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Abstract
Apolynomial-in-time growth bound is established for global Sobolev Hs(T) solutions
to the derivative nonlinear Schrödinger equation on the circlewith s > 1. These bounds
are derived as a consequence of a nonlinear smoothing effect for an appropriate gauge-
transformed version of the periodic Cauchy problem, according to which a solution
with its linear part removed possesses higher spatial regularity than the initial datum
associated with that solution.

Mathematics Subject Classification Primary 35Q55 · 35B65 · 42B37

1 Introduction and results

We consider the Cauchy problem for the derivative nonlinear Schrödinger (dNLS)
equation on the circle

ut − iuxx = ∂x (|u|2u), x ∈ T, t ∈ R, (1.1a)

u(x, 0) = u0(x) ∈ Hs(T), (1.1b)

where u = u(x, t) is a complex-valued function, T = R/2πZ is the one-dimensional
torus (circle), and Hs(T) is the L2-based Sobolev space on the circle.
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The dNLS equation was derived as a model in plasma physics in the 1970s, see
[39]. As shown in [33], it is a completely integrable system, possessing a Lax pair
formulation and an infinite number of conserved quantities, including the following:

M(u) =
∫

T
|u|2 dx, P(u) =

∫

T

[
Im(uux )+ 1

2 |u|4
]
dx,

E(u) =
∫

T

[
|ux |2 + 3

2 |u|2Im(uux )+ 1
2 |u|6

]
dx, (1.2)

where M(u), P(u) and E(u) correspond to the mass, momentum and energy, respec-
tively, of the solution. Note that P(u) is the Hamiltonian for (1.1).

Concerning the well-posedness of the Cauchy problem (1.1), Fukuda and Tsutsumi
[19] showed local well-posedness in Hs , s > 3/2, on both the line and the circle using
the method of parabolic regularization. Furthermore, in [20] they demonstrated global
well-posedness of solutions in H2 with sufficiently small norm ‖u0‖H1 . Hayashi
and Ozawa [27–29] improved upon this result in the Euclidean setting by showing
global well-posedness of solutions in H1(R) with sufficiently small norm ‖u0‖L2(R).
In particular, their result was obtained by first performing a gauge transformation
of Eq. (1.1a), which removed the term |u|2ux from the nonlinearity. Takaoka [52]
combined the gauge transformation of Hayashi and Ozawa and the Fourier restriction
norm method introduced by Bourgain in the breakthrough paper [4] to establish local
well-posedness in H1/2(R). This result was shown to be sharp by Biagioni and Linares
[3] in the sense that the data-to-solution map fails to be uniformly continuous for
s < 1/2. Thus, s = 1/2 is the optimal result attainable for the well-posedness of (1.1)
using a fixed point argument on the gauge equation, although the critical regularity
for scaling in the Euclidean setting is at the level of s = 0. Under the assumption of
a sufficiently small ‖u0‖L2(R) norm, Colliander, Keel, Staffilani, Takaoka and Tao [8]
obtained global well-posedness for s > 1/2. Global well-posedness for s = 1/2 was
shown by Miao, Wu and Xu [38] and later by Guo and Wu [26], with the latter work
improving the restriction on the initial data from ‖u0‖L2(R) <

√
2π to ‖u0‖L2(R) <√

4π . Such mass restrictions come from the sharp Gagliardo–Nirenberg inequalities.
Finally, it is worth mentioning that Jenkins, Liu, Perry and Sulem [32] and, more
recently, Bahouri and Perelman [2] proved global well-posedness of dNLS with initial
data u0 in the weighted Sobolev space H2,2(R) and in H1/2(R), respectively, without
a mass restriction.

The majority of the above results concern the Cauchy problem on the line. Regard-
ing the periodic problem (1.1), local well-posedness in H1/2(T) was established by
Herr [30] by adapting the gauge transformation of Hayashi and Ozawa to the peri-
odic setting. The same article gives global well-posedness for u0 ∈ H1(T) such that
‖u0‖L2(T) < 2/3. This mass threshold was improved by Mosincat and Oh in [41],
where they show global well-posedness in H1(T) for ‖u0‖L2(T) <

√
4π . Using the

I -method, Win [54] obtained global well-posedness in Hs(T) for s > 1/2 under the
assumption of a sufficiently small ‖u0‖L2(T) norm. Finally, Mosincat [40] established
global well-posedness in H1/2(T) provided that ‖u0‖L2(T) <

√
4π , and also proved

failure of uniform continuity of the data-to-solution map for s < 1/2. At the time of
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writing of the present article, the mass restriction condition for well-posedness in the
periodic case had not been removed. Further well-posedness results on the periodic
dNLS in the low regularity setting can be found in Fukaya, Hayashi and Inui [18],
Grünrock and Herr [24], Nahmod, Oh, Rey-Bellet and Staffilani [43], and Deng, Nah-
mod and Yue [12].

Notation. In order to state the main results of this work, we introduce the following
notation.

• For a, b > 0, we write a ! b if there exists C > 0 such that a ≤ Cb. If a ! b and
b ! a then we write a ∼ b. Furthermore, if C ≥ 106 and a < 1

C b with a ! b
then we write a ( b.

• For f ∈ L p(T), 1 ≤ p ≤ ∞, we define the spatial Fourier transform of f , denoted
by Fx ( f ) = f̂ , as

Fx ( f )(ξ) = f̂ (ξ) := 1√
2π

∫

T
e−iξ x f (x) dx, ξ ∈ Z. (1.3)

Furthermore, for f ∈ L2(T), we have the inversion formula

f (x) = 1√
2π

∑

ξ∈Z
eiξ x f̂ (ξ). (1.4)

For f ∈ S(R), the space of Schwartz functions, we define the temporal Fourier
transform of f , denoted by Ft ( f ), as

Ft ( f )(τ ) :=
1√
2π

∫

R
e−i tτ f (t) dt, τ ∈ R. (1.5)

Finally, for f ∈ S(Rt ; L p(Tx )) we denote the spatiotemporal Fourier transform
of f by

FtFx ( f )(ξ, τ ) = f̃ (ξ, τ ). (1.6)

• We define the Bessel potential J sx via Fourier transform as

Ĵ sx f (ξ) := 〈ξ 〉s f̂ (ξ), 〈·〉 :=
(
1+ | · |2

) 1
2
. (1.7a)

Then, for any s ≥ 0 and p ≥ 1, we define the Bessel potential space

Hs,p(T) :=
{
f ∈ L p(T) : ‖ f ‖Hs,p(T) :=

∥∥J sx f
∥∥
L p(T) < ∞

}
, (1.7b)

In the special case p = 2, the above space reduces to the Sobolev space Hs(T).
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• For any s, b ∈ R, we define the Bourgain space Xs,b as the closure of
S(Rt ;C∞(Tx )) under the norm

‖ f ‖Xs,b :=
∥∥∥∥〈ξ 〉s

〈
τ + ξ2

〉b
f̃ (ξ, τ )

∥∥∥∥
%2ξ L

2
τ

. (1.8)

Similarly, the space Y s,b is defined via the norm

‖ f ‖Y s,b :=
∥∥∥〈ξ 〉s〈τ + ξ2〉b f̃ (ξ, τ )

∥∥∥
%2ξ L

1
τ

. (1.9)

In addition, we define the Banach space Zs := Xs, 12 ∩ Y s,0 with norm

‖ f ‖Zs := ‖ f ‖
Xs, 12

+ ‖ f ‖Y s,0 . (1.10)

Finally, the restriction of Zs on T × [0, T ] with T > 0 is denoted by Zs
T and is

defined via the norm

‖ f ‖Zs
T
:= inf

{‖g‖Zs : g|[0,T ] = f
}
. (1.11)

• We define the Littlewood–Paley-type projection operator Pk by

P̂k( f )(ξ) :=
{

χ{ξ=0} f̂ (0), k = 0
χ{2k−1≤|ξ |<2k} f̂ (ξ), k ∈ N,

(1.12)

where χA is the characteristic function of the set A. We will often denote Pk( f )
simply by fk . By this definition, it follows that

∞∑

k=0

f̂k(ξ) = f̂ (ξ), ξ ∈ Z. (1.13)

• Following [30], we introduce the periodic gauge transformation of a solution u to
(1.1) by

v(x, t) = G(u)(x, t) := e−iI(u)(x,t)u(x, t), (1.14)

where I(u)(x, t) is the mean-zero spatial primitive of |u(x, t)|2 − 1
2π ‖u(t)‖2L2(T)

given by

I(u)(x, t) := 1
2π

∫ 2π

0

∫ x

θ

[
|u(y, t)|2 − 1

2π
‖u(t)‖2L2(T)

]
dydθ .

Let

µ := 1
2π

‖u0‖2L2(T) =
1
2π

‖u(t)‖2L2(T) , t ∈ R, (1.15)

123



Growth bound and nonlinear smoothing for the periodic...

where the second equality is due to the conservation of mass in (1.2). In fact, we
further have µ = 1

2π ‖v(t)‖2L2(T). A straightforward computation then shows that
v satisfies the equation

vt − ivxx − 2µvx = −v2vx +
i
2
|v|4v − iµ|v|2v + iψ(v)v, (1.16)

where

ψ(v)(t) := 1
2π

∫ 2π

0

[
2Im(vxv)(θ, t) − 1

2
|v|4(θ, t)

]
dθ + µ2.

The term 2µvx can be removed from (1.16) by means of the transformation

w(x, t) = τ−µv(x, t) := v(x − 2µt, t). (1.17)

Indeed, since τ−µ commutes with ψ and is an isometry on L2(T), we find that w
satisfies

wt − iwxx = −w2wx +
i
2
|w|4w − iµ|w|2w + iψ(w)w. (1.18)

Finally, we introduce a second gauge transformation,

z(x, t) := e−ig(t)w(x, t), (1.19)

where

g(t) := 1
4π

∫ t

0

∥∥w(t ′)
∥∥4
L4(T) dt

′ − µ2t .

We note that z is related to u as follows:

z(x, t) = e−ig(t)e−iI(u)(x−2µt,t)u(x − 2µt, t) = e−ig(t)τ−µG(u)(x, t).

Also, it will be shown in Sect. 2 that z satisfies the Cauchy problem (2.12) as well
as the integral equation (2.27).

The need for the second gauge transform (1.19) can be appreciated once Eq. (1.18)
forw is further analyzed. In particular, this equation canbeput in the form (2.11),where
the last two terms are unfavorable for the purpose of showing nonlinear smoothing.
The second gauge transform (1.19) removes those two problematic terms apart from
a “leftover” term—the last one in Eq. (2.12a) for z—which is kept intentionally in
order to match a problematic term arising from the first term of Eq. (2.12a). In this
regard, we also note that the coefficient i/(4π) in front of the last term in (2.12a) is
chosen so that this term cancels with the problematic term involved in N R(−z2 z̄x )
(see computation leading to (2.26)).
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With the above notation in place, we now state some essential previous results and
then introduce the main results of this work. We begin with the well-posedness of the
gauge-equivalent Cauchy problem (2.12), which follows from Theorem 5.1 of [30].

Theorem 1.1 (Well-posedness of the gauge equation—[30, Theorem 5.1]) Suppose
z0 ∈ Hs(T) with s ≥ 1/2. Then, there exists a non-increasing function T : [0,∞) →
[0,∞) with T = T (‖z0‖Hs (T)) and a unique z ∈ Zs

T satisfying the gauge-equivalent
Cauchy problem (2.12) in the Duhamel sense with the estimate

‖z‖Zs
T

≤ c ‖z0‖Hs . (1.20)

Furthermore, the data-to-solution map is Lipschitz from bounded subsets of Hs(T) to
bounded subsets of Zs

T .

Remark 1.1 In [30], it is stated that the local time of existence for the solution z
can be taken to depend only on ‖z0‖H1/2(T) instead of ‖z0‖Hs (T), namely, T =
T (‖z0‖H1/2(T)).

Next, we recall the well-posedness of the dNLS Cauchy problem (1.1) as guaranteed
by Theorem 1.1 of [30].

Theorem 1.2 (Well-posedness of dNLS on T— [30, Theorem 1.1]) Suppose u0 ∈
Hs(T)with s ≥ 1/2. If z ∈ Zs

T is the solution to the gauge-equivalent Cauchy problem
(2.12) as guaranteed by Theorem 1.1, then u = eig(t)G−1(τµz) ∈ C([0, T ]; Hs(T)) is
the unique solution satisfying the dNLSCauchy problem (1.1) in the sense of Duhamel.
Furthermore, u is a limit of smooth solutions.

Remark 1.2 Lemma 5.1 implies that there exists a non-increasing function T̃ :
[0,∞) → [0,∞) such that T̃ = T̃ (‖u0‖Hs (T)) and T̃ (‖u0‖Hs (T)) ≤ T (‖z0‖Hs (T)).
Therefore, for s ≥ 1/2 the time of existence in Theorem 1.2 may be taken to depend
on ‖u0‖H1/2(T) instead of ‖u0‖Hs (T).

We also state the following global existence result from [30].

Corollary 1.1 (Global existence—[30, Corollary 1.2]) For s ≥ 1 let u ∈ C([0, T ];
Hs(T)) be the solution to the Cauchy problem (1.1) from Theorem 1.2. Then, for
‖u0‖L2(T) sufficiently small,

‖u(t)‖H1(T) ≤ C(‖u0‖H1(T)), t ∈ [0, T ]. (1.21)

Consequently, the time of existence for the solution u can be taken arbitrarily large.

