HECKE OPERATORS ACTING ON OPTIMAL
EMBEDDINGS IN INDEFINITE QUATERNION
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ABSTRACT. We explore a natural action of Hecke operators acting on
formal sums of optimal embeddings of real quadratic orders into Eichler
orders. By associating an optimal embedding to its root geodesic on the
corresponding Shimura curve, we can consider the signed intersection
number of pairs of embeddings. Using the Hecke operators and the in-
tersection pairing, we construct a generating series that is demonstrated
to be a classical modular form of weight two.

1. INTRODUCTION

Connecting arithmetic generating series to modular forms and L-functions
has been an important area of research in the last half century. Early results
include the work of Zagier on Hurwitz class numbers and mock modular
forms ([Zag75]), and the work of Gross-Kohnen-Zagier on heights of Heeg-
ner points ([GKZS87]). Since the 1990’s, the aim of the Kudla program has
been to investigate relationships between these two worlds.

In [DV21], Darmon and Vonk proposed a real quadratic analogue of
the difference of singular moduli, with the key ingredient being a p—adic
intersection number of closed geodesics on a Shimura curve. In [Ric21al,
arithmetic properties of these intersections were investigated, and real qua-
dratic analogues of the factorization formulas of Nm(j(7) — j(72)) (due to
Gross-Zagier in [GZ85]) were derived.

In this paper, we algebraically construct a Hecke operator, which acts
on formal sums of optimal embeddings of real quadratic orders into a fixed
Eichler order. By considering the signed intersection pairing of the corre-
sponding geodesics on the Shimura curve, we construct a formal generating

series, which is proven to be a classical modular of weight 2 for I'y(V).
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2 J. RICKARDS
2. OVERVIEW AND CONVENTIONS

From now on, fix B to be an indefinite quaternion algebra over Q of
discriminant D, and let O be an Eichler order in B of level M. For an
integer r, define

O":={z€0:nrd(z) =1},
the set of elements in O of reduced norm r.

Let Emb™(B) denote the set of embeddings of real quadratic fields into
B. Any ¢ € Emb™(B) descends to an optimal embedding of the real qua-
dratic order ¢~1(O) into O. We declare ¢ and 1) to be equivalent if there
exists € O! such that

V= ¢° = xpxr '
Denote the equivalence class of ¢ by [¢], and define ET to be the set of
equivalence classes of elements of Emb™ (B). Since O is fixed, it is omitted
in most of the notation.

Definition 2.1. Let ¢,1) € Emb*(B), and let n be a positive integer. Define
O(n) := 0"\O",
a finite set.
If n is coprime to M, the n'® weight function associated to ¢, v is defined
by
(2.1) wn(9,¥) :=[{m € O(n) : [¢"] = [¢]}].
Otherwise, define wy,(¢,1) = 0.

The weight function is independent of the choices of 7 € O(n), is well-
defined over the equivalence classes of ¢ and 1, but is not symmetric.

Definition 2.2. Let ¢ € Emb™(B), and define the Hecke operator T,, acting
on [¢] via the formula
Tl¢] = > waleh, d)[¥].
[Y]eE+
Extend the definition linearly to 7, : Z[ET] — Z[ET].

See Section [0] for a precise description of the discriminants and multi-
plicities of the terms in T,[¢] for p prime.
Fix an embedding of B in Mat(2,R), and then
[o:=O0'/{£1} C PSL(2,R)

is a discrete subgroup, which acts on the upper half plane H. The quotient

Yo := I'o\H can be given the structure of a Riemann surface, called a
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Shimura curve. Elements of E* biject with closed geodesics on Y, and
there is a well defined notion of the signed intersection number of pairs of
closed geodesics. In particular, this extends linearly to the notion of a signed

intersection number of two elements aq, as € Z[ET], which we denote by
<Oél, 062>:t € Z.

Definition 2.3. Let oy, s € Z[ET]. The signed intersection series associ-

ated to aq, as is the formal power series

(e 9]

Isil,ag <T> = Z <a17 Tna2>i qn7

n=1

where ¢ = ™7,

Let S3(I'g(n)) be the set of cusp forms on I'g(n) € PSL(2,Z), the Hecke
congruence subgroup of level n. If m | n, let Sy(T'o(n))™ "% C Sy(T'o(n))
be the forms that are new with respect to all prime divisors of m.

Theorem 2.4. We have IS;&Q € Sy(Do(DM?))Pnew,

In fact, there is a cusp form in Sy(I'o(DM))P~"*" whose coprime to M
coefficients match ISim.

Section [3| provides background results on intersection numbers. Sections
[4H[7] cover the main properties of T,,, including an alternate expression for
T.[¢], as well as showing the equivariance of T,, with respect to the signed
intersection pairing. Section [§| covers the main background on quaternionic
and classical modular forms, and the pieces are all put together in Section 9]
to prove Theorem [2.4] The paper ends in Section [I0, where we provide a few
explicit examples demonstrating the results of Theorem [2.4] (in particular,

+ ..
IS7, ., can be non-trivial).

3. INTERSECTION NUMBERS

The intersection numbers of pairs of optimal embeddings were studied
extensively in [Ric21a], and we recall a few of the basic results.

