THE APOLLONIAN STAIRCASE

JAMES RICKARDS

ABSTRACT. A circle of curvature n € Z7T is a part of finitely many primitive integral Apollonian circle
packings. Each such packing has a circle of minimal curvature —c¢ < 0, and we study the distribution of ¢/n
across all primitive integral packings containing a circle of curvature n. As n — oo, the distribution is shown
to tend towards a picture we name the Apollonian staircase. A consequence of the staircase is that if we
choose a random circle packing containing a circle C' of curvature n, then the probability that C is tangent
to the outermost circle tends towards 3/m. These results are found by using positive semidefinite quadratic
forms to make P!(C) a parameter space for (not necessarily integral) circle packings. Finally, we examine an
aspect of the integral theory known as spikes. When n is prime, the distribution of ¢/n is extremely smooth,

whereas when n is composite, there are certain spikes that correspond to prime divisors of n that are at

most /7.
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1. INTRODUCTION

A Descartes configuration is a set of four mutually tangent circles in the plane with disjoint interiors.
We may add to this picture by choosing three of the circles, and drawing the other circle that is also
mutually tangent to all three. By repeating this process, we get an Apollonian circle packing. If the four
initial curvatures were all integral, then every curvature in the packing is integral, and we call this an integral
Apollonian circle packing. See Figure 1 for an example of an integral packing, where the circles are labeled by
curvature. Renewed interest in integral packings came with the work of Graham, Lagarias, Mallows, Wilks,

and Yan in [GLMT03], where many fundamental properties were documented.
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FIGURE 1. Apollonian circle packing corresponding to (—7,12,17,20).

Much of the recent work on Apollonian circle packings has centred around the asymptotic behaviour of
the curvatures in an integral packing. One goal is to prove that all sufficiently large curvatures must appear
in any given packing, up to congruence restrictions modulo 24. See [BK14] and [FSZ19] for partial results
towards this conjecture. In this paper, we go in the other direction: start with a circle packing containing a
circle of a given curvature, and consider how deep in the packing this circle lies.

A related study was undertaken in the papers of Kocik ([Koc20]), and Holly ([Hol21]). Both papers use
[0,1]? as a parameter space for Apollonian circle packings (in slightly different ways), and show that the
depths of circles in these packings creates an interesting fractal. In the paper of Holly, it is also shown that
the location of the parameters in [0, 1]? determines the nature of the corresponding packing, i.e. full plane,

strip, half plane, or bounded. See their papers and Remark 2.0.5 for more detail.
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Another related paper is the work of Chaubey, Fuchs, Hines, and Stange in [CFHS19], where they find
a continued fraction expansion for complex numbers using a Super-Apollonian packing. The idea is to walk
through the circle packing via a sequence of tangency points, which is closely related to the idea of a depth
element and depth circle, as studied in Section 4.

A bounded packing has a unique circle of minimal (necessarily negative) curvature, which encloses all
other circles. Similarly, half-plane and strip packings contain one and two (respectively) circles of curvature

zero, and none of negative curvature. All integral packings are either bounded or strip.

Definition 1.0.1. Let ¢ = (a,b,¢,d) be a Descartes quadruple, i.e. four curvatures that correspond to a
Descartes configuration, where a negative curvature indicates that the interior of the circle contains the
point at infinity. If g does not generate a full plane packing, define MC(q) to be the negative of the minimal

curvature in the corresponding Apollonian circle packing. Otherwise, define MC(q) to be 0.

To study the asymptotic behaviour of MC, fix a positive integer n, and consider the integral Descartes
quadruples that contain n. Up to a reasonable definition of equivalence (Definition 2.0.3), there are finitely

many such quadruples, which are collected in the set ID(n) (“ID” being “integral Descartes”).

Definition 1.0.2. Define
MC(n) := {MC(q) : g € ID(n)}
to be the multiset of negatives of minimal curvatures of quadruples containing n. Furthermore, define
RMC(n) := MC(n)/n = {d/n: d € MC(n)}
to be the ratios of curvatures in MC(n) to n (also known as the “heights” of elements of ID(n)).

Since RMC(n) is contained in [0,1] and | ID(n)| — oo as n — 0o, we can study the limiting distribution.
It appears to converge to a distribution we call the “Apollonian staircase”; see Figure 2 for RMC(33920039)
(all data in this paper was computed using PARI/GP [PAR23]).
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F1cURE 2. Histogram for n = 33920039; 8480011 data points in 2000 bins.
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In particular, this appears to be piecewise uniform, with increasingly frequent jump discontinuities occur-
ring near 0. The different “stairs” correspond to different “depths” of the given circle in the corresponding

circle packing. In Section 7.1 we precisely describe the Apollonian staircase, and prove the following theorem.
Theorem 1.0.3. Asn — oo, the distribution RMC(n) tends to the Apollonian staircase.