Remark 1.3 The above global result follows from the observation that the local time of
existence T is bounded belowby a function of ‖u0‖H1(T).While globalwell-posedness
in H1/2(T) has been obtained in [40], an estimate of the form (1.21) is not readily
available when H1(T) is replaced by H1/2(T).
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The main goal of the present work is to establish a polynomial-in-time bound on
the growth of global solutions to the periodic dNLS Cauchy problem (1.1). Key to
demonstrating this bound is the discovery of a local nonlinear smoothing effect for
the gauge problem (2.12), according to which the solution z of (2.12) with the linear
part removed possesses higher spatial regularity than the initial data z0. The effect is
more readily seen by first recasting (2.12) into the Duhamel form (2.27) via a method
known as differentiation by parts (see Sect. 2). The precise statement of our first result
is the following.

Theorem 1.3 (Nonlinear smoothing) Suppose s > 1/2 + ε with 0 < ε ( 1/2 and
let z0 ∈ Hs(T). Then, for T = T (‖z0‖H1/2+ε(T)), the solution z ∈ Zs

T of the Cauchy
problem (2.12) from Theorem 1.1 satisfies the integral equation (2.27).

Moreover, for 0 < a < min{s − 1/2 − ε, 1/2 − ε} and σ = min{s, 1} we have
z − eit∂

2
x z0 ∈ C([0, T ]; Hs+a(T)) with

∥∥z − eit∂
2
x z0

∥∥
C([0,T ];Hs+a(T)) ≤ C(s, ‖z0‖Hσ (T)) ‖z0‖Hs (T) . (1.22)

Remark 1.4 Corollary 1.1 and Lemma 5.1 imply that z satisfies (2.27) globally.

We note that the dispersion on the circle is weaker than on the line in the sense that no
Kato smoothing or maximal inequalities are available on the circle. Thus, proving the
nonlinear smoothing effect (1.22) requires a careful treatment of resonant frequencies
in addition to the differentiation by parts mentioned above.

The nonlinear smoothing estimate (1.22) allows us to demonstrate the following
polynomial-in-time bound, which is the main result of this work.

Theorem 1.4 (Polynomial bound) Let s ≥ 1. Then, the global solution u to the
periodic dNLS Cauchy problem (1.1) given by Corollary 1.1 satisfies

‖u(t)‖Hs (T) ≤ C(ε, s, ‖u0‖Hs (T)) 〈t〉2(s−1)+ε, (1.23)

for all t ∈ R and 0 < ε ( 1/2.

Bourgain [5, 6] was the first to demonstrate the connection between nonlinear
smoothing and polynomial bounds for Hamiltonian equations. By employing Fourier
truncation operators in conjunction with smoothing estimates, he obtained the follow-
ing local-in-time inequality for solutions of various dispersive equations:

‖u(t + δ)‖Hs ≤ ‖u(t)‖Hs + C ‖u(t)‖1−δ
Hs (1.24)

for some δ ∈ (0, 1). Local time iterations using the above inequality resulted in
the polynomial growth bound ‖u(t)‖Hs ! 〈t〉1/δ . Staffilani [50, 51] used further
multilinear smoothing estimates to obtain (1.24), which led to polynomial bounds of
Hs solutions, s > 1, for Korteweg–de Vries (KdV) and nonlinear Schrödinger (NLS)
equations. Colliander, Keel, Staffilani, Takaoka and Tao [9] developed a new method
using modified energy called the “upside-down I -method” to produce polynomial
bounds in low Sobolev norms, s ∈ (0, 1), for the NLS equation. Sohinger [48, 49]
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further developed the upside-down I -method to obtain polynomial bounds for high
Sobolev norms for NLS. We also refer the reader to [10] and the references therein for
further developments in this direction. In addition, Oh and Stefanov [46] determined
a nonlinear smoothing effect for periodic, generalized KdV equations that gave rise
to a polynomial bound in Hs , s > 1. Finally, in [31], Oh and the authors of the
present work identified a nonlinear smoothing effect for a periodic, gauge-transformed
Benjamin–Ono equation which led to a polynomial bound on solutions to the periodic
Benjamin–Ono equation for 1/2 < s ≤ 1.

Several recent works have established uniform-in-time bounds for a number of
completely integrable dispersive equations using inverse scattering techniques. In par-
ticular, Killip, Visan and Zhang [34] showed that the Hs-norm of solutions to the KdV
and NLS equations is uniformly bounded in time for −1 ≤ s < 1 and −1/2 < s < 1,
respectively, both on the line and on the circle. Similarly, Koch and Tataru [37] showed
that there exists a conserved energy equivalent to the Hs-norm for s > −1/2 in the
case of the NLS and mKdV equations and for s ≥ −1 in the case of the KdV equation.
For the Benjamin–Ono equation, Talbut [53] proved a uniform-in-time bound in Hs

for −1/2 < s < 0 on the line and the circle. Gérard, Kappeler and Topalov [21] then
established this uniform bound for the periodic Benjamin–Ono equation with s > 0.
In the case of dNLS, uniform-in-time bounds were obtained on the line and the circle
by Klaus and Schippa [36] for 0 < s < 1/2. Furthermore, Bahouri and Perelman [2]
showed boundedness of H1/2(R) solutions.

Nonlinear smoothing properties analogous to the one of Theorem 1.3 have been
previously established for several important dispersive equations. Indicatively, we
mention the works of Erdogan and Tzirakis on the periodic KdV equation [15] as well
as on the fractional NLS equation on the circle and line [14], the NLS equation on
the half-line [17], the dNLS equation on the line and half-line [13], and the Zakharov
system on the circle [16]. The main technique used in the proof of these results is
known as the normal form method or, as previously mentioned, the differentiation by
parts method. It was first introduced by Shatah [47] in the context of the Klein–Gordon
equation with a quadratic nonlinearity and was further developed by Germain, Mas-
moudi and Shatah for two-dimensional quadratic Schrödinger equations [22] and for
the gravity water waves equation [23]. Babin, Ilyin and Titi [1] applied this method
to obtain unconditional well-posedness results for the periodic KdV equation. Chung,
Guo, Kwon and Oh [7] also obtained unconditional well-posedness of the quadratic
dNLS using normal form reductions. An alternative formulation of the normal form
method, which involves amultilinear, pseudo-differential operator in place of differen-
tiation by parts, was provided by Oh and Stefanov [44, 45] for establishing smoothing
estimates and well-posedness. It should be pointed out that [15] is the first work that
employed the normal form method in the framework of Xs,b spaces.

Finally, we note that in the recent preprint [11] Correia and Silva suggest a uni-
fied approach for showing nonlinear smoothing for dispersive equations on R. This
approach relies on the use of infinite iterations of normal form/differentiation by parts
reductions and, among other equations, has been employed for dNLS onR (see Corol-
lary 5 in [11]). An interesting question is whether the nonlinear smoothing effect of
Theorem 1.3 (and hence the polynomial bound of Theorem 1.4) established in the
present work could also be obtained by adapting the unified approach of [11] to the
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periodic setting. Estimates for the periodic problem shown by Kishimoto [35] could
be relevant in this direction (see also Guo, Kwon and Oh [25] and Mosincat and Yoon
[42]).

Structure of the paper. In Sect. 2, we employ the gauge transformation (1.19) to
remove the resonant frequencies from the w-equation (1.18) and perform differentia-
tion by parts on the resulting gauge problem (2.12) for z in order to establish (formally)
the Duhamel form (2.27). In Sect. 3, we prove a number of useful a priori estimates for
(2.27) which are key to establishing Theorem 1.3. In Sect. 4, we utilize the aforemen-
tioned estimates to complete the proof of Theorem 1.3. Finally, in Sect. 5, we employ
the nonlinear smoothing effect from Theorem 1.3 in order to prove the polynomial
bound of Theorem 1.4.

2 Removal of resonances and differentiation by parts

We begin with Eq. (1.18) forw and proceed with formal computations whose purpose
is to remove the resonant terms present in that equation. This procedure eventually
takes us to the Cauchy problem (2.12) for z, which we then rewrite in the form of the
integral equation (2.27). This is the equation used for proving the a priori estimates
leading to nonlinear smoothing in Sect. 3.

First, note that

− w2wx = i
(2π)3/2

∑

ξ1,ξ2,ξ3

ei(ξ1−ξ2+ξ3)xξ2ŵ(ξ1)ŵ(ξ2)ŵ(ξ3). (2.1)

The resonant frequencies in (2.1) are associated with {ξ1 = ξ2} ∪ {ξ2 = ξ3}. Hence,
we split (2.1) into resonant and nonresonant frequencies as follows:

−w2wx := N R(−w2wx )+
2i

(2π)3/2
∑

ξ1=ξ2

ei(ξ1−ξ2+ξ3)xξ2ŵ(ξ1)ŵ(ξ2)ŵ(ξ3)

− i
(2π)3/2

∑

ξ0

eiξ0xξ0ŵ(ξ0)|ŵ(ξ0)|2

:= N R(−w2wx )+
2iw
2π

∑

ξ

ξ |ŵ(ξ)|2 +R1(w),

where we have used the symmetry in ξ1 and ξ3 and

N R(−w2wx ) =
i

(2π)3/2
∑

ξ1 1=ξ2, ξ2 1=ξ3

ei(ξ1−ξ2+ξ3)xξ2ŵ(ξ1)ŵ(ξ2)ŵ(ξ3), (2.2)

R1(w) = − i
(2π)3/2

∑

ξ0

eiξ0xξ0ŵ(ξ0)|ŵ(ξ0)|2. (2.3)
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Next, we claim that

∑

ξ

ξ |ŵ(ξ)|2 = −
∫ 2π

0
Im(wxw)(θ, t) dθ .

Indeed, we have

−
∫ 2π

0
Im(wxw)(θ, t) dθ = Im

∫ 2π

0

i
2π

∑

ξ1,ξ2

ei(ξ1−ξ2)θ ξ2ŵ(ξ1)ŵ(ξ2) dθ

= Im
∑

ξ1,ξ2

∫ 2π

0

i
2π

ei(ξ1−ξ2)θ ξ2ŵ(ξ1)ŵ(ξ2) dθ

= Im
∑

ξ1=ξ2

iξ2ŵ(ξ1)ŵ(ξ2) = Im
∑

ξ

iξ |ŵ(ξ)|2

=
∑

ξ

ξ |ŵ(ξ)|2.

Therefore, the one of the resonant terms associated with −w2wx cancels out and
Eq. (1.18) for w becomes

wt − iwxx = N R(−w2wx )+R1(w)+ i
2
|w|4w − iµ|w|2w

+iw
(

− 1
4π

∫ 2π

0
|w|4(θ, t) dθ + µ2

)
. (2.4)

It will be shown that the additional resonant termR1(w) possesses smoothing.
We now examine the quintic term

i
2
|w|4w = i

2
wwwww = i

2(2π)5/2
∑

ξ1,...,ξ5

ei(ξ1−ξ2+ξ3−ξ4+ξ5)x

× ŵ(ξ1)ŵ(ξ2)ŵ(ξ3)ŵ(ξ4)ŵ(ξ5).

Here, the undesirable frequencies we wish to isolate are {ξ1 − ξ2 + ξ3 − ξ4 = 0} ∪
{−ξ2 + ξ3 − ξ4 + ξ5 = 0} ∪ {ξ1 − ξ2 − ξ4 + ξ5 = 0}. We note that these sets are not
necessarily resonant. Thus, we will rewrite the above quintic term as

i
2
|w|4w = i

2(2π)5/2
∑

ξ1,...,ξ5

ei(ξ1−ξ2+ξ3−ξ4+ξ5)x ŵ(ξ1)ŵ(ξ2)ŵ(ξ3)ŵ(ξ4)ŵ(ξ5)

:= A(w)+ 3iw
2(2π)2

∑

ξ1−ξ2+ξ3−ξ4=0

ŵ(ξ1)ŵ(ξ2)ŵ(ξ3)ŵ(ξ4)

− i
(2π)5/2

∑

ξ1−ξ2+ξ3−ξ4=0
ξ1−ξ2−ξ4+ξ5=0

−ξ2+ξ3−ξ4+ξ5=0

eiξ1x ŵ(ξ1)ŵ(ξ2)ŵ(ξ3)ŵ(ξ4)ŵ(ξ5)
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− 3i
2(2π)5/2

∑

ξ1−ξ2+ξ3−ξ4=0
ξ1−ξ2−ξ4+ξ5=0

−ξ2+ξ3−ξ4+ξ5 1=0

eiξ5x ŵ(ξ1)ŵ(ξ2)ŵ(ξ3)ŵ(ξ4)ŵ(ξ5)

:= A(w)+ 3iw
2(2π)2

∑

ξ1−ξ2+ξ3−ξ4=0

ŵ(ξ1)ŵ(ξ2)ŵ(ξ3)ŵ(ξ4)+R∗
1(w)+R∗

2(w)

(2.5)

where we have once again used symmetry and let

A(w) = i
2(2π)5/2

∑

ξ2+ξ4 1=ξ1+ξ3
ξ2+ξ4 1=ξ1+ξ5
ξ2+ξ4 1=ξ3+ξ5

ei(ξ1−ξ2+ξ3−ξ4+ξ5)x ŵ(ξ1)ŵ(ξ2)ŵ(ξ3)ŵ(ξ4)ŵ(ξ5),

(2.6)

R∗
1(w) = − i

(2π)5/2
∑

ξ1−ξ2+ξ3−ξ4=0
ξ1−ξ2−ξ4+ξ5=0

−ξ2+ξ3−ξ4+ξ5=0

eiξ1x ŵ(ξ1)ŵ(ξ2)ŵ(ξ3)ŵ(ξ4)ŵ(ξ5)

= − i
(2π)5/2

∑

2ξ1=ξ2+ξ4

eiξ1x [ŵ(ξ1)]3 ŵ(ξ2)ŵ(ξ4) (2.7)

R∗
2(w) = − 3i

2(2π)5/2
∑

ξ1−ξ2+ξ3−ξ4=0
ξ1−ξ2−ξ4+ξ5=0

−ξ2+ξ3−ξ4+ξ5 1=0

eiξ3x ŵ(ξ1)ŵ(ξ2)ŵ(ξ3)ŵ(ξ4)ŵ(ξ5)

= − 3i
2(2π)5/2

∑

ξ1−ξ2+ξ3−ξ4=0
ξ2+ξ4 1=2ξ3

eiξ3x ŵ(ξ1)ŵ(ξ2) [ŵ(ξ3)]2 ŵ(ξ4) (2.8)

Next, we observe that

− 1
4π

∫ 2π

0
|w|4(θ, t) dθ = − 1

4π

∫ 2π

0

1
(2π)2

∑

ξ1,...,ξ4

ei(ξ1−ξ2+ξ3−ξ4)θ ŵ(ξ1)ŵ(ξ2)ŵ(ξ3)ŵ(ξ4) dθ

= − 1
2(2π)2

∑

ξ1−ξ2+ξ3−ξ4=0

ŵ(ξ1)ŵ(ξ2)ŵ(ξ3)ŵ(ξ4).

