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Abstract

A polynomial-in-time growth bound is established for global Sobolev H*(T) solutions
to the derivative nonlinear Schrédinger equation on the circle with s > 1. These bounds
are derived as a consequence of a nonlinear smoothing effect for an appropriate gauge-
transformed version of the periodic Cauchy problem, according to which a solution
with its linear part removed possesses higher spatial regularity than the initial datum
associated with that solution.
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1 Introduction and results

We consider the Cauchy problem for the derivative nonlinear Schrodinger (ANLS)
equation on the circle

Uy —illyy = ax(lulzu), xeT, t eR, (1.1a)
u(x,0) =ug(x) € H5(T), (1.1b)

where u = u(x, t) is a complex-valued function, T = R/27Z is the one-dimensional
torus (circle), and H*(T) is the L?-based Sobolev space on the circle.
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The dNLS equation was derived as a model in plasma physics in the 1970s, see
[39]. As shown in [33], it is a completely integrable system, possessing a Lax pair
formulation and an infinite number of conserved quantities, including the following:

M(u):/ u|? dx, P(u):/ [Im(uﬂ)+%|u|4]dx,
T T

Eu) = / [qu|2 + 3uPImuiry) + %|u|6] dx, (1.2)
T

where M (u), P(u) and E (u) correspond to the mass, momentum and energy, respec-
tively, of the solution. Note that P (u) is the Hamiltonian for (1.1).

Concerning the well-posedness of the Cauchy problem (1.1), Fukuda and Tsutsumi
[19] showed local well-posedness in H®, s > 3/2, on both the line and the circle using
the method of parabolic regularization. Furthermore, in [20] they demonstrated global
well-posedness of solutions in H? with sufficiently small norm ||ug|| pt- Hayashi
and Ozawa [27-29] improved upon this result in the Euclidean setting by showing
global well-posedness of solutions in H L(R) with sufficiently small norm ||u|| L2R)-
In particular, their result was obtained by first performing a gauge transformation
of Eq. (1.1a), which removed the term lu|2uy from the nonlinearity. Takaoka [52]
combined the gauge transformation of Hayashi and Ozawa and the Fourier restriction
norm method introduced by Bourgain in the breakthrough paper [4] to establish local
well-posedness in H !/?(R). This result was shown to be sharp by Biagioni and Linares
[3] in the sense that the data-to-solution map fails to be uniformly continuous for
s < 1/2. Thus, s = 1/2 is the optimal result attainable for the well-posedness of (1.1)
using a fixed point argument on the gauge equation, although the critical regularity
for scaling in the Euclidean setting is at the level of s = 0. Under the assumption of
a sufficiently small [Juq]| £2(R) horm, Colliander, Keel, Staffilani, Takaoka and Tao [8]
obtained global well-posedness for s > 1/2. Global well-posedness for s = 1/2 was
shown by Miao, Wu and Xu [38] and later by Guo and Wu [26], with the latter work
improving the restriction on the initial data from [lugll 2Ry < V27 to ||ug| LR <
/47 . Such mass restrictions come from the sharp Gagliardo—Nirenberg inequalities.
Finally, it is worth mentioning that Jenkins, Liu, Perry and Sulem [32] and, more
recently, Bahouri and Perelman [2] proved global well-posedness of dNLS with initial
data ug in the weighted Sobolev space H 22(R) and in HY%(R), respectively, without
a mass restriction.

The majority of the above results concern the Cauchy problem on the line. Regard-
ing the periodic problem (1.1), local well-posedness in H'/?(T) was established by
Herr [30] by adapting the gauge transformation of Hayashi and Ozawa to the peri-
odic setting. The same article gives global well-posedness for ug € H'(T) such that
[[uoll L2(T) < 2/3. This mass threshold was improved by Mosincat and Oh in [41],
where they show global well-posedness in H L(T) for |juoll L2(T) < Var. Using the
I-method, Win [54] obtained global well-posedness in H*(T) for s > 1/2 under the
assumption of a sufficiently small ||ug|| £2(T) horm. Finally, Mosincat [40] established
global well-posedness in H'/?(T) provided that [|uo]| 2(T) < V/Ar, and also proved
failure of uniform continuity of the data-to-solution map for s < 1/2. At the time of
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writing of the present article, the mass restriction condition for well-posedness in the
periodic case had not been removed. Further well-posedness results on the periodic
dNLS in the low regularity setting can be found in Fukaya, Hayashi and Inui [18],
Griinrock and Herr [24], Nahmod, Oh, Rey-Bellet and Staffilani [43], and Deng, Nah-
mod and Yue [12].

Notation. In order to state the main results of this work, we introduce the following
notation.

Fora, b > 0, we write a < b if there exists C > O such thata < Cb.Ifa < b and
b < a then we write a ~ b. Furthermore, if C > 10° and a < éb witha = b
then we write a < b.

For f € L? ('11:2, 1 < p < oo, we define the spatial Fourier transform of f, denoted

by Fx(f) = f,as

Fo(f)E) = [(€) = X f(x) dx, £ €. (1.3)

=/
— | e
2w JT
Furthermore, for f € LZ(T), we have the inversion formula

fx) = S F ). (1.4)

1
— Y e

For f € S(R), the space of Schwartz functions, we define the temporal Fourier
transform of f, denoted by F;(f), as

Fi()(x) := Ty de, T eR. (1.5)

1
— | e
21 /R
Finally, for f € S(R;; L?(T,)) we denote the spatiotemporal Fourier transform
of f by
FiF(f)E 1) = fE D). (1.6)

We define the Bessel potential J; via Fourier transform as

— !

BT© = F©, (=(1+1-7)". (1.72)
Then, for any s > 0 and p > 1, we define the Bessel potential space

HSP(T) = {f € LP() < W f sy = 2 | oy < oo}, (1.7b)
In the special case p = 2, the above space reduces to the Sobolev space H*(T).
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e For any s,b € R, we define the Bourgain space X*” as the closure of
S(R;; C°°(T,)) under the norm

Il = H € (r+ sz)b fe. o " (1.8)
Similarly, the space Y*-? is defined via the norm
o = € +637FE 0, (1.9)
In addition, we define the Banach space Z* := X* 3 N Y*0 with norm
1A lzs == WA g + 1 llyso (1.10)

Finally, the restriction of Z* on T x [0, T] with T > 0 is denoted by ZST and is
defined via the norm

I fllzs o= inf {ligllzs : glor1 = f}- (1.11)

e We define the Littlewood—Paley-type projection operator Py by

X(e=0) F(0), k=0

7 (1.12)
X{2t-1<fg) <2t} f (§), k €N,

P()E) = {

where x4 is the characteristic function of the set A. We will often denote Py (f)
simply by fx. By this definition, it follows that

Y & =FE). tek (1.13)
k=0

e Following [30], we introduce the periodic gauge transformation of a solution u to
(1.1) by

v(x, 1) = Gu)(x, t) i= e L&Dy (1), (1.14)

2

where 7 (u)(x, t) is the mean-zero spatial primitive of |u(x, ) |2 — % || (t) ”LZ(T)

given by
1 2 x ) 1 )
Twen =5 [ [ [|u(y,t)| —Enu(wny(m}dyde.
Let
1 2 1 2
i s 0y = e WOy £ € R (1.15)
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where the second equality is due to the conservation of mass in (1.2). In fact, we

further have u = ﬁ lv(t) ||2L2(T)- A straightforward computation then shows that

v satisfies the equation

2

Vf — [Ugy — 2UVy = —V U, + %|v|4v — iulvlzv + iy (v)v, (1.16)

where
1 2 _ 1 4 )
Y(v)(@) = —/ [ZIm(vxv)(G, 1) — =70, l)} do + pu”.
27 0 2

The term 2 v, can be removed from (1.16) by means of the transformation

w(x, 1) =1, v, 1) :=v(x — 2ut, t). (1.17)
Indeed, since T_,, commutes with v and is an isometry on LZ(T), we find that w
satisfies
. _ 2— i 4 . 2 .
Wy — i Wyy = —W wx+§|w| w—ip|wl[ w+ iy (w)w. (1.18)

Finally, we introduce a second gauge transformation,
2(x, 1) 1= e EDw(x, 1), (1.19)

where

1 ! INITE:S / 2
€)= o [ ) fay ' =i,
We note that z is related to u as follows:
2(x, 1) = e 180 I =2ut.0) (0 2ut,t) = e_ig(t)r_,tg(u)(x, 1).

Also, it will be shown in Sect. 2 that z satisfies the Cauchy problem (2.12) as well
as the integral equation (2.27).

