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Considered here is a class of Boussinesq systems of Nwogu type. Such systems
describe propagation of nonlinear and dispersive water waves of significant interest
such as solitary and tsunami waves. The initial-boundary value problem on
a finite interval for this family of systems is studied both theoretically and
numerically. First, the linearization of a certain generalized Nwogu system is
solved analytically via the unified transform of Fokas. The corresponding analysis
reveals two types of admissible boundary conditions, thereby suggesting appropriate
boundary conditions for the nonlinear Nwogu system on a finite interval. Then, well-
posedness is established, both in the weak and in the classical sense, for a regularized
Nwogu system in the context of an initial-boundary value problem that describes
the dynamics of water waves in a basin with wall-boundary conditions. In addition,
a new modified Galerkin method is suggested for the numerical discretization of this
regularized system in time, and its convergence is proved along with optimal error
estimates. Finally, numerical experiments illustrating the effect of the boundary
conditions on the reflection of solitary waves by a vertical wall are also provided.
© 2022 Elsevier Masson SAS. All rights reserved.

RESUME

On considére ici une classe de systémes Boussinesq de type Nwogu. De tels
systemes décrivent la propagation d’ondes d’eau non linéaires et dispersives d’intérét
significatif telles que les ondes solitaires et tsunami. Le probléme des valeurs aux
limites initiales sur un intervalle fini pour cette famille de systémes est étudié a la fois
théoriquement et numériquement. Tout d’abord, la liéarisation d’un certain systéme
de Nwogu généralisé est résolue analytiquement via la transformée unifiée de Fokas.
L’analyse correspondante révele deux types de conditions aux limites admissibles,
suggérant ainsi des conditions aux limites appropriées pour le systeme de Nwogu non
linéaire sur un intervalle fini. Ensuite, le bien-posé est établi, a la fois au sens faible
et au sens classique, pour un systéme de Nwogu régularisé dans le contexte d’un
probléme de valeur aux limites initiales qui décrit la dynamique des vagues d’eau
dans un bassin avec des conditions aux limites des parois. De plus, une nouvelle
méthode de Galerkin modifiée est suggérée pour la discrétisation numérique de ce
systeme régularisé dans le temps, et sa convergence est prouvée avec des estimations
d’erreur optimales. Enfin, des expériences numériques illustrant ’effet des conditions
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aux limites sur la réflexion d’ondes solitaires par une paroi verticale sont également
fournies.
© 2022 Elsevier Masson SAS. All rights reserved.

1. Introduction

Nonlinear and dispersive water waves are described by the Euler system of equations [44]. As Euler’s
equations still remain one of the hardest problems to solve (even numerically), various simplified systems of
partial differential equations have been suggested as alternative approximations, especially for long waves
of small amplitude because of their applications. Waves of this type are also called weakly nonlinear and
weakly dispersive waves. Tsunamis, solitary waves, internal waves and even atmospheric waves fall into the
regime of weakly nonlinear and weakly dispersive waves [44]. The aforementioned simplified systems should
obey the laws of physics and mathematics; importantly, they should be well-posed when supplemented with
physically sound boundary conditions (Newton’s principle of determinacy), admit classical solitary wave
solutions, preserve symmetries and reasonable forms of invariants such as energy, and agree with laboratory
experiments. Compliance with such fundamental laws is along the lines of scientific rigor and justifies the
use of such systems in practical applications.

After the pioneering work of Boussinesq [8,9], several Boussinesq systems have been introduced to de-
scribe the propagation of weakly nonlinear and weakly dispersive waves, including Peregrine’s system [34].
Peregrine’s system, also known as classical Boussinesq system in the case of flat bottom topography, was
rederived in one dimension along with a whole class of asymptotically equivalent systems known as the
abed-systems [6]. The Cauchy problem on the real line for this class of Boussinesq systems was studied
in [36,7,35]. In scaled and non-dimensional variables, the abed family of systems takes the form

Nt + ug + 5(nu)x + 02 (auxa:r - bnrmt) =0 y (1 1)
Ut + Nz + euuy + 02 (cnmwz - dua:a:t) =0 y .
where = denotes the horizontal spatial independent variable, ¢ is the time, n = n(z,t) is the free surface
elevation above a flat bottom located at depth Dy = —1, v = u(x,t) is the horizontal velocity of the fluid
measured at depth 6Dy with 6 € [0,1], &,0 are small parameters characterizing the nonlinearity and the

dispersion of the waves, and a, b, ¢, d are parameters given by

(0* 4w, b=
(1-0*)p, d=

(62_%) (1_V)a

v ER,
a—eya—p 7

NI o=

1
2
1
2

so that @ + b+ ¢+ d = 1/3. The parameters € and o2 in the Boussinesq regime are of the same order, and
the Stokes number is S = ¢/ = O(1). Hence, as usual, throughout this work we take ¢ = o for simplicity
and without loss of generality.

Some important representatives of the abed family of systems (1.1) include systems that are well-posed
and also admit classical solitary waves as special solutions. Examples of such systems are the Bona-Smith
system (a = 0,b > 0, ¢ <0, d > 0), which includes the coupled Benjamin-Bona-Mahony BBM-BBM system
as a special case (¢ = 0), the classical Boussinesq system (a =b = c¢ =0, d > 0), the Nwogu system (a < 0,
b=c=0,d>0), and the regularized Nwogu system or “reverse” Bona-Smith system (a < 0, b > 0, ¢ = 0,
d > 0). It should be noted that the Nwogu system was derived in [33] as an alternative to the Peregrine
system with the ability to choose the coefficients a,b, c,d so that the linear dispersion relation becomes
optimal compared to the corresponding linear dispersion relation of the Euler equations.



D. Mantzavinos, D. Mitsotakis / J. Math. Pures Appl. 169 (2023) 109-137 111

In practical applications and numerical simulations, systems like those mentioned above are posed in
bounded domains. This fact highlights the need for appropriately formulated initial-boundary value prob-
lems. An important issue in this direction is the choice of appropriate boundary conditions. In particular, in
the case of both the regularized and the non-regularized Nwogu systems, it is not a priori clear how many
boundary values — and of which type — must be specified as data for a well-posed problem on the finite
interval. One of the main results of this work is the identification of appropriate boundary conditions on
the finite interval for the following generalized Nwogu system:

N+ Ug +EMU)z + € auwwz_bna:m =0,
t e el ! (1) € (<L, 1) x (0,T) , (1.2)
Ut + Mg + EUUL — EdUgzs =0,

with a < 0, b > 0, ¢ = 0, d > 0, which contains both the regularized and the original Nwogu system, for
b > 0 and b = 0 respectively.

Appropriate boundary conditions for the generalized system (1.2) are identified through solving the linear
counterpart of that system via the unified transform. This method was first introduced by Fokas in [18] (see
also the monograph [19] and the review article [14]) and has since been employed for the analysis of linear as
well as initial-boundary value problems in various settings — see, for example, [22,24,17,20,23,25-27,21,28].
Recent developments have led to the advancement of the unified transform to systems of PDEs, in particular
via the work [13]. Exploiting the framework laid out in [13] along with recent progress noted in [29] on the
linearization of the classical Boussinesq equation on the half-line, here we employ the unified transform to
derive a nowvel, explicit solution formula for the linearization of the generalized Nwogu system (1.2) on a
finite interval:

N+ Uy + € (QUgge — ONpat) =0,
' ( 2 (¢,) € (L, L) x (0,T) . (1.3)
us + Ne — Eduwzt =0 5

While the initial conditions accompanying this system are the usual ones, namely n(z,0) and u(z,0) given,
we perform our analysis without initially specifying any boundary conditions. Instead, we discover the
conditions that lead to an explicit solution formula (and hence to a well-formulated problem) through the
application of the unified transform. In particular, our analysis indicates that one of the following two pairs
of boundary values must supplement system (1.3) as boundary conditions (see also Remark 2.1):

{u(£L,t), uze(£L,t)} or {n(£L,t),u,(EL,t)}. (1.4)

This finding provides strong theoretical evidence that the boundary conditions (1.4) should lead to a well-
posed problem for the nonlinear generalized Nwogu system (1.2) and, in particular, for the original Nwogu
system on a finite interval.

We note that our analysis, via the unified transform, of the linear system (1.3) is carried out for nonzero
boundary conditions of the form (1.4). Nevertheless, one of the most important initial-boundary value
problems for Nwogu-type systems is the one with wall-boundary conditions on the boundaries of a basin. The
well-posedness of this initial-boundary value problem with reflection boundary conditions for the Peregrine
system and its linearization was studied in [24,1,29]. Specifically, it was proven that for Peregrine’s system
only the classical homogeneous Dirichlet wall-boundary conditions

w(—L,t) = u(L,t) =0, (1.5)

are required for well-posedness, ensuring that there is no flow through the boundaries. Analogous initial-
boundary value problems have been studied in detail for Bona-Smith systems in [3], while their special
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case of BBM-BBM systems was studied in [5]. There, it was shown that in addition to the wall-boundary
condition (1.5) homogeneous Neumann boundary conditions for n are also required:

nz(_Lvt) = nz(Lvt) =0. (16)

Although these conditions are not satisfied by Peregrine’s system, they are satisfied by the solutions of the
Euler equations when wall-boundary conditions are imposed [30] (see also Appendix A). Thus, satisfying
both boundary conditions (1.5) and (1.6) reflects a more accurate description of water waves in a basin.

