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Abstract. We explore a natural action of Hecke operators acting on
formal sums of optimal embeddings of real quadratic orders into Eichler
orders. By associating an optimal embedding to its root geodesic on the
corresponding Shimura curve, we can consider the signed intersection
number of pairs of embeddings. Using the Hecke operators and the in-
tersection pairing, we construct a generating series that is demonstrated
to be a classical modular form of weight two.

1. Introduction

Connecting arithmetic generating series to modular forms and L-functions

has been an important area of research in the last half century. Early results

include the work of Zagier on Hurwitz class numbers and mock modular

forms ([Zag75]), and the work of Gross-Kohnen-Zagier on heights of Heeg-

ner points ([GKZ87]). Since the 1990’s, the aim of the Kudla program has

been to investigate relationships between these two worlds.

In [DV21], Darmon and Vonk proposed a real quadratic analogue of

the difference of singular moduli, with the key ingredient being a p−adic

intersection number of closed geodesics on a Shimura curve. In [Ric21a],

arithmetic properties of these intersections were investigated, and real qua-

dratic analogues of the factorization formulas of Nm(j(τ1)− j(τ2)) (due to

Gross-Zagier in [GZ85]) were derived.

In this paper, we algebraically construct a Hecke operator, which acts

on formal sums of optimal embeddings of real quadratic orders into a fixed

Eichler order. By considering the signed intersection pairing of the corre-

sponding geodesics on the Shimura curve, we construct a formal generating

series, which is proven to be a classical modular of weight 2 for Γ0(N).
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2. Overview and conventions

From now on, fix B to be an indefinite quaternion algebra over Q of

discriminant D, and let O be an Eichler order in B of level M . For an

integer r, define

Or := {z ∈ O : nrd(z) = r},
the set of elements in O of reduced norm r.

Let Emb+(B) denote the set of embeddings of real quadratic fields into

B. Any ϕ ∈ Emb+(B) descends to an optimal embedding of the real qua-

dratic order ϕ−1(O) into O. We declare ϕ and ψ to be equivalent if there

exists x ∈ O1 such that

ψ = ϕx := xϕx−1.

Denote the equivalence class of ϕ by [ϕ], and define E+ to be the set of

equivalence classes of elements of Emb+(B). Since O is fixed, it is omitted

in most of the notation.

Definition 2.1. Let ϕ, ψ ∈ Emb+(B), and let n be a positive integer. Define

Θ(n) := O1\On,

a finite set.

If n is coprime toM , the nth weight function associated to ϕ, ψ is defined

by

(2.1) wn(ϕ, ψ) := |{π ∈ Θ(n) : [ϕπ] = [ψ]}|.

Otherwise, define wn(ϕ, ψ) = 0.

The weight function is independent of the choices of π ∈ Θ(n), is well-

defined over the equivalence classes of ϕ and ψ, but is not symmetric.

Definition 2.2. Let ϕ ∈ Emb+(B), and define the Hecke operator Tn acting

on [ϕ] via the formula

Tn[ϕ] :=
∑︂

[ψ]∈E+

wn(ψ, ϕ)[ψ].

Extend the definition linearly to Tn : Z[E+] → Z[E+].

See Section 6 for a precise description of the discriminants and multi-

plicities of the terms in Tp[ϕ] for p prime.

Fix an embedding of B in Mat(2,R), and then

ΓO := O1/{±1} ⊆ PSL(2,R)

is a discrete subgroup, which acts on the upper half plane H. The quotient

YO := ΓO\H can be given the structure of a Riemann surface, called a
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Shimura curve. Elements of E+ biject with closed geodesics on YO, and

there is a well defined notion of the signed intersection number of pairs of

closed geodesics. In particular, this extends linearly to the notion of a signed

intersection number of two elements α1, α2 ∈ Z[E+], which we denote by

⟨α1, α2⟩± ∈ Z.

Definition 2.3. Let α1, α2 ∈ Z[E+]. The signed intersection series associ-

ated to α1, α2 is the formal power series

IS±
α1,α2

(τ) :=
∞∑︂
n=1

⟨α1, Tnα2⟩± q
n,

where q = e2πiτ .

Let S2(Γ0(n)) be the set of cusp forms on Γ0(n) ⊆ PSL(2,Z), the Hecke

congruence subgroup of level n. If m | n, let S2(Γ0(n))
m−new ⊆ S2(Γ0(n))

be the forms that are new with respect to all prime divisors of m.

Theorem 2.4. We have IS±
α1,α2

∈ S2(Γ0(DM
2))D−new.

In fact, there is a cusp form in S2(Γ0(DM))D−new whose coprime to M

coefficients match IS±
α1,α2

.

Section 3 provides background results on intersection numbers. Sections

4-7 cover the main properties of Tn, including an alternate expression for

Tn[ϕ], as well as showing the equivariance of Tn with respect to the signed

intersection pairing. Section 8 covers the main background on quaternionic

and classical modular forms, and the pieces are all put together in Section 9

to prove Theorem 2.4. The paper ends in Section 10, where we provide a few

explicit examples demonstrating the results of Theorem 2.4 (in particular,

IS±
α1,α2

can be non-trivial).

3. Intersection numbers

The intersection numbers of pairs of optimal embeddings were studied

extensively in [Ric21a], and we recall a few of the basic results.

Definition 3.1. For ϕ ∈ Emb+(B), define d = d(ϕ) > 0 to be the discrim-

inant of the quadratic order ϕ−1(O). Let ϵd > 1 be the fundamental unit

with positive norm in ϕ−1(O).

The following proposition is classical.

Proposition 3.2. Define ΓPH
O to be the set of primitive hyperbolic elements

of ΓO. Then the map κ : Emb+(B) → ΓPH
O given by

κ(ϕ) := ϕ(ϵd(ϕ))
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is a bijection. Equivalence classes in Emb+(B) correspond to conjugacy

classes in ΓPH
O , which are denoted by C(ΓPH

O ).

Proposition 3.2 allows us to switch between optimal embeddings and

primitive hyperbolic elements, depending on which is more useful at the

time.