The need for the second gauge transform (1.19) can be appreciated once Eq. (1.18)
for w is further analyzed. In particular, this equation can be put in the form (2.11), where
the last two terms are unfavorable for the purpose of showing nonlinear smoothing.
The second gauge transform (1.19) removes those two problematic terms apart from
a “leftover” term—the last one in Eq. (2.12a) for z—which is kept intentionally in
order to match a problematic term arising from the first term of Eq. (2.12a). In this
regard, we also note that the coefficient i /(47) in front of the last term in (2.12a) is
chosen so that this term cancels with the problematic term involved in N R(—73%%,)
(see computation leading to (2.26)).
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With the above notation in place, we now state some essential previous results and
then introduce the main results of this work. We begin with the well-posedness of the
gauge-equivalent Cauchy problem (2.12), which follows from Theorem 5.1 of [30].

Theorem 1.1 (Well-posedness of the gauge equation—[30, Theorem 5.1]) Suppose
z0 € H*(T) withs > 1/2. Then, there exists a non-increasing function T : [0, 00) —
[0, 00) with T = T(||zoll s (T)) and a unique z € Zy satisfying the gauge-equivalent
Cauchy problem (2.12) in the Duhamel sense with the estimate

lzllzs = clizollps - (1.20)

Furthermore, the data-to-solution map is Lipschitz from bounded subsets of H*(T) to
bounded subsets of Z7,.

Remark 1.1 In [30], it is stated that the local time of existence for the solution z
can be taken to depend only on [zoll z1/2(y) instead of [[zoll gs(T), namely, T =

T (llzoll g1/2(T))-

Next, we recall the well-posedness of the dNLS Cauchy problem (1.1) as guaranteed
by Theorem 1.1 of [30].

Theorem 1.2 (Well-posedness of ANLS on T— [30, Theorem 1.1]) Suppose ug €
H*(T)withs > 1/2.1fz € Z3, is the solution to the gauge-equivalent Cauchy problem
(2.12) as guaranteed by Theorem 1.1, then u = '8¢ G~! (tuz) € C([0, TT; H¥(T)) is
the unique solution satisfying the dANLS Cauchy problem (1.1) in the sense of Duhamel.
Furthermore, u is a limit of smooth solutions.

Remark 1.2 Lemma 5.1 implies that there exists a non-increasing function T
[0, 00) — [0, 00) such that T = T (lluoll gs (1)) and T (lluoll gs () < T (Izoll s (T))-
Therefore, for s > 1/2 the time of existence in Theorem 1.2 may be taken to depend
on [uo |l g1/2 () instead of [luoll s (T)-

We also state the following global existence result from [30].

Corollary 1.1 (Global existence—[30, Corollary 1.2]) For s > 1 let u € C([0, T];

HS(T)) be the solution to the Cauchy problem (1.1) from Theorem 1.2. Then, for
luoll 2y sufficiently small,

@l ggiery < Clluollgremy), 1 €10, T1. (1.21)
Consequently, the time of existence for the solution u can be taken arbitrarily large.

Remark 1.3 The above global result follows from the observation that the local time of
existence T is bounded below by a function of ||ug || g1 (T)- While global well-posedness
in HY2(T) has been obtained in [40], an estimate of the form (1.21) is not readily
available when H!(T) is replaced by H 12Ty,
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The main goal of the present work is to establish a polynomial-in-time bound on
the growth of global solutions to the periodic dNLS Cauchy problem (1.1). Key to
demonstrating this bound is the discovery of a local nonlinear smoothing effect for
the gauge problem (2.12), according to which the solution z of (2.12) with the linear
part removed possesses higher spatial regularity than the initial data zo. The effect is
more readily seen by first recasting (2.12) into the Duhamel form (2.27) via a method
known as differentiation by parts (see Sect. 2). The precise statement of our first result
is the following.

Theorem 1.3 (Nonlinear smoothing) Suppose s > 1/2 + e with0 < ¢ < 1/2 and
let zo € H*(T). Then, for T = T (llzoll y1/2+¢(T)), the solution z € Z7. of the Cauchy
problem (2.12) from Theorem 1.1 satisfies the integral equation (2.27).

Moreover, for 0 < a < min{s — 1/2 — ¢,1/2 — ¢} and 0 = min{s, 1} we have
2 — €%z € C([0, T]; HF(T)) with

192
||Z —e *Z0 ||C([0,T];H5+“(T)) < C(s, “ZO”HU(T)) ”ZO”HS(T) . (1.22)

Remark 1.4 Corollary 1.1 and Lemma 5.1 imply that z satisfies (2.27) globally.

We note that the dispersion on the circle is weaker than on the line in the sense that no
Kato smoothing or maximal inequalities are available on the circle. Thus, proving the
nonlinear smoothing effect (1.22) requires a careful treatment of resonant frequencies
in addition to the differentiation by parts mentioned above.

The nonlinear smoothing estimate (1.22) allows us to demonstrate the following
polynomial-in-time bound, which is the main result of this work.

Theorem 1.4 (Polynomial bound) Let s > 1. Then, the global solution u to the
periodic ANLS Cauchy problem (1.1) given by Corollary 1.1 satisfies

lu(llgs(ry < Cleys, Nuollgsery) (12T, (1.23)

forallt e Rand 0 < ¢ <« 1/2.

Bourgain [5, 6] was the first to demonstrate the connection between nonlinear
smoothing and polynomial bounds for Hamiltonian equations. By employing Fourier
truncation operators in conjunction with smoothing estimates, he obtained the follow-
ing local-in-time inequality for solutions of various dispersive equations:

lut + &)l s < Nlu®llgs + C lue) |71 (1.24)

for some § € (0, 1). Local time iterations using the above inequality resulted in
the polynomial growth bound [lu(t)|ys < (r)!/%. Staffilani [50, 51] used further
multilinear smoothing estimates to obtain (1.24), which led to polynomial bounds of
H* solutions, s > 1, for Korteweg—de Vries (KdV) and nonlinear Schrédinger (NLS)
equations. Colliander, Keel, Staffilani, Takaoka and Tao [9] developed a new method
using modified energy called the “upside-down I-method” to produce polynomial

bounds in low Sobolev norms, s € (0, 1), for the NLS equation. Sohinger [48, 49]
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further developed the upside-down /-method to obtain polynomial bounds for high
Sobolev norms for NLS. We also refer the reader to [10] and the references therein for
further developments in this direction. In addition, Oh and Stefanov [46] determined
a nonlinear smoothing effect for periodic, generalized KdV equations that gave rise
to a polynomial bound in H*, s > 1. Finally, in [31], Oh and the authors of the
present work identified a nonlinear smoothing effect for a periodic, gauge-transformed
Benjamin—Ono equation which led to a polynomial bound on solutions to the periodic
Benjamin—Ono equation for 1/2 < s < 1.

Several recent works have established uniform-in-time bounds for a number of
completely integrable dispersive equations using inverse scattering techniques. In par-
ticular, Killip, Visan and Zhang [34] showed that the H*-norm of solutions to the KdV
and NLS equations is uniformly bounded in time for —1 < s < land —1/2 <5 < 1,
respectively, both on the line and on the circle. Similarly, Koch and Tataru [37] showed
that there exists a conserved energy equivalent to the H*-norm for s > —1/2 in the
case of the NLS and mKdV equations and for s > —1 in the case of the KdV equation.
For the Benjamin—Ono equation, Talbut [53] proved a uniform-in-time bound in H*
for —1/2 < s < 0 on the line and the circle. Gérard, Kappeler and Topalov [21] then
established this uniform bound for the periodic Benjamin—Ono equation with s > 0.
In the case of ANLS, uniform-in-time bounds were obtained on the line and the circle
by Klaus and Schippa [36] for 0 < s < 1/2. Furthermore, Bahouri and Perelman [2]
showed boundedness of H1/2(R) solutions.

Nonlinear smoothing properties analogous to the one of Theorem 1.3 have been
previously established for several important dispersive equations. Indicatively, we
mention the works of Erdogan and Tzirakis on the periodic KAV equation [15] as well
as on the fractional NLS equation on the circle and line [14], the NLS equation on
the half-line [17], the dNLS equation on the line and half-line [13], and the Zakharov
system on the circle [16]. The main technique used in the proof of these results is
known as the normal form method or, as previously mentioned, the differentiation by
parts method. It was first introduced by Shatah [47] in the context of the Klein—Gordon
equation with a quadratic nonlinearity and was further developed by Germain, Mas-
moudi and Shatah for two-dimensional quadratic Schrodinger equations [22] and for
the gravity water waves equation [23]. Babin, Ilyin and Titi [1] applied this method
to obtain unconditional well-posedness results for the periodic KdV equation. Chung,
Guo, Kwon and Oh [7] also obtained unconditional well-posedness of the quadratic
dNLS using normal form reductions. An alternative formulation of the normal form
method, which involves a multilinear, pseudo-differential operator in place of differen-
tiation by parts, was provided by Oh and Stefanov [44, 45] for establishing smoothing
estimates and well-posedness. It should be pointed out that [15] is the first work that
employed the normal form method in the framework of X** spaces.