Definition 3.1. For ¢ € Emb*(B), define d = d(¢) > 0 to be the discrim-
inant of the quadratic order ¢~1(0). Let ¢4 > 1 be the fundamental unit
with positive norm in ¢~1(O).

The following proposition is classical.

Proposition 3.2. Define 5 to be the set of primitive hyperbolic elements
of To. Then the map x : Emb*(B) — T'EH given by

k(9) = 9(ea))
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is a bijection. Equivalence classes in Emb*(B) correspond to conjugacy
FPH

classes in TEH which are denoted by C'(TEX).
Proposition |3.2] allows us to switch between optimal embeddings and
primitive hyperbolic elements, depending on which is more useful at the

time.

Definition 3.3. Given ¢ € Emb*(B), let the (oriented) geodesic in H that
connects the two real roots of ¢(eqws)) be £4. This descends to a closed
geodesic on Yo, denoted by Z¢. Any lift of Z¢ to H is a path between 7 and
d(€a(p))T for some 7 € H.

The geodesic ZQL, is constant across the equivalence class [¢]. Proposition
3.4 allows the picture to be lifted from Yy to H, which will be useful to
demonstrate the Hecke-equivariance of the signed intersection pairing.

Proposition 3.4 (Proposition 1.4 of [Ric21a]). Let ¢y, ¢, € Emb*(B).
Every transverse intersection point z € Zdn M 2@ lifts to a pair (¢, ¢h) €
Emb*(B) x Emb*(B) with

(1) [¢] = [@i] fori=1,2;

(i4) Ly and Ly intersect transversely in H.

This association is unique up to the action of simultaneous conjugation by
O! on the pair (¢, d5).

Remark 3.5. In this paper, we only consider the signed intersection num-
ber. In [Ric21a], the unsigned and g—weighted intersection numbers are also
considered, and it is the g—weighted intersection that connects to the work
of Darmon-Vonk in [DV21]. Determining the nature of the intersection se-
ries for these alternate intersection functions is a worthwhile direction for

future work.

4. ATKIN-LEHNER OPERATORS

The theory of Atkin-Lehner operators acting on optimal embeddings is
much simpler than the general theory.

Definition 4.1. Let ¢ be prime with ¢¢ || DM for some e > 1. Let w € O
be any element that normalizes O. Define the Atkin-Lehner involution W,
acting on [¢] € E1 as

Wlo] == [6"],
which is independant of the choice of w. Extend the action linearly to Z[ET].
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If ¢ | D, then |O(¢)| = 1, hence T, = W,. If ¢° || M, then T, = 0, so
T, # W,. Even if we had extended the weight function definition in Equation
(2.1) to allow for ¢ | M, it would still not coincide, as |©(¢°)| > 1 in general.

Remark 4.2. The reason we take 7,, = 0 when ged(n, M) > 1 is that
it is hard to access the p' coefficient of an oldform in Sy(To(DM))P—1ew
when p | M. Furthermore, this oldform may be combined with newforms
in S3(Fy(DM)), which further muddies the waters. We do not run into this
issue with ¢ | D, as the forms we are studying are guaranteed to be new at
such ¢. See Remark for a possible resolution.

5. PRIME HECKE OPERATORS

It will be convenient to sometimes restrict to studying prime Hecke oper-
ators. In order to do so, we must show that T,, satisfy the standard recursive
formulas. As a first step, we do this for the operators 7, defined by (for

[¢] € EY)
(5.1) Tl = > [¢7]= Y walg, ¥)[¢]-
T€O(n) [Y]eE+

Aside from some minor details, this is analogous to the classical case.

Lemma 5.1. Let m,n be positive coprime integers, and let p ¥ DM be
prime. The following statements are true:
(i) Th =TT

m-n’

(1) T;kT; = T;kﬂ —i—png,c,l for all positive integers k.

Proof. If either m or n is not coprime to M, the first point is trivial. Oth-

erwise, write

U v
O(m) = U O'm;, O(n) = U O'r!.
i=1 =1
It suffices to show that the set {Olmﬂé}éjg’f:v is a valid and complete set

of representatives for ©(mn). First, if z € O™, then since m and n are
coprime and O has class number 1, we can write z = yz with nrd(y) = m,
nrd(z) = n, and y,z € O (see Theorem 2.1 of [Cha20]). Then z = u,7} for
some j and u; € O, and = = (yu1)7r;. We have yu; = upm; for some ¢ and
uy € O, whence z = upm;;. Thus we have a complete set of representatives
for O\ O™".

To show that they are all distinct, assume otherwise, so that Ol7r,-7r; =
O'mym’,. Rearranging this gives Olﬂiﬂ;w;/_l = Oy, If j = 4§/, then i = ¢

and we are done. Otherwise, let © = 7'(';-7'(';,_1; we have nrd(z) =1 and x ¢ O

since j # j'. By taking completions, there exists a prime divisor p of n such
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that x, ¢ O,. Since nrd(m;) = m is coprime to n, it is coprime to p, and
thus (mx), ¢ O,, whence mz ¢ O. But max € O'my C O, contradiction.
Therefore ¢ = i' and j = j’, as claimed.