Definition 3.3. Given ϕ ∈ Emb+(B), let the (oriented) geodesic in H that

connects the two real roots of ϕ(ϵd(ϕ)) be ℓϕ. This descends to a closed

geodesic on YO, denoted by ℓ̃ϕ. Any lift of ℓ̃ϕ to H is a path between τ and

ϕ(ϵd(ϕ))τ for some τ ∈ H.

The geodesic ℓ̃ϕ is constant across the equivalence class [ϕ]. Proposition

3.4 allows the picture to be lifted from YO to H, which will be useful to

demonstrate the Hecke-equivariance of the signed intersection pairing.

Proposition 3.4 (Proposition 1.4 of [Ric21a]). Let ϕ1, ϕ2 ∈ Emb+(B).

Every transverse intersection point z ∈ ℓ̃ϕ1 ⋔ ℓ̃ϕ2 lifts to a pair (ϕ′
1, ϕ

′
2) ∈

Emb+(B)× Emb+(B) with

(i) [ϕ′
i] = [ϕi] for i = 1, 2;

(ii) ℓϕ′1 and ℓϕ′2 intersect transversely in H.

This association is unique up to the action of simultaneous conjugation by

O1 on the pair (ϕ′
1, ϕ

′
2).

Remark 3.5. In this paper, we only consider the signed intersection num-

ber. In [Ric21a], the unsigned and q−weighted intersection numbers are also

considered, and it is the q−weighted intersection that connects to the work

of Darmon-Vonk in [DV21]. Determining the nature of the intersection se-

ries for these alternate intersection functions is a worthwhile direction for

future work.

4. Atkin-Lehner operators

The theory of Atkin-Lehner operators acting on optimal embeddings is

much simpler than the general theory.

Definition 4.1. Let q be prime with qe || DM for some e ≥ 1. Let ω ∈ Oqe

be any element that normalizes O. Define the Atkin-Lehner involution Wq

acting on [ϕ] ∈ E+ as

Wq[ϕ] := [ϕω],

which is independant of the choice of ω. Extend the action linearly to Z[E+].
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If q | D, then |Θ(q)| = 1, hence Tq = Wq. If q
e || M , then Tq = 0, so

Tq ̸= Wq. Even if we had extended the weight function definition in Equation

(2.1) to allow for q |M , it would still not coincide, as |Θ(qe)| > 1 in general.

Remark 4.2. The reason we take Tn = 0 when gcd(n,M) > 1 is that

it is hard to access the pth coefficient of an oldform in S2(Γ0(DM))D−new

when p | M . Furthermore, this oldform may be combined with newforms

in S2(Γ0(DM)), which further muddies the waters. We do not run into this

issue with q | D, as the forms we are studying are guaranteed to be new at

such q. See Remark 9.4 for a possible resolution.

5. Prime Hecke operators

It will be convenient to sometimes restrict to studying prime Hecke oper-

ators. In order to do so, we must show that Tn satisfy the standard recursive

formulas. As a first step, we do this for the operators T ′
n, defined by (for

[ϕ] ∈ E+)

(5.1) T ′
n[ϕ] :=

∑︂
π∈Θ(n)

[ϕπ] =
∑︂

[ψ]∈E+

wn(ϕ, ψ)[ψ].

Aside from some minor details, this is analogous to the classical case.

Lemma 5.1. Let m,n be positive coprime integers, and let p ∤ DM be

prime. The following statements are true:

(i) T ′
mn = T ′

mT
′
n;

(ii) T ′
pk
T ′
p = T ′

pk+1 + pT ′
pk−1 for all positive integers k.

Proof. If either m or n is not coprime to M , the first point is trivial. Oth-

erwise, write

Θ(m) =
U⋃︂
i=1

O1πi, Θ(n) =
V⋃︂
i=1

O1π′
i.

It suffices to show that the set {O1πiπ
′
j}
i=U,j=V
i,j=1 is a valid and complete set

of representatives for Θ(mn). First, if x ∈ Omn, then since m and n are

coprime and O has class number 1, we can write x = yz with nrd(y) = m,

nrd(z) = n, and y, z ∈ O (see Theorem 2.1 of [Cha20]). Then z = u1π
′
j for

some j and u1 ∈ O1, and x = (yu1)π
′
j. We have yu1 = u2πi for some i and

u2 ∈ O1, whence x = u2πiπ
′
j. Thus we have a complete set of representatives

for O1\Omn.

To show that they are all distinct, assume otherwise, so that O1πiπ
′
j =

O1πi′π
′
j′ . Rearranging this gives O1πiπ

′
jπ

′−1
j′ = O1πi′ . If j = j′, then i = i′

and we are done. Otherwise, let x = π′
jπ

′−1
j′ ; we have nrd(x) = 1 and x /∈ O

since j ̸= j′. By taking completions, there exists a prime divisor p of n such
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that xp /∈ Op. Since nrd(πi) = m is coprime to n, it is coprime to p, and

thus (πix)p /∈ Op, whence πix /∈ O. But πix ∈ O1πi′ ⊆ O, contradiction.

Therefore i = i′ and j = j′, as claimed.

The proof of the second point is exactly the same as for SL(2,Z), where
explicit representatives of Γ0(p

e)\ SL(2,Z) can be used. □

We can use these properties of T ′
n to deduce them for Tn as well.

Proposition 5.2. Let m,n be positive coprime integers, let p ∤ DM be

prime, let q | D be prime, and let k be a positive integer. The following

statements are true:

(i) Tmn = TmTn;

(ii) TpkTp = Tpk+1 + pTpk−1;

(iii) Tqk = T kq .

Proof. If either m or n is not coprime to M , the first point is trivial. Oth-

erwise, Lemma 5.1 gives T ′
mn[ψ] = T ′

n(T
′
m[ψ]). Plug the definition into this

expression and match coefficients to obtain

wmn(ψ, ϕ) =
∑︂

[θ]∈E+

wm(ψ, θ)wn(θ, ϕ),

for all [ψ] ∈ E+. By expanding out Tmn[ϕ] and Tm(Tn[ϕ]) in a similar fashion,

this implies that they are equal, and the point follows.