Finally, we note that in the recent preprint [11] Correia and Silva suggest a uni-
fied approach for showing nonlinear smoothing for dispersive equations on R. This
approach relies on the use of infinite iterations of normal form/differentiation by parts
reductions and, among other equations, has been employed for dNLS on R (see Corol-
lary 5 in [11]). An interesting question is whether the nonlinear smoothing effect of
Theorem 1.3 (and hence the polynomial bound of Theorem 1.4) established in the
present work could also be obtained by adapting the unified approach of [11] to the
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periodic setting. Estimates for the periodic problem shown by Kishimoto [35] could
be relevant in this direction (see also Guo, Kwon and Oh [25] and Mosincat and Yoon
[42).

Structure of the paper. In Sect. 2, we employ the gauge transformation (1.19) to
remove the resonant frequencies from the w-equation (1.18) and perform differentia-
tion by parts on the resulting gauge problem (2.12) for z in order to establish (formally)
the Duhamel form (2.27). In Sect. 3, we prove a number of useful a priori estimates for
(2.27) which are key to establishing Theorem 1.3. In Sect. 4, we utilize the aforemen-
tioned estimates to complete the proof of Theorem 1.3. Finally, in Sect. 5, we employ
the nonlinear smoothing effect from Theorem 1.3 in order to prove the polynomial
bound of Theorem 1.4.

2 Removal of resonances and differentiation by parts

We begin with Eq. (1.18) for w and proceed with formal computations whose purpose
is to remove the resonant terms present in that equation. This procedure eventually
takes us to the Cauchy problem (2.12) for z, which we then rewrite in the form of the
integral equation (2.27). This is the equation used for proving the a priori estimates

leading to nonlinear smoothing in Sect. 3.
First, note that

—0 = ey 3 dOTE T eRE@D@RE). @
£1.62.53

The resonant frequencies in (2.1) are associated with {§; = &} U {& = &3}. Hence,
we split (2.1) into resonant and nonresonant frequencies as follows:

—w?iy 1= NR(-w’Wy) + Q;ﬁ > TG BE)D(E)D(E)
§1=5
~ Gy 2 ¢ a D @D E0
§o

9
= NR(=w?W,) + 5= Y EID(E) + Ri(w),
§

where we have used the symmetry in & and &3 and

NRCwTD) = o 30 SO b aEn@nE), 22)
§1762, 27863
Riw) = =57z D¢ D) D E) 23)
&0
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Next, we claim that
2w
Y emE)) = —/ Im(i,w) (6. 1) d6.
p 0
Indeed, we have

2 2r . _
_fo Im(w,w) (0, ) do = Im/o é Z & C=20 e, B(EN D (&) db

1.6
. _

—tm Y [ e e n e do

f.670 2
=Im ) i&DEDD(E) =1m ) _is[@E)

§1=62 §
=Y &lw@P”

£

Therefore, the one of the resonant terms associated with —w?w, cancels out and
Eq. (1.18) for w becomes

i
w = iwee = NR(-w?me) + Ri(w) + 5wl —ipww
1 2
+iw (——/ lw|*©, 1) do + ;ﬁ) . (2.4)
4 0

It will be shown that the additional resonant term R (w) possesses smoothing.
We now examine the quintic term

i
“lwltfw =

o i(61 62 +E3—E4+E5)x
> WWWWW = ——— Z e ’

2(2m)3/2 :

PO~

,,,,,

x WENW(E)W(E)W(EHW(Es).

Here, the undesirable frequencies we wish to isolate are {§; — & + &3 — & = 0} U
{(—& + & — & + & =0} U (& — & — &4 + & = 0}. We note that these sets are not
necessarily resonant. Thus, we will rewrite the above quintic term as

D dETEARTEIENG () D (8) D (63) D (E4) D (55)

i |w|4w . i
) - 5/2
2 2(2m) s

3. o~ —_ L N~ = N
=AW+ Y DENDE)DE)DE)

2
2(2m) E1—E2+E3—6=0
B (21W 3 W (ENW (&) W (E3) W (E4) W (E5)
T E1—Er+E3—£4=0
§1—&—E4+85=0

—&+63—84+65=0
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3i i =~
—soowm . dERENDEIDENDE)D(ES)

20m im0
§1—&2—64+&5=0
—52+83—54+857#0
3- o~ _ T N~ =\

= Aw) + 2(2’7;;’)2 Yo BENDEIDEDDE + Riw) + R w)
§1—52+83—54=0
(2.5)

where we have once again used symmetry and let

AW =55sy 3, OB D@ DEDE DEND(ES).
§r+64#E11+E3
§r+54#E1+E5
Er+64#E3+Es
(2.6)
iw=-rrg X EREPE@DETEDES)
§1—62+63—864=0
§1—-5—&4+85=0
—&r+83—64+65=0
— i i§1x 75 3 (ENT(E4)
=——s Y VDEN] DE)DE) 2.7)
(@m)>2 281=6r+&4
3. [ o~ =L N~ =L N~
§<w)=—2(T’)5/2 Y. EREDE)DE)DEDD(ES)
§1—62+853—64=0
&1—8—84+65=0
—Er+63—E4+E57#0
3i . —_ -
=——s Y F0ENDE) [DE)) DE) (2.8)
22m)>2 §1—62+63—64=0
&y +E4 7283

Next, we observe that

1 2w

1 (2 1
4
——/ lw|*(@,1) d0 = —— —
4 Jo 4 Jo (27'5)2E
1

D RSO G ED &) (&)W (E) dO
,,,,, &

. S aE @ N E e
= TS A 1 2 3 4).
20m)? e feio

Thus, we may write (2.4) as
w; — iwyy = NR(—w’w,) + Ri(w) + A(w) + Ri(w) + R5(w)

. 2
: 2 w 4 )
—ip|w| w+g/ lw@, 1)]"do +in-w.
0
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Finally, we recognize that |w|?w contains the same resonant frequencies as —w>w.

Thus, writing

2w > 1 iEox ~ .
wl*w = NR(lwlw) + 2~ Z DE” - G %:e % (Eo) W (o) I

= NR(|w]? w)+ Ilwllem+ L Raw)

= NR(Jw[*w) + 2pw + ;Rz(w)
where, analogously to (2.2) and (2.3),

1 . -
NR(IwIZw)ZW Yo LEOTERTGE)BE)BE).  (29)

§1762, 52#83
in iE0x ~ ~
Ra(w) = 557 DL€ D(E0) D (Eo) (2.10)
&0

we overall conclude that w formally satisfies the equation

Wy — iwyy = NR(—w?Wy) + Ri(w) + Ra(w) + A(w) + R} (w) + R (w)

—iuNR 2 _w 271 4 —iy2
iuNR(|lw|*w) + lw@, H)|* do — i w. (2.11)
0

In turn, recalling the second gauge transformation (1.19), we deduce that z satisfies

2
& — iz = NR(=2%0) + AR) + ) (Re2) + R} (2))
=1

— inNR(|z1%2) + ||z(l)||L4(T)z, xeT, teR, (2.12a)
z(x,0) = zo(x) € H*(T). (2.12b)

Next, we proceed with differentiation by parts at the interaction representation level
el 2 z of Eq. (2.12a) in order to determine a nonlinear smoothing effect for the solution

z emanating from Theorem 1.1.
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First, we isolate the more troublesome terms associated with (2.12a) and then we
apply differentiation by parts to these terms. Note that

at<e”¥2€<s>>—2— Y i) TE@)EE) + ¢ AR E)

& —&r+&3=
51 #&2, 52755%

T Z ¢ (Re@© + 7%(5))

=1

—ipe' fx(NR<|z| z)) ©+ - llz<t>llL4<T) JEZE). (2.13)
Next, letting Sz := (£ — & + & = £} N (&1 # £2. & # £}, we write

3 iz TR )
St
= Y MTinteIE@iE) + Yy i@
N S,
\E]\;\Ezl |§l|§|§2|

= Y FinzETErE + Y., FiniE)TE2E)
S; S
\S]\;\Szl |€||~|S§|>>|S3I

+ Z FEIHTENTEE) + Y e TN E)NE)
S
1]~ Iézl €31 |E||~|§§|<<|§3I

+ Y finzEi@ae) + Y. @ FiniENIE6E)
S;
\Sl\<<\§;<<|$3| |§1|<<\Si\~|53|

+ Z 1 iy2 ()2 E)2 )
€11, |§3|<<|§2|
- znel’ffzz%@w Y dFintEi@E), (2.14)

=1 Se
[€11,1&31< 621

where

= o 1 —~ o~
Bl(Z)(E)=E Z i16:2(61)z(52)z(83), (2.15a)
N
|§1|>§|§2|

N 1 ~ o~

Bz(Z)(E)=E Z i£7(51)2(62)7(&3), (2.15b)
N
|§1|~\$§|>>|§3|
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8/3(?)(5)=% SZ i£2(61)2(E2)2(83), (2.15¢)
3
[E11~621~|83]
zi(?)@)zi SZ i£2(61)2(E2)2(E3), (2.15d)
&
[E11~1621<K &3]
13’/5(?)(5)2% ; i£2(61)2(E2)2(83), (2.15¢)
&
[&11<182 1K (&3]
@(E)=% Y iBTEIEE). (2.15f)
Se
[E11<K62]~1&3]

Thus, it follows that

6
02 = Y Bu@)(€) + ¢ AR ©)
=1

2
+ 3¢ (Re@D® + Ri@®) — ineS £ (NR(2*D) ©)
=1
LT CCIREC RS D DR L)
S,

&
11,1631 <82
(2.16)

We will apply differentiation by parts on the last term of (2.16), as this term does
not necessarily gain derivatives via the Fourier restriction norm method. First, observe
that

Y g TE)E)
N
IElI,\&E\«\&\
= ) OO (1)) (1) (" HEE).