The proof of the second point is exactly the same as for SL(2,Z), where
explicit representatives of I'g(p®)\ SL(2,7Z) can be used. O

We can use these properties of 7] to deduce them for 7T;, as well.

Proposition 5.2. Let m,n be positive coprime integers, let p + DM be
prime, let ¢ | D be prime, and let k be a positive integer. The following
statements are true:
(i) Ton = T0 Ty
(ii) Tkap = Tpk+1 +prk—1,'
(iii) Ty =Ty
Proof. 1f either m or n is not coprime to M, the first point is trivial. Oth-
erwise, Lemma [5.1| gives T [¢)] = T} (T} [¢]). Plug the definition into this
expression and match coefficients to obtain
W (16, 6) = Y wn (1, 0)wn (6, 9),
[f]eE+
for all [¢p] € ET. By expanding out T,,,,[¢] and T,,,(T,,[¢]) in a similar fashion,
this implies that they are equal, and the point follows.

The second point follows in an analogous fashion. The third point follows
from |©(¢")| = 1. O

6. ALTERNATE EXPRESSION FOR HECKE OPERATORS

We will require an alternate expression for 7},, as summing over all em-
bedding classes is not convenient. Such an expression is given in Proposition
[6.1] and the rest of this section is spent proving it.

Proposition 6.1. Let pt DM be a prime and ¢ € Emb*(B). Then
log €d 1) .
Tl6]= > 106—()[925 J-
reop) 8 CUoT)

Proposition [6.1] is also true with p replaced by an integer coprime to M,
though we will not need this level of generality.

To begin, we first shift the definition of T, to being over 7 € ©(p), and
not over [¢] € ET.

Lemma 6.2. Let pf DM be a prime and ¢ € Emb™(B). Then

wp(¢ﬂ7¢) T
Tlgl= Y 2.
ﬂ_e@(p) wp(¢7¢ )
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Proof. Recall that
Lle)= Y w(w, )]
[]eE*
It is clear that w, (¢, ¢) > 0 if and only if w,(¢, 1) > 0, so every embedding
[¢)] with non-zero coefficient must be of the form [¢7] for some © € O(p).
Thus we can rewrite 7, by summing over [¢™], making sure to divide by the
amount we overcount each [¢™]. This proves the lemma. O

By Lemma , it suffices to show that w,(¢, ™), relates to fundamental

units.

Definition 6.3. If d is a discriminant and p is a prime such that z% is not

a discriminant, we say d is p—fundamental.
The following proposition describes the behaviour of [¢™] for m € O(p).

Proposition 6.4. Let ¢ € Emb™(B) correspond to an optimal embedding
of discriminant d = d(¢). Let p be a prime with p ¥ DM, and write d =
p?*d’, where d' is a p—fundamental discriminant. Consider the multiset of
p+ 1 optimal embeddings classes corresponding to {[¢™] : m € O(p)}. This
contains

e p+1 optimal embeddings of discriminant p*d if k = 0 and (g) =—1.

e p optimal embeddings of discriminant p*d and one of discriminant
dif k=0 and (g) —0.

e p—1 optimal embeddings of discriminant p>d and two of discriminant
dif k=0 and (g) — 1.

e p optimal embeddings of discriminant p*>d and one of discriminant

4 ifk>0.

P
Let €24 = €, and the optimal embeddings of discriminant p*d divide into

T

distinct equivalence classes, each with multiplicity r.

Proof. Assume that p is odd; p = 2 is covered in Proposition[6.5] To compute
the discriminants, it suffices to work in the completion at p. In particular,
we can assume that O, = Mat(2,7Z,), ¢,(vd) = (94), and we can take the

following as representatives for ©(p):

(1 e\ . _ _(p O
Wi—(o p).z-O,l, ,p—1, 71'00—(0 1).

We compute

o™ (V) = (9 p0d> ,
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which is an optimal embedding of p?d in all cases. For i < oo,

;4=

¢m<\/c_i) — < P ) ,

P —i
If p is inert with respect to d, then % ¢ Z,, always giving discriminant
pd. If p | d, we have discriminant pd for all i # 0. When ¢ = 0, we get d
or p%, depending on if p? | d or not. Finally, if p is split with respect to d,
then precisely two values of 4 allow this to lie in Mat(2,Z,), and we get 2
embeddings of discriminant d and p — 2 of p*d. Therefore the discriminants
occur as claimed.

Next, we check when we get similar embeddings of discriminant p?d. Let

v = ¢(eg) € O, fix i, and let mv = um; for some (unique) j and u € O'.
Then

T = miom, e~ umgns e = muge T = mgm = ¢,

i.e. the resulting forms lie in the same equivalence class. We wish to show
that in the discriminant p?d case this is also essentially necessary, i.e. if

@™ ~ ¢™ are embeddings of discriminant p?d, then mv*

= um; for some
integer k and u € O
Indeed, [¢™] = [¢™] if and only if there is a u € O for which m¢m; ! =

uflegbwj_lu. Rearranging, this is equivalent to
7Tj_1u7ri¢(\/3)(7r;1u7ri)_l = ¢(\/E)

In particular, 7rj_1u7rz- normalizes qb(\/Zl), and it follows from Proposition
7.7.8 of [Voi2]] that

7Tj_1u7rz- = ¢(x + yVd) for z,y € Q.