The second point follows in an analogous fashion. The third point follows

from |Θ(qk)| = 1. □

6. Alternate expression for Hecke operators

We will require an alternate expression for Tp, as summing over all em-

bedding classes is not convenient. Such an expression is given in Proposition

6.1, and the rest of this section is spent proving it.

Proposition 6.1. Let p ∤ DM be a prime and ϕ ∈ Emb+(B). Then

Tp[ϕ] =
∑︂
π∈Θ(p)

log ϵd(ϕ)
log ϵd(ϕπ)

[ϕπ].

Proposition 6.1 is also true with p replaced by an integer coprime to M ,

though we will not need this level of generality.

To begin, we first shift the definition of Tp to being over π ∈ Θ(p), and

not over [ψ] ∈ E+.

Lemma 6.2. Let p ∤ DM be a prime and ϕ ∈ Emb+(B). Then

Tp[ϕ] =
∑︂
π∈Θ(p)

wp(ϕ
π, ϕ)

wp(ϕ, ϕπ)
[ϕπ].
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Proof. Recall that

Tp[ϕ] =
∑︂

[ψ]∈E+

wp(ψ, ϕ)[ψ].

It is clear that wp(ψ, ϕ) > 0 if and only if wp(ϕ, ψ) > 0, so every embedding

[ψ] with non-zero coefficient must be of the form [ϕπ] for some π ∈ Θ(p).

Thus we can rewrite Tp by summing over [ϕπ], making sure to divide by the

amount we overcount each [ϕπ]. This proves the lemma. □

By Lemma 6.2, it suffices to show that wp(ϕ, ϕ
π), relates to fundamental

units.

Definition 6.3. If d is a discriminant and p is a prime such that d
p2

is not

a discriminant, we say d is p−fundamental.

The following proposition describes the behaviour of [ϕπ] for π ∈ Θ(p).

Proposition 6.4. Let ϕ ∈ Emb+(B) correspond to an optimal embedding

of discriminant d = d(ϕ). Let p be a prime with p ∤ DM , and write d =

p2kd′, where d′ is a p−fundamental discriminant. Consider the multiset of

p + 1 optimal embeddings classes corresponding to {[ϕπ] : π ∈ Θ(p)}. This
contains

• p+1 optimal embeddings of discriminant p2d if k = 0 and
(︂
d
p

)︂
= −1.

• p optimal embeddings of discriminant p2d and one of discriminant

d if k = 0 and
(︂
d
p

)︂
= 0.

• p−1 optimal embeddings of discriminant p2d and two of discriminant

d if k = 0 and
(︂
d
p

)︂
= 1.

• p optimal embeddings of discriminant p2d and one of discriminant
d
p2

if k > 0.

Let ϵp2d = ϵrd, and the optimal embeddings of discriminant p2d divide into
p−( d

p)
r

distinct equivalence classes, each with multiplicity r.

Proof. Assume that p is odd; p = 2 is covered in Proposition 6.5. To compute

the discriminants, it suffices to work in the completion at p. In particular,

we can assume that Op = Mat(2,Zp), ϕp(
√
d) = ( 0 d

1 0 ), and we can take the

following as representatives for Θ(p):

πi =

(︃
1 i
0 p

)︃
: i = 0, 1, · · · , p− 1, π∞ =

(︃
p 0
0 1

)︃
.

We compute

ϕπ∞(
√
d) =

(︃
0 pd
1
p

0

)︃
,
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which is an optimal embedding of p2d in all cases. For i <∞,

ϕπi(
√
d) =

(︃
i d−i2

p

p −i

)︃
.

If p is inert with respect to d, then d−i2
p

/∈ Zp, always giving discriminant

p2d. If p | d, we have discriminant p2d for all i ̸= 0. When i = 0, we get d

or d
p2
, depending on if p2 | d or not. Finally, if p is split with respect to d,

then precisely two values of i allow this to lie in Mat(2,Zp), and we get 2

embeddings of discriminant d and p− 2 of p2d. Therefore the discriminants

occur as claimed.

Next, we check when we get similar embeddings of discriminant p2d. Let

v = ϕ(ϵd) ∈ O1, fix i, and let πiv = uπj for some (unique) j and u ∈ O1.

Then

ϕπj = πjϕπ
−1
j ∼ uπjϕπ

−1
j u−1 = πivϕv

−1π−1
i = πiϕπ

−1
i = ϕπi ,

i.e. the resulting forms lie in the same equivalence class. We wish to show

that in the discriminant p2d case this is also essentially necessary, i.e. if

ϕπi ∼ ϕπj are embeddings of discriminant p2d, then πiv
k = uπj for some

integer k and u ∈ O1.

Indeed, [ϕπi ] = [ϕπj ] if and only if there is a u ∈ O1 for which πiϕπ
−1
i =

u−1πjϕπ
−1
j u. Rearranging, this is equivalent to

π−1
j uπiϕ(

√
d)(π−1

j uπi)
−1 = ϕ(

√
d).

In particular, π−1
j uπi normalizes ϕ(

√
d), and it follows from Proposition

7.7.8 of [Voi21] that

π−1
j uπi = ϕ(x+ y

√
d) for x, y ∈ Q.

After rearranging, this is equivalent to πjϕ(x + y
√
d)π−1

i ∈ O1. Taking

norms, we see that x2 − dy2 = 1, whence we are done if we can show that

z = x + y
√
d ∈ Od, the order of discriminant d. Since ϕ(pz) = πjuπi ∈ O,

we have z ∈ 1
p
Od, and it suffices to look at the completion at p.

In this completion, we can take the explicit forms of πi and ϕ as above.

Thus ϕ(x+ y
√
d) =

(︁
x yd
y x

)︁
. If i, j <∞, then

πjϕ(x+ y
√
d)π−1

i =

(︃
x+ jy (j−i)x+(d−ij)y

p

py x− iy

)︃
∈ Mat(2,Zp).