The physical relevance of homogeneous (zero) boundary conditions as illustrated above motivates the
study of well-posedness for the nonlinear regularized Nwogu system, namely system (1.2) with b > 0, supple-
mented with such conditions on a finite interval. In particular, the second main result of this work establishes
the well-posedness of that system in the case of reflective boundary conditions (the Dirichlet problem was
analyzed in [3]). We note that, although in this work we restrict ourselves to the case of a flat bottom,
it is anticipated that the variable bottom case can be handled by using similar concepts. The particular
initial-boundary value problem with reflective boundary conditions that we consider for the regularized
Nwogu system can be written in dimensionless and scaled variables as

Nt + Uz + (M) + € (QUzgr — Daar) =0,

' (s e 2 (z,1) € (~L,L) x (0,T) ,
Up + Ny + eutly — edugyy =0,

77(3770) = 770(33)a u(x,O) = uo(x) )

u(=L,t) =u(L,t) =0, wug(—L,t) = ug (L, t) =0,

where a < 0 and b,d > 0 such that a + b+ d = 1/3. As noted earlier, in the case where a = 0 and b,d > 0,
the system reduces to the BBM-BBM system which was analyzed extensively in [5], while for a < 0, b =10
and d > 0 the system becomes the well-known Nwogu system [33]. Observe that, because of the boundary
conditions on u, the second (momentum) equation in (1.7) yields the additional conditions (1.6), which are
satisfied implicitly, and thus there is no need for them to be explicitly stated. Furthermore, as shown in
Appendix A, the second set of boundary conditions wu,,(+L,t) = 0in (1.7) are also satisfied by the solutions
of Euler’s equations.

After proving that the nonlinear system (1.7) is well-posed in the Hadamard sense locally in time, we
study its numerical discretization with Galerkin/finite element method. Wall-boundary conditions for the
numerical solution of the Nwogu system were first suggested in [41-43] but without theoretical justification.
In the special case of the linearized Nwogu system, one can establish well-posedness with the particular wall-
boundary conditions using Galerkin approximations [10]. The presence of the third-order spatial derivative
Uz i Nwogu-type systems, like the term 7)., in the case of the Bona-Smith system, makes their numer-
ical discretization with Galerkin methods challenging. This difficulty, for example, can be related to the
requirement of well-defined second derivative of the velocity component u of the numerical solution. While
Lagrange elements guarantee only local smoothness, smooth cubic splines (at least) are left to be used for
the standard Galerkin method accompanied with suboptimal convergence results [4,15]. As a remedy to
this problem, a modification of the standard Galerkin method for the Nwogu system was suggested in [42],
allowing the use of Lagrange elements. While the convergence of that particular method is still unclear, a
similar modified Galerkin method was studied and proven to be convergent in the case of the Bona-Smith
system [16]. Here, we develop the analogous modified Galerkin/finite element method for the regularized
Nwogu system (1.7), and we show that its semidiscrete Galerkin approximations converge to the analytical
solutions of (1.7) with optimal convergence rate.

Structure. This work is organized as follows. In Section 2, using the unified transform of Fokas we obtain an
explicit solution formula for the linearization (1.3) of the generalized Nwogu system (1.2) on the finite interval
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(=L, L). Our analysis shows that this problem (and hence its nonlinear counterpart) is well-formulated if
either {u(£L,t),uz,(£L,t)} or {n(+L,t),u,(£L,t)} are prescribed as boundary conditions. In Section 3,
we establish local Hadamard well-posedness for the regularized Nwogu system (1.7) in the case of wall-
boundary conditions u(£L,t) = ugz,(+L,t) = 0 (the well-posedness of (1.7) with n(+L,t) = u,(£L,t) =0
was proved in [3]). In Section 4, we provide the derivation and analysis of a modified Galerkin method
for the numerical solution of the regularized system (1.7). The convergence of the method is also verified
experimentally, while a demonstration of the reflection of solitary waves illustrates the practical use of the
initial-boundary value problem with wall-boundary conditions. Finally, some brief concluding remarks are
given in Section 5, while the use of the particular set of wall-boundary conditions is justified in Appendix A
by showing that solutions to the Euler equations satisfy the same wall-boundary conditions even in the case
of variable bottom topography.

Notation. Throughout this work, we denote by L? := L?(—L, L) the Hilbert space of measurable, square-
integrable real-valued functions on (—L,L). For any integer s > 0, we denote by H® := H*(—L,L) the
classical Sobolev space of s-times weakly differentiable functions on (—L, L),

HS:{WGLQ:GQ{UELQ forallj:O,l,...,s} ,

) 1/2 )
accompanied with the usual norm ||v|, := (Zj:o ffL ]8;11(1:)|2 d:r) , where 97 denotes the j-th partial
derivative with respect to z. Note that HY = L?, while the norm of L? will be denoted by || - ||. For m > 0,
we will also consider the Banach space C*® := C®(—L, L) of real-valued s-times continuously differentiable
functions defined on [—L, L], equipped with the norm
lv]|cs == sup sup |dv(z)]| .
0<j<s z€[—L,L]

We write A < B if A < CB with C > 0 a constant independent of discretization parameters such as Az or
other crucial parameters.

2. Explicit solution of the linear problem

In this section, we employ the unified transform of Fokas in order to solve the linear counterpart (1.3) of
the generalized Nwogu system (1.2) on the finite interval (—L, L). Our analysis reveals that the combinations
(1.4) are two possible choices of admissible boundary conditions for this linear problem. As such, these two
combinations should also lead to a well-posed problem at the nonlinear level, supporting the theoretical and
numerical findings of Sections 3 and 4. The first set of data in (1.4) describes wall-boundary conditions and
S0 it can be used for studying the reflection of water waves on a vertical wall, while the second set of data
corresponds to the wave maker problem.

Importantly, we note that: (i) The calculations of this section remain valid for b = 0, which is the value
corresponding to the original Nwogu system (1.7). In particular, setting b = 0 (equivalently, 8 = 0) in the
solution formulas (2.14) yields the corresponding solutions to the linearization of the Nwogu system (see
problem (2.15) in Remark 2.2). (ii) Furthermore, our analysis and the resulting solution formulas hold for
general nonzero boundary conditions. (iii) In addition, since swapping 1 with u transforms the generalized
Nwogu system into the Bona-Smith system, the formulas (2.14) derived here provide the solution also for
the linearized Bona-Smith system formulated with nonzero boundary conditions on a finite interval.

2.1. Derivation of the global relation

We begin by noting that throughout this section we assume sufficient smoothness and decay as needed
for our computations to hold. Setting « = —ae > 0, 8 =be > 0, § = de > 0 allows us to write the linear
generalized Nwogu system (1.3) in the form
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Nt + Uy — QUggy — /anz =0 ;
' ' (2,t) € (—L, L) x (0, T) . (2.1)
Ut + Mg _6u7;wt =0 ;

While we supplement system (2.1) with the usual initial conditions

7)(% 0) = 770(:17)’ U(I’ O) = UO(‘T) ) (22)

we do not yet specify any boundary conditions as it is not a priori clear what choices of boundary data lead
to a well-formulated problem. Instead, we introduce the notation

gi(t) == dJu(—L,t), hj(t) == 0lu(L,t), j =0,1,2,

(2.3)
gS(t) = 77(—L»t)’ h3(t) = n(Lvt) )

for the various boundary values that arise in our analysis and defer the prescription of some of these as
boundary conditions to a later point.
Let the finite-interval Fourier transform pair of a function f € L?(—L, L) be defined by

L
Flk) = / ek f(x)yde, keC, f(z)= % / e** f(k)dk, x€(-L,L), (2.4)
r=—1L keR

o~

and note that, since x is bounded, f(k) is an entire function of k via a Paley-Wiener-type theorem (e.g.
see Theorem 7.2.3 in [39]). Taking the Fourier transform (2.4) of system (2.1) while noting that the second
component of (2.1) yields n,(—L,t) = dgh(t) — g4(t) and n,(L,t) = 0h4(t) — h{(t), we obtain the vector
ODE

Ve(k,t) + M(E)V(k,t) = A(k,t), keC\ {i%, ﬁ:ﬁ} : (2.5)
where v = (,u)”, M is a 2 x 2 matrix given by
M(k) = ik (0 | (+ak?) (1+5’f2)_1> ,
(1+6k2) 0
and A = (4, B)" is a vector with components
Ak, t) = T/Bk?{ — (14 ak?) [e=*ho(t) — gy (t)]
+iak [ hy (1) — "L gy (8)] + a [e R Ehy () — e*gs(t)] }
g {0 R0 - 0] — e R0 - g 1)
ik [ EERG (1) - e Egh(e)] | (2.6)
BUkt) = 1 { = [ h(0) = s )] + 6 [0 1) — eHgf (0)

+ bk [e LRl (1) — el gl (8)] } .

Integrating (2.5) with respect to ¢ and using the initial conditions (2.2), we obtain what is known in the
unified transform terminology as the global relation:
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|
<5k 5l 5 55
\:\\

Fig. 2.1. Left: The branch cut B given by (2.9) for the function w defined in (2.8). The local angles 01, 02, ¢1, d2, 1, v2 € [0, 27] are
used to make each of the square roots piq, s and pug single-valued by taking branch cuts along i [—1/y/a, 1//a], 4 [—1/\/37 1/\/5]

and ¢ (700, 71/\/3} Ui [1/\/_7 00) respectively. Right: The contours L* defined by (2.13). The black dots correspond to the simple
zeros k, = 57, n € Z, of the quantity A involved in Proposition 2.1.

V(k,t) = e Mt (k) + e~ M?