Thus, we may write (2.4) as

wt − iwxx = N R(−w2wx )+R1(w)+A(w)+R∗
1(w)+R∗

2(w)

− iµ|w|2w + iw
2π

∫ 2π

0
|w(θ, t)|4 dθ + iµ2w.
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Finally,we recognize that |w|2w contains the same resonant frequencies as−w2wx .
Thus, writing

|w|2w = N R(|w|2w)+ 2w
2π

∑

ξ

|ŵ(ξ)|2 − 1
(2π)3/2

∑

ξ0

eiξ0x ŵ(ξ0)|ŵ(ξ0)|2

:= N R(|w|2w)+ 2w
2π

‖w‖2L2(T) +
i
µ
R2(w)

= N R(|w|2w)+ 2µw + i
µ
R2(w)

where, analogously to (2.2) and (2.3),

N R(|w|2w) = 1
(2π)3/2

∑

ξ1 1=ξ2, ξ2 1=ξ3

ei(ξ1−ξ2+ξ3)x ŵ(ξ1)ŵ(ξ2)ŵ(ξ3), (2.9)

R2(w) = iµ
(2π)3/2

∑

ξ0

eiξ0x ŵ(ξ0)|ŵ(ξ0)|2, (2.10)

we overall conclude that w formally satisfies the equation

wt − iwxx = N R(−w2wx )+R1(w)+R2(w)+A(w)+R∗
1(w)+R∗

2(w)

− iµN R(|w|2w)+ iw
2π

∫ 2π

0
|w(θ, t)|4 dθ − iµ2w. (2.11)

In turn, recalling the second gauge transformation (1.19), we deduce that z satisfies

zt − i zxx = N R(−z2zx )+A(z)+
2∑

%=1

(
R%(z)+R∗

%(z)
)

− iµN R(|z|2z)+ i
4π

‖z(t)‖4L4(T) z, x ∈ T, t ∈ R, (2.12a)

z(x, 0) = z0(x) ∈ Hs(T). (2.12b)

Next, we proceed with differentiation by parts at the interaction representation level
eit∂

2
x z of Eq. (2.12a) in order to determine a nonlinear smoothing effect for the solution

z emanating from Theorem 1.1.
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First, we isolate the more troublesome terms associated with (2.12a) and then we
apply differentiation by parts to these terms. Note that

∂t (eitξ
2
ẑ(ξ)) = 1

2π

∑

ξ1−ξ2+ξ3=ξ
ξ1 1=ξ2, ξ2 1=ξ3

eitξ
2
iξ2̂z(ξ1)̂z(ξ2)̂z(ξ3)+ eitξ

2
Â(z)(ξ)

+
2∑

%=1

eitξ
2
(
R̂%(z)(ξ)+ R̂∗

%(z)(ξ)
)

− iµeitξ
2
Fx

(
N R(|z|2z)

)
(ξ)+ i

4π
‖z(t)‖4L4(T) e

itξ2 ẑ(ξ). (2.13)

Next, letting Sξ := {ξ1 − ξ2 + ξ3 = ξ} ∩ {ξ1 1= ξ2, ξ2 1= ξ3}, we write
∑

Sξ

eitξ
2
iξ2̂z(ξ1)̂z(ξ2)̂z(ξ3)

=
∑

Sξ

|ξ1|3|ξ2|

eitξ
2
iξ2̂z(ξ1)̂z(ξ2)̂z(ξ3)+

∑

Sξ

|ξ1|!|ξ2|

eitξ
2
iξ2̂z(ξ1)̂z(ξ2)̂z(ξ3)

=
∑

Sξ

|ξ1|3|ξ2|

eitξ
2
iξ2̂z(ξ1)̂z(ξ2)̂z(ξ3)+

∑

Sξ

|ξ1|∼|ξ2|3|ξ3|

eitξ
2
iξ2̂z(ξ1)̂z(ξ2)̂z(ξ3)

+
∑

Sξ

|ξ1|∼|ξ2|∼|ξ3|

eitξ
2
iξ2̂z(ξ1)̂z(ξ2)̂z(ξ3)+

∑

Sξ

|ξ1|∼|ξ2|(|ξ3|

eitξ
2
iξ2̂z(ξ1)̂z(ξ2)̂z(ξ3)

+
∑

Sξ

|ξ1|(|ξ2|(|ξ3|

eitξ
2
iξ2̂z(ξ1)̂z(ξ2)̂z(ξ3)+

∑

Sξ

|ξ1|(|ξ2|∼|ξ3|

eitξ
2
iξ2̂z(ξ1)̂z(ξ2)̂z(ξ3)

+
∑

Sξ

|ξ1|,|ξ3|(|ξ2|

eitξ
2
iξ2̂z(ξ1)̂z(ξ2)̂z(ξ3)

=: 2πeitξ2
6∑

%=1

B̂%(z)(ξ)+
∑

Sξ

|ξ1|,|ξ3|(|ξ2|

eitξ
2
iξ2̂z(ξ1)̂z(ξ2)̂z(ξ3), (2.14)

where

B̂1(z)(ξ) =
1
2π

∑

Sξ

|ξ1|3|ξ2|

iξ2̂z(ξ1)̂z(ξ2)̂z(ξ3), (2.15a)

B̂2(z)(ξ) =
1
2π

∑

Sξ

|ξ1|∼|ξ2|3|ξ3|

iξ2̂z(ξ1)̂z(ξ2)̂z(ξ3), (2.15b)
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B̂3(z)(ξ) =
1
2π

∑

Sξ

|ξ1|∼|ξ2|∼|ξ3|

iξ2̂z(ξ1)̂z(ξ2)̂z(ξ3), (2.15c)

B̂4(z)(ξ) =
1
2π

∑

Sξ

|ξ1|∼|ξ2|(|ξ3|

iξ2̂z(ξ1)̂z(ξ2)̂z(ξ3), (2.15d)

B̂5(z)(ξ) =
1
2π

∑

Sξ

|ξ1|(|ξ2|(|ξ3|

iξ2̂z(ξ1)̂z(ξ2)̂z(ξ3), (2.15e)

B̂6(z)(ξ) =
1
2π

∑

Sξ

|ξ1|(|ξ2|∼|ξ3|

iξ2̂z(ξ1)̂z(ξ2)̂z(ξ3). (2.15f)

Thus, it follows that

∂t (eitξ
2
ẑ(ξ)) = eitξ

2
6∑

%=1

B̂%(z)(ξ)+ eitξ
2
Â(z)(ξ)

+
2∑

%=1

eitξ
2
(
R̂%(z)(ξ)+ R̂∗

%(z)(ξ)
)

− iµeitξ
2
Fx

(
N R(|z|2z)

)
(ξ)

+ i
4π

eitξ
2 ‖z(t)‖4L4(T) ẑ(ξ)+

1
2π

∑

Sξ

|ξ1|,|ξ3|(|ξ2|

eitξ
2
iξ2̂z(ξ1)̂z(ξ2)̂z(ξ3).

(2.16)

We will apply differentiation by parts on the last term of (2.16), as this term does
not necessarily gain derivatives via the Fourier restriction normmethod. First, observe
that

∑

Sξ

|ξ1|,|ξ3|(|ξ2|

eitξ
2
iξ2̂z(ξ1)̂z(ξ2)̂z(ξ3)

=
∑

Sξ

|ξ1|,|ξ3|(|ξ2|

e2i t(ξ2−ξ1)(ξ2−ξ3)iξ2(eitξ
2
1 ẑ(ξ1))(eitξ

2
2 ẑ(ξ2))(eitξ

2
3 ẑ(ξ3)).

Let

, = 2(ξ2 − ξ1)(ξ2 − ξ3). (2.17)
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Applying differentiation by parts and symmetry in ξ1 and ξ3 yields

1
2π

∑

Sξ

|ξ1|,|ξ3|(|ξ2|

e2i t(ξ2−ξ1)(ξ2−ξ3)iξ2(eitξ
2
1 ẑ(ξ1))(eitξ

2
2 ẑ(ξ2))(eitξ

2
3 ẑ(ξ3))

=: ∂t

[
eitξ

2
N̂ F(z)(ξ)

]
− 2N̂1(z)(ξ) − N̂2(z)(ξ),

where

N̂ F(z)(ξ) = 1
2π

∑

Sξ

|ξ1|,|ξ3|(|ξ2|

ξ2

,
ẑ(ξ1)̂z(ξ2)̂z(ξ3), (2.18)

N̂1(z)(ξ) =
1
2π

∑

Sξ

|ξ1|,|ξ3|(|ξ2|

eit,
ξ2

,
∂t (eitξ

2
1 ẑ(ξ1))(eitξ

2
2 ẑ(ξ2))(eitξ

2
3 ẑ(ξ3)), (2.19)

N̂2(z)(ξ) =
1
2π

∑

Sξ

|ξ1|,|ξ3|(|ξ2|

eit,
ξ2

,
(eitξ

2
1 ẑ(ξ1))∂t (eitξ

2
2 ẑ(ξ2))(eitξ

2
3 ẑ(ξ3)). (2.20)

Inserting (2.13) into N1(z), we obtain

N̂1(z)(ξ) =
1

4π2

∑

Sξ

|ξ1|,|ξ3|(|ξ2|

eit,
ξ2

,

( ∑

ξ4−ξ5+ξ6=ξ1
ξ4 1=ξ5 1=ξ6

eitξ
2
1 iξ5̂z(ξ4 )̂z(ξ5 )̂z(ξ6)

)
(eitξ

2
2 ẑ(ξ2))(eitξ

2
3 ẑ(ξ3))

+ 1
2π

∑

Sξ

|ξ1|,|ξ3|(|ξ2|

eitξ
2 ξ2

,
Â(z)(ξ1 )̂z(ξ2 )̂z(ξ3)

− iµ
2π

∑

Sξ

|ξ1|,|ξ3|(|ξ2|

eitξ
2 ξ2

,
Fx

(
N R(|z|2z)

)
(ξ1 )̂z(ξ2 )̂z(ξ3)

+ 1
2π

∑

Sξ

|ξ1|,|ξ3|(|ξ2|

eitξ
2 ξ2

,

2∑

%=1

(
R̂%(z)(ξ1)+ R̂∗

%(z)(ξ1)
)
ẑ(ξ2 )̂z(ξ3)

+ i
(2π)(4π)

‖z(t)‖4L4(T)
∑

Sξ

|ξ1|,|ξ3|(|ξ2|

eit,
ξ2

,
(eitξ

2
1 ẑ(ξ1))(eitξ

2
2 ẑ(ξ2))(eitξ

2
3 ẑ(ξ3))

=: eitξ2
4∑

%=1

N̂1,%(z)(ξ)+
i
4π

‖z(t)‖4L4(T) e
itξ2 N̂ F(z)(ξ). (2.21)
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Similarly, for N2(z) we find

N̂2(z)(ξ) =
1

4π2

∑

Sξ

|ξ1|,|ξ3|(|ξ2|

eit,
ξ2

,
(eitξ

2
1 ẑ(ξ1))

( ∑

ξ4−ξ5+ξ6=ξ2
ξ4 1=ξ5 1=ξ6

eitξ
2
2 iξ5̂z(ξ4 )̂z(ξ5 )̂z(ξ6)

)
(eitξ

2
3 ẑ(ξ3))

+ 1
2π

∑

Sξ

|ξ1|,|ξ3|(|ξ2|

eitξ
2 ξ2

,
ẑ(ξ1)Â(z)(ξ2 )̂z(ξ3)

+ iµ
2π

∑

Sξ

|ξ1|,|ξ3|(|ξ2|

eitξ
2 ξ2

,
ẑ(ξ1)Fx

(
N R(|z|2z)

)
(ξ2 )̂z(ξ3)

+ 1
2π

∑

Sξ

|ξ1|,|ξ3|(|ξ2|

eitξ
2 ξ2

,
ẑ(ξ1)

2∑

%=1

(
R̂%(z)(ξ1)+ R̂∗

%(z)(ξ1)
)
ẑ(ξ3)

− i
(2π)(4π)