In order to prove this result, we give a direct connection between Descartes quadruples and PGL(2, Z)
equivalence classes of positive semidefinite binary quadratic forms, which was also considered in Theorem
4.2 of [GLM™"03]. By considering where the principal root (Definition 3.2.1) of the quadratic form lies in
relation to the strip packing (embedded in C), we can describe the precise relationship between g and
MC(q). An application of Duke’s equidistribution theorem ([Duk88]) allows us to specialize to primitive
integral quadruples, and prove Theorem 1.0.3.

Another related phenomenon is the concept of “spikes” in the distribution, which is fully investigated in

Section 7. For example, take n = 42728555, whose distribution is found in Figure 3.
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FIGURE 3. Histogram for n = 42728555; 8480008 data points in 2000 bins.

This is a lot rougher than Figure 2, despite similar amounts of data and bin sizes. The appearance of

spikes is roughly described in the next theorem.

Theorem 1.0.4. Spikes appear in the histogram for RMC(n) for each prime p | n with p < \/n. Primes
close to \/n give rise to a small number of tall spikes, whereas primes close to 1 give rise to a large number

of short spikes.
See Section 7 for a more precise description of how spikes occur. In terms of Figure 3, n factorizes as
42728555 = 5 - 101 - 211 - 401,

all of which are primes at most 1/n, giving a wide variety of spikes. Note that the appearance of spikes does
not affect Theorem 1.0.3, since that theorem concerns bins of fixed length as n — oo. The effect of the spikes

is washed away as the cumulative frequency of each bin goes to infinity.
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Finally, Theorem 1.0.3 has an interesting numerical corollary. A circle is tangent to the outer circle in its
corresponding packing if and only if it contributes to the bottom stair of the staircase. Using the description

of the staircase, we can compute the probability that this situation occurs.

Corollary 1.0.5. Pick a quadruple q uniformly at random from ID(n). Then as n — oo, the probability
that the circle of curvature n in q is tangent to the outermost circle in its corresponding Apollonian circle

‘ 3
packing tends to =.

Remark 1.0.6. Curiously, the fraction % also appears in the work of Athreya, Cobeli, and Zaharescu in
[ACZ15]. In their paper, they fix a circle C' in an Apollonian circle packing, and consider e—neighbourhoods
of the exterior of C. It is shown that the proportion of points in the neighbourhood that lie in a circle tangent
to C tends to % as € — 0. Both questions deal with probabilities of circles being tangent in Apollonian circle
packings, but the parameter spaces are quite different. It is not obvious if the appearance of % in each place

is an accident, or there is a deeper relation between the questions.

Sections 2 and 3 precisely define the map q — pq, taking a Descartes quadruple g to a corresponding
binary quadratic form, and finally to its principal root p, € P!(C). In Section 4, the location of pg with
respect to an embedding of the strip packing is shown to determine the depth of q. Section 5 studies the
heights of quadruples having pg lying in a given part of the strip packing. In Section 6 we restrict pq to
be in the fundamental domain for PGL(2,7Z), give probabilities for the different depths of g, and examine
the distribution of heights. Finally, Section 7 considers integral Descartes quadruples, where we precisely

describe the Apollonian staircase, and finish proving the main results of the introduction.

2. THE APOLLONIAN GROUP

Given an (ordered) Descartes configuration, a “move” consists of replacing one of the four circles by the
other circle that is tangent to the remaining three. There are four possible moves, denoted S, Ss,S3,S4,

where S; corresponds to replacing the ‘" circle.

Definition 2.0.1. Let A be the group generated by the S;, called the Apollonian group. A reduced word in

A is any sequence of the S; which does not contain the same element in consecutive positions.

An element of A replaces a given Descartes configuration by another configuration in the corresponding
Apollonian packing. If the ordering of the circles is ignored, this will generate all Descartes configurations in
the packing.

Algebraically, assume we start with the Descartes quadruple g = (a, b, ¢, d), which satisfies the Descartes

equation
(2.0.1) (a4+b+c+d)?* =2(a® + b + 2 + d?).

Vieta’s formulas imply that the move S; replaces a with 2(b + ¢+ d) — a. The group elements S; can be

represented as 4 x 4 matrices, acting on the column vectors (a, b, c,d). For example,

-1 2 2 1 0 00

0 1 00 2 -1 2 2
S = and Sy =

0 010 0 10

0 0 01 0 0 1



This turns A into a subgroup of GL(4, Z). Furthermore, it is a subgroup of the orthogonal group corresponding
to the quadratic form

1 -1 -1 -1

-1 1 -1 -1

=1 o

-1 -1 -1 1
ie. WI'QpW = Qp for all W € A. Each element of A can be written uniquely as a reduced word in
51,52, 53, 54.