T

eMTA(k,7)dr, keC)\ {i%,iﬁ} : (2.7)

Lo —

where Vo(k) = (7o (k), o (k)"

The vector A given by (2.6) involves eight different boundary values, four at each endpoint of the interval
[—L, L]. However, our analysis will show that only two of these values at each endpoint can be prescribed
as boundary data. To see this, we must first write the vector equation (2.7) in component form. For this

purpose, we diagonalize the matrix M in order to express the exponential eM* in explicit form. We then
have M = PDP~! with

11 Kt
D_iLJ(l O), P_< g 3 )a w(k):L, (28)
0-1 Halts 7#&“6 Ko

where the functions

[N

1 1

pa(K) = (14 ak?)® . ps(k) = (14 0k%)% (k) = (1+ BK*) ",

are made single-valued by taking appropriate branch cuts in the complex k-plane (see Fig. 2.1). For a >
6 > 3, these individual branch cuts combine to the following branch cut for the function w:

B ::i[%,%} Ui [_%,_ﬁ] u i(—oo,—ﬁ} Ui [ﬁ,oo). (2.9)

Also, if § > « > /3 then the branch cut for w is like the one of Fig. 2.1 but with +i//a and +i/v/§ swapped.
Therefore, although the branch cut (2.9) corresponds to the case a > § > 3, our analysis also covers the
case § > « > . On the other hand, if 8 > max {e, d} then the branch cut would need to be modified more
substantially; however, this case is not really relevant for our purposes, since our main objective behind
considering the generalized Nwogu system is to eventually be able to take the limit 8 — 0 and infer results
for the original system (e.g. see Remark 2.2). Note that for « = ¢ and § = 0, we have w(k) = k and the
branching disappears.
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Using the diagonalization of M, we obtain e=™* = Pe~P*P~!. Then, introducing the notation

t ¢
B?(w,t) = et / e~ W f(1)dr £ 7™ / e“T f(r)dr (2.10)

7=0 7=0

we write the global relation (2.7) in component form as follows:

P 1 W —iwt) = Halbs iw —iwt) ~
n(k,t):§(e t_|_e t)no(k)—%(e t_e t)uo(k)

1+ ak? _ ; iak i ;
st O B+ B (0] + e [T B (0 0) - B (0.)]
@ —ikL ikL po —ikL ikL
T ) e By, (w,t) — ™ By, (w, )] + 2(1 + Bk?) [e By (w,t) —e Bgz’(w,t)}
B —ikL p+ ikL p+ ik —ikL p+ ikL p+
T3 (1 + pk2) [—e By, (w,t) +e Bgéf(wat)} M YTETE 155 {e By, (w,t) —e Bgé(w,t)}
Ho —ikL p— ikL p— dpa —ikL p— ikL p—
s i e B, (w,t) — e "By, (w, )] + 2o [—6 By, (w,t)+e B, (w,t)}
10k g CikL e Lo
2. 176 B "B, } 2.11
2o [ By () + M By (w.0)] . ke C\B, (2.11a)
and
a(k,t) —_ 7/”"75 (eiwt o efiwt) ﬁo(k) + 1 (eiwt + efiwt) ao(k)
210 s 2
Hao —ikL p— ikL p— ok —ikL p— ikL p—
Saris [e”* B, (w,t) — e B, (w,t)] + CTNTE [—e B, (w,t) + e B, (w,1)]
_ @ [ -ikLp- ikL - po {_ kL e ihL e }
* 2phafisiip [ By, (w0, 8) B, (w0 0)] + 2pafisiip e By (W) + €T By (w,1)
B —ikL p— ikL p— ik —ikL p— ikL p—
— e B, (w,t) —e"“B_ (w,t)| + 7——— |—e B, (w,t) + "B (w,t)
2pafispip 0 9 24t fis s s 9%
1 — ; 5 » .
e ¢ B @0+ B ] & g [ B ) - B w.0)
ik —ikL p+ ikL p+
i e (w,1) — B (w,t)], keC\B. (2.11D)

Inverting (2.11a) for k¥ € R by means of (2.4) yields the following integral representation for 7:

o1 . X - . . N
27T77(l‘,t> _ / elkl‘ 5 |:(ezwt + e—zwt) ﬁo(kﬁ) _ % (ezwt —e zwt) UO(]C)] dk
B

keR

k(i 1+ ak? Q
+/ek( L)[—2—B;:J(w,t)+2—B;r2(w,t)

(1+ pk2) (1+ Bk2)
keR
_ B __ B ibkpa -
+ 201+ Bk2) Bhg(mt) 21+ Bk2) Bh,o,(w,t) Siofis B%(w,t)] dk

) 1+ ak? «
_ ik(z+L) | _ _ - TSNV 4 " p+
/e [ 21+ gi) D@D+ 3 ey B (1)
keR
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L P g B

s+ k) Py @)~ 5

ik iak ipk
+ / pik(z—L) {2(— B,Jlr1 (w,t) + ————~ B:,B(w,t)

10k g

B;é, (w,t) — B, (w, t)] dk

2pspp 90

1+ Bk?) 2 (1 + Bk?)
keR
Ha B;, (w,t) — Ota By, (w,t)}dk
2pspg 2puspp ™M
_ ik(z+L) iak + ik +
/ € [2<1+5k2> By, (w,t) + 2(1 1 Bk?) B (w,t)
keR
Ho B (w,t) - Ota B_,(w,t)]dk. (2.12a)
2ps5p5 2uspp 9

Similarly, inverting (2.11b) for k € R, we obtain the following integral representation for w:

2mu(z,t) = / etk 1 [—M—B (et — e ™) o (k) + (e + e 1) ﬁo(k)} dk

21 paps
kER
. _ j _ « —
+ / eik(z—L) [B w,t) — ——— B; (w,t
2p5015 (1) 2ptafisfis a2 )
kER
Bé’ B 5 _ 10k T
—73// 7t 7B” 7t 73/ 7t dk
2’ua,u/5uﬁ hy (w )+ QLLQM&MB hY (W )+ 2(1+(5k‘2) ho(w )
B ik(e+L) | _Ha  p- % B
e w,t B w7t
/ Luauﬁ w0 oy )
keR
55 B /B _ 0k +
—73// 7t 7B// 7t 73/ ’t dk
2papsps o2 (w )+2uauéﬂﬁ i )+2(1+5/€2) g (:")
. iak ik
+ /ezk(rL)[_—B_ w,t) — — B, (w,t
Spapistin D T o gy P
keR
_;B“‘(a} t)-ﬁ-LB—i_ (w,t) | dk
21+ ok2) om0 5y P
[ [ g
2ftafisip Zhapistis %
keR
e Brwh 4 B (w0 dk (2.12b)
31+ o) DD gy Bk |

2.2. Elimination of boundary values

The integral representations (2.12) involve eight boundary values, four at each endpoint of [—L, L],
through the transforms B;tj and Bi, 7 =0,1,2,3. However, our analysis allows us to eliminate four of these
boundary values, two from each endpoint.

The key idea lies in the observation that w(—k) = —w(k), since the transformation k — —k flips the sign
of 1o and ps but leaves pg invariant (see local angles in Fig. 2.1). Then, recalling definition (2.10), we deduce
B;{(fw, t) = B}" (w,t) and By (—w,t) = —Bj (w,t). Therefore, applying the transformation k — —k to the
global relations (2.11) generates two additional identities which are also valid in C \ B. These new identities
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together with (2.11) can be combined to yield expressions for the quantities 7(k,t) + e*2**L 7j(—k, t) and
u(k,t) — et?*L 4(—Fk, t), respectively.

In particular, the expression emerging for the quantity 7(k,t) + e~2*L 7(—k,t) can be used in order to
eliminate from the integral representation (2.12a) for 7 the combination of terms that involve the boundary
values g1 and g3 (namely, the last integral in (2.12a)) in favor of a combination that involves the boundary
values go, ho, g2, ho (along with other, non-boundary-value terms). In addition, the expression for the quan-
tity 7(k,t) + e2*L 7j(—k,t) can be used for the elimination from (2.12a) of the combination of terms that
involve the boundary values h; and hs (i.e. the penultimate integral in (2.12a)) in favor of a combination
that involves once again the boundary values g, ho, g2, ho (along with other, non-boundary-value terms).
Similarly, the expression for the quantity @(k,t) —e~2*L Gi(—k,t) can be used in order to eliminate from the
integral representation (2.12b) for u the combination of terms that involve the boundary values ¢g; and g3
(namely, the last integral in (2.12b)) in favor of a combination that involves the boundary values go, ho, g2, b2
(along with other, non-boundary-value terms), while the expression for the quantity u(k,t) — e2**L u(—k, t)
can be used for the elimination from (2.12b) of the combination of terms in (2.12) that involve the bound-
ary values h; and h3 (i.e. the penultimate integral in (2.12b)) in favor of a combination that involves the
boundary values go, ho, g2, ho (along with other, non-boundary-value terms).

Remark 2.1 (Admissible boundary conditions for the Nwogu system). The manipulations described above
can be performed in order to eliminate the terms in (2.12) that involve the boundary values go, ho, g2, ho
in favor of those that involve gi,hi,gs, hs. Simply, instead of combining the global relations (2.7) and
their k +— —k counterparts towards obtaining expressions for the quantities 7(k,t) + e*2*L 7(—k, ¢) and

u(k,t)—eT?kL G(—k, t), we form the combinations 7j(k, t) —e*2*L 7(—k, t) and (k, t)+e*2*L 34 (—Fk, t) which
can then be employed for the elimination of the second and third integrals in each of the integral represen-
tations (2.12) in favor of the boundary values g1, h1, g3, b3 (along with other, non-boundary-value terms).
Therefore, we overall conclude that the two combinations of boundary conditions given in (1.4), namely
either {u(xL,t), upe (£L, 1)} or {n(xL,t),u.(£L,t)}, both lead to a well-formulated initial-boundary value
problem for the linear generalized Nwogu system (1.2) and hence for the nonlinear generalized Nwogu system
(1.3), including the regularized system (1.7) and, importantly, the original Nwogu system. Furthermore, lin-
ear combinations of the aforementioned pairs of boundary values in the form of Robin boundary conditions
could also be prescribed.

If the expressions for the unknown boundary-value quantities obtained via the calculations described
above are introduced directly in the integral representations (2.12), then these representations will degen-
erate to tautologies. For this reason, before performing the above calculations we employ Cauchy’s integral
theorem to deform the contours of integration of the boundary-value terms in (2.12) to the contours £
(for the terms involving g;’s) and £~ (for the terms involving h;’s), which are depicted in Fig. 2.1 and are
defined by

ct _RU —C = Oﬂ'](kn)v _RU U CGL,[‘rr 27r] ) (213)

oz
nez nezZ

where for k, = 57, n € Z, we define

R=J [k + o kst — 67;} L Crfany(n) = { Ik — kn| =1, a < arg(k) < b} .