From above, px, py ∈ Zp, so write X = px, Y = py. Then

p | X + jY, p2 | (j − i)X + (d− ij)Y,

and looking at the second equation modulo p, we derive

0 ≡ (j − i)(−jY ) + (d− ij)Y ≡ (d− j2)Y (mod p).
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Since we have embeddings of discriminant p2d, d− j2 ̸≡ 0 (mod p), whence

p | Y , and so p | X, as desired.

If i = ∞, then j <∞, and we have

πjϕ(x+ y
√
d)π−1

∞ =

(︃
x+jy
p

yd+ jx

y px

)︃
∈ Mat(2,Zp).

It immediately follows that y ∈ Zp, and then x ∈ Zp too, as desired.
Now, we see that we form equivalence classes by right multiplication by

v = ϕ(ϵd). Thus the size of an orbit corresponds to the minimal k such that

πiv
k = uπi, for some u ∈ O1. Writing vk = ϕ(X + Y

√
d), in the above

calculations we can take i = j (as well as repeating for i = j = ∞), and it

follows that πiv
k = uπi if and only if p | Y . The smallest such k is k = r,

since p | Y is equivalent to X + Y
√
D ∈ Op2d. □

When p = 2, the above proof needs to be modified a bit. For sake of

clarity, we restate the proposition explicitly before giving the proof.

Proposition 6.5. Let ϕ ∈ Emb+(B) correspond to an optimal embedding of

discriminant d = d(ϕ). Assume 2 ∤ DM , and write d = 22kd′, where d′ is a

2−fundamental discriminant. Consider the multiset of 3 optimal embeddings

classes corresponding to {[ϕπ] : π ∈ Θ(2)}. This contains
• 3 optimal embeddings of discriminant 4d if k = 0 and d ≡ 5 (mod 8).

• 2 optimal embeddings of discriminant 4d and 1 of discriminant d if

k = 0 and d ≡ 0 (mod 2).

• 1 optimal embedding of discriminant 4d and 2 of discriminant d if

k = 0 and d ≡ 1 (mod 8).

• 2 optimal embeddings of discriminant 4d and 1 of discriminant d
4
if

k > 0.

Let ϵ4d = ϵrd, and the optimal embeddings of discriminant 4d divide into
2−( d

2)
r

distinct equivalence classes, each with multiplicity r.

Proof. We mostly mirror the proof of Proposition 6.4. We can work locally,

so that O2 = Mat(2,Z2), and we can assume that

ϕ2(
√
d) =

(︃
pd

d−pd
2

2 −pd

)︃
,

where pd is the parity of d. We can take representatives for Θ(2) as

πi =

(︃
1 i
0 2

)︃
: i = 0, 1, π∞ =

(︃
2 0
0 1

)︃
.

We compute

ϕπ∞(
√
d) =

(︃
pd d− pd
1 −pd

)︃
,
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which is an optimal embedding of discriminant 4d. For i = 0, 1,

ϕπi(
√
d) =

(︃
pd + 2i d−pd

4
− pdi− i2

4 −2i− pd

)︃
.

If d ≡ 5 (mod 8), the top right coefficient is odd for i = 0, 1, whence this

is an optimal embedding of discriminant 4d. If d ≡ 1 (mod 8), these are

optimal of discriminant d for i = 0, 1. Finally, if d is even, then the top

right coefficient is d/4 − i2 which is odd and even for the two choices of i.

Since all other coefficients are even, this will be an optimal embedding of

discriminant 4d for exactly one of the two choices of i, and an embedding of

discriminant d for the other. The only way the embedding of discriminant

d is not optimal is if either 16 | d and i is even, or d ≡ 4 (mod 16) and

i = 1. In both of these cases the embedding is optimal of discriminant d/4,

and these cases are equivalent to k > 0. Therefore the discriminants occur

as claimed.

Next, we check when we get similar embeddings of discriminant 4d. Let

v = ϕ(ϵd) ∈ O1, fix i, and let πiv = uπj for some j and u ∈ O1. As before,

ϕπj ∼ ϕπi , and we want to show that if this equation holds then πiv
k = uπj

for some integer k and u ∈ O1.

As in Proposition 6.4, this rearranges to πjϕ(x+ y
√
d)π−1

i = u ∈ O1 for

some rationals x, y. Taking norms, x2 − dy2 = 1, whence we are done if we

can show that z = x+ y
√
d ∈ Od. As ϕ(2z) = πjuπi ∈ O, we have z ∈ 1

2
Od,

hence 4x, 4y ∈ Z. Take the explicit forms of πi and ϕ as above; in particular,

ϕ(x+ y
√
d) =

(︃
x+ pdy

y(d−pd)
2

2y x− pdy

)︃
.

If i, j ∈ {0, 1}, we can assume they are distinct, hence i = 0, j = 1, and

d ≡ 5 (mod 8) (as the embeddings have discriminant 4d). Then

πjϕ(x+ y
√
d)π−1

i =

(︃
x+ 3y x

2
+ d−3

4
y

4y x− y

)︃
∈ Mat(2,Z2).

Write 4x = X and 4y = Y , and this implies that

X ≡ Y (mod 4), 2X + (d− 3)Y ≡ 0 (mod 16), X2 − dY 2 = 16.

If X is odd, then Y is odd, hence 0 ≡ X2 − dY 2 ≡ 1 − 5 ≡ 4 (mod 8),

contradiction. Thus X, Y are even, and X/2 ≡ Y/2 (mod 2). Since z =
(X/2)+(Y/2)

√
d

2
, this implies that z ∈ Od, as required.

If i = ∞ and j = 0, 1, we have

πjϕ(x+ y
√
d)π−1

∞ =

(︃
x
2
+ (pd+2j)y

2
jx+ (d−pd

2
− pdj)y

2y 2x− 2ypd

)︃
∈ Mat(2,Z2).
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Thus 2x, 2y ∈ Z, write 2x = X and 2y = Y , and it requires to show that

X ≡ Y d (mod 2). But X2 − dY 2 = 4, so the conclusion follows.

