the reduced pure linear ibvp (2.1)
becomes

v + vy + Uy =0, (x1,x2) eRx R, £€(0,2),

v(x1,x2,0)=0, (5.1)
Uy, (x1,0,1) =g(x1, 1), supp(g) CRy, x (0,2).
For this problem, the unified transform solution formula (1.11) takes the simple form
i

v(xy, x,t) = —W

J J eiklxl+ik2X2—i(k%+k%)t2§(k1, —k% _ k%) dk2 dkl, (52)
kleR k2€3D

where the contour dD is the boundary of the first quadrant of the complex kz-plane as shown in
figure 1 and g denotes the Fourier transform (2.3). Using formula (5.2), we will prove the following
Neumann analogue of theorem 2.1.

Theorem 5.1 (Basic linear estimate for the Neumann problem). Let s > 0. Then, the solution
v(x1, X2, t) of the reduced pure linear ibop (5.1), as given by formula (5.2), satisfies the Hadamard estimate

sup ||U(t)||HS(RX1 xR, = Cs(||g||)'(o,((2s—1)/4) + ||8||5(5,7(1/4))- (5.3)
te[0,2]

Remark 5.2. In the above theorem, the homogeneous-in-time Bourgain space XY is defined
via the norm

|M@M=J (1+8)7 |7 + K[ Glky, 1) dky
k] eR

_ 0Lkt 2
= JkleR (1+ 1) 1M Gy, 12, b,
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where H? denotes the homogeneous Sobolev space. Importantly, for s > % the space X0(-1/4)
can be replaced in (5.3) by the nonhomogeneous space X*((>~1/4) However, this is not possible
for the space X*~(1/4), since the homogeneous weight is now independent of s.

Proof. Parameterizing 9D along the positive imaginary and real axes, we write v = v1 + vp with

1 o :
vi(xy, X0, ) = ——— J J etk koo =104 Kooy 2 4 12) dky ki,
@7 Jkyer Jip=0
1 o] . . .
va(x1, X2, 1) = - 5 J J e1k1x1+1k2xz—1(k%+k§)t2§(k1’ —k% _ k%) dky dky.
(27)? Jiyer Jip=0

These expressions are similar to (2.5) and (2.6) for the Robin problem but without the fractions
ka/(ky — y) and ky/ (ko — iy), respectively. Thus, with the exception of inequality (2.9), which was
the key for transitioning from homogeneous to non-homogeneous weights in the Robin case, we
can follow the same steps as in the proof of theorem 2.1 to obtain the following analogues of (2.11)
and (2.19)

12
w2817 < " 1+ 8|t + 1|V 5k, v)* dr dk
2N Ry, xRY,) ~ . 1) 1Tk 8k, 1
1

T=—00

—K?
+J J L e+ BT R0, )P drdy, seR,
kieR Jt=—0c0

o0
J 1+ 2)’(r + k)Y [@(ky, 7)[* de dky

2
vy (t <
[l 1( )||HS(RX1 XR;Z) NJ —k

k1 eR

o0
+ j j (t + K2 eky, v)* de dky, s>0.
k]E]R :—k%

These two estimates combine to imply the desired estimate (5.3). |

Proof of theorem 1.2 when y = 0. Having established theorem 5.1 for the reduced pure linear ibvp
in the Neumann case, we shall now combine this result with inequality (4.7) in order to establish
estimate (1.14) for the forced linear ibvp (1.10) when y =0 and 1 <s < % Like in the Robin case,
this step requires us to define an appropriate extension of the boundary data (4.3), which for y =0
are given by

Y1(xq, 1) =g(x1, 1) — 3xZS[uO;O](X1,O, t) and Yo(x1,t)= —BXZS[O,' F] (x1,0,1). (5.4)