‖z(t)‖4L4(T)
∑

Sξ

|ξ1|,|ξ3|(|ξ2|

eit,
ξ2

,
(eitξ

2
1 ẑ(ξ1))(eitξ

2
2 ẑ(ξ2))(eitξ

2
3 ẑ(ξ3))

=: eitξ2
4∑

%=1

N̂2,%(z)(ξ) − i
4π

‖z(t)‖4L4(T) e
itξ2 N̂ F(z)(ξ). (2.22)

Further expanding these terms, we see that

N̂1,1(z)(ξ) =
1

4π2

∑

N1,1(ξ)

iξ2ξ4
,1,1

ẑ(ξ1)̂z(ξ2 )̂z(ξ3)̂z(ξ4 )̂z(ξ5),

N̂1,2(z)(ξ) =
1

16π3

∑

N1,2(ξ)

iξ6
,1,2

ẑ(ξ1)̂z(ξ2 )̂z(ξ3)̂z(ξ4 )̂z(ξ5)̂z(ξ6)̂z(ξ7)

N̂2,1(z)(ξ) =
1

4π2

∑

N2,1(ξ)

−i(ξ2 − ξ3 + ξ4)ξ3

,2,1
ẑ(ξ1)̂z(ξ2 )̂z(ξ3)̂z(ξ4)̂z(ξ5),

N̂2,2(z)(ξ) =
1

16π3

∑

N2,2(ξ)

−i(ξ2 − ξ3 + ξ4 − ξ5 + ξ6)

,2,2
ẑ(ξ1)̂z(ξ2 )̂z(ξ3)̂z(ξ4)̂z(ξ5)̂z(ξ6)̂z(ξ7),

where the sets N1,1, N1,2 are given by

N1,1(ξ) = {ξ1 − ξ2 + ξ3 − ξ4 + ξ5 = ξ} ∩ {ξ1 − ξ2 + ξ3 1= ξ4 1= ξ5}
∩ {ξ1 1= ξ2, ξ2 1= ξ3} ∩ {|ξ1 − ξ2 + ξ3|, |ξ5| ( |ξ4|},

N1,2(ξ) = {ξ1 − ξ2 + ξ3 − ξ4 + ξ5 − ξ6 + ξ7 = ξ}
∩ {ξ1 − ξ2 + ξ3 − ξ4 + ξ5 1= ξ6 1= ξ7}
∩ {ξ2 + ξ4 1= ξ1 + ξ3, ξ1 + ξ5, ξ3 + ξ5}
∩ {|ξ1 − ξ2 + ξ3 + ξ4 + ξ5|, |ξ7| ( |ξ6|},
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the sets N2,1 and N2,2 are given by

N2,1(ξ) = {ξ1 − ξ2 + ξ3 − ξ4 + ξ5 = ξ} ∩ {ξ1 1= ξ2 − ξ3 + ξ4 1= ξ5}
∩ {ξ2 1= ξ3 1= ξ4} ∩ {|ξ1|, |ξ5| ( |ξ2 − ξ3 + ξ4|},

N2,2(ξ) = {ξ1 − ξ2 + ξ3 − ξ4 + ξ5 − ξ6 + ξ7 = ξ}
∩ {ξ1 1= ξ2 − ξ3 + ξ4 − ξ5 + ξ6 1= ξ7}
∩ {ξ3 + ξ5 1= ξ2 + ξ4, ξ2 + ξ6, ξ4 + ξ6}
∩ {|ξ1|, |ξ7| ( |ξ2 − ξ3 + ξ4 − ξ5 + ξ6|},

and ,i, j is the relabeling of , according to the set Ni, j . The analysis of N1,1(z)
and N2,1(z) covers the analysis of N1,3(z) and N2,3(z), respectively; therefore, the
analysis of the latter two terms is omitted. Similarly, we do not expand N1,4(z) or
N2,4(z).

Finally, we note thatN2,1(z) possesses the unfavorable frequency interaction ξ2 +
ξ4 = ξ1 + ξ5. To handle this, we decompose N2,1(z) as

N̂2,1(z)(ξ) =
1

4π2

∑

N2,1(ξ)
ξ2+ξ4 1=ξ1+ξ5

−i(ξ2 − ξ3 + ξ4)ξ3

,2,1
ẑ(ξ1)̂z(ξ2 )̂z(ξ3)̂z(ξ4)̂z(ξ5)

+ 1
4π2

∑

N2,1(ξ)
ξ2+ξ4=ξ1+ξ5

−i(ξ2 − ξ3 + ξ4)ξ3

,2,1
ẑ(ξ1)̂z(ξ2 )̂z(ξ3)̂z(ξ4 )̂z(ξ5)

=: N̂ ∗
2,1(z)(ξ)+

1
4π2

∑

N2,1(ξ)
ξ2+ξ4=ξ1+ξ5

i(ξ − ξ1 − ξ5)ξ

2(ξ − ξ1)(ξ − ξ5)
ẑ(ξ1)̂z(ξ2 )̂z(ξ )̂z(ξ4 )̂z(ξ5)

= N̂ ∗
2,1(z)(ξ) − 1

4π2

∑

N2,1(ξ)
ξ2+ξ4=ξ1+ξ5

iξ1ξ5
2(ξ − ξ1)(ξ − ξ5)

ẑ(ξ1)̂z(ξ2 )̂z(ξ )̂z(ξ4 )̂z(ξ5)

+ i
8π2

∑

N2,1(ξ)
ξ2+ξ4=ξ1+ξ5

ẑ(ξ1)̂z(ξ2 )̂z(ξ )̂z(ξ4 )̂z(ξ5) =:
3∑

%=1

N̂ ∗
2,%(z)(ξ) (2.23)

and further expand N ∗
2,3(z) as follows:

N̂ ∗
2,3(z)(ξ) =

i
8π2 ẑ(ξ)

∑

N2,1(ξ)
ξ1+ξ5=ξ2+ξ4

ẑ(ξ1)̂z(ξ2)̂z(ξ5)̂z(ξ4)

= i
8π2 ẑ(ξ)

∑

ξ1+ξ3=ξ2+ξ4
|ξ1|,|ξ2|,|ξ3|,|ξ4|(|ξ |

ẑ(ξ1)̂z(ξ2)̂z(ξ3)̂z(ξ4)

123



B. Isom et al.

+ i
8π2 ẑ(ξ)

∑

N2,1(ξ)
ξ1+ξ5=ξ2+ξ4

|ξ |!|ξ%|, for some %

ẑ(ξ1)̂z(ξ2)̂z(ξ5)̂z(ξ4)

=: i
16π3 ẑ(ξ)

∫ 2π

0

∣∣∣
∑

|ξ1|(|ξ |
eiξ1θ ẑ(ξ1)

∣∣∣
4
dθ + Ê1(z)(ξ)

= i
4π

ẑ(ξ)
∫ 2π

0

∣∣∣z − 1√
2π

∑

|ξ |!|ξ1|
eiξ1θ ẑ(ξ1)

∣∣∣
4
dθ + Ê1(z)(ξ)

=: i
4π

ẑ(ξ) ‖z‖4L4(T) + Ê1(z)(ξ)+ Ê2(z)(ξ), (2.24)

where

−4π i Ê2(z)(ξ) = −2̂z(ξ)
∑

|ξ |!|ξ1|
ẑ(ξ1)|̂z|2z(ξ1) − 2̂z(ξ)

∑

|ξ |!|ξ1|
ẑ(ξ1)|̂z|2z(ξ1)

+ 4√
2π

ẑ(ξ)
∑

|ξ |!|ξ1|,|ξ2|
ẑ(ξ1)̂z(ξ2) |̂z|2(ξ1 − ξ2)

+ 1√
2π

ẑ(ξ)
∑

|ξ |!|ξ1|,|ξ2|
ẑ(ξ1)̂z(ξ2)ẑ2(ξ1 + ξ2)

+ 1√
2π

ẑ(ξ)
∑

|ξ |!|ξ1|,|ξ2|
ẑ(ξ1)̂z(ξ2)ẑ2(ξ1 + ξ2)

− 2
2π

ẑ(ξ)
∑

|ξ |!|ξ1|,|ξ2|,|ξ3|
ẑ(ξ1)̂z(ξ2)̂z(ξ3)̂z(−ξ1 + ξ2 + ξ3)

− 2
2π

ẑ(ξ)
∑

|ξ |!|ξ1|,|ξ2|,|ξ3|
ẑ(ξ1)̂z(ξ2)̂z(ξ3)̂z(ξ1 − ξ2 + ξ3)

+ 1
2π

ẑ(ξ)
∑

ξ1+ξ3=ξ2+ξ4
|ξ |!|ξ1|,|ξ2|,|ξ3|,|ξ4|

ẑ(ξ1)̂z(ξ2)̂z(ξ3)̂z(ξ4). (2.25)

Overall, we have

∂t (eitξ
2
ẑ(ξ)) = eitξ

2
( 6∑

%=1

B̂%(z)(ξ)+ Â(z)(ξ) − iµFx
(
N R(|z|2z)

)
(ξ)

+
2∑

%=1

[
R̂%(z)(ξ)+ R̂∗

%(z)(ξ)
])

+ 1
2π

∑

Sξ

|ξ1|,|ξ3|(|ξ2|

eitξ
2
iξ2̂z(ξ1)̂z(ξ2 )̂z(ξ3)+

i
4π

‖z(t)‖4L4(T) e
itξ2 ẑ(ξ)
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= ∂t

[
eitξ

2
N̂ F(z)(ξ)

]

+ eitξ
2
( 6∑

%=1

B̂%(z)(ξ)+ Â(z)(ξ) − iµFx
(
N R(|z|2z)

)
(ξ)

)

+ eitξ
2
( 2∑

%=1

[
R̂%(z)(ξ)+ R̂∗

%(z)(ξ)
]

− 2
4∑

%=1

N̂1,%(z)(ξ) −
4∑

%=1

N̂2,%(z)(ξ)
)

+ i
4π

‖z(t)‖4L4(T) e
itξ2 ẑ(ξ) − i

4π
‖z(t)‖4L4(T) e

itξ2 N̂ F(z)(ξ),

where

N̂2,1(z)(ξ) =
2∑

%=1

(
N̂ ∗

2,%(z)(ξ)+ Ê%(z)(ξ)
)
+ i

4π
ẑ(ξ) ‖z‖4L4(T) .

Hence, we see that

∂t (eitξ
2
ẑ(ξ)) = ∂t

[
eitξ

2
N̂ F(z)(ξ)

]

+ eitξ
2
( 6∑

%=1

B̂%(z)(ξ)+ Â(z)(ξ) − iµFx
(
N R(|z|2z)

)
(ξ)

)

+ eitξ
2
( 2∑

%=1

[
R̂%(z)(ξ)+ R̂∗

%(z)(ξ)
]

− 2
4∑

%=1

N̂1,%(z)(ξ) −
4∑

%=2

N̂2,%(z)(ξ)
)

− eitξ
2

2∑

%=1

(
N̂ ∗

2,%(z)(ξ)+ Ê%(z)(ξ)
)

− i
4π

‖z(t)‖4L4(T) e
itξ2 N̂ F(z)(ξ).

(2.26)

Finally, we integrate (2.26) on [0, t] and invert the Fourier transform to arrive at

z(x, t) = eit∂
2
x z0(x)+ NF(z)(x, t) − eit∂

2
x N F(z0)(x)+

∫ t

0
ei(t−t ′)∂2x N (z)(x, t ′) dt ′,

(2.27)

where

N̂ (z)(ξ) =
6∑

%=1

B̂%(z)(ξ)+ Â(z)(ξ) − iµFx

(
N R(|z|2z)

)
(ξ)

+
2∑

%=1

[
R̂%(z)(ξ)+ R̂∗

%(z)(ξ)
]

− 2
4∑

%=1

N̂1,%(z)(ξ) −
4∑

%=2

N̂2,%(z)(ξ)

−
2∑

%=1

(
N̂ ∗

2,%(z)(ξ)+ Ê%(z)(ξ)
)

− i
4π

‖z(t)‖4L4(T) e
itξ2 N̂ F(z)(ξ).
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3 A priori estimates

We begin by recalling certain linear estimates from the literature which are relevant
for our analysis. From Bourgain [4], we have the following useful estimates.

Lemma 3.1 [4] For any δ > 0, let u ∈ X0, 38+δ . Then, there exists a constant c > 0
such that

‖u‖L4
t,x

≤ c ‖u‖
X0, 38+δ . (3.1)

Furthermore, if u ∈ X δ, 12+δ then there exists a constant c > 0 such that

‖u‖L6
t,x

≤ c ‖u‖
Xδ, 12+δ . (3.2)

In what follows, we assume ηT ∈ C∞
0 (−2T , 2T ) is symmetric and ηT ≡ 1 on

[−T , T ], for 0 < T ≤ 1. The following linear estimates are proved by Herr in [30].

Lemma 3.2 [30, Lemma 3.3] If 2 ≤ p, q < ∞, b ≥ 1
2 − 1

p and s ≥ 1
2 − 1

q , then

‖u‖L p
t L

q
x

! ‖u‖Xs,b . (3.3)

Moreover, for s ∈ R,

‖u‖C(R,Hs (T)) ! ‖u‖Zs . (3.4)

Finally, for b2 > b1 + 1
2 ,

‖z‖Y s,b1 ! ‖z‖Xs,b2 . (3.5)

In particular, for all b > 1
2 , X

s,b ↪→ Zs.