We emphasize that the deformations from R to £* are allowed thanks to the analyticity of the relevant
integrands in (2.12) and the exponential decay of the terms e*(@+L) and e*(==L) in the upper and lower
half of the complex k-plane, respectively. These deformations allow us to handle the unknown terms 7(+k, t)
and u(+tk,t) that arise after the calculations described above via the following result.
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Proposition 2.1. Let A(k) = et*L — e3%*L qnd suppose f € H'(—L,L). Then, for all z € (—L, L)

ik(z+L) o etk(z+L) kL T
/ gy Rk =0= / am ¢ IR

keLt keL+
ik(x—L) __ ik(z—L) ) R
/  f(k)dk=0= / S ekl f(_k)dk .
A(k) A(k)
kel kelL—

Proof. We only give the proof for the first of the above integrals as the remaining ones can be handled in

an entirely analogous way. Since f(k) is entire and A(k) # 0 away from R, employing Cauchy’s theorem we
can write

6ik(erL) . eik(m+L) R
-z — I
/ A(k) fkydk = lim / A(k) Fk)dk
keLlt k€CRr, o,

where for the circular arc Cr g, = {Re’e Op <0 <m— 90} we take 90 =0if |R — k| > 4L

and 0 < fp < sin™! (GLR) if there exists n € Z such that |R — ky| < 2=

T foralln € Z
substituting for A(k), we have

. Thus, mtegratmg by parts and

eik(z+L) RV eik(z+4L) WL g kL p(f 7 ik (g 1 Uk
/ NG f(k) / emL—_l{[e f(=L) —e ™ f(L)] + / e " (y) y}% :
keCRygo keCR,GO y=—L
Next, we use the elementary lower bound (see e.g. [45] for a proof)
el — 1| > 1—e"F, ke {m(k) > 0}\ | Dz (kn)-
neZ
Since Cr,g, C {Im(k) > 0} \ U,,ez Dz (kn), employing the above bound we infer
ik(z+L) __ H e—R(;c+5L) sin 0 H e—R(;L'-i—SL) sin 0
k)dk| < 2|f(~L 4+ 2 /4,,619
| wa wa| <20l [ S O R
€Chr,oq 0=0o 0=0o

z e—R(z+4L)sin 6 )
+2/ e % /eRy“”lf’(deyde::11+12+13.
—€ 3
0=00

y=—L

Using the well-known inequality sinf > 20/7, 0 < 6 < 7/2, we have

2\f( L) / -2 g 4 T |f(=L)| [G—MQO_B—R@+5L) B
1—e T (1—6 T”)R(:c—i—SL) 7
6=0o
and, similarly,
x
I < 2|f( )| /672R(mﬂ+3L)9d9: 71;‘f(L)| [G,MQO_ ,R(ergL)] R—o0 0.
1—e" %0 . (1—e % )R(z+3L)
=vo
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Furthermore, using in addition Fubini’s theorem, we find

jus
2

2 _ 2R(2+3L)
BS s Py [ 5000
L=ems 6=6
=60

R—o0

|l f . ,
_ Hfzybl(—L,L) [ —2REEEE) g, efR(mHL)} 0.
(1—e %)R(z+3L)

Hence, overall we conclude that

) eik(a:+L) . ) eik(erL) .
Jim [ S k= [ S fadk =0, e (<L)
kE€CR, g,

keLt

as desired, completing the proof of Proposition 2.1. 0O

2.8. Solution formulas via the unified transform

Altogether, performing the calculations described at the beginning of Subsection 2.2 and then using

Proposition 2.1, we obtain

1 ikx 1 iw —iwt) Halls 1 g0 —iwt\ ~
;) = o / €3 [(6 e ) o (k) — s (e —em) Uo(k)} dk
keR
_|_ i / ﬂ (eiwt + e—iwt) [e—3ikL ﬁo(k) + e—ikL ﬁo(—k):l
o7 2 (1 — e %ikL)
keL-
_ Hapts (eiwt _ e—iwt) [6—3ikL to (k) — e L ao(—k;)] }dk
Hp
1 et l) dwt | —iwt\ [ 3ikL ikL =
*5;‘/ ga_%mmq{(e e ) [e¥FE To (k) + e o (—k)]
keL+
_ Halts (et — efiwt) [ei’n‘kL To(k) — 'L To(—F)] }dk:
%]
1 etk(@=L) 1+ ak? I a 4
+% / 1 _ e 4ikL {_ 11 Bk2 Bhg(wat)+ ﬁkgB (w,1)
keL-
B6 + B + idkﬂa _
e Byl (w,t) - e Byl (w,t) ot By, (w,t)|dk
1 eth@+l) 11 4 k2 «
o - Bt _ BT
*on / 1 _ o%ikL L_,_ﬁkz g0 (@5 1) 1+ Bk2 g2 (@, 1)
keLlt
B // B 1" B ’
1+ﬂk2 (w; )+1+ﬂk2 go(w7t)+ Lo/ go(w,t) dk
1 eth(z+L) 1+ ak? 10ku
o Ty By, - ® B (w,t
+ om / 1 — edikL |: 1+ Bk2 g0 (W 1) Lisis Qo(w’ )
keL-
4]
b +,,(w t) + B, (w, )+'6—B;Z,(w,t)} dk

1+ k2 1+6H 1+ Bk?
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1 e*@=L) 114 ak? 0k
+ / 1 [ Bl (w,t) + Bhé(w,t)

o B iy patts
keL+
p + o + Bs 4
- 1+ pk? Bhg (1) - 1+ Bk2 By, (w,t) = WBM"/ (w,t)| dk (2.14a)

which is an explicit solution formula for the n-component of the linear generalized Nwogu system (2.1) in
the case of an initial-boundary value problem with boundary conditions u(—L,t) = go(t), u(L,t) = ho(t),
Uge (—L,t) = ga(t) and wg, (L, t) = ha(t).

For the same boundary conditions, we similarly obtain the following explicit solution formula for the
u-component of the linear generalized Nwogu system (2.1):

1 1 . _ _ .
U(]J,t) _ % / eike 5 [_ﬁ (ezwt _ efzwt) 7/7\O(k') + (ezwt + efzwt) ao(k):| dk
keR
1 ehle=b) HB  ( iwt  —iwt) [,—3ikL =
+ o / 9 (1 — e HikL) { " lalts (e —e™") [e o ()
kel—

4 e ikL ﬁo(*k)} + (6iwt + 67iwt) [673ikL To (k) — e kL ﬂo(fk‘)] }dk

1 etkl@tl) KB iwt iwt 3ikL
- i o wt _—iw kL 2 (L
+ o / 2 (1 — eihL) { L ls (6 € ) [e no(k)
keLt

+ 6ikL ﬁo(*kﬂ + (eiwt + efiwt) [63ikL ao(k) o 6iIcL ﬂo(*k)] }dk

1 eik(z—L) T 0k
+ — / T [ B (w,t) + B,J{{J(w,t)

27 —e Mkl | usug 1+ k2
keL—
1)
b By, (w,t) — ——— By (w,t) — _ g By, (w,t)} dk
Halistg 0 Halisits  * Hallsig 2
1 eik(r-‘rL) I iS5k
— - — * B~ t)— ——— B, t
Jr_271' // 1 — e#kL { 2puspp a0 (e:1) 1+ 0k? %(w’)
keLlL+
)
__# B (w,t) + a B, (w,t) + b B,,(w,t)]dk:
Hatsps % Halshp Pakshs %
1 ek@+L) oy 10k
To- / 1 — AikL L«Wﬁ g (W: 1) + 1+ ok2 pACD)
keL—
5 By - —2 B;, (w, ) — ps B_,,(w,t)] dk
Hafisps %0 Mo ks s Haftspp
1 eik(z—L) 1 10k
— - - 12 B t) — ——— B, t
+ or / 1 — e—4ikL I: Wslis ho(wz ) 1+6k2 ho(w7 )
keLlt
__f B, (w,t) + By (w,t) + ps B,:,/(w,t)} dk . (2.14b)
Hafspp 0 Halts s Haftspig 2

Remark 2.2 (Solution to the linear Nwogu system on a finite interval). If 8 = 0 then pg =1, w = kpa /s
and formulas (2.14) provide the solution to the following initial-boundary value problem for the linearization
of the original Nwogu system posed on a finite interval:
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nt+u$_auzxz :07
(xat) € (_L7L) X (OvT) )
ut+77z_6uwwt:07
(2.15)
n(@,0) =no(x), u(x,0) =uo(x) ,

u(*Lvt) = gO(t)ﬂ U(L,t) = hg(t) ’ urr(fLat) = gQ(t)v qu(Lﬂt) - hQ(t) :

Moreover, as described in Remark 2.1, following our methodology it is possible to obtain the explicit solution
to problem (2.15) when the boundary conditions are replaced by the second set in (1.4).

3. Well-posedness of the nonlinear problem

In this section, we prove that the initial-boundary value problem (1.7) for the regularized Nwogu system
on a finite interval is well-posed in appropriate function spaces. This problem corresponds to the case of
homogeneous, reflective boundary conditions.