After rearranging, this is equivalent to mj¢(x + yv/d)m; ' € O'. Taking
norms, we see that 22 — dy? = 1, whence we are done if we can show that
2z =z 4+ yvd € Oy, the order of discriminant d. Since ¢(pz) = mum; € O,
we have z € %Od, and it suffices to look at the completion at p.

In this completion, we can take the explicit forms of 7; and ¢ as above.
Thus ¢(z + yVd) = (2vd). If 4,j < oo, then

mote + /i = (710 T ez,
Py r—1y

From above, px, py € Z,, so write X = pz,Y = py. Then

plX+5Y, P —0)X+(d—1ij)Y,
and looking at the second equation modulo p, we derive

0= (j—i)(—j¥) +(d—ij)Y = (d— %)Y (mod p),
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Since we have embeddings of discriminant p?d, d — j # 0 (mod p), whence
p|Y,and so p | X, as desired.

If © = oo, then j < oo, and we have

z+jy ;
mid(x + yVdm = ( ’ yd;”) € Mat(2,Z,).

It immediately follows that y € Z,, and then = € Z, too, as desired.

Now, we see that we form equivalence classes by right multiplication by
v = ¢(€q). Thus the size of an orbit corresponds to the minimal & such that
7wk = umg, for some u € O'. Writing v¥ = ¢(X + YV/d), in the above
calculations we can take i = j (as well as repeating for i = j = o0), and it
follows that m;v* = wum; if and only if p | Y. The smallest such k is k = r,

since p | Y is equivalent to X + YD € Op2q. O

When p = 2, the above proof needs to be modified a bit. For sake of
clarity, we restate the proposition explicitly before giving the proof.

Proposition 6.5. Let ¢ € Emb™(B) correspond to an optimal embedding of
discriminant d = d(¢). Assume 24 DM, and write d = 2?*d’, where d' is a
2—fundamental discriminant. Consider the multiset of 3 optimal embeddings
classes corresponding to {[¢™] : m € ©(2)}. This contains
e 3 optimal embeddings of discriminant 4d if k =0 andd =5 (mod 8).
e 2 optimal embeddings of discriminant 4d and 1 of discriminant d if
k=0 andd=0 (mod 2).
e 1 optimal embedding of discriminant 4d and 2 of discriminant d if
k=0andd=1 (mod 8).
e 2 optimal embeddings of discriminant 4d and 1 of discriminant % if
k> 0.

Let eqq = €, and the optimal embeddings of discriminant 4d divide into

=0

distinct equivalence classes, each with multiplicity r.

Proof. We mostly mirror the proof of Proposition [6.4 We can work locally,
so that Oy = Mat(2,7Zs), and we can assume that
d—pd
_(Pa —
ol = (% ),

where py is the parity of d. We can take representatives for ©(2) as

1 4 . 20
Wi:(o 2).220,1, ﬂw:(o 1).

o= (v = (0.

—Pd

We compute
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which is an optimal embedding of discriminant 4d. For ¢ = 0, 1,
o B pd + 22 d_4pd _ pdz _ Z‘2

If d =5 (mod 8), the top right coefficient is odd for i = 0,1, whence this
is an optimal embedding of discriminant 4d. If d = 1 (mod 8), these are

optimal of discriminant d for ¢ = 0, 1. Finally, if d is even, then the top
right coefficient is d/4 — #* which is odd and even for the two choices of i.
Since all other coefficients are even, this will be an optimal embedding of
discriminant 4d for exactly one of the two choices of 7, and an embedding of
discriminant d for the other. The only way the embedding of discriminant
d is not optimal is if either 16 | d and i is even, or d = 4 (mod 16) and
i = 1. In both of these cases the embedding is optimal of discriminant d/4,
and these cases are equivalent to k > 0. Therefore the discriminants occur
as claimed.

Next, we check when we get similar embeddings of discriminant 4d. Let
v = ¢(eq) € O, fix i, and let muv = um; for some j and u € O'. As before,
@™ ~ ¢™, and we want to show that if this equation holds then mv* = ur;
for some integer k and u € O!.

As in Proposition , this rearranges to m;¢(z + y\/a)ﬂi_l =u € O! for
2 — dy? = 1, whence we are done if we
can show that z = x4+ yvd € Oy. As ¢(2z2) = mum; € O, we have z € %Od,

hence 4x, 4y € Z. Take the explicit forms of 7; and ¢ as above; in particular,

(d—pa)

_ +pay L5 )

z4+yVd) = (" 2 .
o(x +yvd) ( o 1 —pay

some rationals x,y. Taking norms, x

If i,7 € {0,1}, we can assume they are distinct, hence i = 0,j = 1, and
d =5 (mod 8) (as the embeddings have discriminant 4d). Then

z 4 d=3
Tp(x + yVd)m !t = (az IySy 2 ;—4y y) € Mat(2,Zs).

Write 4 = X and 4y =Y, and this implies that
X =Y (mod4), 2X +(d—3)Y =0 (mod 16), X? —dYy? = 16.

If X is odd, then Y is odd, hence 0 = X? —dY? =1 -5 = 4 (mod 8),
contradiction. Thus X,Y are even, and X/2 = Y/2 (mod 2). Since z =
w, this implies that z € O, as required.