Since we are considering Descartes configurations/quadruples as being ordered, the orbit of a single

configuration under A does not necessarily hit every configuration in the packing. To this end, if ¢ is a

permutation of (1,2,3,4), denote by P, € GL(4,Z) the corresponding action on a Descartes quadruple.

Definition 2.0.2. Define Ay to be the group generated by the S; and the P,, which is still a subgroup of
the orthogonal group corresponding to QQp. Distinct orbits of Agy correspond to distinct Apollonian circle

packings.

In order to talk about a specific circle in a packing, we take the first circle in a quadruple to be “distin-

guished”.

Definition 2.0.3. Let A; be the subgroup of A, generated by Pa3), P24y, S4. An n—quadruple refers to
a Descartes quadruple of the form (n,a, b, c). Two n—quadruples are declared equivalent if they are in the

same Aj—orbit.

Note that any element of A; can be written uniquely as P,W, where o is a permutation of (1,2,3,4)
fixing 1, and W is a reduced word in Sy, S3, S4. In particular, quadruples in an n—quadruple class always
start with the curvature n.

In most cases, an n—quadruple class will correspond to a unique circle in the geometric picture. However,
in the strip packing, there are infinitely many circles that give rise to the same class. Similarly, in a packing
coming from (a, a, b, ¢), the two circles of curvature a correspond to the same a—quadruple class. By working
with A;—equivalence classes, we resolve the technical issues that arise from this.

Given a Descartes quadruple g corresponding to a bounded or half-plane packing, there is a unique reduced
word W € A such that Wq contains a non-positive curvature. If g corresponds to the strip packing, there

are two minimal words W, W', one for each of the two curvature zero circles.

Definition 2.0.4. Define the depth of g, d(q), to be the length of W if g is the bounded or half-plane
packing, and the multiset of lengths of W, W’ for the strip packing. If g corresponds to a full plane packing,
define §(q) = co. We say that g has depth d if d € 6(qg). In particular, strip packing quadruples have one or
two possible depths, and all other quadruples have a unique depth.

The depth of a quadruple is a basic measure for how far away it is from containing the largest circle in a

packing.

Remark 2.0.5. This is essentially the same depth as defined by Kocik in [Koc20]. In this paper, he maps an

Apollonian quadruple (a, b, ¢,d) to (% 9) € [0,1]2, where it is assumed that ¢ = max(a, b, ¢). Quadruples of

c’c
a fixed depth correspond to unions of ellipses in [0, 1]?, and this creates an interesting fractal. The analogous
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fractal is explored by Holly in [Hol21], where she maps (a, b, ¢, d) to (27 %) € [0,1)2, assuming that a < b < c.
Points inside an ellipse correspond to bounded packings, the boundary of the ellipses minus tangency points
are half-plane packings, tangency points of ellipses are strip packings, and any point not inside or on an

ellipse gives a full-plane packing.

By connecting Descartes quadruples to positive semidefinite quadratic forms, we generate a picture in

P!(C), which is analogous to the fractal from Holly and Kocik.

3. POSITIVE SEMIDEFINITE BINARY QUADRATIC FORMS

Definition 3.0.1. Let A, B,C € R be not all zero, and consider the function Q(x,y) = Az? + Bxy + Cy?,
called a binary quadratic form. It can be written as Q = [A, B, C], and has discriminant D = B? —4AC. The
form is definite (resp. semidefinite) if D < 0 (resp. D < 0), and called positive if it only takes on nonnegative
values for z,y € R. Alternatively, a definite/semidefinite form is positive if and only if A, C' > 0. Abbreviate
positive definite binary quadratic form as PDBQF, and positive semidefinite as PSDBQF. For the rest of
this paper, we will only be considering P(S)DBQF's.

A real number N is represented by @ if there exist integers x,y such that Q(x,y) = N. If there exist
coprime integers x,y with Q(z,y) = N, then we say N is properly represented by Q.
The (right) action of PGL(2,Z) on PSDBQF’s is via

b
vQ(z,y) := Q(ax + by, cx + dy), where v = (a d) .
c

This action preserves the discriminant, and divides the set of PSDBQF’s into equivalence classes.
The classical theory of PGL(2,Z) reduction of integral PDBQFs also applies to general PDBQFs. In

particular, each equivalence class has a unique reduced representative, as defined in Definition 3.0.2.
Definition 3.0.2. A PDBQF [A, B, (] is called (PGL(2,Z)—)reduced if 0 < B< A< C.
3.1. Descartes quadruples and quadratic forms.

Definition 3.1.1. A BQF quadruple is any quadruple [n, A, B,C] € R* for which [A4, B, C] is a PSDBQF
of discriminant —4n?2. It is called primitive integral if n, A, B, C' € Z have no common factor. The action of
v € PGL(2,Z) on BQF quadruples is via

v[n, A, B,C] := [n, A", B', "],
where y[4, B,C] = [A, B",C"].
The set of all BQF quadruples is thus given by
(3.1.1) B:={nABC]#0: A>0, C>0, 4n®+ B> —-4AC = 0}.