Se
[611,1631<1&2]

Let

¥ =2(& -8 - &) 2.17)
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Growth bound and nonlinear smoothing for the periodic...

Applying differentiation by parts and symmetry in &; and &3 yields

=Y e i @) e TEE) @ )
T St
[§11, 18311621
= 0 ["CNFO@© | - 2N @) - M@ ©),
where
— 1 EZ,\ o~
NF@Q® = ) 3 IETEE), (2.18)
S
\51\,|§3i<<|§z|
— 1 .
N@E = > " =2 at(e”flz@]))(e”%z?(sz))(e”%z@g)) (2.19)
S
\%‘1\,|§3§|<<|§2|
— 1 —
M@OE = ), " =2 (e”flz@l))a,(e”%z(éz))(e”%z@a)) (2.20)
S
€1 \,|§3§|<<|§z|

Inserting (2.13) into Ni(z), we obtain

/\7@(9:# 3 el”%( 3 e”ffiss?(a)?(ssﬁ(se))(e”fzzasy)(e"’ff?(sa))

S §a—&5+56=E1
1&11,1&31<1621 Ea#Es#Eo
1
t Y €2 ameTERe)
N
(3 \,Iéf\<<|§7\
- % e 2 7 (VR(PD)) € TE2E)
1&11,1831<1821
2
1 i 25 N N ST
+ o % o ﬁ;(m(mso+R[(z>(sl))z(sz>z(s3)
1&11,1&31< 1621
i s it &2 it e\ S (ol
+WIIZ(I)IIL4(T) % i (etlz(él))(e () (€5 2E))
1611183162
=t Z/m(z)(sw — Izl € " NFQR)(E). (2.21)

=1
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Similarly, for NV>(z) we find

— 1 : o~ T i1E2~,
M@@® =— ) 2 SEizen( Y e”fzzissz(a)z(ss)z(sé))<e”532z(53))

Se E4—Es+Ee=6
[&11, 163182 E4#E5#8E6
1 irg2 o o o
+ 5 SZ 1 T ENAQ) ©)TE)
&
[&11, 163182
in St B s S T N s
+50 ; = 2607 (NR(2P2) 62)2(E)
&
111183162

T N~ (&)Z(Rz(zxsl)+R4<z)(sl))z@3)

2 S

\51\,I$35\<<I§z\
- O, D 2 @R @ e e
S;
\$1I,\53E\<<\Ez\
) 4 ——— i 4 )
=1 ¢ Y N2 @E) = - IOy € NF@D(E). (2.22)

=1

Further expanding these terms, we see that

—— 1
Na@® =75 3. ’izfl“?(sl)z(éz)z(sg)z(snz(ss)
N11(§) ’

—— 1
N@® = Y ’5"22(51)z@z)z(&)z(a)z(&)z(&)z(sﬂ

Ni2(5)
A 1 —i(62 — &3+ 84)63
N @® = g Y BT S e B ),
472 Ng(:é) Wy
_ 1 —i(E) —
Noro®) = oy Y T \:f;‘ 554 56) 1 B2 6 R 2 6 EEe 206,
N22(§) ’

where the sets Ny 1, Ny are given by

Nii) =& —&+& —&+8&=8N{& — & + & # 84 # &}
N{& # &, & # &N {15 — & + &, 6] K [al},
Nip@) =& —&+8&—-8&+& -5 +& =6}
N{& —& +8& — & +& # & # &1}
N{&2+8& #86 +83,8 + 685,86 + &5}
N{1& — & + & + & + &5l 1&7] < 1&6l},
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the sets Na,1 and N3 7 are given by

Noj§)=1{81—62+& — &+ & =81N{& #& — & + &4 # &5}
N{& # & # &N {l&1l, 155] < |62 — & + &al},
Nop(§)=1{61—6+8& —8a+6& — &+ & =6}
N{& # & — &+ 81— & + & # &7}
N{& + &5 # & + 84,8 + &6, 54 + &6}
N{l&1l, 1671 < 152 — &3+ 64 — &5 + &6},

and W; ; is the relabeling of W according to the set N; ;. The analysis of N} (z)
and N3, 1(z) covers the analysis of A 3(z) and N> 3(z), respectively; therefore, the
analysis of the latter two terms is omitted. Similarly, we do not expand N 4(z) or
N> 4(2).

Finally, we note that AV, j(z) possesses the unfavorable frequency interaction &; +
& = & + &s. To handle this, we decompose N>, (z) as

0@ =y Y TR B e FE0Res)

Wy g
N1 (§)
Er+E4#E1+65

1 —i(52 — & +84)63
o L g e T e RGeS

N1 (§)
&r+Ea=E11E5

o 1 i(6 —& —&)§
= N¥ — — 2 2r2
>1(@E) + i NZEI(E) 2E NG & )Z(&l)z(é?z)z(c?)z(&)z(és)

&r+64=E11&5
— V00 - — > S e G TR
> rt e 2E—EDE - &)

Er+é4=E1+65

. 3
tom Y FETEREIEE) = ) N QE) (2.23)

N 1(8) =1
Ex+Ea=E1+65

and further expand J\/'2* 3(2) as follows:

M@ = c550) Y. HETERE)TE)

N21(6)
§1+és=62+64
= 500 Z 26T E)EE)TE)

§1+53=6484
E11, 18211831, 1641 <1
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oY AETERETE

N2 1(§)
§1+Es5=62184
1€1<|&¢], for some ¢

4 —
= 16713“‘9/ Yo 0%z (sl)\ do + £1(2)(€)

|61l
271 ) 4 .
(E)/ z—— Z e’fl"?(sl)‘ do + &1 (2)(§)
\s\sm
i -~ = < —
=1 26 2l ) + E1QDE) + EE)E). 2.24)

where

—4ri&OE) = -2 Y TEkPE) - 2@ Y. @R
1&15181 €118

4 =
+ =26 Y ETEIPE —&)
vr EI<IEL] &2

ftze Y )26 e
2
1E1<IE ] |62

+ L () E ?(El)?(fz)?(él +&)
V21
1E1<IE1] €21

2 -~ —~ T N~
— 5@ Y ENTEZEN—E + & + &)
1S 1811 1821, 183

2 =6 2613 E) 26 )
_2ﬂz§ Z Z(EDNZ(E)Z(E)Z(E — &+ &

HNGIREIRE]
- Z(E1)Z(E2)Z(E3)2(E) 225
+§Z(€) Z 2(§1)z(52)z(53)z(&4). (2.25)
E1+E&3=6r+E4

1151811621183, 154
Overall, we have
s, s 6 — —
(") = €'t (Z Bi(2)(§) + A@R)(E) — in F(NR(|z*2)) ()
=1

2
+3 [Re@@© +7€;@(5)])

(=1
tao Y CTinRETERRE) + o ||z(t)||L4(T) )

[€11,1&31< 82
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=0 [ NFR® ]

6
it (Z Bi()(&) + AQ)E) — ipn Fe(NR(1z%2)) (E))

=1

2 4 4
L (Z [R@© +Ri@®] -2 M@ ®) - ZW)@)
=1

(=1 =1

i 4 itE2~ i 4 itE2 37 1 o
t 4 1Ol gapy €' ZE) = 12Oy S NFRE),

where

2
Noi @@ =Y (N, @E) +EQE) + =26 120, -
=1

Hence, we see that
026 = [¢CNFO@ |

6
+ ei’§2<234(z)(5) +AQE) — in Fe(NR(Iz2) 09)

=1
2 4 4
+ e”‘fz(z [Re@® + R;@®)] -2 N @) - Z/\m)(s))
=1 =1 (=2

2 .
=Y (NG @© + EQ®) = 1 120y ¢ NFRE).
=1
(2.26)

Finally, we integrate (2.26) on [0, #] and invert the Fourier transform to arrive at

t

2(x. 1) = "% 70(x) + NF(2)(x, 1) — "% NF(z0)(x) + / J RN () (x, 1) dt,
0

(2.27)

where

6
ND© = Y B@E +ADE) — inF (NR() ©)

=1

M

4 4
+ [Re(z)(é‘) + RZ(Z)(%‘)] —2Y Ni@E =Y No@ &)

=1 =1 (=2

vl

=Y (M @0® +EQ®) = = 120l s, € NEQE).
=1
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3 A priori estimates

We begin by recalling certain linear estimates from the literature which are relevant
for our analysis. From Bourgain [4], we have the following useful estimates.