Lemma 3.3 [30, Lemma 3.6] Let s ∈ R and z0 ∈ Hs(T). Then,
∥∥∥ηT eit∂

2
x z0

∥∥∥
Zs

!T ‖z0‖Hs (T) . (3.6)

Moreover, for F ∈ Y s,−1 ∩ Xs,− 1
2 ,

∥∥∥∥ηT

∫ t

0
ei(t−t ′)∂2x F(t ′) dt ′

∥∥∥∥
Zs

!T ‖F‖Y s,−1 + ‖F‖
Xs,− 1

2
. (3.7)

We now state and prove the nonlinear estimates needed for establishing Theo-
rem 1.3.
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Lemma 3.4 For any δ > 0, let z ∈ Hs with s > 1
2 + δ. Then, the quantity N F(z)

defined by (2.18) satisfies the estimate

‖NF(z)‖Hs+a(T) ! ‖z‖2
H

1
2+δ

(T)
‖z‖Hs (T) , 0 < a < 1. (3.8)

Proof We have

‖NF(z)‖Hs+a(T) =
( ∑

ξ

〈ξ 〉2(s+a)
∣∣∣N̂ F(z)(ξ)

∣∣∣
2
) 1

2

≤
( ∑

ξ

〈ξ〉2(s+a)
( ∑

Sξ

|ξ1|,|ξ3|(|ξ2|

〈ξ2〉
〈ξ2 − ξ1〉〈ξ2 − ξ3〉

|̂z(ξ1)||̂z(ξ2)||̂z(ξ3)|
)2) 1

2

.

Next, we note that |ξ − ξ1| ∼ |ξ − ξ3| ∼ |ξ2| ∼ |ξ |. Applying this result and the
Cauchy–Schwarz inequality in ξ1 and ξ3, we find

( ∑

ξ

〈ξ〉2(s+a)
( ∑

ξ1,ξ3
|ξ1|,|ξ3|(|ξ−ξ1−ξ3|

〈ξ − ξ1 − ξ3〉
〈ξ − ξ1〉〈ξ − ξ3〉

|̂z(ξ1)||̂z(ξ − ξ1 − ξ3)||̂z(ξ3)|
)2) 1

2

!
(∑

ξ

〈ξ〉2(s+a−1)
( ∑

ξ1,ξ3

|̂z(ξ1)||̂z(ξ − ξ1 − ξ3)||̂z(ξ3)|
)2) 1

2

!
(∑

ξ

〈ξ〉2(a−1)
∑

ξ1,ξ3

〈ξ1〉2(
1
2+δ) |̂z(ξ1)|2〈ξ − ξ1 − ξ3〉2s |̂z(ξ − ξ1 − ξ3)|2〈ξ3〉2(

1
2+δ) |̂z(ξ3)|2

) 1
2

≤ sup
ξ

〈ξ〉(a−1) ‖z‖2
H

1
2 +δ

(T)
‖z‖Hs (T) .

The above supremum is finite for a < 1, completing the proof. 56

Lemma 3.5 For any δ > 0, let z ∈ C([0, T ]; Hs(T)) with s > 1
2 + δ, T > 0. Then,

∥∥∥∥

∫ t

0
ei(t−t ′)∂2x

∥∥z(t ′)
∥∥4
L4(T) NF(z)(t ′) dt ′

∥∥∥∥
Hs+a(T)

! T ‖z‖6
C([0,T ];H

1
2+δ

(T))
‖z‖C([0,T ];Hs (T)) (3.9)

for all 0 < a < 1 and t ∈ [0, T ].
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Proof We simply note that

∥∥∥∥

∫ t

0
ei(t−t ′)∂2x

∥∥z(t ′)
∥∥4
L4(T) NF(z)(t ′) dt ′

∥∥∥∥
Hs+a(T)

≤
∫ t

0

∥∥z(t ′)
∥∥4
L4(T)

∥∥NF(z)(t ′)
∥∥
Hs+a(T) dt ′

≤ T sup
t∈[0,T ]

‖z(t)‖4L4(T) ‖NF(z)(t)‖Hs+a(T) .

The claim then follows from Sobolev embedding and Lemma 3.4. 56

Lemma 3.6 Let s > 1
2 . Then, for all δ > 0 and 0 < a < min

{
s − 1

2 − 15δ, 1
2 − 15δ

}
,

the quantities B%(z) and N R(|z|2z) defined by (2.15) and (2.9) satisfy the estimate

6∑

%=1

∥∥∥B%(z)
∥∥∥
Xs+a,− 1

2+δ
+

∥∥∥N R(|z|2z)
∥∥∥
Xs+a,− 1

2+δ
! ‖z‖2Zσ ‖z‖Zs . (3.10)

Proof Wewill prove the bound forB1(z),B2(z), andB3(z), as the sameproofs apply for
the other terms. By applying Littlewood–Paley-type projections, Plancherel’s theorem
and duality, we have

‖B1(z)‖
Xs+a,− 1

2+δ !
∑

j,k

2 j(s+a)2k sup
‖ϕ‖

X
0, 12−δ

=1

∑

Sξ

|ξ1|3|ξ2|

×
∫

τ1−τ2+τ3=τ

|̃z" j (ξ1, τ1)||̃zk(ξ2, τ2)||̃z(ξ3, τ3)||ϕ̃ j (ξ, τ )| dσ,

where we have assumed, without loss of generality, that |ξ1| ≥ |ξ3|. Note that, in the
above region of summation and integration, we have

(τ + ξ2) =
3∑

%=1

(−1)%+1(τ% + ξ2% )+ 2(ξ2 − ξ1)(ξ2 − ξ3).

Thus, for τ + ξ2 := τ0 + ξ20 , we have max
{∣∣τm + ξ2m

∣∣}3
m=0 " |(ξ2 − ξ1)(ξ2 − ξ3)|.
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First, suppose that max
{∣∣τm + ξ2m

∣∣}3
m=0 = |τ + ξ2|. Then,

∑

Sξ

|ξ1|3|ξ2|

∫

τ1−τ2+τ3=τ

|̃z" j (ξ1, τ1)||̃zk(ξ2, τ2)||̃z(ξ3, τ3)||ϕ̃ j (ξ, τ )| dσ

!
∑

Sξ

|ξ1|3|ξ2|

∫

τ1−τ2+τ3=τ

〈τ + ξ2〉
1
2−δ

〈ξ2 − ξ1〉
1
2−δ〈ξ2 − ξ3〉

1
2−δ

|̃z" j

× (ξ1, τ1)||̃zk(ξ2, τ2)||̃z(ξ3, τ3)||ϕ̃ j (ξ, τ )| dσ,

where dσ is the surface measure. Let z# = F−1
t,x (|̃z|). Since |ξ1| 3 |ξ2|, we may apply

Hölder’s inequality, Sobolev embedding, and estimates (3.1) and (3.4) to arrive at

∑

j,k

2 j(s+a)2k sup
‖ϕ‖

X
0, 12 −δ

=1

∑

Sξ

|ξ1|3|ξ2|

∫

τ1−τ2+τ3=τ

|̃z" j (ξ1, τ1)||̃zk(ξ2, τ2)||̃z(ξ3, τ3)||ϕ̃ j (ξ, τ )| dσ

!
∑

j,k

2 j(s+a− 1
2+δ)2k

∥∥(z" j )
#(zk)#z#

∥∥
L2
t,x

!
∑

j,k

2 j(s+a− 1
2+δ)2k

∥∥z#
∥∥
L∞
t,x

∥∥(z" j )
#∥∥

L4
t,x

∥∥(zk)#
∥∥
L4
t,x

!
∑

j,k

2 j(a− 1
2+δ)2k(1−σ ) ‖z‖

Z
1
2+δ ‖z‖

Xσ, 12
‖z‖

Xs, 12
.

Then
∑

j,k

2 j(a− 1
2+δ)2k(1−σ ) !

∑

j

2 j(a+ 1
2+δ−σ ),

which converges provided that a < σ − 1
2 − δ. If max

{∣∣τm + ξ2m
∣∣}3

m=0 = |τ1 + ξ21 |
or max

{
|τm + ξ2m |

}3
m=0 = |τ2 + ξ22 |, a similar argument yields the same result.

Next, recall that the interpolation of the Bourgain spaces Xs1,b1 and Xs2,b2 at θ is
given by

[Xs1,b1 , Xs2,b2 ]θ = Xs1(1−θ)+s2θ,b1(1−θ)+b2θ .

By estimates (3.2) and (3.3), we have X δ, 12+δ ↪→ L6(T×R) and X
1
3 ,

1
3 ↪→ L6(T×R),

respectively. Thus,

[X 1
3 ,

1
3 , X δ, 12+δ]θ ↪→ [L6(T × R), L6(T × R)]θ = L6(T × R)

which for θ = ( 16 − δ)/( 16 + δ) gives

X5δ, 12−δ ↪→ [X 1
3 ,

1
3 , X δ, 12+δ]θ ↪→ L6(T × R).
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If max
{
|τm + ξ2m |

}3
m=0 = |τ3 + ξ23 |, then we apply X5δ, 12−δ ↪→ L6(T × R) along

with Hölder’s inequality to yield

∑

j,k

2 j(s+a)2k sup
‖ϕ‖

X
0, 12 −δ

=1

∑

Sξ

|ξ1|3|ξ2|

∫

τ1−τ2+τ3=τ

|̃z" j (ξ1, τ1)||̃zk(ξ2, τ2)||̃z(ξ3, τ3)||ϕ̃ j (ξ, τ )| dσ

!
∑

j,k

2 j(s+a− 1
2 )2k ‖z‖

X0, 12
sup

‖ϕ‖
X
0, 12 −δ

=1

∥∥(z" j )
#(zk)#(ϕ j )

#∥∥
L2
t,x

!
∑

j,k

2 j(a+10δ− 1
2 )2k(1+5δ−σ ) ‖z‖2

Xσ, 12
‖z‖

Xs, 12

Then
∑

j,k

2 j(a+10δ− 1
2 )2k(1+5δ−σ ) !

∑

j,k

2 j(a+15δ+ 1
2−σ ),

which converges for a < σ− 1
2−15δ. Overall, we have shown thatB1(z) ∈ Xs+a,− 1

2+δ

provided that 0 < a < min
{
s − 1

2 − 15δ, 1
2 − 15δ

}
.

Next, we note that by the definition (2.15) in the case of B̂2(z)(ξ) we have |ξ1| ∼
|ξ2| 3 |ξ3|. Thus, |ξ2 − ξ3| ∼ |ξ2|, which allows us to yield the same estimates
as those obtained for B1(z) and thereby deduce that B2(z) ∈ Xs+a,− 1

2+δ for a <

min
{
s − 1

2 − 15δ, 1
2 − 15δ

}
.

Finally, by applying Littlewood–Paley-type projections, Hölder’s inequality and
estimate (3.1) once more, we have

‖B3(z)‖
Xs+a,− 1

2+δ !
∑

j

2 j(s+a+1) sup
‖ϕ‖

X
0, 12−δ

=1

∫

T×R
[(z" j )

#]3(ϕ j )
# dxdt

!
∑

j

2 j(s+a+1) sup
‖ϕ‖

X
0, 12−δ

=1

∥∥(z" j )
#∥∥3

L4
t,x

∥∥(ϕ j )
#∥∥

L4
t,x

!
∑

j

2 j(a+1−2σ ) ‖z‖2
Xσ, 12

‖z‖
Xs, 12

,

where the above sum converges for a < 2σ − 1 = min {2s − 1, 1}. 56

Lemma 3.7 Let s > 1
2 and z ∈ C([0, T ]; Hs(T)), for T > 0. Then R1(z) and R2(z)

given by (2.3) and (2.10) satisfy

2∑

%=1

∥∥∥∥

∫ t

0
ei(t−t ′)∂2xR%(z) dt ′

∥∥∥∥
C([0,T ];Hs+a(T))

! T ‖z‖2C([0,T ];Hσ (T)) ‖z‖C([0,T ];Hs (T)) , (3.11)

for 0 < a < min{2s − 1, 1}.
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Proof We will only show the estimate for R1(z), as the same argument holds for
R2(z). First, we have

∥∥∥∥

∫ t

0
ei(t−t ′)∂2xR1(z) dt ′

∥∥∥∥
C([0,T ];Hs+a(T))

≤ T ‖R1(z)‖C([0,T ];Hs+a(T)) .

Note that

R̂1(z)(ξ) = − i
2π

ξ ẑ(ξ)|̂z(ξ)|2.

Then

‖R1(z)‖C([0,T ];Hs+a(T)) ≤ sup
t∈[0,T ]

( ∑

ξ

〈ξ 〉2(s+a+1) |̂z(ξ)|6
) 1

2

= sup
t∈[0,T ]

( ∑

ξ

〈ξ 〉2(a+1−2σ )(〈ξ 〉σ |̂z(ξ)|)4(〈ξ 〉s |̂z(ξ)|)2
) 1

2

≤ sup
ξ

〈ξ 〉a+1−2σ ‖z‖2C([0,T ];Hσ (T)) ‖z‖C([0,T ];Hs (T)) ,

(3.12)

where the supremum is finite for 0 < a < min{2s − 1, 1}. 56

Lemma 3.8 Let s > 0 and z ∈ C([0, T ]; Hs+a(T)), for T > 0. Then R∗
1(z) and

R∗
2(z) given by (2.7) and (2.8) satisfy

2∑

%=1

∥∥∥∥

∫ t

0
ei(t−t ′)∂2xR∗

%(z) dt
′
∥∥∥∥
C([0,T ];Hs+a(T))

! T ‖z‖4C([0,T ];Hσ (T)) ‖z‖C([0,T ];Hs (T)) (3.13)

for 0 < a < min{s, 1}.