The finish is exactly as in Proposition 6.4. □

We can now prove the alternate expression for Tp.

Proof of Proposition 6.1. By Lemma 6.2,

Tp[ϕ] =
∑︂
π∈Θ(p)

wp(ϕ
π, ϕ)

wp(ϕ, ϕπ)
[ϕπ].

Let d = d(ϕ), and by Proposition 6.4, the terms [ϕπ] all have discriminant

p2d, d, d/p2.

Start with the terms having discriminant p2d. Let ϵp2d = ϵrd, and then

Proposition 6.4 says that wp(ϕ, ϕ
π) = r. Similarly, wp(ϕ

π, ϕ) = 1, as we

decreased the discriminant. Therefore we have

wp(ϕ
π, ϕ)

wp(ϕ, ϕπ)
=

1

r
=

log ϵd(ϕ)
log ϵd(ϕπ)

,

as desired.

For the terms of discriminant d, Proposition 6.4 implies that

wp(ϕ
π, ϕ) = wp(ϕ, ϕ

π) ∈ {1, 2},

as desired.

Finally, the terms of discriminant d/p2 can be handled analogously to

p2d, completing the proof. □

7. Hecke operators acting on homology

For the rest of this paper, assume thatD > 1 (see Remark 9.3 for changes

to the D = 1 case). In this case, there are no cusps, and XO := ΓO\H = YO.

We can transfer the Hecke operators to act on homology via the association

of ϕ→ ℓ̃ϕ from Definition 3.3. It is useful to switch from C[E+] to C[C(ΓPH
O )],

which is accomplished through the bijection κ from Proposition 3.2.

Definition 7.1. Let γ ∈ ΓO, and denote by ℓ̃γ ∈ H1(XO,C) the image of

the geodesic between τ and γτ , which is independent of τ ∈ H.

Consider the map η : C[C(ΓPH
O )] → H1(XO,C) induced by

γ → ℓ̃γ,

where γ ∈ ΓPH
O .

Lemma 7.2. The elements ℓ̃γ for γ ∈ ΓPH
O generate H1(XO,C). In partic-

ular, η is surjective.
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Proof. The lemma is clearly true if we allow all γ ∈ ΓO. We may restrict to

γ ∈ ΓPH
O since the elements pairing the sides of a Dirichlet domain for ΓO

are primitive, hyperbolic, and generate ΓO (see [Voi09]). □

Allowing for norm one elements that have a power in O will make our

life easier, as conjugation of elements of ΓPH
O by π ∈ Θ(p) will produce such

elements. To this end, we have the following definition.

Definition 7.3. Let γ ∈ B×, and assume that γr ∈ ΓO for some r ∈ Z+.

Define

ℓ̃γ :=
1

r
ℓ̃γr ∈ H1(XO,C),

which is independent of r.

With this convention, the induced action of Hecke operators on homology

takes a particularly nice form.

Proposition 7.4. Let p ∤ DM be a prime and let γ ∈ ΓPH
O . Then

η(Tp[γ]) =
∑︂
π∈Θ(p)

ℓ̃πγπ−1 .

Proof. By Proposition 3.2, write γ = ϕ(ϵd) for some ϕ ∈ Emb+(B) and

d = d(ϕ). From Proposition 6.1,

η(Tp[γ]) =
∑︂
π∈Θ(p)

log ϵd
log ϵd(ϕπ)

η([ϕπ]).

For π ∈ Θ(p), let d′ = d(ϕπ). Note that ϵd′ = ϵrd for some r that is either

an integer or the reciprocal of an integer, since ϕ−1(O) and (ϕπ)−1 (O) are

orders in the same quadratic field. In particular,

ϕπ(ϵd′) = πϕ(ϵrd)π
−1 = (πγπ−1)r,

hence

η([ϕπ]) = ℓ̃(πγπ−1)r = rℓ̃πγπ−1 .

The coefficient
log ϵd
log ϵd′

=
1

r
,

which cancels with r, giving the result. □

In order to prove that the signed intersection pairing is Hecke-equivariant,

we shift back to the original definition of Tn.

Proposition 7.5. For all positive integers n and α1, α2 ∈ C[E+], we have

⟨Tnα1, α2⟩± = ⟨α1, Tnα2⟩±
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Proof. It suffices to prove this proposition for n = p ∤ M a prime and

αi = [ϕi] ∈ Emb+(O). Write Θ(p) = ∪Ui=1O
1πi (U = 1 if p | D and = p + 1

otherwise), and define the set

S1 = {(πi, u, ϕ) : |ℓϕ ⋔ ℓϕ2| = 1, ϕπi = ϕu1 , u ∈ O1}.

Use

Tp[ϕ1] =
∑︂
[ψ]

wp(ψ, ϕ1)[ψ],

and expand out ⟨Tp[ϕ1], [ϕ2]⟩±. We claim that each term corresponds to an

element of S1.

By Proposition 3.4, an intersection of [ψ] with [ϕ2] corresponds to the

simultaneous equivalence class of the pair (ψv, ϕ2) with v ∈ O1 and |ℓψv ⋔

ℓϕ2| = 1. Note that wp(ψ, ϕ1) = wp(ψ
v, ϕ1), so for each of the wp(ψ, ϕ1)

values of i such that ψπiv = ϕu1 with u ∈ O1, we associate the triple

(πi, u, ψ
v) ∈ S1

to the intersection.

Since there were several choices made, we want to determine all possible

triples associated to an intersection in S1, so that we can create a bijection

with a quotient of S1 by an equivalence relation. Write ri = ϕi(ϵd(ϕi)) for i =

1, 2, and then the pair (ψv, ϕ2) is well defined up to simultaneous conjugation

by powers of r2. Furthermore, u is defined up to multiplication on the right

by powers of r1. In particular, let k1, k2 ∈ Z, write

πir
−k2
2 = δiπi∗ ,

for a unique πi∗ and δi ∈ O1, and define an equivalence relation on S1 via

(πi, u, ϕ) ∼S1 (πi∗ , δ
−1
i urk11 , ϕ

r
k2
2 ).