Taking ¢ = 1 without loss of generality, the weak formulation of the regularized system in (1.7) is

e+ (I — b@i)*lﬁx (w+nu+aug,) =0,

b , (3.1)
up+ (I —do2) "0, (n+ 3u*) =0,

where 97 denotes the j-th generalized derivative with respect to  for j > 1 where we omit the index in case
j = 1. In the first equation of (3.1), the operator (I—b3?)~! is the inverse of (I—bd?) with domain H'(—L, L),
while the operator (I — dd?)~! is the inverse of the operator (I — dd?) with domain X = H?> N H} (L, L)
where H}Y(—L,L) := {v € H'(—L,L) : v(L) = v(—L) = 0}. The operator Ly := (I —bd?)~19, is realized
as the convolution

(Ina) = [ Fetae)1(6) ds 3:2)

where F' is the Green’s function for the two-point boundary value problem

w— bWy = —fz, x€(-L,L),
wy(—L) =w, (L) =0,

and is defined for z,£ € [—-L, L] as (e.g., see [46])

€)= — {wl<€> wa(), —L <& < w,

SO | wilm) wa(§), w<E<L,

where w (2) = cosh (L\EE), wy () = cosh (LJEZ), and W = wiwh — wiwy = —ﬁ sinh (2—\/%>

Remark 3.1. Note that if f € C* with f(—L) = f(L) = 0, then the classical solution of problem (3.3) can
be written in the form (3.2) with the help of Green’s functions after integration by parts.

Similarly, the operator Lp := (I — dd2)~19, is realized as the convolution

L

(o) = [ GelwOF(E) de (3.4)

—L
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where G is the Green’s function for the two-point boundary value problem

w—dwg, = —f», x€[-L,1],
w(—=L) =w(L) =0,

and is defined for z,£ € [-L, L] as

Gz, &) == ! {wl(ﬁ) wa(z), —L <& <w,

7W wl(m) (.dz(é-), $<£§L7

where wy (x) := sinh (Ljax), wa(x) = sinh (L\;E’”), and W = wiw) —wiws = —ﬁ sinh (\2/—%) (The subscripts
N and D in the notation of Ly and Lp denote Neumann and Dirichlet boundary conditions, respectively.)

The following continuity properties of the operators Ly and Lp have been established in [3].

Lemma 3.1. Let Ly and Lp be the operators defined by (3.2) and (3.4).

(i) Ifv € L?, then Lyv € H* and ||Lyv|y < M||v||, where M > 0 depends on b.

(ii) Ifve C™, m >0, then Lyv € C™ ! and || Lyv|cm+r < M||v||gm, where M > 0 depends on m,b.
(iii) Ifv € L?, then Lpv € H} and ||Lpv|ly < M|v||, where M > 0 depends on d.
)
)

(iv) Ifv € HY, then Lpv € H? and ||Lpvl||a < M|jv||1, where M > 0 depends on d.
(v) IfveC™, m >0, then Lpv € C™*! and | Lpv|cm+r < M||v||cm, where M > 0 depends on m, d.

Starting from (3.2) and integrating by parts while using the boundary conditions u(+L,t) = 0 and the
fact that wy,ws satisfy the homogeneous counterpart of problem (3.3), we find that Lyug, = %uz + %LNu.
In turn, we can rewrite system (3.1) in terms of the operators Ly, Lp as

N = LN(GTH)U, + nu) + %’U,I 5 Uy = LD(n + %UQ) 5 (36)

which after integration in time leads to the system of integral equations

n(z,t) = no(z) + [LN(‘ITeru + nu) + %uz} dr ,

u(z,t) =up(z)+ [ Lp(n+ %u2) dr .

c\ﬂ_ O\ﬁ

Remark 3.2. It is implied immediately that any classical solution of the initial-boundary value problem (1.7)
is a weak solution of system (3.1).

First, we establish the uniqueness of solutions of system (3.7) in the spaces H}: := C(0,T; H') and
HZ := C(0,T; H* N Hj). These are Banach spaces and for v € H$ their norm is defined as ||lul|g; =

supg<i< [[u(-;t)|s-

Proposition 3.1 (Uniqueness). Let 0 < T' < oo and (no,up) € H* x (H? N H}). Then, system (3.7) has at
most one solution (n,u) € H: x HZ.

Proof. Suppose that system (3.7) has two solutions (91, u1) and (12, uz) in H: x HZ. Then, the differences
n=m —n2 and u = uy — uy satisty
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t t
:/[L a+bu+nu1+n2u)+ um]dT, /L 77+ UU1+U2>)d
0 0

with n(z,0) = u(z,0) = 0. Thus, using the (algebra property of H?®) inequality ||fglls < ||f|lsllglls for any
f,g € H® with s > 1/2 together with Lemma 3.1, we have

Il + llullz < / [n(T)ll + [[u(T)l2 d7 .
0

Then, Gronwall’s inequality implies ||n]|1 + |Jull2 < ||7(0)||1 + ||w(0)]]2 = 0 and so the solution, if it exists, is
unique. 0O

Next, we establish the existence of solutions to (3.7).

Proposition 3.2 (Ezistence). Suppose that (no,uo) € H' x (H?> N H}). Then, there exists time T > 0 such
that system (3.7) has a unique solution (n,u) € H: x H2.

Proof. Let E denote the Banach space Hy x Hz with norm |[(v,w)||z = ||[v||gs + |lw] gz . Moreover, for
R :=2||(no, uo)|| &, let Br = {(v,w) € E: |[(v,w)||g < R} be the ball of radius R > 0 centered at the origin
of F. Then, the mapping I' : E — E given by

t t
v, w) = n0+/[LN(a+bw+vw)+ wx] dr, u0+/LD v+ w 3 dr
0 0

is well-defined, as one may deduce from the regularity of the operators Ly, Lp and of that of the initial
conditions 79, ug and of v, w. If (n1,u1), (92, us) € Br, then

T

IT(n1, u1) — L2, u2)| g < / (L {%F2 (ur — u2) + mu(ur — uz) + uz(m — n2) } + $(ur — u2)s) dr
0 1
t

/LD (m = n2 + 3(ur —u2)(u1 + ug)) dr
0 2

<CT [(1 +Imlla)llur = vall gz + lluzllmgy lm — n2llms 4 llur — u2llgz+
i = m2llay. + lur = ol g s + sy |

S CT 2+4R) [[(n,w) — (2, u2)E -

Hence, choosing T' = 1/[2C(2 + 4R)] implies
1

10 (1, ur) = Tz, u2) | < 511001, u1) = (n2, u2) - (3.8)

Moreover, if (n,u) € Bg then by the triangle inequality, the inequality (3.8) and the definition of R,
1
1T, w)lle < 1T, w) = 1(0,0)][£ + IT(0,0)ll < 5B+ [|(no, wo)ll & = R, (3.9)

which shows that I' maps Bg into Bgr. Together, the inequalities (3.8) and (3.9) imply that I' : B — Bgr
is a contraction and so by the contraction mapping theorem I' has a unique fixed point in Bg. O
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Remark 3.3 (Continuous dependence on the data). As usual in the proof of well-posedness via a contraction
mapping argument, the continuous dependence of the data-to-solution map (which is the third component
of Hadamard well-posedness) readily follows from the contraction inequality (3.8).

We now establish the existence of solutions of (3.7) in spaces of smooth functions. Specifically, for m >
1 we consider the spaces Cf'™' 1= {w € C™ 1 w(£L) =0 and wy,(£L) =0} and Cp = {vecCm:
vy (L) = 0}.

Then, we have the following result.

Proposition 3.3 (Smooth solution). Given m > 1 and initial conditions (1o, uo) € C§* x CJ'L, there emists
time T, > 0 such that the system (3.7) has a unique solution (1,u) € C(0, T,; Ci*) x C(0, T; O ).

Proof. If (no, up) € CO X CmJr1 with m > 1, then using the same arguments as in the proof of Proposition 3.1
we can show uniqueness of solution to (3.7) in the space C(0,T;Cy*) x C(0,T;Ca ).

Consider the Banach space E,,, := C(0,T),; C’O ) X C(0, Th; Cm“) Following similar arguments as in
Proposition 3.2, define the mapping Iy, for (v, w) € E,, as

t t
Tp(v,w) = 170—1—/[[, a+bw—|—vw)+ wm]dT u0+/LD (v+ w 3 dr
0 0

Define also
d(x,t) = no(x +/ Ly “+bw+vw)+ wz]d
0

Observe that ¢, (£L,t) = 0 because 1y € 56”, w € CZ)”H and Ly f satisfies the boundary value prob-
lem (3.3). Similarly, define

t

Y(x,t) = ug +/LD(U+ %wQ) dr ,

0

and note that v (£L,t) = 0 because ug € CF"** and Lpf satisfies the boundary value problem (3.5).
Furthermore, in our case where f = v + sw? and vy(+L,t) = w(+L,t) = 0, we have that f,(£L,t) =
vy (£L,t) + w(£L, t)wy (£ L, t) = 0 and so

(LDf)I:E(iL t) % [(LDf)(j:Lvt) + fz(j:Lvt)] =0.

Hence, the second set of boundary conditions 9, (+L,t) = 0 also hold true. Thus, by Lemma 3.1 we deduce
that the mapping ', : E,, — E,, is well-defined. The rest of the proof follows as in Proposition 3.2. O

Finally, we show that the smooth solution of system (3.7) guaranteed by Proposition 3.3 is the classical
solution of system (1.7).