Lemma 3.1 [4] For any § > O, letu € XO’%H. Then, there exists a constant ¢ > 0
such that

lullys, < el g, 3.1)
1
Furthermore, ifu € X 8318 then there exists a constant ¢ > 0 such that
s, < cllull sy (32)

In what follows, we assume ny € Cf)’o(—ZT, 2T) is symmetric and n7 = 1 on
[T, T],for0 < T < 1. The following linear estimates are proved by Herr in [30].

Lemma3.2 [30, Lemma3.3] If2<p.qg <00, b> 1 — % ands > % — g then
lullprpa S Nullxse - (3.3)
Moreover, for s € R,
lullew, s ery S lullzs - (3.4)
. 1
Finally, for by > by + 3
zllysor S Nzl xses - (3.5)
. 1 b
In particular, for all b > oL X5 s 795,
Lemma 3.3 [30, Lemma 3.6] Let s € R and zo € H*(T). Then,
. 02
Hnre”a"zo H o =T 2ol s cry - (3.6)
Moreover, for F € Ys—1n XS’_%,
t . nNa2
‘ nr / CORFE@WY A Sr I Fllys-r +IFI 1 3.7
0 75 X572

We now state and prove the nonlinear estimates needed for establishing Theo-
rem 1.3.
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Lemma3.4 Forany § > 0, let z € H® withs > % + 8. Then, the quantity N F(z)
defined by (2.18) satisfies the estimate

INF @)l gstam) S lIzI? 1y Mellgsery, 0<a <l (3.8)
H2H(T)

Proof We have

1

— 2\ 2
NFQ®)| )

”NF(Z)”HHF“(T) = <Z(€>2(A‘+(1)
§

2\ 2
5(2(&)2““’)( > Lﬁ@mﬁ(&)mw)) :
§

3 (&2 — &1){62 — &3)
£
|&11,1631<K&2]

Next, we note that |§ — &1| ~ |€ — &| ~ |&| ~ |&|. Applying this result and the
Cauchy—Schwarz inequality in & and &3, we find

1

2s+a) (-8 —8&) L >2>2
(;@) ( > T mE gy PEDIRE — & - &)

1,63
1&11,183 116 —§1 &3]
24
S (Z(@”“*a*”( > REDIZE — & - sa)n?(san) )

§ 51,863

o=

S (Z(&W‘” 3 €2V EEDHE — & - &)PRE — & - ss)|2<53>2(%+5>|?@3)|2)
& §1,83

(a—1) 2
<su Izl lzll fs Ty -
5p(E) by NElEe @

The above supremum is finite for a < 1, completing the proof. O

Lemma3.5 Foranyd > 0, letz € C([0, T]; H*(T)) with s > % +38, T > 0. Then,

t
H/o e 2t ||i4<1r)NF(z)(t/) dr'

Hs+a(T)

ST zl® Izl s (3.9)
cqo.ryaEty o CUOTEAD)

forall0 <a < landt €[0,T].
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Proof We simply note that

t
H/ ei(r—;f)a§ "Z(I/)"i4(T)NF(Z)(I,) dt'
0

Hs+a(T)

t
< [ IOl INFOE yvaery 4

<T sup llz(ﬂll‘bm INF @)l gs+ary -

tel0, T
The claim then follows from Sobolev embedding and Lemma 3.4. O
Lemma3.6 Lets > 5 L Then, foralls > 0and(0 < a < min {s — 5 — 154, 1 158},

the quantities B¢(2) and NR(|z|*z) defined by (2.15) and (2.9) satlsfy the estzmate

Z 5.

cortus | VRGP

ra—bis S SlzlZe lzllzs . (3.10)

Proof We will prove the bound for B (z), B2(z), and B3(z), as the same proofs apply for
the other terms. By applying Littlewood—Paley-type projections, Plancherel’s theorem
and duality, we have

1B1@)I H{,,,MNszwzk sip Y

=1
el o3 5=1 5
11> 12|

x / 2> €1, t)l[Zk (2, 211283, 3)11¢) (6. T)| do,

T —T2+T3=T

where we have assumed, without loss of generality, that || > |&3]. Note that, in the
above region of summation and integration, we have

3
T+ =) (DT (w+E) +26 — E)E — &).

=1

Thus, for T + &2 := 19 + &7, we have max {|t, + &2 }}m 0 2 1 =& — &)l
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3
m

First, suppose that max {|rm + S,%, |} 0= T + $2|. Then,

Z / 2> G1, T2k (2, ©2)1[2(83, )1l (€, D) do

Se —D+n3=
Elslel T
1
2,778
<Y e T
S 1 riirer 82 T EN2T(E —83)2
[E11>>162]

x (&1, TZk (&2, )I[Z(E3, )19 (€, 1) do,

where do is the surface measure. Let z* = ft_xl (IZ]). Since |£1] > |&2|, we may apply
Holder’s inequality, Sobolev embedding, and estimates (3.1) and (3.4) to arrive at

Yo 2erdksup B / 2L IE G2, 0)IEE, )G E 7] do

: lell 1 =1
Jik 0,5—8 Sf T1—T+13=1
X I 1> 16
i _1
< E p/sta 2+5)2kH(Z>j)#(Zk)#Z#HL2
~ 1,x

Jj.k
S Z 2j(s+a_%+8)2k ||Z# || L?fr

# #
- (@) ”L;‘J | o) “L;{X
J
j(a—3+8)7k(1—
ST Yy izl oy N2l Ly -
J.k

Then

> pila=}+8)9k(1-0) < 3 pilatits—o),
Jk j

which converges provided thata < o — % — §. If max {]rm + grﬂ}fn:o =\t + élzl
or max { |Tm + é‘,% | }3”:0 = |+ &22|, a similar argument yields the same result.

Next, recall that the interpolation of the Bourgain spaces X*!"?1 and X272 at 6 is
given by

[Xsl,bl st,bz]g — XS1(1—0)-5—‘?29,1?1(1—0)-5—]729.

By estimates (3.2) and (3.3), we have X% 38 s [S(TxR)and X33 < LO(TxR),
respectively. Thus,

[X33, X524, < [LO(T x R), Lo(T x R)]y = L(T x R)

which for @ = (£ — 8)/(3 + 8) gives
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If max {7, + €21} _, = |73 + 21, then we apply X338 <> LS(T x R) along
with Holder’s inequality to yield

Y 26tk sup N / 2> & )|k (& )1 (Es, T3)I16) (6, 7)| do
J.k lelxo,%—ézl SS

T1—T2+13=T
[&1 11621

=) IR PRI (COUCO T P

J-k “¢||Xo,%—a=1
i(a+108— 1) Ak (1+55— 2
S 2d @0k 2 i)l
X(r,z x52
Jk

Then

Z 2j(a+108—%)2k(1+53—a) < Z 2j(a+158+%—a)

J-k ik
which converges fora < o—%—lSS.Overall, we have shown that B (z) € Xsta =3+
provided that 0 < a < min {s — % — 156, % — 158}.

Next, we note that by the definition (2.15) in the case of B/z(?)(é ) we have |&;] ~
&2 > |&3]. Thus, |& — &3] ~ |&2|, which allows us to yield the same estimates
as those obtained for B1(z) and thereby deduce that B>(z) € X534 for 4 <
min {s —  — 158, 3 — 158}

Finally, by applying Littlewood—Paley-type projections, Holder’s inequality and
estimate (3.1) once more, we have

IB3@ raas D 27CHD sup /T R[(zzp#mp# dxdt
. X
J

lell o1 _g=1
(038

g 22](3+a+1) sup || (sz)# ||i?,x ” (QO/)# ||L?,C

I ol g3 5=

< sz(a+1—20) 2
~2 ||Z||XJ,% ”Z”X~‘~% ,
J

where the above sum converges for a < 20 — 1 = min {25 — 1, 1}. O

Lemma3.7 Lets > % and z € C([0, T]; H*(T)), for T > 0. Then R|(z) and R2(z)
given by (2.3) and (2.10) satisfy

2 !
- na2
> / ¢ TER(2) dif
= 1o C(10,T1; He+a(Ty)
2
S T llzleqo,ry: me ey 12l cqo, i sy - (.11

for0 < a <min{2s — 1, 1}.
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Proof We will only show the estimate for R(z), as the same argument holds for
R>(z). First, we have

Note that

t
/ FONR (@) dif!
0

< T IRt @llcqo. 7); H+a(Ty) -
C([0,T]; HS+a(T))

Ri@)(E) = —éé?(s)ms)ﬁ

Then

1
2
IR1 @ Nl cqo. 7y ms+acy) < sup <§ j<s>2<”“+“ﬁ<s>|6)

t€l0,T] £

= sup (Z(sﬂ(““—z")«s)”|?(s>|>4<<é>~‘|?<é)|>2)2

1el0.7] \ Z
1-2 2
= sgp(é)a"" “ ”Z”C([O,T];H“('ﬂ‘)) ”Z”C([O,T];HS(’]I‘)) >
(3.12)
where the supremum is finite for 0 < @ < min{2s — 1, 1}. O