We use square brackets and capital letters to distinguish BQF quadruples from Descartes quadruples. The-
orem 4.2 of [GLM™03] furnishes the bijection between Descartes and BQF quadruples, and is recorded next
(with updated notation).



Proposition 3.1.2. Let n be a fized real number. Then n—quadruples (n,a,b,c) biject with BQF quadruples

[n, A, B, C] via the correspondence

o(n,a,b,c) :=[n,n+a,n+a+b—c,n+b,
0[n,A,B,C] :=(n,A—n,C —n,A+C — B —n).

Furthermore, primitive integral Descartes quadruples biject with primitive integral BQF quadruples.
Turning our focus to an individual circle makes the correspondence even stronger.

Proposition 3.1.3. Let n be a real number, and let q be an n—quadruple. Then the image of the A1 —orbit
of q under the map ¢ is the PGL(2,Z) orbit of ¢(q).

S:<0 1)7 T:<1 1)7 U:<1 0)7
10 0 1 0 —1

which generate PGL(2,Z). Let Q = [n, A, B, C] be a BQF quadruple, and a computation shows that

Proof. Let

0(SQ) =S4P230(Q);
0(TQ) =P34)540(Q);
0(UQ) =540(Q).
Thus the image of the PGL(2,Z) orbit of @ corresponds to the orbit of §(Q) under
(S4P23), P34)S4, Sa) = Aq.
The result follows. O

A consequence of this result is that any circle touching the circle of curvature n has a curvature that is
properly represented Q' — n, where ¢(q) = [n,Q’]. This property was first observed by Sarnak in [Sar07],
and has been crucial in the aforementioned partial results towards the local-global conjecture for integral
packings ([BK14] and [FSZ19]).

Definition 3.1.4. Let the matrix Sy be defined by

|
—_
_ O = O
o O O
_ = O O

so that
0[n, A, B,C] = (Sg[n, A, B,C]")" .

When using BQF quadruples as the parameter space, the action of the Apollonian group is via Sy 1ASy.
However, we need to consider curvatures, so we don’t want to map back to BQF quadruples at the end.
This amounts to working with the coset ASy instead. Indeed, left multiplication of a BQF quadruple @ by

WSy € ASy corresponds to WH(Q), i.e. the action of W on the corresponding Descartes quadruple.
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Lemma 3.1.5. Let Wy € ASy. Then WngWeT = Qp, where

1 0 0 0
0 0 0 -2
Q=10 0 4 o
0 -2 0 0

Proof. Write Wy = W Sy, where W € A. A computation shows that SgQgSg = @p, whence the result
follows if WQpW7T = Qp. This is true for S; for 1 < i < 4, hence is true for all of A. O

The equation WQpW7™ = Qp holding for all W € A is equivalent to AT also being a subgroup of the
orthogonal group corresponding to @p. A corollary of this lemma is that the rows of Wy obey a quadratic

relation.

Corollary 3.1.6. Let (t,u,v,w) be a row of Wy € ASy. Then
t? + 4% — duw = 1.

Proof. In general, if the matrices A, B, Q satisfy ATQA = B, then B;; = a;* Qaj, where a; is the i*® column
of A. From Lemma 3.1.5, this holds with A = W], Q = Qp, and B = Qp, and the result follows by taking
i=]. O

3.2. Principal root of a quadratic form. We have transferred Descartes quadruples to BQF quadruples,

and we now map the picture into P*(C) by taking a root of the quadratic form.

Definition 3.2.1. Let Q = [n, A, B, C] be a BQF quadruple. The function AX? + BX + C has two roots

(with multiplicity) in P*(C); we designate one root as principal via the explicit definition

—B +2m
2A

00 if A=0.

if A#£0;
pqQ =

Note that pg is the upper half plane root of the corresponding quadratic form if n > 0, and the lower
half plane root if n < 0. If n = 0, there is a unique root in P*(C).

Definition 3.2.2. Let v € PGL(2,Z). The action of v = (2 %) on z € P!(C) is defined as

ezl if det(y) = 1

‘g_tg if det(v) = —1.

vz =

This action is via the corresponding Mobius map if det(y) = 1, and the Mdbius map acting on Z otherwise.

In particular, the upper half plane is preserved by the action of PGL(2,7Z).

Proposition 3.2.3. The action of PGL(2,Z) on BQF quadruples Q commutes with the inverse action on
pQ, i-e. pyg =7 '(pq) for all v € PGL(2,Z).