Proof It suffices to show the proof only forR∗
2(z). As in Lemma 3.7,

∥∥∥∥

∫ t

0
ei(t−t ′)∂2xR∗

2(z) dt
′
∥∥∥∥
C([0,T ];Hs+a(T))

≤ T
∥∥R∗

2(z)
∥∥
C([0,T ];Hs+a(T)) .

Then,

R̂∗
2(z)(ξ) = − 3i

2(2π)2
∑

ξ1−ξ2−ξ4=ξ
ξ2+ξ4 1=2ξ

ẑ(ξ1)̂z(ξ2)̂z(ξ4)[̂z(ξ)]2.
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Thus,

∥∥R∗
2(z)

∥∥
C([0,T ];Hs+a (T) ≤ sup

t∈[0,T ]

( ∑

ξ

〈ξ 〉2(s+a)
∣∣∣

∑

ξ1−ξ2−ξ4=ξ
ξ2+ξ4 1=2ξ

ẑ(ξ1)̂z(ξ2 )̂z(ξ4)[̂z(ξ)]2
∣∣∣
2
) 1

2

≤ sup
t∈[0,T ]

( ∑

ξ

〈ξ〉2(a−σ )(〈ξ 〉2σ |̂z(ξ)|2)(〈ξ 〉2s |̂z(ξ)|2)
∣∣∣

∑

ξ1−ξ2−ξ4=ξ
ξ2+ξ4 1=2ξ

ẑ(ξ1)̂z(ξ2 )̂z(ξ4)
∣∣∣
2
) 1

2

! sup
ξ

〈ξ〉a−σ ‖z‖C([0,T ];Hσ (T)) ‖z‖C([0,T ];Hs (T))
( ∑

ξ0

|̂z(ξ0)|
)3

! sup
ξ

〈ξ〉a−σ ‖z‖4C([0,T ];Hσ (T)) ‖z‖C([0,T ];Hs (T)) , (3.14)

where the supremum is finite for 0 < a < σ . 56

Lemma 3.9 Let s > 1
2 and z ∈ C([0, T ]; Hs(T)), for T > 0. Then N1,4(z) and

N2,4(z) defined by (2.21) and (2.22) satisfy

∥∥∥∥

∫ t

0
ei(t−t ′)∂2xN1,4(z) dt ′

∥∥∥∥
C([0,T ];Hs+a(T))

!T ‖z‖4C([0,T ];Hσ (T)) ‖z‖C([0,T ];Hs (T))
(
1+ ‖z‖2C([0,T ];Hσ (T))

)
,

(3.15)

∥∥∥∥

∫ t

0
ei(t−t ′)∂2xN2,4(z) dt ′

∥∥∥∥
C([0,T ];Hs+a(T))

!T ‖z‖4C([0,T ];Hσ (T)) ‖z‖C([0,T ];Hs (T))
(
1+ ‖z‖2C([0,T ];Hσ (T))

)
,

(3.16)

for 0 < a < 1.

Proof First,

∥∥∥∥

∫ t

0
ei(t−t ′)∂2xN1,4(z) dt ′

∥∥∥∥
C([0,T ];Hs+a(T))

≤ T
∥∥N1,4(z)

∥∥
C([0,T ];Hs+a(T)) .

From the proof of Lemma 3.4, we see that

∥∥N1,4(z)
∥∥
C([0,T ];Hs+a(T))

!
2∑

%=1

∥∥R%(z)+R∗
%(z)

∥∥
C([0,T ];Hσ (T)) ‖z‖C([0,T ];Hσ (T)) ‖z‖C([0,T ];Hs (T)) ,
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for 0 < a < 1. Furthermore, from the proof of Lemmas 3.7 and 3.8,

2∑

%=1

∥∥R%(z)+R∗
%(z)

∥∥
C([0,T ];Hσ (T))

! ‖z‖4C([0,T ];Hσ (T)) ‖z‖C([0,T ];Hs (T))
(
1+ ‖z‖2C([0,T ];Hσ (T))

)
.

The same proof holds for N2,4(z). 56

Lemma 3.10 Let s > 1
2 . Then, the five-linear form A(z) given by (2.6) satisfies the

estimate

‖A(z)‖
Xs+a,− 1

2+δ ! ‖z‖4Zσ ‖z‖Zs (3.17)

for all δ > 0 and 0 < a < 1
2 − δ.

Proof Let A(ξ) = {ξ2+ ξ4 1= ξ1+ ξ3, ξ1+ ξ5, ξ3+ ξ5}∪ {ξ1 − ξ2+ ξ3 − ξ4+ ξ5 = ξ}.
We first apply Littlewood–Paley projections, duality and Plancherel’s theorem to infer

‖A(z)‖
Xs+a,− 1

2+δ !
∑

j

2 j(s+a) sup
‖ϕ‖

X
0, 12−δ

=1

4∑

%=1

R%,

where

R1 =
∑

A(ξ)
|ξ∗
1 |3|ξ∗

2 |2

∫

τ1−τ2+τ3−τ4+τ5=τ

|̃z(ξ1, τ1)||̃z(ξ2, τ2)||̃z(ξ3, τ3)||̃z(ξ4, τ4)||̃z(ξ5, τ5)||ϕ̃ j (ξ, τ )| dσ,

R2 =
∑

A(ξ)
|ξ∗
3 |2(|ξ∗

1 |!|ξ∗
2 |2

|ξ∗
1 |3|ξ∗

2 |

∫

τ1−τ2+τ3−τ4+τ5=τ

|̃z(ξ1, τ1)||̃z(ξ2, τ2)||̃z(ξ3, τ3)||̃z(ξ4, τ4)||̃z(ξ5, τ5)||ϕ̃ j (ξ, τ )| dσ,

R3 =
∑

A(ξ)
|ξ∗
1 |!|ξ∗

2 |2,|ξ∗
3 |2

|ξ∗
1 |3|ξ∗

2 |

∫

τ1−τ2+τ3−τ4+τ5=τ

|̃z(ξ1, τ1)||̃z(ξ2, τ2)||̃z(ξ3, τ3)||̃z(ξ4, τ4)||̃z(ξ5, τ5)||ϕ̃ j (ξ, τ )| dσ

R4 =
∑

A(ξ)
|ξ∗
1 |!|ξ∗

2 |

∫

τ1−τ2+τ3−τ4+τ5=τ

|̃z(ξ1, τ1)||̃z(ξ2, τ2)||̃z(ξ3, τ3)||̃z(ξ4, τ4)||̃z(ξ5, τ5)||ϕ̃ j (ξ, τ )| dσ,

and ξ∗
j denotes the j th frequency among ξ1, . . . , ξ5 after ordering all five frequencies

with respect to the size of their absolute value, i.e. |ξ∗
1 | ≥ |ξ∗

2 | ≥ |ξ∗
3 | ≥ |ξ∗

4 | ≥ |ξ∗
5 |.

Next, we note that in the above range of summation and integration, we have

τ + ξ2 =
5∑

%=1

(−1)%+1(τ% + ξ2% )+ 20,
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where

0 = ξ22 + ξ24 + ξ2ξ4 + ξ1(−ξ2 + ξ3 − ξ4 + ξ5) − ξ2(ξ3 + ξ5)+ ξ3(−ξ4 + ξ5) − ξ4ξ5.

Thus, we have max
{
|τ% + ξ2% |

}5
%=0 " |0|, where (ξ0, τ0) = (ξ, τ ).

First, we consider the case |ξ∗
1 | 3 |ξ∗

2 |2 which corresponds to R1. Suppose that
ξ1 = ξ∗

1 . Since ξ2 + ξ4 1= ξ3 + ξ5, we have

|0| ≥ |ξ1| − 8|ξ∗
2 |2 ∼ |ξ1|.

The same argument holds if ξ3 = ξ∗
1 or ξ5 = ξ∗

1 . Next, suppose that ξ2 = ξ∗
1 . Then

|0| ≥ |ξ2||ξ1 − ξ2 + ξ3 − ξ4 + ξ5| − 7|ξ∗
2 |2 ≥ 1

2
|ξ2|2 − 7|ξ∗

2 |2 ∼ |ξ2|2 = |ξ∗
1 |2

while the same argument holds if ξ4 = ξ∗
1 .

Second, we consider the case {|ξ∗
3 |2 ( |ξ∗

1 | ! |ξ∗
2 |2} ∩ {|ξ∗

1 | 3 |ξ∗
2 |} which

corresponds to R2. If ξ1 = ξ∗
1 , then

|0| ≥ |ξ1|| − ξ2 + ξ3 − ξ4 + ξ5| − 8|ξ∗
2 |2

≥ 1
2
|ξ1||ξ∗

2 | − 8|ξ∗
2 |2 =

1
2
|ξ∗
2 |(|ξ1| − 8|ξ∗

2 |) ∼ |ξ1||ξ∗
2 |.

The same result is valid if ξ3 = ξ∗
1 or ξ5 = ξ∗

1 . Moreover, if ξ2 = ξ∗
1 or ξ4 = ξ∗

1 then
the same argument as before yields

|0| " |ξ∗
1 |2.

Thus, we have now shown that within the range of summation and integration
associated to R1 and R2 we have |0| " |ξ∗

1 |. Therefore, by an application of Hölder’s
inequality, the Sobolev embedding and estimates (3.1) and (3.4), we obtain

∑

j

2 j(s+a) sup
‖ϕ‖

X
0, 12−δ

=1
(R1 + R2) !

∑

j

2 j(a− 1
2+δ) ‖z‖3

Z
1
2+δ

‖z‖
X0, 12

‖z‖
Xs, 12

,

where the sum on the right-hand side converges for a < 1
2 − δ.

In the region of summation of R3 we have |ξ∗
1 |

1
2 ! |ξ∗

2 |, |ξ∗
3 |, while in the region

of summation of R4 we have |ξ∗
1 | ∼ |ξ∗

2 |. Thus, using once again Hölder’s inequality
and the Sobolev embedding along with estimates (3.1) and (3.4), we find

∑

j

2 j(s+a) sup
‖ϕ‖

X
0, 12−δ

=1
(R3 + R4) !

∑

j

2 j(a−σ ) ‖z‖2
Z

1
2+δ

‖z‖2
Xσ, 12

‖z‖
Xs, 12

, (3.18)

where the sum on the right-hand side converges provided that a < σ = min {s, 1}. 56
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Lemma 3.11 Let s > 1
2 . Then, N1,1(z), N1,3(z), and N2,3(z) defined by (2.21) and

(2.22) satisfy the estimate

∥∥N1,1(z)
∥∥
Xs+a,− 1

2+δ +
∥∥N1,3(z)

∥∥
Xs+a,− 1

2+δ

+
∥∥N2,3(z)

∥∥
Xs+a,− 1

2+δ ! ‖z‖4Zσ ‖z‖Zs (3.19)

for all δ > 0 and 0 < a < min{s, 1}.

Proof We only prove the estimate forN1,1(z) as the estimate forN1,3(z) andN2,3(z)
can be established similarly. Note that the range of summation of N̂1,1(z)(ξ) implies
|ξ5|, |ξ1 − ξ2 + ξ3| ( |ξ4|. Thus, |,1,1| " |ξ4|2 ∼ |ξ |2. Then, using Littlewood–
Paley-type projections, duality and Plancherel’s theorem, we find

∥∥N1,1(z)
∥∥
Xs+a,− 1

2+δ !
∑

j,k

2 j(s+a−1)2k sup
‖ϕ‖

X
0, 12−δ

=1

∫

T×R
(z#)3(z∼ j )

#(zk)#(ϕ j )
# dxdt .

First, suppose that |ξ2| ( |ξ4|. From Hölder’s inequality and estimates (3.1) and
(3.4), we have

∑

j,k

2 j(s+a−1)2k sup
‖ϕ‖

X
0, 12−δ

=1

∫

T×R
(z#)3(z∼ j )

#(zk)#(ϕ j )
# dxdt

!
∑

j,k

2 j(s+a−1)2k
∥∥z#

∥∥3
L∞
t,x

∥∥(z∼ j )
#∥∥

L4
t,x

∥∥(zk)#
∥∥
L4
t,x

!
∑

j,k

2 j(a−1)2k(1−σ ) ‖z‖3
Z

1
2+δ

‖z‖
Xs, 12

‖z‖
Xσ, 12

.

Then
∑

j,k

2 j(a−1)2k(1−σ ) !
∑

j

2 j(a−σ ),

which converges for a < σ = min{s, 1}.
If |ξ2| " |ξ4|, then it follows that |ξ2| ∼ |ξ1 + ξ3| ! max{|ξ1|, |ξ3|}. Therefore,

∑

j,k

2 j(s+a−1)2k sup
‖ϕ‖

X
0, 12−δ

=1

∫

T×R
(z#)2(z"k)

#(z∼ j )
#(zk)#(ϕ j )

# dxdt

!
∑

j,k

2 j(a−1)2k(1−2σ ) ‖z‖2
Z

1
2+δ

‖z‖2
Xσ, 12

‖z‖
Xs, 12

!
∑

j

2 j(a−2σ ) ‖z‖2
Z

1
2+δ

‖z‖2
Xσ, 12

‖z‖
Xs, 12

,

where the above sum converges for a < 2σ = min{2s, 2}. 56
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Lemma 3.12 Let s > 1
2 . Then,N1,2(z) andN2,2(z) defined by (2.21) and (2.22) satisfy

the estimate

∥∥N1,2(z)
∥∥
Xs+a,− 1

2+δ +
∥∥N2,2(z)

∥∥
Xs+a,− 1

2+δ ! ‖z‖6
Z

1
2+δ

‖z‖
Xs, 12

(3.20)

for all δ > 0 and 0 < a < 1.