This relation corresponds exactly to the ambiguity described above in as-

sociating an element of S1 to ⟨Tp([ϕ1]), [ϕ2]⟩±. Therefore

Intersections of Tp[ϕ1] with [ϕ2] ⇔ S1/ ∼S1 .

Define S2 and the equivalence relation ∼S2 in the analogous fashion,

i.e. with all indices 1, 2 swapped. In the exact same manner, we have that

intersections of [ϕ1] with Tp[ϕ2] biject naturally with S2/ ∼S2 .

Let (πi, u, ϕ) ∈ S1, and let j, v be uniquely defined so that

pπ−1
i u = v−1πj,

where v ∈ O1. We define the map θ : S1 → S2 via

θ((πi, u, ϕ)) =

(︃
πj, v, ϕ

π−1
j v

2

)︃
.
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First, we check that the image lands in S2. Use the shorthand notation

(ψ1, ψ2) for “ℓψ1 and ℓψ2 intersect transversely,” and since Möbius maps

preserve intersection,

(ϕ, ϕ2) ⇒
(︂
ϕu

−1πi , ϕu
−1πi

2

)︂
=

(︃
ϕ1, ϕ

π−1
j v

2

)︃
.

Since (ϕ
π−1
j v

2 )πj = ϕv2, the image lands in S2. The sign of the intersection is

also preserved, since nrd(u−1πi) = p > 0.

Let θ′ : S2 → S1 be the analogously defined map going the other way

(swap 1’s and 2’s), and it is straightforward to check that θ, θ′ are inverses

to each other, whence S1 bijects with S2. To complete the proposition, it

suffices to check that θ descends to a map from S1/ ∼S1 to S2/ ∼S2 (the

map θ′ will do the same in analogous fashion).

Take the equations

πir
−k2
2 = δiπi∗ , pπ−1

i u = v−1πj, pπ−1
i∗ δ

−1
i urk11 = v′−1πj′ ,

θ((πi, u, ϕ)) =

(︃
πj, v, ϕ

π−1
j v

2

)︃
,

θ((πi∗ , δ
−1
i urk11 , ϕ

r
k2
2 )) =

(︃
πj′ , v

′, ϕ
π−1
j′ v

′r
k2
2

2

)︃
,

and we need to show that the right hand side of the bottom two equations

are equivalent under S2. Rearranging the above equations gives

πj′r
−k1
1 =v′p(π−1

i∗ δ
−1
i )u

=v′rk22 (pπ−1
i u)

=(v′rk22 v
−1)πj.

Therefore(︃
πj′ , v

′, ϕ
π−1
j′ v

′r
k2
2

2

)︃
∼S2

(︃
πj, (v

′rk22 v
−1)−1v′rk22 , ϕ

r
k1
1 π−1

j′ v
′r

k2
2

2

)︃
=

(︃
πj, v, ϕ

π−1
j v

2

)︃
,

as claimed. □

Remark 7.6. With a closer analysis, one can show that the Hecke operators

are also equivariant for the q−weighed intersection number (considered in

[Ric21a]) when q | DM . If q ∤ DM , then this may fail for the operator Tq.

8. Modular form background

Before delving into the proof of Theorem 2.4, we recall the relevant bits

of quaternionic and classical modular form theory.
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Our reference for quaternionic modular forms is sections 3, 5 of [DV13],

and Sections 2, 3 of [GV11]. For uniformity of presentation, assume that

D > 1 and B is embedded in Mat(2,R).
For γ = ( a bc d ) ∈ B×/{±1} and a holomorphic function f : H → C, define

the (weight two) slash operator as

(f |γ)(z) := det(γ)(cz + d)−2f(γz).

Definition 8.1. A quaternionic modular form of weight 2 and level M for

B is a holomorphic function H → C such that

(f |γ)(z) = f(z)

for all γ ∈ ΓO.

Let MB
2 (O) denote the space of weight two quaternionic modular forms

with respect to O, and SB2 (O) the subset of cusp forms. Since there are no

cusps, all quaternionic modular forms are cusp forms.

It is possible to define Hecke operators acting on quaternionic modular

forms. Integration gives the Hecke-equivariant Eichler-Shimura isomorphism

to the dual of the homology:

SB2 (O)⊕ SB2 (O)
∼−→ H1(XO,C)∗.

The connection to classical modular forms comes from the Hecke-equivariant

Jacquet-Langlands correspondence:

SB2 (O) ≃ S2(Γ0(DM))D−new.

In order to connect coefficients of forms in S2(Γ0(DM))D−new to Hecke

operators, we recall a few of the main results of Atkin and Lehner. A special

case of Theorem 3 of [AL70] is the following proposition.

Proposition 8.2. Let f(τ) =
∑︁∞

n=1 anq
n be a weight 2 newform on Γ0(N),

normalized so that a1 = 1. Then

(i) If p is a prime with p ∤ N , then

(a) f |Tp = apf ;

(b) anp = anap − pan/p for all n ≥ 1, with an/p = 0 if p ∤ n.
(ii) If q is a prime with qe || N for some e > 0, then

(a) f |Wq = λ(q)f , where λ(q) = ±1.

(b) anq = anaq for all n ≥ 1;

(c) If e ≥ 2, then aq = 0;

(d) If e = 1, then aq = −λ(q), hence f |Wq = −aqf .
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Remark 8.3. In the Jacquet-Langlands correspondence, the Atkin-Lehner

operators Wq for q | D acting on Shimura curves in fact pick up the Eigen-

value aq, and not λ(q) = −aq (see Theorem 1.2 of [BD96]). This is why

we did not need to negate the definition of Wq = Tq acting on optimal

embeddings!

We will be working with the space S2(Γ0(DM))D−new, hence if M ̸= 1

we also need to work with oldforms. Theorem 5 of [AL70] provides the

description of the new and oldforms, restated as follows.