Proof. Tt suffices to check this claim on the generators S,T,U of PGL(2,Z) (from Proposition 3.1.3). If
z € PY(C), then

S7le=—, T lz2=z-1, U 'lz=-z
z

9



Write Q = [n, A, B, C], and then
SQ:[TL,O,*B,AL TQ:[TL,A,B+2A,C+B+A], UQ:[H,A7*B,C]
The result follows by direct computation. (|

If n > 0, then a reduced BQF quadruple Q = [n, A, B, C] corresponds to pq living in the fundamental
region, as seen in Figure 4. Note that this is half of the classical fundamental domain for PSL(2,7Z), with the
difference due to GL: the action of U folds the right half of the classical fundamental domain onto the left.

4

-1 0 1
FIGURE 4. Fundamental domain for PGL(2,Z).

Recall the set of all BQF quadruples, B, as defined in Equation (3.1.1).
Lemma 3.2.4. The map from B/RT to P!(C) via Q — pgq is a bijection.
Proof. If A =0, then 0 < B? = —4n? < 0, whence B = n = 0. Thus

[n, A, B,C] =[0,0,0,C] ~ [0,0,0,1],

so there is a unique element that maps to co.

Otherwise, A # 0, write pg = = + 4y for unique real numbers z,y, and we have:
(3.2.1) ng, y:%, x2+y2:%
There is a unique scaling of [n, A, B, C] so that A =1, where x = —B/2, y = n. In particular, if [n,1, B, C|
and [n/,1, B, C'] are mapped to the same point, then B = B’ and n = n/. Since C' = 22 4+ y*> = C’ as well,
the map is one to one. Finally, given z,y € R, we obtain B = —2z, n = y, C = 2% 4 y?, which implies that

the map is onto, and thus a bijection. O

Combining Proposition 3.1.2 with Lemma 3.2.4 gives the following lemma.

Lemma 3.2.5. There is a bijection between Descartes quadruples up to scaling by RY and PY(C), with the

association being

q — Pé(q) = Pq-
10



Proposition 3.1.3 implies that an n—quadruple class containing q is taken to the PGL(2,Z) orbit of pq .
In particular, for n > 0, there is a unique representative of the class in the fundamental domain. For more

on this, see Section 6.

4. QUADRUPLE DEPTH

Since the depth of a quadruple, §(q), is constant upon scaling by R*, we can study the depth of Descartes
quadruples by transferring the picture to P*(C). If q generates a bounded or half-plane packing, there is a
unique shortest reduced word W such that Wq contains a non-positive curvature. If W # Id and W starts
with S, then this circle must appear in the 4 position in Wq. Otherwise, it appears in g, and can be in

any position. This motivates the following definition.

Definition 4.0.1. A depth element W is either a non-identity reduced word in A, or an integer between 1

and 4. In the latter case, we write W = Id; to refer to the depth element corresponding to the integer j.

In particular, the above construction associates a unique depth element to q. If g generates the strip
packing, then the same result holds, except there are two circles of minimal curvature, and we get two depth

elements.

Definition 4.0.2. If W is a depth element, define
Dw := {pq : W is a depth element for g} C P*(C),
which we refer to as a depth circle. For m > 0 an integer, define
Dy = {pq : m € 8(q)} C P*(C).
Note that D,, is the union of Dy, over all W with length m.

It is clear that Dy (and therefore D,,) is a closed set. The boundary of Dy consists of the set of pg € Dy
for which MC(q) = 0 (a half-plane or strip packing), and the interior consists of the set of pg € Dy for
which MC(q) > 0 (a bounded packing).

Furthermore, if W # W', then the interiors of Dy and Dy are disjoint. Any point in their intersection
corresponds to a packing containing two circles of curvature zero, which is necessarily the strip packing
(scaled). How do the regions Dy, subdivide P*(C)? Start with Dy, which is the union of Dyq, for 1 < j < 4.
Write ¢(q) = [n, A, B, C], and this respectively corresponds to the four inequalities:

(4.0.1) n<0, A-n<0, C-n<0, A+C-B-n<0.

If A=0then B=n=0and C > 0, so only the first two inequalities are true. Otherwise, dividing by A > 0
and using the expressions for z,y in Equation (3.2.1), these inequalities respectively give

(4.0.2) y<0, y>1, ®+(y—1/2°<1/4, (x+1)*+(y—1/2)><1/4.

Thus Dldj is a circle for all 1 < j < 4 (with the convention that a half-plane is a circle with infinite radius),
and the picture is depicted in Figure 5. Observe that the four circles form a Descartes configuration, a part
of the Apollonian strip packing scaled by % and positioned between the r—axis and y = 1.

Going further, consider a general Dy that starts with S;. This region is determined by the equation

(Wq); <0,
11
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Id;

b 4

FIGURE 5. Depth circles with §(q) = 0, labeled by depth element.

which takes the form —tn + uA 4+ vB + wC < 0, for the integers ¢, u, v, w defined by
Row j of WSy = (—t,u,v,w).
Assume A > 0 (A = 0 corresponds to oo, which can be added back in later), and dividing by A yields
—ty +u — 2vx + w(x? + y*) <0.