Proposition 3.4. For (ng,ug) € 53 x C3, let (n,u) € HY: x H2 be the solution of system (3.7) as guaranteed
by Proposition 3.5. Then, (n,u) € C(0,T;C2) x C(0,T;Cg) satisfies system (1.7) pointwise in [0,T] and
(77t, ut) € 0(07 Tv Cg) X C(Oa Ta C(?)))
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Proof. By Proposition 3.3, there exists time 75 > 0 that depends only on the initial condition and the
parameters a, b, d (actually only on a and d as one may obtain upper bounds of the solutions independent
of b) such that a unique solution of system (3.7) exists in Fs. From system (3.7) we observe that n and
u are differentiable with respect to time ¢ and that 1, and u; are given by (3.6). In addition, from (3.7)
we see that [|n]lc2 + ||ullcs is always bounded and thus the solution (n,u) of Proposition 3.3 belongs to
C(0,T;C2) x C(0,T; C3). Moreover, system (3.6) and Lemma 3.1 imply (1, u¢) € C(0,T; C2) x C(0,T; C3).
Observing now that, in view of (3.1),

Nt — par = Ln(u + nu + atzy) — DLy (44 nu + algs) e = — (U 4+ nu + atigy),

and, similarly, u; — buz.y = —(n + %ug)z, we conclude that a weak solution of (3.1) is also the classical
solution of (1.7) for appropriate initial conditions. 0O

We conclude this section with an estimate for the maximum time of existence for the regularized Nwogu
system with wall-boundary conditions (1.7) where here we take into account the influence of the parameter
e. Like any other representative of the abcd-systems (1.1), in the case of wall-boundary conditions the
regularized Nwogu system satisfies the mass conservation law

L
%M(t v) =0, M(tv):= /v(az,t) dz |
-L

for both v = 7 and v = u. The solution of the initial-boundary value problem (1.7) in the special case where
b= d > 0 preserves additionally the energy functional

E(t) =

DN | =

L
/ [” + (1 +en)u® — eaul] d | (3.10)
-L

in the sense that E(t) = E(0) for ¢t > 0. This can be seen by writing system (1.7) in the form
ne+ P =0, u+Q;=0,

where P = u + enu + eaug, — ebngy and Q = n + 5%u2 — edugy. Then, note that P(—L) = P(L) = 0 for all
t > 0. Thus, multiplying the first equation by @ and the second one by P, and then adding the resulting
equations, we obtain via integration by parts the desired functional (3.10).

Systems that satisfy the previous energy conservation function (3.10) have v = 2630°-2) and w =0, with

57— 1
the parameters a, b, d given by (1.1) as

a=0"-2 b=d=3(1-0%*, ¢*<3Z (3.11)

The energy functional (3.10) is of order three, and thus does not give directly any useful energy estimates.
On the other hand, if we multiply the first equation of (1.7) by 1 and the second one by u + atu,, and then
integrate and add the resulting equations, we obtain

a
dt

N | =

[n? +ebn? +u? +e(d — a)u? — 2adu? ) dx =

| =

h\h

L
/[7252auumum — eugn?] du . (3.12)
-L

Following [3], we have
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L
3
2

£ /n2uz dz| < Ce|nlllinellluell < C (Inl* + ellnell* + ellus|*) *
L

3
2

L
g2 /uuxum dz| < C'52||um||2||um|\ <C (5||u_,,3||2 +6Hum||2) .
L
Then, letting

L
L= 1) = [ et + o+ e = i Padi] do
~L

d
equality (3.12) leads to EIE <cr / 2, which is a differential inequality of Bernoulli type with solution

Ig(t) < IE(O) < II(O)

T (1-Cty/T(0) T (1-CtyT,(0))?

for sufficiently small ¢t and ¢ € [0, 1]. This provides an a priori H' x H? bound, independent of & (and d),
for the solution. From this, we conclude that the maximal existence time 7" will be independent of €. It is
worth mentioning that there is no global well-posedness result known for Nwogu-type systems, even for the
Cauchy problem [7].

Remark 3.4. One may extend in a straightforward manner the Proposition 3.4 for (19, ug) € ~6” x Ogtt)
m > 2 and conclude that system (1.7) with a < 0 and b,d > 0 has a unique solution local in time with
(OFn, OFu) € CF* x Ot for all k >0, m > 2.

4. A modified Galerkin method for the numerical discretization of the regularized Nwogu system

In this section, we consider a modified Galerkin method for the initial-boundary value problem (1.7). For
simplicity, we take again e = 1. Let —L =29 < 21 < ... < xy = L be a uniform grid of the domain [—L, L]
with grid size h = Az = x;41 — 2; = 2L/N. For integers r > 2 and 0 < p < r — 2 we define the finite
element spaces

Sh = Su(,r) = {6 € CH[-L, L] : 6|, €Prr} . Sh={0€Sh:g(xL) =0},

Iigzi+1]

where P, denotes the space of polynomials of degree at most q. The space S, is a subspace of H¥*1 while
the space S is subspace of H*T! N H}. For example, the space of cubic splines will be the space Sj,(2,4),
and the space of Lagrange polynomials of order ¢ = r — 1 with r > 2 will be the space Sy, (0,r). In general,
it is well known (see for example [12,37]) that S, and S} have the following approximation properties.

Lemma 4.1. Letr > 2, 0 < u <r—2, and m, k be integers such that 0 <m < pu+1 and m < k <r. Then,
there exists a constant C, independent of h, such that

min [|(w — x)"™|| < CRF M lwP|| - for we H*,
XESh

min |[(w — x) "™ |lee < CRF ™ |w®)| o for weCF.
XESh

Both results are valid also in the case of SY when w € H* N H} and w € C§, respectively.
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In what follows, we describe the modified Galerkin semidiscretization of system (1.7) inspired by [42].
Similar procedures have been used for the discretization of other Boussinesq-type equations including the
Serre and Bona-Smith systems [32,16].

4.1. Semidiscretization

First, consider the bilinear forms A, : H! x H' — R such that for all u,v € H*, A,(u,v) = (u,v) +
q(ug,v,) for ¢ = b > 0 and ¢ = d > 0. These particular bilinear forms are symmetric, which will result in
symmetric matrices in the full-discretization. They are also bounded and coercive.

Assume that the maximal time of existence of solutions to problem (1.7) guaranteed by Proposition 3.3
is T > 0. We define the discrete Laplacian to be the operator 87 : H} — S such that

The modified Galerkin method is defined as follows. We seek approximations 7 : [0, 7] — Sy and @ : [0,T] —
59 of n and u, respectively, such that

Ay (i, x) + ([@ + 7+ adpti]e, x) =0 Vx € Sp

0<t<T, (4.1)
Ad(ﬂt7¢) + (ﬁz +ﬁara¢) = 0 V¢ € S}? )

with initial conditions 7(z,0) = Rpno(z), @(z,0) = RYug(z), where R) : H} — S and Ry, : H' — S}, are
the elliptic projections such that for any v € Hj and w € H' they satisfy A4(R)v,¢) = Aq(v,¢) for all
¢ € S and Ay(Rpw,x) = Ap(w, x) for all x € Sp, respectively. It is known that the elliptic projections RS
and Ry, have favorable stability and convergence properties in addition to its optimal accuracy (see [4] and
references therein).

The results we will use are summarized in the following lemma.

Lemma 4.2. If 4 > 0 and k =0 or 1, then

(i) the projection R is stable in L? and H'. In particular, there exists a constant C independent of h such
that ||RYv||x, < Cllv||x Vv € Hf, and
(ii) it satisfies the optimal error estimate |[R9v — v|, < Ch™*||v|, for allv € H" N H.

Similar results hold true for the elliptic projection Ry,.

The standard L?-projection Py, : L? — S}, is defined as (P,w,x) = (w,x) for all x € S, and w € L2
Similarly, the L?-projection PP : L? — SY is defined as (Plu,¢) = (u, ¢) for all ¢ € S? and u € L2 1t is
known that the L2-projection satisfies the error estimate ||P,v — v < Ch"||v||s00 for all v € H". This
result is also true for the P,g projection.

Define the mappings f5 : L> — Sj, and gy : L? — S such that

Ab(fh[wLX) = (w7XI) VX € S , and Ad(gh[w]vqb) = (w7¢w> qu € SiOL

and also let

~—

w, z w, z
folls = sup 22l yi= sup (2P

cemt N2l cemrnmy [12ll2
270 z#0

Then, we have the following result.
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Lemma 4.3. Both functionals fr and gy satisfy the following stability properties:

@) [Ifn[wlll < llwll and [lgn[w]lly < llwl for allw € L2,
(i) [1fa[)l < 1]l-1 for all ¢ € Sp.

Proof. The proof of (i) follows immediately from the definition of f; and g; and the properties of the
bilinear forms Ay and Ay.

To prove (ii), consider the operator A = I — b92 with domain X = {w € H? : w,(+L) =0} C H?, and
the problem Aw = v, with w,(+L) =0 and ¢ € S. Then,

Yy, 2 Aw, z Aw, A w wl|? wl|?
foall-a = sup ) = sup L) Lt s Gl e )
cer? 2l ez 22 A= wllz [[A7 w2 [[w]
z#0 z#0
Moreover, for any z € H?, z # 0 (and because ¢ € SP) we have
(wzvz) _ _(wvzw) < ||¢||—1||233H1 < H'L/)”—l )
[12]l2 1212 2|2
Hence, [[t)z||—2 = sup cp2 % < ||#||-1 , and by (4.2) we have ||w] < [|i]|-1. Also, for x € S, we
270
have Ay(Ryw,x) = Ap(w, X) = (Y2, X) = —(¥, Xa) = —Ap(fu[¥], x) and thus Ryw = — f[¢]. This implies
[falll = I1Rhw] S lwll < 1] -1, completing the proof. O

The following identity for the discrete Laplacian operator will turn out to be very useful.
Lemma 4.4. For all w € H} and d > 0, we have 9} Ryw — PPlwg,) = S(Ryw — Plw).
Proof. For any ¢ € S}, we have

(R Bfw. 0) = ~(Rhw)e,62) — j(Rw.6) + j(Rw. 0) = —§[Aa(Rjw, 6) — (Rjw.0)]
= —lAa(w,®) = (Rpw, 6)] = —4[(w, §) + d(wz, 62) — (Rpw, 6)]

which implies the desired formula. O
Given the inverse inequality [40]
Ixlly < Coh™IxIl ¥ x € S, (4.3)

where Cj is independent of h, we have the following inverse estimate of the discrete Laplacian 7 operator
(see also [40]).

Lemma 4.5. For any w € H} and h > 0, we have ||0?w]||y < h™2|wl|1. In addition, for any ¢ € Sy we have
107¢]| < h=2||p||. Finally, for any w € H? we have ||0fw]| < ||w]|2.