Proposition 8.4. The space S2(Γ0(N)) has a basis which is a direct sum

of classes, which consist of newclasses and oldclasses. Every form in a

class has the same eigenvalues for Tp with p a prime not dividing N , and

forms in different classes have distinct eigenvalues at Tp for infinitely many

primes p. Each newclass consists of a single form, which is an eigenform

for all Tp and Wq. Each oldclass consists of a set of forms {f(dτ)}, where
f ∈ S2(Γ0(N

′))new for some N ′ dividing N properly, and d ranges over all

positive divisors of N/N ′. Furthermore, any such set is an oldclass. Each

oldclass can be given an alternate basis where the forms are also eigenforms

for all Wq.

While we can access the qnth Fourier coefficients of an eigenform in

S2(Γ0(N)) with q | N , it requires knowing which oldclass the form belongs

to. If we have no a priori knowledge of this, then the task is less feasible.

Since Jacquet-Langlands can produces M−old forms, we treat this issue by

ignoring coefficients that are not coprime to M .

9. Proof of modularity

Let β be the isomorphism from H1(XO,C) to its dual H1(XO,C)∗ in-

duced by the (nondegenerate) signed intersection pairing, i.e.

β(ψ)(ψ′) := ⟨ψ, ψ′⟩± ,

for ψ, ψ′ ∈ H1(XO,C). The action of the Hecke operators on H1(XO,C)∗ is

given by Section 5 of [DV13]. First, let p ∤ DM , and write

Θ(p) =

p+1⋃︂
i=1

O1πi.

Let γ ∈ ΓO, and multiplication on the right by γ permutes Θ(p). Therefore

there is a unique permutation γ∗ of {1, 2, . . . , p+ 1} for which

πaγ = δaπγ∗a,
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for some δa ∈ ΓO. The operator Tp is given by

Tp(f)(ℓ̃γ) :=
∑︂

πa∈Θ(p)

f(ℓ̃δa),

for f ∈ H1(XO,C)∗.
Similarly, if qe || DM , the Atkin-Lehner operator Wq is given by

Wq(f)(ℓ̃γ) := f(ℓγω),

where ω ∈ Oqe normalizes O.

The composition β ◦ η is a map from C[C(ΓPH
O )] to H1(XO,C)∗, with

Hecke operators defined on each end.

Lemma 9.1. The map β ◦ η is Hecke-equivariant for Tp with p ∤ DM and

Wq for q | D.

Proof. The case of Wq for q | D follows directly from the definitions.

Next, consider Tp for p ∤ DM . Let σ, γ ∈ ΓPH
O , and then

Tp(β ◦ η([σ]))(ℓ̃γ) =
∑︂

πa∈Θ(p)

⟨︂
ℓ̃σ, ℓ̃δa

⟩︂
±
,

where πaγ = δaπγ∗a.

Applying Tp to [ϕ] first gives

β ◦ η(Tp([σ]))(ℓ̃γ) = ⟨η(Tp[σ]), η([γ])⟩±
= ⟨η([σ]), η(Tp[γ])⟩±
=
∑︂

πa∈Θ(p)

⟨︂
ℓ̃σ, ℓ̃πaγπ−1

a

⟩︂
±
,

where we used Propositions 7.5 and 7.4 in the second and third lines re-

spectively. Thus it suffices to prove that in homology,∑︂
πa∈Θ(p)

ℓ̃δa =
∑︂

πa∈Θ(p)

ℓ̃πaγπ−1
a
.

Consider δa = πaγπ
−1
γ∗a, and note that if a1, a2, . . . , ar is a sequence, then

r∑︂
i=1

ℓ̃δai = ℓ̃δa1δa2 ···δar .

Decompose the permutation γ∗ into cycles, and say (a1, a2, . . . , ar) is one

such cycle. The intermediate terms all cancel, and we derive

δa1δa2 · · · δar = πa1γ
rπ−1

a1
.

Therefore
r∑︂
i=1

ℓ̃δai = rℓ̃πa1γπ
−1
a1
.
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Repeat this for all cyclic shifts of (a1, a2, . . . , ar) to derive
r∑︂
i=1

ℓ̃δai =
r∑︂
i=1

ℓ̃πaiγπ
−1
ai
.

Adding this up over all cycles gives the desired result. □

At last, we are ready to tackle modularity.

Proposition 9.2. Let α1, α2 ∈ C[E+]. Then there exists a modular form

E ∈ S2(Γ0(DM))D−new such that the nth coefficient of E equals ⟨α1, Tnα2⟩±
for all n coprime to M .

Proof. By combining β ◦ η ◦κ, Eichler-Shimura, and Jacquet-Langlands, we

have an Hecke-equivariant isomorphism

C[E+] ≃ C[C(ΓPH
O )] ≃ H1(XO,C) ≃ H1(XO,C)∗

≃ SB2 (O)⊕ SB2 (O) ≃ S2(DM)D−new ⊕ S2(DM)
D−new

.

The eigenvalues of S2(DM)
D−new

are complex conjugates of the eigenvalues

of S2(DM)D−new, but since this space is fixed under Gal(Q/Q), we can pair

them up. In particular, by Proposition 8.4 there exists a decomposition,

C[E+] = ⊕m|MVm,

where each Vm can be decomposed into eigenspaces corresponding to the

eigensystems for newforms on S2(Γ0(Dm)), m | M . Each eigenspace of Vm

can then be decomposed into a basis of eigenforms for all Tp with p ∤ DM
and Wq for q | D.

Assume that α1, α2 ∈ C[E+] are basis elements which correspond to

Vm1 , Vm2 respectively, as well as to the eigensystems Tpαi = apαi, Wqαi =

aqαi for i = 1, 2. By Proposition 8.4, if these are distinct eigensystems, there

exists a p ∤ DM with ap ̸= a′p. Then

ap ⟨α1, α2⟩± = ⟨Tpα1, α2⟩± = ⟨α1, Tpα2⟩± = a′p ⟨α1, α2⟩± ,

whence ⟨α1, α2⟩± = 0. Therefore the only way for this pairing to be non-zero

is if m1 = m2 and ap = a′p for all p. Assume this, and for simplicity assume

that the elements are normalized so that ⟨α1, α2⟩± = 1.