If 1 =00 and j = 0,1, we have

z | (Pat2))y d—pa ;
: d -1 _ §+ 2 jl’—f—( 2 _pd]>y Mat(2. 7).
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Thus 2x,2y € Z, write 2z = X and 2y = Y, and it requires to show that
X =Yd (mod 2). But X? —dY? =4, so the conclusion follows.
The finish is exactly as in Proposition [6.4} O

We can now prove the alternate expression for 7),.

Proof of Proposition 6.1 By Lemma [6.2]

T (4] = wy(¢", 9) el
pl9] Wez@%p) —wp(qu)[ ]
Let d = d(¢), and by Proposition [6.4] the terms [¢] all have discriminant
p*d,d,d/p*.
Start with the terms having discriminant p?d. Let €24 = €}, and then
Proposition says that wy(¢, ™) = r. Similarly, w,(¢™,¢) = 1, as we
decreased the discriminant. Therefore we have

wp(¢™,¢) 1 logeq,

wy(d,¢™)  r logegigm)’
as desired.
For the terms of discriminant d, Proposition [6.4] implies that

wp(9", ¢) = wy(e, ¢7) € {1,2},

as desired.
Finally, the terms of discriminant d/p* can be handled analogously to
p?d, completing the proof. O

7. HECKE OPERATORS ACTING ON HOMOLOGY

For the rest of this paper, assume that D > 1 (see Remark for changes
to the D = 1 case). In this case, there are no cusps, and X¢ := I'o\H = Yo.
We can transfer the Hecke operators to act on homology via the association
of ¢ — £, from Definition . It is useful to switch from C[E™] to C[C(T'gH)],
which is accomplished through the bijection x from Proposition |3.2]

Definition 7.1. Let v € I'g, and denote by 27 € H(Xo,C) the image of
the geodesic between 7 and 7, which is independent of 7 € H.

Consider the map n : C[C(T'§1)] — H, (X0, C) induced by
v =Ly,
where vy € TgH.

Lemma 7.2. The elements 27 for v € TEH generate Hy(Xo,C). In partic-

ular, n is surjective.
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Proof. The lemma is clearly true if we allow all v € I'g. We may restrict to
v e Igh
are primitive, hyperbolic, and generate T'o (see [Voi09]). U

since the elements pairing the sides of a Dirichlet domain for I'g

Allowing for norm one elements that have a power in O will make our
life easier, as conjugation of elements of T by m € ©(p) will produce such
elements. To this end, we have the following definition.

Definition 7.3. Let v € B*, and assume that v" € T'g for some r € Z*.
Define

1-
é,y = ;gryr S H1<XO7(C>,
which is independent of r.

With this convention, the induced action of Hecke operators on homology

takes a particularly nice form.
Proposition 7.4. Let pt DM be a prime and let vy € TEH. Then

U(TpM) = Z Zﬂ"yﬂ'_l
TE€O(p)
Proof. By Proposition , write v = ¢(eq) for some ¢ € Emb™(B) and
d = d(¢). From Proposition ,

Z 1 1oged (167]).

T€O(p 08 Ed(d)ﬁ

For m € O(p), let d' = d(¢™). Note that e = €} for some r that is either
an integer or the reciprocal of an integer, since ¢~*(0) and (¢™) "' (O) are
orders in the same quadratic field. In particular,

¢ (€0) = mp(eg)m = (mym )",

hence

n([ﬁbw]) = Z(ﬂ"yﬂ'*l)r = TEW,YW—L
The coefficient

logeg 1
logey 7
which cancels with r, giving the result. U

In order to prove that the signed intersection pairing is Hecke-equivariant,
we shift back to the original definition of T,.

Proposition 7.5. For all positive integers n and oy, ay € C[ET], we have

<Tn0517 Oé2>:t = <O(1, Tna2>:|:



INTERSECTION SERIES 13

Proof. Tt suffices to prove this proposition for n = p f M a prime and
a; = [¢;] € Emb™(0). Write O(p) = UL, 0'm (U =11ifp|D and =p+1

otherwise), and define the set
S = {(mis,0) : 1o M b| = 1,6™ = 6%, u € O').
Use
Toldn] = wy(¥, é1) 0],
[¥]

and expand out (T},[¢1], [¢2]),. We claim that each term corresponds to an
element of S;.

By Proposition [3.4] an intersection of [¢)] with [¢s] corresponds to the
simultaneous equivalence class of the pair (¢*, ¢9) with v € O! and [£y» M
ly,| = 1. Note that w,(y), ¢1) = w,(¥?, ¢1), so for each of the w,(, P1)
values of 7 such that ™" = ¢% with u € O!, we associate the triple

(i, u, ) € Sh

to the intersection.