If w = 0, this gives a half-plane, whose interior must intersect with the interior of either Diq, or Dig,, a
contradiction. Therefore w # 0, divide by w, and rearrange to get

v\ 2 t\? 24+ 40? — duw 1
(4.0.3) (=~ E) + <y— 2w> <=1
where the last equality is due to Corollary 3.1.6. Since we divided by w, we must switch the inequality if
w < 0. However, this would correspond to the exterior of a circle, which is not possible since the interior
would again intersect the interior of the half-planes in Dy. Therefore w > 0, and we obtain a circle and its
interior as the solution set. Note that this also implies that ¢ > 0, as the centre needs to be in the upper half
plane.

This discussion has proven the following lemma.

Lemma 4.0.3. Let W be a depth element corresponding to the equation —tn + uA +vB + wC < 0. Then
Dy is a circle, defined by Equation (4.0.2) if W =1d;, and Equation (4.0.3) otherwise.

Definition 4.0.4. The coefficient quadruple corresponding to the depth element W is the integral quadruple

(t,u,v,w). As long as W # Id;, we have t,u, w > 0.
12



To see how these circles fit together, define D := U°_,D,,, and consider Figure 6, which depicts Dg U
D1 U Ds.

S1S3 S1S4

Sy S35y

S5S3 S5y

FIGURE 6. Depth circles with §(q) < 2, labelled by depth element.

We appear to be continuing the strip packing!

Lemma 4.0.5. Let W € A, and consider the four circles corresponding to (Wq); < 0, 1 < i < 4. Then

these circles are mutually tangent.

Proof. Tt suffices to prove that for each pair (i,7) with 1 <14 < j <4, there is a Descartes quadruple g such
that Wq has zeroes in the i*" and j*" positions. Indeed, this would imply that the circles corresponding to
(Wgq); <0 and (Wgq); < 0 share the point pg, whence they intersect. They must be tangent as otherwise,
their interiors would overlap, a contradiction.

To prove this claim, let ¢’ be the permutation of (0,0, 1,1) having zeroes in positions ¢ and j, and take
q=W-lq. O

Theorem 4.0.6. The set D, the union of all depth circles, is the strip packing scaled by %

Proof. As seen in Figure 5, Dy is the start of the strip packing scaled by % Take W to be a depth element
of length m > 0 that begins with S;. By Lemma 4.0.5, the circles corresponding to (WWgq); < 0 are mutually
tangent for 1 < i < 4. If ¢ = j, this is Dy, and if ¢ # j, this is a circle in D,/ for some m’ < m. Therefore we
are drawing the fourth circle in a Descartes configuration, where three of the circles are present in UZ:Ole.
Thus, adding in the circles in D,,, corresponds to going one level deeper in the strip packing, and we generate

the entire strip packing as m — oo. O

Remark 4.0.7. The strip packing is the analogue of the fractals of Kocik and Holly (see Remark 2.0.5). In

particular, if q is a Descartes quadruple, then g generates a

e bounded packing if and only if pg lies in the interior of a depth circle;

half-plane packing if and only if pq lies on the boundary of a unique depth circle;

strip packing if and only if pq is the tangency point of two depth circles;

full-plane packing if and only if pgq is not contained in any depth circle.
13



5. QUADRUPLE HEIGHT

Definition 5.0.1. Let g be an n—quadruple with n > 0. Define the height of g to be
MC(q
H(q) := # €[0,1).

If §(q) = 0, there are no obvious biases for where H(q) should lie in [0, 1). On the other hand, if §(q) > 0,
then there may be a layer of circles between g and the circle of smallest curvature, whence H(q) would
be somewhat small. To this end, we study the behaviour of H(q) on the sets Dy for W # Id; (which

corresponds to n < 0).

Proposition 5.0.2. Let W # 1d; be a depth element with coefficient quadruple (t,u,v,w). Then
0<H(q)<t—Vt2-1,
whenever pq € Dy .

Proof. If W =1ds, t =1 and Dy is given by y > 1. We compute
A 1
Hg=1-—=1-——,
n Y
so all heights in [0,1 — /12 — 1) are possible.
Otherwise, Dy is a circle, and ¢,w > 0. Since pq € Dy, it follows that H(q) = —tn + uAd + vB + wC,
where ¢(q) = [n, 4, B, C]. Thus

A B C w 1 v\ 2 t\?
.0.1 H = — — — D —— _ ) = _
(50.1) (a) t+un —H)n +wn Yy (41112 (ac w) (y 2w> )’

where pq = = + 4y. This is continuous with respect to = and y, and clearly hits the minimum of 0 on the

boundary of Dy . The maximal value must have x = >, whence we maximize the function

Taking the derivative and setting it to zero yields y = £+~ Z;l, and the positive root is a local maximum.