Proof. By the definition of 02w, we have |0?w|]? = (03w, iw) = —(wy, (O3w);) < ||we|/||02w])1 . Thus,
02w]|2 < C2h=2||0%w]|? < C2h~2||w]|1]|0?w||1, which implies ||07w]|; < Coh~2||w||;. The second inequality

can be proved similarly [40]. O
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Furthermore, we have the following lemma.
Lemma 4.6. For any u € H} and h > 0, ||07u| -1 < ||uz]|.
Proof. Let 0 # w € H'. Then, we have

(O, w) _ (Opu, Bjw) _ (s, (Fw)s) _ |l [BYwll Clluall
[[wl|y [[wl]ly [[wlly [[wl|1

where P}? denotes the L2-projection into Sg. In the last inequality, we used the stability of the L?-projection
in H!, see [11]. Taking the supremum over all w € H', w # 0, leads to the desired inequality. O

Also, we can show the following.
Lemma 4.7. For all ¢ € S) we have ||02gn(¥)|| < ||¢z |-
Proof. Let x € SP and consider the problem

w — |a|wye = =y, xz€(-L,L),
w(=L)=w(L)=0.

From the theory of elliptic equations, we have ||w||2 < ||, ]||. Moreover,

A|a|(R2w7X) = Alal(w7X) = _(¢17X) = ('(/)7Xz) = Alal(gh('(/))’X) )

which implies R)w = gp(¢)). Note that

1079n (0)II* = 0 Rywl|* = (85 Rjw, 0y Ryw) = —((Rjw)a, (O Ryw)s)
= a1 [(Bhw, Oh Ryw) + la| (Rpw)o, (95 Rjw)s) — (Rjw, O Rjw)]

al

= — 2 [Ay (Rjw, Op Rjw) — (Rjw, Op Rjw)| = — 21 [Ajy)(w, 9} Rjw) — (Ryw, 8; Rjw)]

" al " al

= — & [(w, 0} Ryw) = |a|(waq, Of R w) — (RYw, 9 Ry w)]

|al

< (lwll + lwee || + | BRwID 07 Rhwll < 107 Rywl| -
Therefore, ||07 g5 (1) < [|12]l and the proof is complete. O
Note that system (4.1) can be written in the form

iy = ful@+ i+ adid) , @ = gu[+ 307 (4.4)

N

or, in a more compact form, H; = F(H), where H = (7, @)" and F(H) = (fy[@+ 7@+ ad}d], g7 + 3327
Using Lemma 4.5 and the inverse inequality (4.3), it is easy to check that for fixed h > 0 the function
F: S, x S) — Sy x SY is Lipschitz continuous in the norm +/||x||2 + ||¢]|? for (x, ¢) € Sk x SP. Thus, there
is a maximal time ¢, > 0 such that the system (4.4) with initial conditions (7j(0), @(0)) = (Rumno, RYuo) has
a unique solution (7, @) € Sy, x SY for all ¢ € [0,3].

Similarly, for the solution of problem (1.7) we have that for any x € S,

(M, X) + 0(Mats Xa) = (U + MU+ QUge, Xz) = Ap(falu + 10 + augs], X)
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which implies Ap(n¢, X) = Ap(fru + nu + aug,], x). Along the same lines, for all ¢ € S we have
Aq(ug, 8) = (n+ 3u>, ¢5) = Aa(gnln + 3u®], 9) .
Therefore, we obtain
Rpme = falu+nu+aug,] . Rjuy = guln + Lu] .

We are now ready to prove the main result of this section.

Proposition 4.1. Forr > 2,0 < p <r—2andt € [0,T], there is a constant C independent of h such that the
solution (7, @) € Sp (1, 7)xSY(u,7) of the semidiscrete problem (4.1) converges to the exact solution of system
(1.7) as h — 0, and satisfies the a priori error estimates ||7—n|| + ||t —u| < Ch" and ||7—n|l1 +||@ —ul; <

Chr=1.

Proof. Consider the quantities § = — Rpn, p = Rpn—n, ( = @ — ROu, £ = ROu —u, e, =i —n =0 + p,

ey = U —u = (+ ¢ Combining systems (4.4) and (4.5), we have

0 = ful(@ — u) + (iji — nu) + a(OF0 — uga)]
G =gnlii —n+ 5@ —u?)] .

Noting that

it —nu="7(C+&) +ul@+p)=—[nC+E) +ul@+p)+O@+p)(C+E)],
@ - = A+ +ul+&=(C+&*+2u(+¢),

we rewrite system (4.6) as

O = ful¢+ €= ¢+ &) +u®+p)+ (0+ p)(C+ 8] + a(0hl — uga)]
G=gnl0+p+alC+&)+ull+8)].

Then, employing Lemmata 4.2, 4.7 we find

16 < [1Fnl¢ + €N+ [Lfn[n(C + I + | fnlw(® + oI + [1£[(6 + p)(C + O + [ fla(Dha — uss)]
SN+l + (¢ + Ol + [ul@ + p)| + 116 + p) (¢ + Ol + | fula(dha — Of Ryu + 0 Rju —
SIS+l + (¢ + Ol + [ul@ + p) | + 116 + p)(¢ + Ol + 105 — Ryu)ll-1 + 105 Riu — uas|l

SIS+ €N+ 16l + Nloll + lla — Ryully + 1107 Ryu — tae |
S+ 1EN+ 161+ Nl + ¢l + [Paltas] = taall + | RRu — Poul|
ST+l +lIChh -

Working similarly for ¢; but using the H'-norm, we obtain

1Gellx < Nlgnl + plllx + llgnla(C + NI + [lgnu(¢ + I
SO+ lloll + NSl + 1€l < A" + 6l + [ICI -

The two inequalities for ||6;|| and ||(¢||; combine to imply

(4.6)

Uz ) ||
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| =

(017 + 1ISHT) < 68l + N¢lalicell < 22 + 11611 + IS

| =
Sy

t

from which we obtain via Gronwall’s inequality that ||0]| + ||C]|1 S A" for 0 < t < ¢, and, subsequently,
7 =nll + & —ull < A"
Furthermore, for ¢ < t;, we have
17— nllze < |7 + Runllze + ||Ran — 0l < B2 ||5 — Run|| + B" < h7=Y2,

where we used the inverse inequality |||z~ < Ch~'/2|j@| for all w € Sj,. Thus, for sufficiently small h,
il < Inllze + 117 —nllz~ < Ch™™2 + M < 2M. Similar estimates hold true for the variable i, and so
the maximal time of existence can be extended to t;, = T through contradiction. O

4.2. Experimental validation

We shall now verify the results of Proposition 4.1 by numerical means. Specifically, we consider the
method of manufactured solutions for the initial-boundary value problem (1.7) in the interval (0, 1) with
a=—1,b=d =1, and exact solution

n(x,t) = e* cos(rx), wu(x,t) =e'2*(x —1)%sin(nz) .
We tested Lagrange spaces Sp(u,7) with ¢ = 0 and r > 2,3 and 4, and also cubic splines with p = 2 and
r = 4. For computation of the relative errors we used the standard L? and H! norms, where the integrals
were approximated using Gauss-Legendre quadrature with 5 nodes. In that respect, for a stepsize h = Ax
we define the normalized numerical errors for the L? and H! norms as
i —ullg

17—l I
q

, q=0,1.
mllq

For two different stepsizes h; and ho, we define the experimental convergence rate as the ratio

= _ log(Eq(vih))/log(Ey(v; ha))
’ log(h1)/log(ha) '

The experimental convergence rate 7y is expected to converge to the corresponding value of r. For the
integration in time, we used the four-stage classical Runge-Kutta method of order four with very small
stepsize At in order to ensure that the corresponding errors are negligible compared to the errors due to
the spatial discretization. All the computer codes were written in Fortran with double precision arithmetic.
In Tables 1-4, h = Az is the stepsize and N = 1/h is the number of elements used in each experiment.

Table 1

L? and H'! errors and the corresponding experimental convergence rates for Lagrange linear elements Sn(0,2).
N Eo(n; h) 7o Eo(u; h) 7o E1(n; h) 71 Ej (u; h) 71
10 7.4985 x 1073 - 5.7527 x 1072 - 8.6349 x 1072 - 1.9031 x 107! -
20 1.8713 x 1073 2.0025 1.4451 x 1072 1.9930 4.3198 x 1072 0.9992 9.4663 x 1072 1.0075
40 4.6769 x 10~4 2.0005 3.6176 x 1072 1.9981 2.1602 x 1072 0.9997 4.7283 x 1072 1.0015
80 1.1691 x 10~* 2.0001 9.0471 x 10™% 1.9995 1.0802 x 102 0.9999 2.3635 x 1072 1.0003
160 2.9228 x 107° 2.0000 2.2619 x 107% 1.9999 5.4010 x 1073 1.0000 1.1817 x 1072 1.0001
320 7.3071 x 1076 2.0000 5.6550 x 1075 2.0000 2.7005 x 10732 1.0000 5.9085 x 1073 1.0000

640 1.8267 x 106 2.0000 1.4137 x 10~° 2.0000 1.3502 x 1072 1.0000 2.9542 x 1073 1.0000
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Table 2

L? and H'! errors and the corresponding experimental convergence rates for Lagrange quadratic elements Sh(0,3).
N Eo(n; h) 7o Eo(u; h) 7o Ei(n; h) 71 E:(u; h) 71
10 1.7877 x 10™* - 1.3838 x 1073 — 3.5035 x 1073 — 2.1586 x 1072 —
20 2.2304 x 107° 3.0027 1.7764 x 107% 2.9616 8.7624 x 107% 1.9994 5.5378 x 1073 1.9627
40 2.7865 x 1076 3.0008 2.2347 x 1075 2.9908 2.1906 x 10~4 2.0000 1.3930 x 1073 1.9911
80 3.4826 x 1077 3.0002 2.7978 x 1076 2.9977 5.4764 x 107° 2.0000 3.4879 x 107% 1.9978
160 4.3531 x 1078 3.0001 3.4987 x 1077 2.9994 1.3691 x 10~° 2.0000 8.7232 x 107° 1.9994
320 5.4413 x 1077 3.0000 4.3738 x 1078 2.9999 3.4227 x 10~ 2.0000 2.1810 x 10~° 1.9999