Since there were several choices made, we want to determine all possible
triples associated to an intersection in S7, so that we can create a bijection
with a quotient of S; by an equivalence relation. Write 7; = ¢;(€q(q,)) for i =
1,2, and then the pair (1", ¢5) is well defined up to simultaneous conjugation
by powers of r5. Furthermore, u is defined up to multiplication on the right
by powers of ry. In particular, let ki, ky € Z, write

ko

Ty ° = 0;T,

for a unique 7;» and §; € O, and define an equivalence relation on S; via
k
—1 k1 ro2
(7Ti7 u, ¢> ~S (ﬂ-i*u 5@ ury 7¢ 2 )

This relation corresponds exactly to the ambiguity described above in as-
sociating an element of Sy to (T,([#1]), [¢2]) .. Therefore

Intersections of T,[¢;] with [¢s] & Si/ ~g,.

Define Sy and the equivalence relation ~g, in the analogous fashion,
i.e. with all indices 1,2 swapped. In the exact same manner, we have that
intersections of [¢;] with T},[¢2] biject naturally with Sy/ ~g,.

Let (m;,u,¢) € Si, and let j,v be uniquely defined so that

1, _ 1
pr; U =v Ty,

where v € O!. We define the map 6 : S; — S, via

(s, u, 8)) = (m,v,¢§f ) .
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First, we check that the image lands in S5. Use the shorthand notation
(¢1,12) for “ly, and £y, intersect transversely,” and since Mdbius maps

preserve intersection,
(6,02) = (&7 04 ™) = (¢ by )
y 2 s W2 - 1, ¥2 .

Since (¢’ 1U)”J’ = ¢3, the image lands in S;. The sign of the intersection is
also preserved, since nrd(u'm;) = p > 0.

Let 0" : Sy — S; be the analogously defined map going the other way
(swap 1’s and 2’s), and it is straightforward to check that 6,6’ are inverses
to each other, whence S; bijects with S5. To complete the proposition, it
suffices to check that 6 descends to a map from S;/ ~g, to Sy/ ~g, (the
map 0" will do the same in analogous fashion).

Take the equations

—k _ _ ] e— k _
Tiry 2 = 0;ix, pru=v" Ty, pr 0 bt = 0" g,

O((m 1. 8)) = (wj,v,cb;’j ) |

_ ko o lurk2
O( (7, 9, 1u7“lfla¢r2 ) = (Tj/,U,a¢2J/ ’ ) 3

and we need to show that the right hand side of the bottom two equations
are equivalent under S5. Rearranging the above equations gives
T M =v'p(rt 0 u
=u'ry? (pr; ')
=(v'rs2v™")m;.

Therefore

ﬂilv’rI;Q k In—1 k Tf1ﬂ71U/T§2
/ j /K2, —1N\—1,./ k2 J
Tjrs U5 ¢y ~s, | T (VP ) T u'rs®, ¢y

-1
T v
— J
_<7Tjava¢2 ) )

as claimed. O

Remark 7.6. With a closer analysis, one can show that the Hecke operators
are also equivariant for the g—weighed intersection number (considered in
[Ric21a]) when ¢ | DM. If g { DM, then this may fail for the operator Tj.

8. MODULAR FORM BACKGROUND

Before delving into the proof of Theorem [2.4] we recall the relevant bits

of quaternionic and classical modular form theory.
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Our reference for quaternionic modular forms is sections 3, 5 of [DV13],
and Sections 2, 3 of |[GV1I]. For uniformity of presentation, assume that
D > 1 and B is embedded in Mat(2, R).

Forvy = (2%) € B*/{£1} and a holomorphic function f : H — C, define
the (weight two) slash operator as

(fI7)(2) = det(y)(cz + d) 7 f (v2).

Definition 8.1. A quaternionic modular form of weight 2 and level M for
B is a holomorphic function H — C such that

(fIV(z) = f(2)

for all v € T'o.
Let MZ(O) denote the space of weight two quaternionic modular forms
with respect to O, and SP(O) the subset of cusp forms. Since there are no

cusps, all quaternionic modular forms are cusp forms.

It is possible to define Hecke operators acting on quaternionic modular
forms. Integration gives the Hecke-equivariant Eichler-Shimura isomorphism
to the dual of the homology:

S5 (0) ® 83(0) = Hy(Xo,C)".
The connection to classical modular forms comes from the Hecke-equivariant
Jacquet-Langlands correspondence:

SB(O) ~ Sy(To(DM))Pmew,

In order to connect coefficients of forms in Sy(To(DM))P~" to Hecke
operators, we recall a few of the main results of Atkin and Lehner. A special
case of Theorem 3 of [AL7(] is the following proposition.

Proposition 8.2. Let f(7) = > 7 a,q" be a weight 2 newform on To(N),

n=1
normalized so that a1 = 1. Then
(i) If p is a prime with pt N, then
(@) 11T, = apf;
(b) Qnp = ana, — paynsy for alln > 1, with a,;, =0 if p{ n.
(i1) If q is a prime with ¢° || N for some e > 0, then
(a) fIWg=Aq)f, where A(q) = £1.
(b) ang = anay for alln > 1;
(¢) If e > 2, then a, = 0;
(d) If e =1, then a, = —X(q), hence f|W, = —a,f.
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Remark 8.3. In the Jacquet-Langlands correspondence, the Atkin-Lehner
operators W, for ¢ | D acting on Shimura curves in fact pick up the Eigen-
value a4, and not A(q¢) = —a, (see Theorem 1.2 of [BD96]). This is why
we did not need to negate the definition of W, = T, acting on optimal
embeddings!