Lemma3.8 Lets > 0 and z € C([0, T]; HY*(T)), for T > 0. Then R}(z) and
R} (z) given by (2.7) and (2.8) satisfy

=1
S

t
: Y Y
/ ¢ TINR(2) dif
0

C([0,T1; H¥+(T))

4
T ”Z”C([O,T];H"('Jl‘)) “Z”C([O,T];HS(']T)) (3.13)
for0 < a < min{s, 1}.

Proof 1t suffices to show the proof only for R3(z). As in Lemma 3.7,

<T|R3() “C([O,T];H”“('ﬂ‘)) :

t
: YY)
/ AR5 (2) dt’
C(0, T} H*+4(T))

0

Then,

— 3 e
Ri@E) =—s—— Y ZEDIEREEE)
2(2m)? &1—&—&4=¢

E2+547#28
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Thus,

2\ 2
IR5 @ o,y pstacry < sup <Z<s>2<”“>\ > ?@1)?(5;2)?(54)[?(&)]2\)

rel0TI A g f1—6—f=¢
E2+E47#2¢

2\ 1
< sup (Z<s>2<“*”>(<s>2”|?<s>|2><<s>2w?(s>|2)\ ) ?@1)?(52)?@4)])
§

te[0,T]

§1—6r—E4=E
§r+647#28
a—o o 3
S sup(€)7 Nzlleqo,ry; 5oty 1zlleqo,71: 5 (1) <Z |Z(§o)|>
£ o
- 4
S sgp(é)“ 7Nzl o,y me oy 1zl cqo. 715 my) » (3.14)
where the supremum is finite for0 < a < o. O

Lemma3.9 Lets > % and 7 € C([0, T]; H(T)), for T > 0. Then N 4(z) and
N>.4(z) defined by (2.21) and (2.22) satisfy

4 2
ST ”Z”C([O,T];H"(’]l‘)) ”Z”C([O,T];HS(’]T)) (1 + ”Z”C([O’T];HU(’]I‘))) s

t
[ e i

0

t
. a2
/el(t_t)ax./\/'lA(Z) dt’

0

C((0,T]; HS+4(T)) (3.15)

C([0,T]); H¥+(T)) (3.16)

4 2
St zlieqo.ry: e ey N2lleqo, 1 e emy) (1 + ||Z||c<1o,T1;H"ar>>) ’
for0 <a < 1.

Proof First,

From the proof of Lemma 3.4, we see that

t
s a2
/el(t DUNaz) dlf

i = T [Ma@ll oy psvacry

C([0,T]; HS+4(T))

IML4@ | ¢ go.71. r5+acmyy

2
< Z [Re(2) + R (2) ||C([0,T];HG(T)) lzllcqo, 71, 1o (myy Nzlle o, 71, 15 (Ty) >
=1
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for 0 < a < 1. Furthermore, from the proof of Lemmas 3.7 and 3.8,

2
Y IRe@ + Ri(2) leqo.r. )

4 2
S lzlleqo.ry mocry Izl eqo.ry mser) (1 + ||Z||c([o,r];m(1r))) :

The same proof holds for A3 4(z). O

Lemma3.10 Let s > % Then, the five-linear form A(z) given by (2.6) satisfies the
estimate

MA@ ra-gs S < Nzl Nzl zs (3.17)

1
forall§ >0and0 <a < 5 —34.

Proof Let A(§) = {§2+84 # 81 +83. 61 +65, 53 +& U1 — &+ 83— 864 +&5 = &)
We first apply Littlewood—Paley projections, duality and Plancherel’s theorem to infer

A W,,,H<sz<f+“> su ZRK,

lell 0 1 s=l=
where
Ry = Z [Z(&1, TIIZ(E2, ) I[Z(E3, )25, Ta)1[Z(Es, 5)119) (€, T)| do,
A@) T —T+T3—T4+T5=T
&7 1> 185 17
Ry = Z / 21, T)IZ(E2, ©)IIZ(Es, 3)1Z(E, )25, 15)119; (€, D) do,
A) Tty tTs=
\S§|2<<\El*\§\$2*|2 T —T+13—T4+T5=T
[EF 1> 1851
Ry = Z / 121, tIZE2, )25, ©)I[Z(E4, Ta)|[Z(Es, T5) 1195 (5, T)| do
\STIS@E‘E\%.\E;P o
[EFI>1E7 |
Ry = Z / 21 t)IZE2. ©)IIZ(E. )IIZE. )l [Z(Es. 5)]19; (5, T)| do,
AE) - - =1
gi<iey TR TR
and 5;‘ denotes the jth frequency among &1, . . ., &s after ordering all five frequencies

with respect to the size of their absolute value, i.e. [§]| > [£5] > &3] > [§5] > [&5].
Next, we note that in the above range of summation and integration, we have

5
T+E7 = (=D +£)) +20,
=1
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where

D = £+ & + 5+ E1(—E + E3 — &4+ E5) — E2(63 + &) + E3(—Ea + E5) — Eabs.

5
(=0 2 |q)|7 Where (SO’ 7-'0) = (Ev T)~
|2

First, we consider the case |§'| > |&
& = &/ Since & + &4 # & + &5, we have

Thus, we have max {|‘L’[ + Eezl}
which corresponds to R;. Suppose that

|| > |&1] — 8IEF|* ~ |&].

The same argument holds if &3 = &} or &5 = &[". Next, suppose that &, = &{. Then

1
|®| > |62]161 — &2 + &3 — £4 + &5 — TIEF|* > §|sz|2 —TE 1 ~ |8l = 151

while the same argument holds if &, = &}
Second, we consider the case {|.‘§3*|2 < &l S |§;|2} NA{IE] > &1} which
corresponds to Ry. If £ = £, then

|| > [&1]] — & + &3 — & + &5| — 8551

1 1
§|El||52*| — 8|83 = EISZ*I(I&I = 81&) ~ I&111&3 1.

v

The same result is valid if &3 = £ or &5 = &['. Moreover, if & = £ or & = £ then
the same argument as before yields

|| > 1&7 1%

Thus, we have now shown that within the range of summation and integration
associated to Ry and R> we have |®| 2 |£]°|. Therefore, by an application of Holder’s
inequality, the Sobolev embedding and estimates (3.1) and (3.4), we obtain

J(s+a) Jla=3+8) 113
2.2 sup (R Ro) S 3 2772zl el oy Ml
J

llell 1_ =1
038 j

where the sum on the right-hand side converges for a < % — 4.

In the region of summation of R3 we have |§1*|% < 151, 1&5|, while in the region
of summation of R4 we have |£]| ~ |&;|. Thus, using once again Holder’s inequality
and the Sobolev embedding along with estimates (3.1) and (3.4), we find

, (3.18)

Jj(s+a) jla—o) 2 2
Zz sup (R3+ Ry) < Zz (E N L 3
J

llell 1 =1
(0.3-8 j

where the sum on the right-hand side converges provided that @ < ¢ = min {s, 1}. O
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Lemma3.11 Let s > 3. Then, Ni,1(2), N1.3(2), and N> 3(z) defined by (2.21) and
(2.22) satisfy the estimate

”Nl 1(Z)| a4 + ”'/\[l 3(Z)|
+[M23(2)

1
r+a - 7+6

s+u— +5 ~ ”Z”ZU ”Z”Z‘ (319)
forall§ > 0and 0 < a < min{s, 1}.

Proof We only prove the estimate for NV 1(z) as the estimate for A} 3(z) and N3 3(z)

can be established similarly. Note that the range of summation of /\m) (&) implies
Es], |&1 — & + &| < |&4]. Thus, |Wy 1| > |£4]> ~ |&|%. Then, using Littlewood—
Paley-type projections, duality and Plancherel’s theorem, we find

||/\/1,1(Z)|

NZW*“ D2k sup / @3t @t e dxdt.
ol o3 y=1JTxR

First, suppose that |&>| < |&4|. From Holder’s inequality and estimates (3.1) and
(3.4), we have

sz(erafl)zk sup / @} @@ (@)t dxdr
. ol o4-s=1 /TR

(sba— 3

< Zk 0j(s+a—=1)ok ||z# ” 1 ” (Z~j)# HL;{X H " ” i

J»

<Zkzm Dk(1-o) ||z||31+5 Izl o M2l oy
Js

Then

Z pita=l)qk(l-0) < Z pJ(a—0)
Jk J
which converges for a < ¢ = min{s, 1}.