640 6.8018 x 1071 3.0000 5.4675 x 1079 2.9999 8.5569 x 1077 2.0000 5.4526 x 1076 2.0000

Table 3

L? and H?! errors and the corresponding experimental convergence rates Lagrange cubic elements Sr(0,4).
N Eo(n; h) o Eo(u; h) 70 Ei(n; h) 71 Ej (u; h) 71
10 3.0305 x 1076 - 8.8820 x 107° - 9.3259 x 107° - 2.0256 x 1073 -
20 1.8939 x 1077 4.0001 5.5572 x 1076 3.9985 1.1655 x 10~° 3.0002 2.5351 x 107% 2.9982
40 1.1838 x 108 3.9999 3.4742 x 107 3.9996 1.4570 x 106 2.9999 3.1699 x 10~° 2.9995
80 7.3993 x 10710 3.9999 2.1715 x 1078 3.9999 1.8214 x 1077 3.0000 3.9628 x 107° 2.9999

160 4.6402 x 1071t 3.9951 1.3575 x 107° 3.9996 2.2767 x 1078 3.0000 4.9536 x 1077 3.0000

Table 4

L? and H! errors and the corresponding experimental convergence rates for cubic spline elements Sp, (2, 4).
N Eo(n; h) 7o Eo(u; h) 7o Ei(n; h) 71 Ei(u;h) 71
10 3.2731 x 107% - 6.7353 x 107° - 2.0410 x 1072 - 4.0162 x 1073 -
20 2.0717 x 1075 3.9818 4.0005 x 10~ 4.0735 2.6131 x 1073 2.9654 4.9751 x 10~% 3.0130
40 1.3119 x 10~¢ 3.9810 2.4904 x 1077 4.0057 3.3180 x 107* 2.9774 6.2746 x 107° 2.9872
80 8.2686 x 1078 3.9880 1.5640 x 1078 3.9930 4.1841 x 107° 2.9873 7.9071 x 1076 2.9883
160 5.1918 x 107° 3.9933 9.8173 x 10710 3.9938 5.2545 x 107 2.9933 9.9334 x 1077 2.9928

320 3.2535 x 1071 3.9962 6.1521 x 10711 3.9962 6.5837 x 1077 2.9966 1.2450 x 107 2.9961

All of our results confirm the theoretical, optimal error estimates that we proved in Section 4.1. Note
that in the case of cubic Lagrange elements (see Table 3) the method converges faster compared to the case
of cubic splines, and the errors (especially those related to the L?2-norm) reach the limits of the numerical
method quickly, resulting to very small errors of order 107! for N > 160.

4.83. The effect of the boundary conditions

We now explore the influence of the boundary conditions to the reflection of solitary waves on a vertical
and impenetrable wall in comparison to other Boussinesg-type systems. In particular, we perform a series
of numerical experiments for four different Boussinesq-type systems, namely, the regularized Nwogu system
with 62 = 1/4 and coefficients given by (3.11), the classical Nwogu system, and the BBM-BBM [6] and
Serre [38] systems. For the BBM-BBM system, we use the conservative fully-discrete numerical method
of [31]. For the Serre equations, we use the results of [32]. For the Nwogu system, we test two numerical
methods: (i) The numerical method of [42] based on a modified Galerkin semidiscretization, and (ii) a new
standard Galerkin method accompanied with the fourth-order, four-stage, classical Runge-Kutta method
with stepsize At = Az /10. Both numerical methods (i) and (ii) appear to converge with optimal convergence
rate 4 to the velocity u. For the free surface elevation, we obtained clear convergence rates only in the case
of the standard Galerkin method (ii) and the rates were suboptimal and equal to 2. The modified Galerkin
method of (i) appears to have better errors in L? and H'! compared to (ii). Both methods deserve further
exploration, and this is reserved as a topic for future work.

In order to study the influence of the boundary conditions on the reflection of solitary waves, we consider
solitary waves of amplitudes approximately 0.1,0.15,0.2, ..., 0.7 initially placed symmetrically around x = 0
in the interval [—50, 50]. While these solitary waves propagate towards the wall located at « = 50, we allow
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Fig. 4.1. Reflection of a solitary wave with amplitude A =~ 0.7 by a vertical wall for the Nwogu system.
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Fig. 4.2. Maximum runup of solitary waves on a vertical wall. Comparison between the Nwogu, BBM-BBM and Serre systems of
equations.

quite large time intervals of numerical integration so as to study their complete reflection by the wall. One
such reflection is depicted in Fig. 4.1. As there are no exact formulas for solitary waves of the Boussinesq
systems of either Nwogu or BBM-BBM type, we use numerically generated solitary waves. To generate
solitary waves for the BBM-BBM system, we use the Petviashvilli method as it is described in [31]. For
Nwogu’s system, we use the Levenberg-Marquardt modification of Newton’s algorithm to minimize the
residuals to the equations resulted in pseudo-spectral discretizations of the respective ordinary differential
equation. The numerical initial conditions are obtained via interpolation as (7(0),%(0)) € S, x SP. This
technique results in the computation of the initial profiles of the solitary waves with spectral accuracy.

Note that, as in other Boussinesq systems, the reflection of the solitary waves of the Nwogu system is not
elastic [2]. In Fig. 4.1, we observe that, as a result of the inelastic collision, dispersive tails are generated
following the solitary pulse. Also, the solitary pulse returns modified after the reflection since part of its
energy has been transferred to the dispersive tails.
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Fig. 4.2 presents the maximum wave-height (runup on the wall) recorded during the reflection of the
solitary waves. Observe that all three Boussinesq models describe the reflection in a similar manner, while
all systems converge to the same solutions as the amplitude becomes small. Apparently, the Nwogu system
is the least accurate compared to the other two systems. The Serre system is known to be the most accurate
since it does not describe only small amplitude waves. The BBM-BBM system, which is well-posed only
with the conditions 7, (£L,t) = u(+£L,t) = 0 on the boundary (the condition wu,.(+L,t) = constant is
implied), appears to have slightly better performance compared to the other two systems.

5. Conclusions

A theoretical and numerical study of an initial-boundary value problem for regularized Nwogu-type
Boussinesq systems with reflective boundary conditions was presented. The well-posedness of this problem
requires, in addition to the standard wall-boundary conditions, a condition on the second derivative of the
velocity on the boundary wall. These boundary conditions, which are also satisfied by the solutions of the
Euler equations, were tested numerically against other Boussinesq systems. Furthermore, the above choice
of boundary conditions was justified by deriving a novel solution formula for the linearized problem using
the unified transform of Fokas. The numerical method, which is based on finite element methods, was shown
to be convergent with optimal rates.
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Appendix A. Justification of wall-boundary conditions in Boussinesqg-type equations

In this section, we show that the set of boundary conditions we use in this work is also satisfied by the
solutions of the Euler equations in the same bounded domain with wall-boundary conditions. Some of the
results of this section have been presented in [30]; here, we repeat them for the sake of completeness and,
furthermore, we extend them in order to cover the boundary conditions of the previous sections.

Let Q= {(z,y) : =L <z < L,—D < y <n(x,t)} where D denotes the depth of the ocean floor measured
from the rest position (zero level) of the water’s free surface. For (x,y) € Q and ¢ > 0, the Euler equations
of irrotational perfect fluid flow can be written in the form

1 1
ut—l—uuz—|—vuy—i—;pl:07 vt—i—uvz—l—vvy—i—;py:—g, (A.1)
U+, =0, (A.2)
Uy — Uy =0, (A.3)

where u = u(x,y,t) and v = v(x,y, t) are the horizontal and vertical components of the fluid velocity mea-
sured at (z,y) € Q, p denotes the density of the fluid, and g the gravitational acceleration. Equations (A.1)
and (A.2) correspond to momentum and mass conservation, respectively, while equation (A.3) is the irrota-
tionality condition. The impermeability of the ocean floor can be expressed by the condition v(x,y,t) =0
at y = —D, while the impenetrability of the wall is expressed by the boundary condition

u(—=L,y,t) =u(L,y,t) =0 . (A.4)

The free surface boundary conditions are written as
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ne+une, =v and p(x,y,t) = pam at y=n(z,t), (A.5)

where p,tm denotes the atmospheric pressure. Evaluating the first of equations (A.1) at # = +L and using
the wall-boundary conditions (A.4), we find

pe(£L,y,t)=0. (A.6)

Differentiating the second of conditions (A.5) with respect to x and using (A.6), we obtain 1, (£L,t) p,(£L,
n(xL,t),t) = 0, which implies the additional boundary condition

nx(L’t) = nx(_L’t) =0 (A7)

since py(£L,n(£L,t),t) is not necessarily zero. Similarly, differentiating the irrotationality condition (A.3)
with respect to y, we obtain

Vyo(£L, Y, t) = uyy(£L,y,t) =0 . (A.8)
Thus, differentiating the mass conservation (A.2) with respect to z and then using (A.8), we find
Uzm(iL»yat) = _vyz(iL)yat) =0. (Ag)

This justifies the wall-boundary conditions used for Boussinesq-type systems here and in [3].

Similar results are true in three-dimensional domains as well, independently of the bottom topography.
For example, if u(x, z,t) denotes the velocity of the fluid at position (x,z) = (z,y,2) and time ¢ which
satisfies the three-dimensional Euler equations with slip-wall boundary conditions u(x,z,¢) -n = 0 on
the boundary x € 909, z € [—-D,n], then the Neumann boundary conditions are Vn(x,t) - n = 0 and
V(V-u(x,zt)) -n=0on 0. It is noted that the function that describes the depth (bottom topography)
does not appear in any of these boundary conditions.
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