Proof As in the proof of Lemma 3.11, we have that |,1,2| " |ξ6|2 ∼ |ξ |2 and so
applying Littlewood–Paley-type projections, duality, Plancherel’s theorem, Hölder’s
inequality, and Lemma 3.2, we obtain

∥∥N1,2(z)
∥∥
Xs+a,− 1

2+δ !
∑

j

2 j(s+a−1) sup
‖ϕ‖

X
0, 12−δ

=1

∫

T×R
(z#)6(z∼ j )

#(ϕ j )
# dxdt

!
∑

j

2 j(a−1) ‖z‖6
Z

1
2+δ

‖z‖
Xs, 12

,

where the sum converges for a < 1. The same holds for N2,2(z). 56

Lemma 3.13 Let s > 1
2 . Then, N

∗
2,1(z) defined by (2.23) satisfies the estimate

∥∥N ∗
2,1(z)

∥∥
Xs+a,− 1

2+δ ! ‖z‖4Zσ ‖z‖Zs (3.21)

for all δ > 0 and 0 < a < 1
2 .

Proof Employing Littlewood–Paley-type projections, duality and Plancherel’s theo-
rem, we find

∥∥N ∗
2,1(z)

∥∥
Xs+a,− 1

2+δ !
∑

j,k

2 j(s+a−1)2k sup
‖ϕ‖

X
0, 12−δ

=1

4∑

%=1

R%,

where

R1 =
∑

N2,1(ξ)
ξ2+ξ4 1=ξ1+ξ5
|ξ3|3|ξ∗

2 |2

∫

τ1−τ2+τ3−τ4+τ5=τ

|̃z(ξ1, τ1)||̃z(ξ2, τ2)||z̃k(ξ3, τ3)||̃z(ξ4, τ4)||̃z(ξ5, τ5)||ϕ j (ξ, τ )| dσ,

R2 =
∑

N2,1(ξ)
ξ2+ξ4 1=ξ1+ξ5

|ξ∗
3 |2(|ξ3|!|ξ∗

2 |2
|ξ3|3|ξ∗

2 |

∫

τ1−τ2+τ3−τ4+τ5=τ

|̃z(ξ1, τ1)||̃z(ξ2, τ2)||z̃k(ξ3, τ3)||̃z(ξ4, τ4)||̃z(ξ5, τ5)||ϕ j (ξ, τ )| dσ,

R3 =
∑

N2,1(ξ)
ξ2+ξ4 1=ξ1+ξ5
|ξ3|!|ξ∗

2 |2,|ξ∗
3 |2

|ξ3|3|ξ∗
2 |

∫

τ1−τ2+τ3−τ4+τ5=τ

|̃z(ξ1, τ1)||̃z(ξ2, τ2)||z̃k(ξ3, τ3)||̃z(ξ4, τ4)||̃z(ξ5, τ5)||ϕ j (ξ, τ )| dσ,
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R4 =
∑

N2,1(ξ)
ξ2+ξ4 1=ξ1+ξ5

|ξ3|!|ξ∗
2 |

∫

τ1−τ2+τ3−τ4+τ5=τ

|̃z(ξ1, τ1)||̃z(ξ2, τ2)||z̃k(ξ3, τ3)||̃z(ξ4, τ4)||̃z(ξ5, τ5)||ϕ j (ξ, τ )| dσ.

From the proof of Lemma 3.10, we recall that in the case of R1 and R2 we have
max

{∣∣τm + ξ2m
∣∣}5

m=0 " |ξ3|. Therefore, Hölder’s inequality, the Sobolev embedding
and estimates (3.1) and (3.4) yield

∑

j,k

2 j(s+a−1)2k sup
‖ϕ‖

X
0, 12−δ

=1
(R1 + R2) !

∑

j,k

2 j(s+a−1)2k(
1
2−s) ‖z‖4Zσ ‖z‖Zs

!
∑

j

2 j(a− 1
2 ) ‖z‖4Zσ ‖z‖Zs ,

where the above sum is finite provided that a < 1
2 .

Regarding R3, we note that there exist %,m 1= 3 so that |ξ3| ! |ξ%|2, |ξm |2. Employ-
ing once again Hölder’s inequality, the Sobolev embedding and estimates (3.1) and
(3.4), we deduce

∑

j,k

2 j(s+a−1)2k sup
‖ϕ‖

X
0, 12−δ

=1
R3 !

∑

j,k

2 j(s+a−1)2k(1−s−σ ) ‖z‖4Zσ ‖z‖Zs

!
∑

j

2 j(a−σ ) ‖z‖4Zσ ‖z‖Zs

and the right-hand side is finite for a < σ = min{s, 1}.
Finally, consider the region of summation for R4. First, suppose that ξ3 = ξ∗

1 . Then
|ξ3| ∼ |ξ∗

2 |, and the above estimate for R3 holds for R4. If ξ3 = ξ∗
2 , then there exists

ξ∗
1 1= ξ3 where |ξ∗

1 | " 2max{ j,k}. For j > k, we have

∑

j,k

2 j(s+a−1)2k sup
‖ϕ‖

X
0, 12−δ

=1
R4 !

∑

j,k

2 j(a−1)2k(1−σ ) ‖z‖4Zσ ‖z‖Zs

!
∑

j

2 j(a−σ ) ‖z‖4Zσ ‖z‖Zs ,

while for j ≤ k,

∑

j,k

2 j(s+a−1)2k sup
‖ϕ‖

X
0, 12−δ

=1
R4 !

∑

j,k

2 j(s+a−1)2k(1−s−σ ) ‖z‖4Zσ ‖z‖Zs

!
∑

j

2 j(a−σ ) ‖z‖4Zσ ‖z‖Zs , (3.22)

where the sum converges for a < σ . Lastly, for |ξ3| < |ξ∗
2 |, the above estimate holds

with a − σ replaced by a − 2σ . 56

123



B. Isom et al.

Lemma 3.14 Let s > 1
2 . Then, N

∗
2,2(z) defined by (2.23) satisfies the estimate

∥∥N ∗
2,2(z)

∥∥
Xs+a,− 1

2+δ ! ‖z‖4Zσ ‖z‖Zs (3.23)

for all δ > 0 and 0 < a < min{2s, 2}.

Proof First, note that (ξ − ξ1)(ξ − ξ5) = (ξ − (ξ1 + ξ5) + ξ5)(ξ − (ξ1 + ξ5) + ξ1).
Since |ξ − (ξ1 + ξ5)| 3 |ξ1|, |ξ5|, we have that |ξ − (ξ1 + ξ5)|2 ∼ |ξ |2. By applying
Littlewood–Paley-type projections, duality and Plancherel’s theorem, we have

∥∥N ∗
2,2(z)

∥∥
Xs+a,− 1

2+δ !
∑

j,k,%

2 j(s+a−2)2k2% sup
‖ϕ‖

X
0, 12−δ

=1
R∗,

where

R∗ =
∑

ξ2+ξ4=ξ1+ξ3

∫

τ1−τ2+τ3−τ4+τ5=τ

|z̃k(ξ1, τ1)||̃z(ξ2, τ2)||z̃%(ξ3, τ3)||̃z(ξ4, τ4)||z̃ j (ξ, τ5)||ϕ̃ j (ξ, τ )| dσ.

Noting that

R∗ ≤
∑

ξ1−ξ2+ξ3−ξ4+ξ5=ξ

∫

τ1−τ2+τ3−τ4+τ5=τ

|z̃k(ξ1, τ1)||̃z(ξ2, τ2)||z̃%(ξ3, τ3)||̃z(ξ4, τ4)||z̃ j (ξ5, τ5)||ϕ̃ j (ξ, τ )|dσ

7
∫

T×R
(z#)2(z j )#(zk)#(z%)#(ϕ j )

# dxdt

and applying Hölder’s inequality, the Sobolev embedding and estimates (3.1) and
(3.4), we obtain

∥∥N ∗
2,2(z)

∥∥
Xs+a,− 1

2+δ !
∑

j,k,%

2 j(s+a−2)2k2% sup
‖ϕ‖

X
0, 12 −δ

=1

∫

T×R
(z#)2(z j )#(zk)#(z%)#(ϕ j )

# dxdt

!
∑

j,k,%

2 j(a−2)2k(1−σ )2%(1−σ ) ‖z‖2
Z

1
2+δ

‖z‖2
Xσ, 12

‖z‖
Xs, 12

.

!
∑

j

2 j(a−2σ ) ‖z‖2
Z

1
2+δ

‖z‖2
Xσ, 12

‖z‖
Xs, 12

, (3.24)

where the sum converges for a < 2σ . 56

Lemma 3.15 Let s > 1
2 . Then, the quantities E1(z) and E2(z) given by (2.24) and

(2.25) satisfy

‖E1(z)‖
Xs+a,− 1

2+δ + ‖E2(z)‖
Xs+a,− 1

2+δ ! ‖z‖4Zσ ‖z‖Zs (3.25)

for all δ > 0 and 0 < a < min{s, 1}.
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Proof We only show the estimate for E1(z) as all of the terms in E2(z) possess the
same structure necessary to yield the same estimate for E2(z). First, by applying
Littlewood–Paley-type projections, duality and Plancherel’s theorem, we find

‖E1(z)‖
Xs+a,− 1

2+δ !
∑

j

2 j(s+a) sup
‖ϕ‖

X
0, 12−δ

=1
S∗,

where

S∗ =
∑

ξ2+ξ4=ξ1+ξ3
|ξ |!|ξ%|, for some %

∫

τ1−τ2+τ3−τ4+τ5=τ

|̃z(ξ1, τ1)||̃z(ξ2, τ2)||̃z(ξ3, τ3)||̃z(ξ4, τ4)||z̃ j (ξ, τ5)||ϕ̃ j (ξ, τ )| dσ.

Without loss of generality, we assume |ξ1| " |ξ |. Then,

S∗ !
∑

ξ2+ξ4=ξ1+ξ3
|ξ |!|ξ%|, for some %

∫

τ1−τ2+τ3−τ4+τ5=τ

|̃z" j (ξ1, τ1)||̃z(ξ2, τ2)||̃z(ξ3, τ3)||̃z(ξ4, τ4)||z̃ j (ξ, τ5)||ϕ̃ j (ξ, τ )|dσ

≤
∑

ξ1−ξ2+ξ3−ξ4+ξ5=ξ

∫

τ1−τ2+τ3−τ4+τ5=τ

|̃z" j (ξ1, τ1)||̃z(ξ2, τ2)||̃z(ξ3, τ3)||̃z(ξ4, τ4)||z̃ j (ξ5, τ5)||ϕ̃ j (ξ, τ )|dσ

7
∫

T×R
(z#)3(z" j )

#(z j )#(ϕ j )
# dxdt .

Consequently, Hölder’s inequality, Sobolev embedding and estimates (3.1) and (3.4)
imply

‖E1(z)‖
Xs+a,− 1

2+δ !
∑

j

2 j(a−σ ) ‖z‖3
Z

1
2+δ

‖z‖
Xσ, 12

‖z‖
Xs, 12

,

where the above sum is finite for a < σ = min{s, 1}. 56

4 Nonlinear smoothing: proof of Theorem 1.3

Having established all necessary nonlinear estimates, we now proceed to the proof of
the nonlinear smoothing effect given in Theorem 1.3.

Combining Lemmas 3.2–3.15, we deduce that any solution z ∈ Zs
T , s > 1

2 + ε,
T > 0, of the Duhamel equation (2.27) on [0, T ] with z0 ∈ Hs(T) and ‖z‖Zs

T
!

‖z0‖Hs (T) enjoys the nonlinear smoothing effect z − eit∂
2
x z0 ∈ C([0, T ]; Hs+a(T))

with the estimate (1.22). Next, we transition to the solution of the Cauchy problem
(2.12).

Let z0 ∈ Hs(T) with s > 1
2 + ε and take z(n)0 ∈ H∞(T) such that z(n)0 → z0 in

Hs(T). From Theorem 1.1, there exist T = T (‖z0‖H1/2+ε(T)) > 0 and functions z ∈
Z1/2+ε
T and, forn sufficiently large, z(n) ∈ Z∞

T that are solutions of theCauchyproblem
(2.12) with initial data z0 and z(n)0 , respectively. Furthermore, from the computations
of Sect. 2, the smooth solution z(n) satisfies the Duhamel equation (2.27) on [0, T ].
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In addition, thanks to the Lipschitz continuity of the data-to-solution map, we have
z(n) → z in Z1/2+ε

T . Therefore, using Lemmas 3.4–3.15 and the fact that z(n) is
Cauchy in Z1/2+ε

T , we conclude that z ∈ Z1/2+ε
T satisfies (2.27) on [0, T ]. In turn, we

can employ the nonlinear smoothing estimate (1.22) for an appropriate value of a to
infer

‖z‖
Z

1
2+ε+a
T

! ‖z0‖
H

1
2+ε+a

(T)
+

∥∥z − eit∂
2
x z0

∥∥
Z

1
2+ε+a
T

! ‖z0‖
H

1
2+ε+a

(T)
+ C(s, ‖z‖Zσ

T
, T ) ‖z‖

Z
1
2+ε

T

! ‖z0‖
H

1
2+ε+a

(T)
+ C(s, ‖z0‖Hσ (T)) ‖z0‖H 1

2+ε
(T)

! C(s, ‖z0‖Hσ (T)) ‖z0‖H 1
2+ε+a

(T)
, (4.1)

which shows that z ∈ Z
1
2+ε+a
T with the estimate (4.1). Iterating this process, we

eventually obtain

‖z‖Zs
T

≤ C(s, ‖z0‖Hσ (T)) ‖z0‖Hs (T) .