If [62] 2 |€4l, then it follows that [§2] ~ |§1 + &3] < max{|&1], |§3]}. Therefore

221'(””*1)2" sup / @@z e 0 ()" dxdr
; ol g _5=1/TxR

< Zz](a l)zk(l 2(7) ||Z||2 1+8
j.k

<Z jla—20) 2 2
<22 U N T
J

2
IIZIIXJV% Izl .4

where the above sum converges for a < 20 = min{2s, 2} O
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Lemma3.12 Lets > % Then, N1 2(z) and Ny 2 (z) defined by (2.21) and (2.22) satisfy
the estimate

[N 2 @)

xsta. 77+5 + ”'/\[2 2(Z)|

geramtes S0zl g (320)
forall§ > 0and0 < a < 1.
Proof As in the proof of Lemma 3.11, we have that | 2| 2 |E|> ~ |£|* and so

applying Littlewood—Paley-type projections, duality, Plancherel’s theorem, Holder’s
inequality, and Lemma 3.2, we obtain

[Mi2@ sages € D270 sup / () ()" dxds
7 lell o 1_,=1JTxR
X2
Jjla—1) 6
S22y ey
J
where the sum converges for a < 1. The same holds for A3 2 (z). O

Lemma3.13 Lets > % Then, Nz*,l (z) defined by (2.23) satisfies the estimate

NS @ o ys S 2020 D12z 3.21)

1
forall§ >0and0 < a < 5.

Proof Employing Littlewood—Paley-type projections, duality and Plancherel’s theo-
rem, we find

”NZ*,I(Z)” s+a,— 7+5 NZZ/(SJ’_a l)zk su ZRK’

el 01 =1

where

Ry = Z / 21, t)IZ(E2, ™)112k (&3, T)1[Z(Es. T)1[Z(Es. T5)l9j (6, )| do,
N1 (§)

§2+E471ﬁ§1+§5
&3>85

T —0+13—T4+75=T

Ry = Z / [Z(E1, t)IZ(E2, )12k (&3, T)1[Z(E, T)1[Z(Es, T5)l9j (6, )| do,
Na1(8) _ — =
byrEiE ey TR
&5 P <& 1S IEs 12
&3> 1£51

Ry= ) f 21, lEE, w17 E, wIEE, wEEs, )l ¢ 0 do,
Na1(§)
§2+647#81+6s
1&51<IE5 12,1831
&3> 1651

T —2+13—T4+15=T
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Ry= ) / 21, TOIIZ(E2, )12k (€3, )12 (E4, w)I[Z(Es, T5)ll9j (€, T)] do.

Na1(§) _ _ —
Er+Ea#E1+Es ATnAn =
&3] SIES |

From the proof of Lemma 3.10, we recall that in the case of R; and R, we have
max { ]rm + é,% ‘ }5 2 |&3|. Therefore, Holder’s inequality, the Sobolev embedding

m=0 ~

and estimates (3.1) and (3.4) yield

. . 1
221(””_1)2/‘ sup (Ri+R) < 221(”“_1)21‘(7_5) Iz 1zl zs
j.k ||§0||X0’%75=1 jk

S Y 27D iz Nzl
J

where the above sum is finite provided that a < %

Regarding R3, we note that there exist £, m # 3 sothat |&3| < |&|%, |€,|%. Employ-
ing once again Holder’s inequality, the Sobolev embedding and estimates (3.1) and
(3.4), we deduce

DY sup Ry Y 2D g g
j.k ”‘p”XO’%ﬂS:l j.k

j(a— 4
S 279 izl llzll 2
J

and the right-hand side is finite for a < ¢ = min{s, 1}.

Finally, consider the region of summation for Ry4. First, suppose that £&3 = £;". Then
|&3] ~ &5, and the above estimate for R3 holds for R4. If &5 = &7, then there exists
£ # & where |§F] 2 22Uk For j > k, we have

YO p Ry S Y 2RI Yz, izl
jk ”wHXO,%—E:l j.k

j(a— 4
S 27 2l ge izl s
J

while for j <k,

D 2ittarlok qup Ry <Y 2/ CHe DRI g iz s
jk el o451 jk

S 29 izl llzll (3.22)
J

where the sum converges for a < o. Lastly, for [&3] < |&;], the above estimate holds
with a — o replaced by a — 20. O
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Lemma3.14 Lets > % Then, N;z(z) defined by (2.23) satisfies the estimate

NG5 @)

4
oo S1zlZo Nzl (3.23)

forall§ > 0and 0 < a < min{2s, 2}.

Proof First, note that (§ —§1)(§ —&5) = (§ — (61 +§&5) +&5)(§ — (&1 + &) + &1).
Since |§ — (51 + &5)| > |11, €5, we have that |§ — (§1 + &5)|* ~ |£]*. By applying
Littlewood—Paley-type projections, duality and Plancherel’s theorem, we have

[INZ2 @D ragis S D 270220 sup R
X ixe Il g1 5=!

12k (51, TOIZ(E2, ) 1122(E3, T3) 11254, )12 (€, T5)|19) (6, T)| do.
2H84=81183 ¢ )t~y tTs=1

Noting that

R* < 12 €1, T)IIZ(E2, ) 122 (&3, ) 1Z(Es, T 125 (Es. 5) 1190} (6, T)|do

§—+85-8+E5=E 1| 1 —ntrs=1

~

~ / @2 @ ot o))t dadt
TxR

and applying Holder’s inequality, the Sobolev embedding and estimates (3.1) and
(3.4), we obtain

VG2 @ vy © D0 27CHP220 sup / (@@ @t ot p)* dxdr
Jk.t el o.4-5=1/TxR
< nJj(a=2)pk(1=0)5E(1=0) 2 2 )
=) N N
J.k,l
< jla—20) 2 2
$2.2 2l W22yl (3.24)

J

where the sum converges for a < 2. O

Lemma3.15 Let s > % Then, the quantities £1(z) and E>(z) given by (2.24) and
(2.25) satisfy

IEY@N sram s FIE2@N -3 S Izl llzllzs (3.25)

forall§ > 0and 0 < a < min{s, 1}.
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Proof We only show the estimate for £1(z) as all of the terms in £(z) possess the
same structure necessary to yield the same estimate for £,(z). First, by applying
Littlewood—Paley-type projections, duality and Plancherel’s theorem, we find

€1 (Z)”XHQ,,%M < sz(era) sup S*,
j

lell 1 _ =1
x%z70
where

St = > f [Z1, tOIZE, ™)IZE, ™76, w1 6. 191195 (6, T) do.

bth=litis T —T+13—T4+T5=T
|€|<|&¢|. for some £ 1=+ 13 —T4+75

Without loss of generality, we assume |&;| 2 |&]. Then,

RS > / 2> (&, tlIZ(E, ©)IE(E, 26, Wz} E, w)11@) ¢, )ldo

S+84=61+8 ¢ _pt—mytrs=1
le1Z)Ec], forsome ¢ 0

< ¥ / 23561 IE G2 )IEEs. )G wlI1E Es. w5)1167 . D)ldo

S =+8—8a+E5=E 1| 11— rytrs=1

2/ @ @' @ (et dxdr.
TxR

Consequently, Holder’s inequality, Sobolev embedding and estimates (3.1) and (3.4)
imply

<Z jla—o) 3
CICTIRTE el TN TS
J

where the above sum is finite for ¢ < o = min{s, 1}. O

4 Nonlinear smoothing: proof of Theorem 1.3

Having established all necessary nonlinear estimates, we now proceed to the proof of
the nonlinear smoothing effect given in Theorem 1.3.

Combining Lemmas 3.2-3.15, we deduce that any solution z € Z;, s > % + &,
T > 0, of the Duhamel equation (2.27) on [0, T'] with zo € H*(T) and ||Z||Z§. <

lzoll s ¢ty enjoys the nonlinear smoothing effect z — e”a'%z() e C([0, T1; HST4(T))
with the estimate (1.22). Next, we transition to the solution of the Cauchy problem
(2.12).

Let zg € H*(T) with s > 1 + & and take z{"” € H™(T) such that z{” — zo in
HS(T). From Theorem 1.1, there exist 7 = T(||10||H1/2+5(T)) > 0 and functions z €

V4 IT/ e and, for n sufficiently large, 2" € Z 7° that are solutions of the Cauchy problem

(2.12) with initial data zg and z(()"), respectively. Furthermore, from the computations
of Sect. 2, the smooth solution z satisfies the Duhamel equation (2.27) on [0, T7.
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In addition, thanks to the Lipschitz continuity of the data-to-solution map, we have

zZ™ — zin Z;/ 2*¢ Therefore, using Lemmas 3.4-3.15 and the fact that z® is
Cauchy in Z;/HS, we conclude that z € Z;/Z“Lg satisfies (2.27) on [0, T']. In turn, we

can employ the nonlinear smoothing estimate (1.22) for an appropriate value of a to
infer

i192
. + ||Z _eztaxzonz%ﬂﬂ,

||Z|| %+E+a S ||ZO||H%+E+(1
z T

T

(

<
S IIZollH%HM(T) + CGs. llzllzg . T) ”Z”zé“

S ||Zo||H%+g+,,(T) + €, lzollmecm) lzoll 1

(T)
< o .
< CG zoll o) 120l 3 e, @)
1
which shows that z € Z%HH with the estimate (4.1). Iterating this process, we

eventually obtain

Izl zs. = C(s. lzoll o) lzoll s Ty -

This estimate shows that z € Z;/ e actually belongs to Z3.. Therefore, since z

satisfies the Duhamel equation (2.27), it admits the nonlinear smoothing estimate
(1.22), completing the proof of Theorem 1.3.