Since

t—1 t2—-1 t+1
< <
2w T 2w 2w

7

the local maximum falls inside Dy, and therefore furnishes the maximum value on Dy . Plugging in this

value into the equation for H(q) gives the result. O

A follow-up to Proposition 5.0.2 is to consider the distribution of H(q) with respect to the hyperbolic
metric, when Dy, does not touch the real line. First, an expression for the hyperbolic area of a Euclidean

circle is required.

Lemma 5.0.3. Let C be a circle in H with centre a + hi and radius r, with h > r. Then the hyperbolic area

of C is
27 (h — 1) .
2 _ 2

Proof. This is classical; see, for example, Lemma 2.2. of [Sch82]. |
14



Proposition 5.0.4. Let W be a depth element, where Dy is a circle that does not touch the real axis. Then
the values of H(q) for pqg € Dw are uniform in [0,t — /12 — 1] with respect to the hyperbolic metric on Dyy .

Proof. Tt suffices to compute the hyperbolic area of the set of points pq € Dy with H(q) >t —Vt? — 1 —¢,
and show that it grows linearly with e. To this end, using the expression for H(q) in Equation (5.0.1), this
inequality is true if and only if

2
( v)2+<y_\/t2—1+e> <€2+26\/t2—1
5 < .

5.0.2 - —
( ) w 4w?

w’? 2w

For € = 0, this is a circle of radius 0 centred at (” Y t2_1). As e grows towards t — v/t2 — 1, the centre of
the circle moves up and the radius increases, until finally we hit Dy, . In particular, the region formed is a
circle that is always contained inside Dyy .
By Lemma 5.0.3, the hyperbolic area of the circle is
27
=L,
t2—1

which proves the claim. O

Another consequence of Proposition 5.0.4 is that ¢ > 1 if and only if the circle does not touch the real

axis. This could alternatively be demonstrated by showing that S, S3, S, all fix the vector (1, -1, —1, —1)T.

Definition 5.0.5. For € € [0,¢ — v/t? — 1], define the e—circle of W to be Cf,, which is defined by Equation
(5.0.2).

Figure 7 demonstrates a few e—circles for Dg, , which has coefficient quadruple (7,4, —2,4).

e=0 615(7*\/48) e = —(7—/48)
FIGURE 7. Cg, for three values of €. The red dots indicate the centres of C§ , while the
black dots indicate the centres of Dy, .

6. FUNDAMENTAL DOMAIN DISTRIBUTION

Take Upgy, to be the fundamental domain for PGL(2,Z) as given in Figure 4, i.e. bounded by = = —%,

x = 0, and 2% + y? = 1. Let u(-) denote the hyperbolic area of a region of Hj it is well known that

w(UpcL) = §-
15



If n > 0, Lemma 3.2.5 implies that an n—quadruple class corresponds to a PGL(2,Z) orbit of a point in
H. In particular, it corresponds to a unique point in Upgr,. Thus we can produce a random n—quadruple

class by picking a point uniformly at random in Upgy, with respect to the hyperbolic metric.
Definition 6.0.1. Let n > 0 and p € H. Denote the n—quadruple corresponding to p by a(p).

The notation a(p) depends on n, but n will always be fixed, so no confusion will arise. The goal of this

section is to prove the following theorem.

Theorem 6.0.2. Let W be a depth element with coefficient quadruple (t,u,v,w), and choose a point p €
Upgr uniformly at random with respect to the hyperbolic metric. Then the probability that o(p) has depth

element W is given by

if u(Dw N Upcr) = 0;
dW = ZfW = Id?;

t
a — 1 otherwise,
v ( 21 )

3w @

where
2 ZfW = Sl,'
aw =46 ZfW = (S4Sl)k orW =05; (S4S1)k with k > 1;

12 otherwise.

Furthermore, H(o(p)) is distributed uniformly in [0,t — v/t? — 1] for p € Dw (UpcL.

Consider Figure 8, which depicts the intersections of Dy with Upgy,.

10.8

FIGURE 8. Dy UpcL.
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The structure of depth elements that intersect Upqy, is clear from Figure 8. Define the sequence of depth
elements W; by
WO:Id27 Wl :Sl7 W2:S4517 W3251S451,...,

so that W; is formed by alternately multiplying Id on the left by S; and then Sy. Then,

Wy cuts off the top part of Upgy;

W1 cuts off the rest of the left side of Upqr;

Wy, for k > 2 cut off the rest of the bottom of Upay;

All other Dyy that intersect Upqr, take the form W = W’'W,,, where k > 2 and W' € A is a reduced
word ending in S3. All such W have Dy, lying entirely within Upgr,.

The only claim that requires extra numerical justification is showing that the intersection point of Dyy,

with Dyy, ., is on the unit circle for £ > 1 (so that these circles carve out the bottom of Upar,).
Lemma 6.0.3. For k > 1, the intersection point of Dy, with Dy, lies on the unit circle.