This estimate shows that z ∈ Z1/2+ε
T actually belongs to Zs

T . Therefore, since z
satisfies the Duhamel equation (2.27), it admits the nonlinear smoothing estimate
(1.22), completing the proof of Theorem 1.3.

5 Polynomial bound: proof of Theorem 1.4

We shall now exploit the nonlinear smoothing effect of Theorem 1.3 in order to estab-
lish the polynomial bound of Theorem 1.4. We begin by proving such a bound for the
solution z of the gauged Cauchy problem (2.12).

First, we suppose that 1 ≤ s ≤ 3
2 − ε for ε as in Theorem 1.3. Fix n ∈ N and

t ∈ [nT , (n + 1)T ], where T = T (‖z0‖H1(T)) is the local time of existence from
Theorem 1.1. Then, write z in the form

z(t) = Q≤n2 z(t)+ Q>n2 z(t),

where Q̂≤N z(ξ) = χ|ξ |≤N ẑ(ξ) and Q>N z is defined similarly. The term Q≤n2 z(t)
satisfies

∥∥Q≤n2 z(t)
∥∥
Hs (T) ≤ c 〈n〉2(s−1) ‖z(t)‖H1(T) ≤ C(‖z0‖H1(T)) 〈t〉2(s−1). (5.1)

The term Q>n2 z(t) can be handled by taking advantage of the nonlinear smoothing
effect (1.22). Indeed,

Q>n2 z(t) = Q>n2
(
z(t) − ei(t−nT )∂2x z(nT )

)
+ Q>n2e

i(t−nT )∂2x z(nT ). (5.2)
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Thus, since t ∈ [nT , (n + 1)T ] and s ≤ 3
2 − ε, we have

∥∥∥Q>n2
(
z(t) − ei(t−nT )∂2x z(nT )

)∥∥∥
Hs (T)

=
∥∥∥J

s−( 32−ε)
x J

3
2−ε
x Q>n2

(
z(t) − ei(t−nT )∂2x z(nT )

)∥∥∥
L2(T)

≤ c 〈n〉2(s−( 32−ε))
∥∥∥Q>n2

(
z(t) − ei(t−nT )∂2x z(nT )

)∥∥∥
H

3
2−ε

(T)

≤ 〈n〉2(s−( 32−ε))C(s, ‖z(nT )‖H1(T)) ‖z(nT )‖H1(T)

≤ 〈n〉2(s−( 32−ε))C̃(s, ‖z0‖H1(T)). (5.3)

In order to estimate Q>n2e
i(t−nT )∂2x z(nT ) in (5.2), we first use the strict inequality

∥∥∥Q>n2e
i(t−nT )∂2x z(nT )

∥∥∥
Hs (T)

≤
∥∥Q>(n−1)2 z(nT )

∥∥
Hs (T) . (5.4)

Then, writing

Q>(n−1)2 z(nT ) = Q>(n−1)2
(
z(nT ) − ei(nT−(n−1)T )∂2x z((n − 1)T )

)

+Q>(n−1)2e
iT ∂2x z((n − 1)T )

and proceeding similarly to (5.3) and (5.4), we obtain

∥∥Q>(n−1)2 z(nT )
∥∥
Hs (T) ≤ 〈n − 1〉2(s−( 32−ε))C̃(s, ‖z0‖H1(T))

+
∥∥Q>(n−2)2 z((n − 1)T )

∥∥
Hs (T) .

We may inductively continue this process to arrive at

∥∥Q>n2 z(t)
∥∥
Hs (T) ≤

n∑

k=1

〈k〉2(s−( 32−ε))C̃(s, ‖z0‖H1(T))+ ‖z0‖Hs (T) .

Then, noting that

n∑

k=1

kα ≤ cαnα+1, α > −1,
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and observing that 2(s − ( 32 − ε)) > −1 since s ≥ 1, we obtain

∥∥Q>n2 z(t)
∥∥
Hs (T) ≤

n∑

k=1

〈k〉2(s−( 32−ε))C̃(s, ‖z0‖H1(T))+ ‖z0‖Hs (T)

≤ 〈n〉2(s−1+ε)C̃(s, ‖z0‖H1(T))+ ‖z0‖Hs (T)

≤ 〈t〉2(s−1+ε)˜̃C(ε, s, ‖z0‖Hs (T)). (5.5)

Combining (5.1) and (5.5) yields

‖z(t)‖Hs (T) ≤ 〈t〉2(s−1+ε)C(ε, s, ‖z0‖Hs (T)), 1 ≤ s ≤ 3
2

− ε. (5.6)

Next, we consider the range 3
2 − ε ≤ s ≤ 2 − 2ε. We remark that the argument

outlined for this range also extends to the range s > 2− 2ε. Indeed, upon proving the
polynomial bound for 1 + ( j − 1)( 12 − ε) ≤ s ≤ 1 + j( 12 − ε), we may always use
the same argument to establish the bound for 1+ j( 12 − ε) ≤ s ≤ 1+ ( j + 1)( 12 − ε),
for j > 1. Once again, let t ∈ [nT , (n + 1)T ] and split z(t) as before. For Q≤n2 z(t),
we still have estimate (5.1). Also, as before, we write

Q>n2 z(t) = Q>n2
(
z(t) − ei(t−nT )∂2x z(nT )

)
+ Q>n2e

i(t−nT )∂2x z(nT ).

Then,

∥∥∥Q>n2
(
z(t) − ei(t−nT )∂2x z(nT )

)∥∥∥
Hs (T)

=
∥∥∥J s−(2−2ε)

x J 2−2ε
x Q>n2

(
z(t) − ei(t−nT )∂2x z(nT )

)∥∥∥
L2(T)

≤ c 〈n〉2(s−(2−2ε))
∥∥∥Q>n2

(
z(t) − ei(t−nT )∂2x z(nT )

)∥∥∥
H2−2ε(T)

≤ 〈n〉2(s−(2−2ε))C(s, ‖z(nT )‖H1(T)) ‖z(nT )‖H 3
2−ε

(T)
≤ 〈n〉2(s−(2−2ε))C̃(s, ‖z0‖H1(T)) ‖z(nT )‖H 3

2−ε
(T)

.

In addition, the bound (5.6) gives

‖z(nT )‖
H

3
2−ε

(T)
≤ 〈nT 〉C(‖z0‖

H
3
2−ε

(T)
).

Consequently,

∥∥∥Q>n2
(
z(t) − ei(t−nT )∂2x z(nT )

)∥∥∥
Hs (T)

≤ 〈n〉2(s−(2−2ε))+1C̃(ε, s, ‖z0‖
H

3
2−ε

(T)
).
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Repeating the procedure as before yields

∥∥Q>n2 z(t)
∥∥
Hs (T) ≤

n∑

k=1

〈k〉2(s−(2−2ε))+1C̃(ε, s, ‖z0‖
H

3
2−ε

(T)
)+ ‖z0‖Hs (T)

≤ 〈n〉2(s−(2−2ε))+2C̃(ε, s, ‖z0‖Hs (T))+ ‖z0‖Hs (T)

≤ 〈t〉2(s−(1−2ε)) ˜̃C(ε, s, ‖z0‖Hs (T)).

Overall, recalling also (5.6), we have established the bound

‖z(t)‖Hs (T) ≤ 〈t〉2(s−(1−2ε))C(ε, s, ‖z0‖Hs (T)), 1 ≤ s ≤ 2 − 2ε. (5.7)

We may then repeat the above procedure to establish the bound (5.7) for all s ≥ 1.
In order to extend the result to the solution u of the dNLS Cauchy problem (1.1),

we begin by establishing the following product estimate.

Proposition 5.1 Let s1, s2 ≥ s ≥ 0 and s1 + s2 > s + 1
2 . Then

‖ f g‖Hs (T) ! ‖ f ‖Hs1 (T) ‖g‖Hs2 (T) . (5.8)

Proof The argument is standard and resembles the proof of the algebra property for
Sobolev spaces. For r , r1, r2 ≥ 0, we claim that there exists a constant C > 0 so that

(1+ |x | + |y|)r ≤ C
[
(1+ |x |)r+r1(1+ |y|)−r1 + (1+ |y|)r+r2(1+ |x |)−r2

]
.

(5.9)

Indeed, first note that

(1+ |x | + |y|)r (1+ |x |)r2(1+ |y|)r1 ≤ (1+ |x | + |y|)r+r1+r2 .

Thus, to establish (5.9), it suffices to show that there exists C = C(t) > 0 so that

(1+ |x | + |y|)t ≤ C
[
(1+ |x |)t + (1+ |y|)t

]
(5.10)

for all t ≥ 0. Without loss of generality, assume that (1+ |y|) ≤ (1+ |x |). Then

(1+ |x | + |y|)t ≤ (1+ |x | + 1+ |y|)t ≤ 2t (1+ |x |)t ≤ 2t
[
(1+ |x |)t + (1+ |y|)t

]
.

Therefore, (5.10) holds with C = 2t , for all t ≥ 0. Consequently, we have (5.9).
Next, we apply (5.9) with r = s, r1 = s1 − s, and r2 = s2 − s to see that

〈ξ 〉s ≤ (1+ |ξ |)s ! (1+ |ξ − η|)s1(1+ |η|)s−s1 + (1+ |ξ − η|)s−s2(1+ |η|)s2 .
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Thus,

‖ f g‖2Hs (T) ≤
∑

ξ

(1+ |ξ |)2s
( ∑

η

| f̂ (ξ − η)||̂g(η)|
)2

!
∑

ξ

(∑

η

(1+ |ξ − η|)s1 | f̂ (ξ − η)|(1+ |η|)s−s1 |̂g(η)|
)2

+
∑

ξ

( ∑

η

(1+ |ξ − η|)s−s2 | f̂ (ξ − η)|(1+ |η|)s2 |̂g(η)|
)2

,

where we have applied (5.10) for t = 2 in the previous inequality. It suffices to bound
the first sum above, as the second sum is treated the same after a change of variables.
We apply Minkowski’s inequality to obtain

∑

ξ

( ∑

η

(1+ |ξ − η|)s1 | f̂ (ξ − η)|(1+ |η|)s−s1 |̂g(η)|
)2

≤ ‖ f ‖2Hs1 (T)

(∑

η

(1+ |η|)s−s1 |̂g(η)|
)2

.

Finally, due to the Cauchy–Schwarz inequality,

∑

η

(1+ |η|)s−s1 |̂g(η)| =
∑

η

(1+ |η|)s−s1−s2(1+ |η|)s2 |̂g(η)|

≤ ‖g‖Hs2 (T)
∥∥∥(1+ |η|)−(s1+s2−s)

∥∥∥
%2η
,

where the above norm is finite due to the fact that s1 + s2 − s > 1
2 . 56

Lemma 5.1 Let s ≥ 0. Then, there exists C > 0 such that

‖u(t)‖Hs (T) ≤ C
(
1+ ‖z(t)‖2

H
1
4 (T)

)
‖z(t)‖Hs (T) . (5.11)

Proof Clearly, ‖z(t)‖Hs (T) = ‖w(t)‖Hs (T), for w given by (1.17) . Furthermore,
since ŵ(ξ, t) = e−2iξµt v̂(ξ, t), for v given by (1.14), we have that ‖w(t)‖Hs (T) =
‖v(t)‖Hs (T). Thus, it suffices to establish (5.11) for z(t) replaced by v(t).

Recall that u(x, t) = eiI(v)(x,t)v(x, t). For δ > 0, we apply Proposition 5.1 with
s1 = s and s2 = 1

2 + δ to obtain

‖u(t)‖Hs (T) =
∥∥∥eiI(v)(t)v(t)

∥∥∥
Hs (T)

≤ C
∥∥∥eiI(v)(t)

∥∥∥
H

1
2+δ

(T)
‖v(t)‖Hs (T) .
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Now, observe that

∥∥∥eiI(v)(t)
∥∥∥
H

1
2+δ

(T)
≤

∥∥∥eiI(v)(t)
∥∥∥
H1(T)

=
∥∥∥eiI(v)(t)

∥∥∥
L2(T)

+ ‖∂xI(v)(t)‖L2(T)

=
√
2π +

∥∥∥|v(t)|2 − µ
∥∥∥
L2(T)

≤ C
(
1+ ‖v(t)‖2L4(T)

)

=≤ C
(
1+ ‖v(t)‖2

H
1
4 (T)

)
,

where the last inequality follows from Sobolev embedding. 56

Remark 5.1 It is clear from the proof of Lemma 5.1 that the estimate (5.11) holds with
the roles of u and z switched.

Returning to the case that s ≥ 1 and applying Lemma 5.1 and the bound (5.6) yields

‖u(t)‖Hs (T) ≤ C
(
1+ ‖z(t)‖2

H
1
4 (T)

)
‖z(t)‖Hs (T)

≤ C(‖z0‖H1(T)) ‖z(t)‖Hs (T)

≤ C(‖z0‖H1(T)) C̃(ε, s, ‖z0‖Hs (T)) 〈t〉2(s−1)+ε

≤ C(ε, s, ‖u0‖Hs (T)) 〈t〉2(s−1)+ε,

which concludes the proof of Theorem 1.4.
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