5 Polynomial bound: proof of Theorem 1.4

We shall now exploit the nonlinear smoothing effect of Theorem 1.3 in order to estab-
lish the polynomial bound of Theorem 1.4. We begin by proving such a bound for the
solution z of the gauged Cauchy problem (2.12).

First, we suppose that 1 < s < % — ¢ for ¢ as in Theorem 1.3. Fix n € N and
t € [nT,(n+ DT], where T = T(|lz0ll g1 () is the local time of existence from

Theorem 1.1. Then, write z in the form
Z(t) = Q§n2z(t) + Q>,1ZZ(I),

where Q/sN\Z(s) = xj&|<n2(€) and Q. nz is defined similarly. The term 0 22(1)
satisfies

| Q<220

ey < €2z g1 ry < Clizoll ) 077V 5.1

The term Q_,2z(t) can be handled by taking advantage of the nonlinear smoothing
effect (1.22). Indeed,

0.,22(1) = 0o ,p(2(t) = &4 DR (T)) + Qe DR (T, (5.2)
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Thus, sincet € [nT,(n+ 1)T]and s < % — &, we have

| 0o (et — %y

- ‘ L2(T)
3 . 2
< ¢ (n)26=G-o) ” 0.2 (2(t) - e'(’_"T)a-‘z(nT))HH

H*(T)

3 3
s—(3-¢) ;3

A IO (zt) — e"“*nT)i’fz(nT))‘

i)
_(3_
< )*"GTCGs, Nz D i ery) 2@ T ey
_(3_ ~
< MGG, Nzoll giery)- (5.3)

. i 2 . L .
In order to estimate Q. 2 e =TI 7 (nT) in (5.2), we first use the strict inequality

T o) [N o APy ] [ (5:4)

H*(T)

Then, writing

. _ _ a2
Q- (122 T) = Q_(_12(z(nT) = T~ DD%((n — DT))
01 TH (= 1DT)

and proceeding similarly to (5.3) and (5.4), we obtain

10 r12 2T sy < 0 = 126~ GDE (s, Nz0ll g1 )
+ || Q>(n—2)2Z((n - 1)T)|| H?(T) .

We may inductively continue this process to arrive at

n
—(3_eN A
@22z ey < D_PSTETDCGs, lzoll i) + zoll sy -
k=1

Then, noting that

n
Zk“ <cgn®t a > -1,
k=1
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and observing that 2(s — (% —¢&)) > —1since s > 1, we obtain

n
(3 _ ~
| @2z egry < DK ETICGs, lzoll i) + Nzoll sy
k=1

< (>, Nzoll g ry) + lzoll s ery

(2O C (e, s, Nzoll s (r)-

IA

Combining (5.1) and (5.5) yields

o 3
Izl < 02 THICE s lzollmnmy), 1536

(5.5)

(5.6)

Next, we consider the range % —¢& < s <2 —2¢e. We remark that the argument
outlined for this range also extends to the range s > 2 — 2¢. Indeed, upon proving the
polynomial bound for 1 + (j — 1)(% —g)<s<l1l+ j(% — &), we may always use
the same argument to establish the bound for 1 + j(% —e)<s=<14+G+ 1)(% —eg),
for j > 1. Once again, lett € [nT, (n + 1)T] and split z(¢) as before. For Q _,2z(¢),

we still have estimate (5.1). Also, as before, we write

0.22(t) = 0y (2() = T D% (D)) + Qe DR ().

Then,

|02 (z0) = D% T |

HS(T)
_ —(2-2¢) 722 i (1—nT)d?
_ ‘ JmC2 2220 (2(6) — €D (T .
2(s—(2—2¢)) _it—nT)d?2
scln) HQWZ(ZU) ¢ Z(nT))HHZ*ZS(T)
2(s—(2-2¢))
< (n)*® DCs, Iz Tl g ry) IIZ(nT)IIH%_S(T)
2(s—(2—28)) /
< (n) C(s. llzoll ) NI
In addition, the bound (5.6) gives
T < (nT .
lz(n )IIH%_E(T) <(n )C(”ZO”H%_g(,H,))
Consequently,
i(t—nT)d? 2(s—(2—2€))+1 &
”Q>n2(z(t) _ ittn )XZ(nT))HHS(T) S R S O N E
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Repeating the procedure as before yields

n
|02z oy = D> O Ces. Nlzoll 5, o)+ ol
k=1

< (n)26=C2DF2C (e, 5, Nzoll s (ry) + Nlzoll s

< (1)26-(1-20) &

(&, s, lzoll s (T))-
Overall, recalling also (5.6), we have established the bound
2@l s emy < (027D 2DCe s, zollgsery). 1<s<2-2e. (57

We may then repeat the above procedure to establish the bound (5.7) for all s > 1.
In order to extend the result to the solution u of the dNLS Cauchy problem (1.1),
we begin by establishing the following product estimate.

Proposition 5.1 Letsi,so > s > 0and sy +sy > s+ % Then

1&gl asery S I Wasiery 181 g2y - (5-8)

Proof The argument is standard and resembles the proof of the algebra property for
Sobolev spaces. For r, r1, rp > 0, we claim that there exists a constant C > 0 so that

(4 1x]+1yD" < CLA+ XD A+ [yD™" 4+ (4 +1y)™ 2 (0 + x )77 .
(5.9)

Indeed, first note that
(L4 Ix] + D"+ D2 A 4 [yD™ < (4 x| 4 [y 1772
Thus, to establish (5.9), it suffices to show that there exists C = C(¢) > 0 so that
(I+ x|+ [yD" < C[(+[xD)" + (A + [yD'] (5.10)
for all + > 0. Without loss of generality, assume that (1 4 |y|) < (1 + |x|). Then
(I lx[+yD" <= A+ Ixl+ 1T+ [yD <2'A + xD" <2 [A + xD"+ A + |yD'].

Therefore, (5.10) holds with C = 2/, for all # > 0. Consequently, we have (5.9).
Next, we apply (5.9) withr = s, r] =51 — s, and r, = 55 — s to see that

€ =A+ED SA+IE=nD" A+ M) + A +1E =)0+ nDh™.
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Thus,

2
/el emy < D_(1+ |é|)25(z 1Fi& - n>||§(n>|>
§ 1

2
<> (Z(l +1E =D FE = mIA+ ) |§(n)|>
& n

2
+y° (Z(l +1E =) 2 1FE = A+ [)® |§<n)|) :
§ n

where we have applied (5.10) for r = 2 in the previous inequality. It suffices to bound

the first sum above, as the second sum is treated the same after a change of variables.
We apply Minkowski’s inequality to obtain

2
> (Z(l +1E =D FE = mIA+ )" |ig‘<n>|)
§ n

2
[ (Z(l + |§(n)|> :
n

Finally, due to the Cauchy—Schwarz inequality,
Do) =D A+ ) TR+ ()20
" "

= ||g||1-1sz('11‘) H(l + |77|)_(51+S2—S)

9

G
where the above norm is finite due to the fact that s + 5o — 5 > % O
Lemma 5.1 Lets > 0. Then, there exists C > 0 such that
la @l < C(1+ 1O ) 1Ol (5.11)
Proof Clearly, lzO sy = lw@llgs(T), for w given by (1.17) . Furthermore,

since W(E, 1) = e 2EMY(&, 1), for v given by (1.14), we have that lwO)l sy =
lv() |l s ¢y~ Thus, it suffices to establish (5.11) for z(¢) replaced by v(t).

Recall that u(x, 1) = ¢! Z®®Dy(x 1), For § > 0, we apply Proposition 5.1 with
s1 =sand sp = % + § to obtain

(@)l s ry =

ngxwv@ﬂ

< |Tmn

H(T) —

o v N as ey -
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Now, observe that

‘eiI(v)(t) T < ‘eiI(v)(t) i — ‘eiI(v)(t) L + 10 Z) O 2
=Var + [P |, < C (14 O,
—=c(1+poI?, ),
H4(T)
where the last inequality follows from Sobolev embedding. O

Remark 5.1 Itis clear from the proof of Lemma 5.1 that the estimate (5.11) holds with
the roles of u# and z switched.

Returning to the case that s > 1 and applying Lemma 5.1 and the bound (5.6) yields

@l = C(1+ 101 ) 1Ol

< Clzoll g1y Iz s ()
< Clzollgir)) Cle. 5. 2ol s ery)

< Cle, s, luollgsery) (£)26 D,

<t>2(s—l)+8

which concludes the proof of Theorem 1.4.
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