We will be working with the space Sy(To(DM))P~% hence if M # 1
we also need to work with oldforms. Theorem 5 of [AL70] provides the

description of the new and oldforms, restated as follows.

Proposition 8.4. The space So(I'o(N)) has a basis which is a direct sum
of classes, which consist of newclasses and oldclasses. Fvery form in a
class has the same eigenvalues for T, with p a prime not dividing N, and
forms in different classes have distinct eigenvalues at T, for infinitely many
primes p. Each newclass consists of a single form, which is an eigenform
for all T, and W,. Each oldclass consists of a set of forms {f(dr)}, where
f € Sy(Lo(N")) for some N' dividing N properly, and d ranges over all
positive divisors of N/N'. Furthermore, any such set is an oldclass. Each

oldclass can be given an alternate basis where the forms are also eigenforms
for all W,.

While we can access the gn'® Fourier coefficients of an eigenform in
So(Fo(N)) with ¢ | IV, it requires knowing which oldclass the form belongs
to. If we have no a priori knowledge of this, then the task is less feasible.
Since Jacquet-Langlands can produces M —old forms, we treat this issue by
ignoring coefficients that are not coprime to M.

9. PROOF OF MODULARITY

Let 8 be the isomorphism from H;(Xo,C) to its dual H;(Xo,C)* in-

duced by the (nondegenerate) signed intersection pairing, i.e.

BE)W) = (¥, 94,

for 1,9 € Hi(Xo,C). The action of the Hecke operators on Hi(Xq,C)* is
given by Section 5 of [DV13]. First, let pt DM, and write

p+1

O(p) = U O'r;.

Let v € ', and multiplication on the right by v permutes ©(p). Therefore
there is a unique permutation v* of {1,2,...,p + 1} for which

T = 5a7r'y*a7
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for some ¢, € I'n. The operator T}, is given by

> (s,

T €O (p)
for f € Hi(Xo,C)*.
Similarly, if ¢° || DM, the Atkin-Lehner operator W, is given by

Wq(f)(zw) = f(€7w)7
where w € 0% normalizes O.

The composition 8 o7 is a map from C[C(T'§1)] to Hi(Xo,C)*, with
Hecke operators defined on each end.

Lemma 9.1. The map [ on is Hecke-equivariant for T, with p{ DM and
W, forq| D.

Proof. The case of W, for ¢ | D follows directly from the definitions.
Next, consider T}, for pt DM. Let o, € I'gF, and then

LBon(o@) = Y (lnls.), .
Ta €O(p)
where 7,7 = 0qTy+q.
Applying T), to [¢] first gives
B on(T(10]))(Ly) = (n(Ty[0)), n([))
= (n([o]), n(Tp[1)) +

- Z <€0’€ﬂ'a7ﬂ';1>i’
T €O(p)

where we used Propositions and [7.4] in the second and third lines re-
spectively. Thus it suffices to prove that in homology,

Z Z‘Sa: Z Zwa'ywa_l'

Ta€O(p) To€EO(p)
Consider 9, m{mv ., and note that if a;, aq, ..., a, is a sequence, then
E Csa, = Lo, 50,50, -
Decompose the permutation v* into cycles, and say (ai,as,...,a,) is one

such cycle. The intermediate terms all cancel, and we derive

r 71
5a16a2 o 5ar = Ta,V Ty

Therefore

Z&saz
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Repeat this for all cyclic shifts of (aq,as,...,a,) to derive

T T
> s =
=1 =1

Adding this up over all cycles gives the desired result. O
At last, we are ready to tackle modularity.

Proposition 9.2. Let oy, a9 € C[ET]. Then there exists a modular form
E € Sy(To(DM))P~ such that the n™ coefficient of E equals (o, Traa) .

for all n coprime to M.

Proof. By combining (5 ono k, Eichler-Shimura, and Jacquet-Langlands, we

have an Hecke-equivariant isomorphism

CIET] ~ Cle(rgh)] ~ H1(Xo,C) ~ H(Xo,C)*

D~ ———— D —new

~ SP(0) @ SF(0) ~ So(DM)PV @ So(DM) .

The eigenvalues of So(DM )Dinew are complex conjugates of the eigenvalues

of So(DM)P~me% hut since this space is fixed under Gal(Q/Q), we can pair
them up. In particular, by Proposition there exists a decomposition,

C[E+] - @m\MVma

where each V,, can be decomposed into eigenspaces corresponding to the
eigensystems for newforms on Sy(I'o(Dm)), m | M. Each eigenspace of V,,
can then be decomposed into a basis of eigenforms for all 7, with p t DM
and W, for ¢ | D.

Assume that aj,ay € C[ET] are basis elements which correspond to
Vimis Vi, Tespectively, as well as to the eigensystems Tpa; = a,0;, Wy =
aqgo; for i = 1,2. By Proposition if these are distinct eigensystems, there
exists a p { DM with a, # a;,. Then

ap <041,Oé2>i = <Tp041,042>i = (CY17TpCY2>i = a;, <a1,a2>i,
whence (a1, a2), = 0. Therefore the only way for this pairing to be non-zero
is if m; = my and a, = a;, for all p. Assume this, and for simplicity assume
that the elements are normalized so that (ay, as), = 1.