Let E correspond to the modular form with coefficients ap, and let cn =

⟨α1, Tnα2⟩±. If p ∤ DM , then as above, cp = ap. If q | D, then cq = aq follows

from Remark 8.3. Therefore, by combining Proposition 5.2 with Proposition

8.2, it follows that cn = an for all n coprime to M .

The result for general αi follows from writing each element in terms

of the basis, which is orthonormal with respect to the signed intersection

number. □
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Given a modular form in S2(Γ0(DM))D−new, we can bump up the level

to DM2 to only eliminate all coefficients not coprime toM (see for example

Proposition 2.4 of [Rib80]). In particular, Theorem 2.4 follows immediately

from this.

Remark 9.3. When D = 1, then we are initially working with the open

curve YO = ΓO\H. In this case, Poincaré duality (via the map β) instead

lands in the cohomology of the closed curve XO, relative to the cusps.

Eichler-Shimura gives the isomorphism to S2(Γ0(M)) ⊕ S2(Γ0(M)), as de-

sired.

Remark 9.4. In Section 4 we defined Wq for q
e ||M , and most of the sub-

sequent theory still works with this operator. The difficulty comes in picking

up the coefficients aq, since the action of Wq on an oldform in S2(Γ0(DM))

does not pick up aq (let alone aqn). For example, for a newform in S2(Γ0(D)),

Wq would need to act like the Hecke operator Tq acting on this space, which

does not seem viable.

One alternate way to treat this would be to also consider the superorders

O′ ⊇ O, and form a linear combination of the intersection series for all

such superorders. This would allow access to the Hecke operators acting on

S2(Γ0(Dm)) for all m |M , and may allow us to pick up all coefficients.

10. Examples

Algorithms to compute intersection numbers and the action of Tn on

optimal embeddings were implemented in PARI/GP, [PAR22]. Using these

algorithms, we produce a few examples that demonstrate that the modular

form corresponding to IS±
ϕ1,ϕ2

can be non-trivial, does not need to be an

eigenform, and does not need to be M−new.

The labels of newforms come from LMFDB ([LMF21]). The code to

generate these examples can be found in the file “intersectionseries.gp” in

the package [Ric21b].

For a first example, we consider a situation where we get a combination

of newforms, so the resulting form is not an eigenform.

Example 10.1. Let B =
(︂

7,5
Q

)︂
be ramified at 5 and 7, and let O be the

maximal order spanned by
{︁
1, i, 1+j

2
, i+k

2

}︁
. Thus D = 35, M = 1, and the

dimension of weight two newforms on Γ0(35) is 3. Label the forms f, g, g,

where f is given by 35.2.a.a in LMFDB, and g is given by 35.2.a.b. The

coefficients of g are given in terms of β = 1+
√
17

2
, and the first few coefficients
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of f, g are given by

f(τ) = q1 + q3 − 2q4 − q5 + q7 +O(q9),

and

g(τ) = q1−βq2+(−1+β)q3+(2+β)q4+q5−4q6−q7+(−4−β)q8+O(q9).

Take the optimal embeddings of discriminants 5, 12 given by

ϕ1

(︄
1 +

√
5

2

)︄
=

1− j

2
, ϕ2

(︄√
12

2

)︄
=

−i− 8j + 3k

2
.

We compute

IS±
ϕ1,ϕ2

= q2 − q3 − q4 + q8 +O(q9).

By matching the coefficients, we have

IS±
ϕ1,ϕ2

=
−g(τ) + g(τ)√

17
.

Next, take the optimal embedding of discriminant 173 given by

ϕ3

(︄
1 +

√
173

2

)︄
=

1− 2i+ 27j + 10k

2
.

We compute

IS±
ϕ2,ϕ3

= 2q1 − q2 + 3q4 + q5 − 6q6 − q7 − 7q8 +O(q9),

whence

IS±
ϕ2,ϕ3

=
1

2
f(τ) +

51 +
√
17

68
g(τ) +

51−
√
17

68
g(τ).

Next, consider a non-maximal Eichler order.

Example 10.2. Let B =
(︂

7,−1
Q

)︂
be ramified at 2, 7, and let O be the Eichler

order of level 3 spanned by
{︁
1, i, 3j, 1+i+j+k

2

}︁
. Thus D = 14, M = 3, and

the dimensions of the space of weight two newforms on each of Γ0(14) and

Γ0(42) is 1. Let the eigenforms be f, g respectively, so that f is given by the

label 14.2.a.a in LMFDB, and g is 42.2.a.a. The first few terms are given by

f(τ) = q1 − q2 − 2q3 + q4 + 2q6 + q7 − q8 + q9 − 2q12 − 4q13 +O(q14),

and

g(τ) = q1+q2−q3+q4−2q5−q6−q7+q8+q9−2q10−4q11−q12+6q13+O(q14).

Take the embeddings of discriminants 13, 24 given by

ϕ1

(︄
1 +

√
13

2

)︄
=

1 + i+ j + k

2
, ϕ2

(︄√
24

2

)︄
= −j − k.

We compute

IS±
ϕ1,ϕ2

= −q1 + q2 − q4 − q7 + q8 + 4q13 +O(q14).
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By matching the coefficients of q1, q2, we have

IS±
ϕ1,ϕ2

= −f(τ) +R(q3),

for some power series R. An equality of modular forms can be achieved by

bumping up the level to access f(9q), and using this to erase all coefficients

of q3n:

IS±
ϕ1,ϕ2

= −f(τ)− 2f(3τ)− 3f(9τ).

Finally, we demonstrate an example where the old and newforms are

non-trivially combined. Let D3 = 45, let ϕ3

(︂
1+

√
45

2

)︂
= 1+3i−5j+k

2
, and

IS±
ϕ2,ϕ3

= q1 + q4 − q5 − q10 − 2q11 + q13 +O(q14).

Matching coefficients gives

IS±
ϕ2,ϕ3

=
f(τ) + g(τ)

2
+R(q3),

for some power series R.
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