Indeed, the remaining two components S[Up;0] and S[0; F] that appear in (4.2) concern the
homogeneous and forced linear ivp, respectively, and have been estimated in theorems 3.1 and
3.2. Denoting 1 and vy, simply by € B7, foreachk; e Rand 1 <s < % we let p(t) = eik%tfp\xl (k1,t)
and denote the extension of this function by zero outside (0, T) by @¢(t). Observe that, since
¥ € BS., we have ¢ € HZD/4(0, T) for a.e. k; € R. Next, define the global function h(xq,t) via its
x1-Fourier transform as

ke, ) =0() e Kidg(ky, 1), ae ki eR, teR, (5.5)

where 6 € C5°[-1,3] is equal to 1 on [0,2] and decays to zero smoothly outside [0,2]. Note
that this definition implies supp() C Ry, x (0,2) and h(t) =y (t) for t € (0, T). Also, as we show
next, h € X0A(25=D/4) 1 x5~(1/4 Indeed, the fact 11611 [ () < (0, b)| |f||Hb(R), b € R, combined with
inequalities (4.9) and (4.10) yields

1100 (k1) s/ (r,) < .01k es-vmo,T)

and 116 Po (k1) -a/m(r,) < Cs,0l@k)lE-0/9(0,T)-
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Thus, by the definition of the Bourgain norms, we find

2
Hh' |XU/((2571)/4) = L ||9(p0(k1)| |1%I(25’1)/4(R:) dkl 5 J'k - ||§0(k1)| |%I(25*1)/4(0,T) dkl = ||W||§(%((25—1)/4)/
1€

1€R

W13 = J . (1+ k%)sl|9@0(k1)||%1—<1/4)(R,) dky

kie

< 2\$ 2 _ 2
~ A[IQER (1 + k]) ||§0(k1)||H—(1/4)(0,T) dk; = ||w||X‘fF(l/4)’

thereby deducing that h € X(23=1/4 0 x5~(1/4) Therefore, h can play the role of the boundary
datum in the reduced pure linear ibvp (5.1) and so, for = 1, estimate (5.3) yields

sup |IS[0, ¥1; ](f)IIHs(]R &) S llxoesvm + 1llgs s S Y1l goes-m + WAl o (5-6)
te[0,T]

after replacing the norm of X0(25=1)/4) with the one of X0((2s-1)/4) (smce 5> ) In addition,
according to lemma 2.8 in [12] (see also lemma 4.1 in [14]), for 0<b < 5 1 and any 0 € Cg°(R), we
have ||0f]| fro®) < (0, b)I|f l|r-»(r)- Thanks to the presence of the function 6 in the definition (5.5)

of h, we can use this result for b= andf @ to obtain ||9¢0(k1)||H W, < [P k1)l (R, <
o (k)| 5-a/9(0,1), where for the last step, we have employed inequality (4. 10) Hence,

2
[, LquR (14 R N6, 5, I

< 2\ 2 _ 5
p LleR (L4 k) eIy wmo Ik =111, -

For % <s< %, the construction of / is similar after making the corresponding modifications for
that range as in the Robin case y # 0. Then, combining (5.6) with (4.5) for y1, we find

sup ||5[O ¥1; ](t)||H>(]RX1><RI2) S ||g||B~*‘T + ||”0||H5(Rxlx]R;rz)'
te[0,T]

Along the same lines, we also have

sup ||S[Of‘ﬁ2r'0](t)||H5(RxlxRIz)5\/T sup Hf(t)”Hs(Rxlle?z)'
te[0,T] te[0,T]

These estimates along with inequality (4.7) imply the desired estimate (1.14), completing the proof
of theorem 1.2 in the Neumann case y =0. |

6. Solution of the linear ibvp via the unified transform of Fokas

We provide the derivation of the unified transform formula (1.11) for the forced linear Schrédinger
ibvp (1.10) under the assumption of sufficiently smooth initial and boundary values. The case of
Sobolev data can be handled via a density argument along the lines of [3]. Taking the half-plane
Fourier transform (1.12) of the forced linear Schrédinger equation and using the Robin boundary
condition along with the notation u(x1, 0, t) = go(x1, ), we find

m+i<k%+k%>a=J e MM (ky + iy)go(x1, £) — ig(xr, H]dxr — if, ki €R, Im(kz) <O0.