Let E correspond to the modular form with coefficients a,, and let ¢, =
(aq, Thaz) . If pt DM, then as above, ¢, = a,. If ¢ | D, then ¢, = a, follows
from Remark [8.3] Therefore, by combining Proposition [5.2] with Proposition
B.2] it follows that ¢, = a, for all n coprime to M.

The result for general «; follows from writing each element in terms
of the basis, which is orthonormal with respect to the signed intersection

number. O
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Given a modular form in So(To(DM))P~1°" we can bump up the level
to DM? to only eliminate all coefficients not coprime to M (see for example
Proposition 2.4 of [Rib80]). In particular, Theorem follows immediately
from this.

Remark 9.3. When D = 1, then we are initially working with the open
curve Yp = I'o\H. In this case, Poincaré duality (via the map ) instead
lands in the cohomology of the closed curve Xg, relative to the cusps.
Eichler-Shimura gives the isomorphism to Sy(Io(M)) @ S3(To(M)), as de-
sired.

Remark 9.4. In Section {4 we defined W, for ¢¢ || M, and most of the sub-
sequent theory still works with this operator. The difficulty comes in picking
up the coefficients a,, since the action of W, on an oldform in Sy(I'o(DM))
does not pick up a, (let alone a4 ). For example, for a newform in Sy(I'o(D)),
W, would need to act like the Hecke operator T;, acting on this space, which
does not seem viable.

One alternate way to treat this would be to also consider the superorders
O’ D O, and form a linear combination of the intersection series for all
such superorders. This would allow access to the Hecke operators acting on
So(To(Dm)) for all m | M, and may allow us to pick up all coefficients.

10. EXAMPLES

Algorithms to compute intersection numbers and the action of 7, on
optimal embeddings were implemented in PARI/GP, [PAR22]. Using these
algorithms, we produce a few examples that demonstrate that the modular
form corresponding to IS;@ can be non-trivial, does not need to be an
eigenform, and does not need to be M —new.

The labels of newforms come from LMFDB ([LME21]). The code to
generate these examples can be found in the file “intersectionseries.gp” in
the package [Ric21b].

For a first example, we consider a situation where we get a combination

of newforms, so the resulting form is not an eigenform.

Example 10.1. Let B = (%) be ramified at 5 and 7, and let O be the

maximal order spanned by {1,i, %, %} Thus D = 35, M = 1, and the
dimension of weight two newforms on I'y(35) is 3. Label the forms f,g,7,
where f is given by 35.2.a.a in LMFDB, and g is given by 35.2.a.b. The

coefficients of g are given in terms of 5 = %ﬁ, and the first few coefficients
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of f, g are given by
fr)=d"+¢ -2¢" = ¢ + 4" +0(d"),
and
9(7) = ¢' = B¢ + (=14 B)¢’ + 2+ 8)q" +¢° —4¢° = ¢" + (=4~ B)¢* + O(¢").

Take the optimal embeddings of discriminants 5, 12 given by

¢1(1+\/5>227 %(\/ﬁ):—z’—&j%@

2 2 2 2
We compute
IS5 5, =0 — ¢ —¢* + ¢+ 0(¢").

By matching the coefficients, we have

gt _ o9+
1,02 \/1—7

Next, take the optimal embedding of discriminant 173 given by

1173\ 1 —2i+27j + 10k
®3 5 = 5 :

We compute
IS}, 4, =2¢' = +3¢" +¢" —6¢° —¢" = 7¢° + O(¢"),
whence

1 51 + V17
+ Y

185, ,, = 5. (1) + =g ()

Next, consider a non-maximal Eichler order.

51 —/17_
+ 63 Y (7).
Example 10.2. Let B = (%) be ramified at 2, 7, and let O be the Eichler
order of level 3 spanned by {l,i,3j, HZ;—JM} Thus D = 14, M = 3, and
the dimensions of the space of weight two newforms on each of I'g(14) and

[p(42) is 1. Let the eigenforms be f, g respectively, so that f is given by the
label 14.2.a.a in LMFDB, and ¢ is 42.2.a.a. The first few terms are given by

£(r) :ql —q2 _2q3+q4+2q6+q7_q8+q9 —2q12 —4q13—|—0(q14),
and
g(r) = q1+q2—q3+q4—2q5—q6—q7+q8+q9—2q10—4q“—q12+6q13+0(q14).

Take the embeddings of discriminants 13,24 given by

5 (M) _lkitjtk (@) i

2 2 2

We compute

IS5 4, =—d' + @ =" — ¢ + & +4¢" + O(¢").



INTERSECTION SERIES 21

By matching the coefficients of ¢!, ¢, we have

IS5, 4, = —f(7) + R(¢°),
for some power series R. An equality of modular forms can be achieved by
bumping up the level to access f(9¢), and using this to erase all coefficients
of ¢
IS5, 4, = —f(1) —2f(37) = 3f(97).
Finally, we demonstrate an example where the old and newforms are
non-trivially combined. Let D3 = 45, let ¢3 <1+;/£> — L35tk and

2
IS;Z,% =g gt — = 0 — 2¢" + ¢+ O(g").
Matching coefficients gives

152, = L0900 iy

for some power series R.
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