X1 eR

We note that the domain can be extended to the lower half of the complex ky-plane thanks to the
fact that xo > 0. Integrating this expression with respect to  yields the so-called global relation

el hy, Ky, 1) =T k1, ko) + (ko + i)F0(ke, K + B, D) — 13Ky, 16 + 13, 1)

t X ~
- iJ KD F(key, ey, ) A 6.1)
o
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with gp and § defined according to (1.13). Thus, by the inverse Fourier transform, we obtain

u(x1, xp, ) = ekl =06, (k) ko) dky dkg

)
27)? Jker Jiper

i t
_ ;2 J J eik1x1+ikzxzfi(k%+k%)t J l(k2+k2 tf(kl k2,f ) ar dk2 dkl
(27)? Jkyer Jhoer o

N 1 ; J J ik ik~ +2)t
27)? Jker Jiper

x [(kz +iy)Zotks, B + 12, 1) — ig(ky, 12 + 12, t)] dky dky. 6.2)

This is an integral representation for the solution but not an explicit formula since gg involves
the unknown Dirichlet boundary value go. However, it is possible to eliminate gg from (6.2)
in favour of known quantities. To accomplish this, we begin by observing that for x, >0 and
t > ' the exponential ekx2=I5(t=t) js bounded for ky € {Im(ky) > 0} \ D, where D here denotes the
first quadrant of the complex k>-plane (figure 1). Thus, exploiting the analyticity of the half-
plane Fourier transform as well as of the transforms o and g for all k, € C (which follows via
a Paley—Wiener theorem), we apply Cauchy’s theorem in the second quadrant of the complex
ko-plane to deform the contour of the ko integral in the last term of (6.2) from R to the
positively oriented boundary dD of D (figure 1). This deformation is possible thanks to the
fact that, for the quartercircle yl;“ ={pe?: % <6 <}, we can show along the lines of [2] that

lim,_ o0 jkzey; eikzxz*ik%t[(kz + iy)gfo(kl,k% +K20 - ig(kl,k% + k2, 1)]dky = 0. Thus, (6.2) becomes

1 i i i -~
u(xy, xp, ) = o J J e1k1x1+1k2x2—1(k%+k§)tu0(k1’ ky) dk, dk;
27)? Jkier Jiyer
i ¢
- J J eiklxmkzxri(kﬂk%)tj STy ks 1) dE dbor dly
(27)? Jk er Jiper —o
1 . . )
+ 5 J J elk1x1+1kzx271(k%+k§)t[(kz + iy)go(kllk2 k%, f) — (k1/k2 T kz/ f)] dk, dlky.
(27)* Jk,er Jke0D

(6.3)

Next, note that under the transformation k, = —k; the global relation (6.1) yields the identity
S EHDG Ky, —ka, 1) =Tl k1, —k2) + (—ka + iy)Zo(k1, KB + K3, £) — i§(k1, K3 + K3, )
- 1Jt . 6 E (), —ky, ¥)dF, ki € R, Im(ky) > 0. (6.4)
If y <0, then kp — iy #0 for all k; € 3D, so we can use (6.4) to substitute for gg in (6.3) and obtain

u(xy, X, t) = elfvatikee S8+, (k) ky) iy diy

7)ol
27)? Jker Jiper

L ko +iy
e e 4 VAL
k1€R Jk,edD 2 — 1y

t
J J el ki) J e R F(ly, ky, ) d¥' dk, dky
ki€R Jk,eR =0

J J el Hikon i+ kz)tk2+1VJ TR F(key, —ky, #') dt’ ey dky
kle]R kzé(’D =

(277)2 ky — iy

1k1x1+1k2x2 i+ _ “f2 2
(271)2 JkleR Lzew kz g(kl, K3 + K3, t) dky dkq, (6.5)

where we have also used the fact that sz <D e’ ((ky +1y)/(ky — iy))ii(k1, —ka, t) dkp =0 by
analyticity and exponential decay of the integrand inside D. Formula (6.5) is true also for y =0,
since in that case the denominator ko — iy cancels out. Moreover, exploiting once again analyticity
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and exponential decay in D, we infer [} . eikaxa =ikt LT,zt kIR 2k /(ky — iy)) [ yieR ety
(1, ') dy1dt’ dky = 0, which turns (6.5) into the equivalent form (1.11) with C =9D.

If y > 0, then k» — iy vanishes along the positive imaginary axis, which is part of 3D. To avoid
crossing this singularity, before using identity (6.4) to solve for gy we locally deform the contour
of integration of the last k; integral in (6.2) from 8D to the contour D shown in figure 1. Then,
proceeding as for y < 0, we obtain the unified transform formula (1.11), this time with C = aD.
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