Proof. Let the coefficient quadruple of Wy, be (tx, uk, vk, wg). If k is odd, it follows that

—t UL Vg Wi
-1 1 0 0
e R R R
—lg—1 Up—1 Wgp—1 Vg—1
If k is even, then the top row has the indices k — 1, and the bottom row has indices k.
We claim that
(ths up, v, wi) = (2(k+ 1) =1, (k + 1), —(k + 1), (k + 1)?).
This is true for k = 1, and follows by induction from multiplying the expression for WySy on the left by
either Sy or S4. In particular, by Equation (4.0.3),

1 2kt -1
kE+1" 2(k+1)2
The intersection point of Dy, with Dy, ., can be computed to be
( 2k + 3 2k2+6k+4>

2k? 4+ 6k +5 2k2+6k+5)’

which lies on the unit circle. O

the circle Dy, has centre ( ) and radius

1
2(k+1)%

We prove Theorem 6.0.2 by considering the various cases, as described above the previous lemma.

Lemma 6.0.4. Let W = W/Wy,, where k > 2 and W' € A is a reduced word ending in S3. Then Theorem
6.0.2 holds for W.

Proof. Since Dy lies entirely inside Upgyp,, the probability that a uniformly chosen point lands inside it is

1(Dw)/u(Upcr). Combining Equation (4.0.3) and Lemma 5.0.3, we compute

o t/2w B o t B
w(Dw) = 2 <\/(t/2w)2—(1/2w)2 1>_2 <t2_1 1).

Dividing by u(UpgL) = 7/6 gives the claimed probability. The distribution of H(a(p)) follows from Propo-

sition 5.0.4. 0O
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The other easy case is for W = Wj,.
Lemma 6.0.5. Theorem 6.0.2 holds for W = Wj.

Proof. We need to show that u(Dw, (Upcr) = % and the values of H(a(p)) are uniform in [0,1] with

respect to the hyperbolic metric on Dy, (| Upgr. Write p = z + iy for —% <z <0andy > 1, and from

Proposition 5.0.2, we have H(a(p)) =1 — i Thus,

Hiap) >1-coy>

0 00
1 €
—dydx = —=.
/_1/2 /1/6 y? 2

This grows linearly with e, which implies the uniform distribution. Taking € = 1 gives the claimed hyperbolic

The hyperbolic area of this region is

area of the whole region. ([l

To work with W}, for £ > 1, we show that Cf;, is divided into a number of equal parts, and thus we can

still use Proposition 5.0.4. Before doing k& > 2, we need a lemma about Mobius maps and circles.

Lemma 6.0.6. Let C be a circle in C with centre p and radius v, which does not contain the origin. Let C'
be the image of the circle under the Mobius transformation SU, where S and U are as in Proposition 3.1.3.
Write |p| = d, and let C' have centre p' and radius r'. Then

we) =ars(v), W=y 7=
Proof. The action of SU on a point is via

re?? — 1(3"0.
r

In particular, if f(C) is the furthest point from the origin on C and ¢(C) is the closest point to the origin
on C, then SU swaps f(C) and ¢(C’), as well as ¢(C) and f(C"). The centre of C’ is the midpoint of ¢(C")
and f(C"), and the radius is half of the distance between these points. A direct computation finishes the

claim. 0
Lemma 6.0.7. Theorem 6.0.2 holds for W = W}, when k > 2.

Proof. The unit circle splits Dy, into two pieces: call the upper piece R;, and the lower Rs. See Figure 9
for the picture when k& = 2.

We claim that the Mdbius map SU swaps R and Rp and preserves Cfy, . If this holds, it will swap
RiN Cjy, and Ry N Cjy, » hence the height distribution follows from Proposition 5.0.4. The final hyperbolic
area will be half of u(Dyy, ), which was computed in Lemma 6.0.4.

Since SU preserves the unit circle, sending the inside to the outside, Ry and Ry swap. The explicit

expression for Cfy, is given in Proposition 5.0.4, and adopting the notation of Lemma 6.0.6, we have

2
2 (vk)er <\/ti1+e> _ dupwy, + €2 + 2e/t3 — 1
2wy,

Wy 4w?

)

where we used Corollary 3.1.6 to simplify. The radius is given by

s E4+2e\/17 —1

= —.
4w?
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10.8

FIGURE 9. The two regions of Dyy,.

Hence
d?>—r? = Uk _ 1
Wi ’
by the computation in Lemma 6.0.3. Finally, Lemma 6.0.6 shows that the centre and radius are unchanged,

hence the circle is preserved. |
The last case is W = W.

Lemma 6.0.8. Theorem 6.0.2 holds for W = Wy.

Proof. Similarly to Lemma 6.0.7, it suffices to split Dy, into six pieces, and show that there are Mobuis
transformations that permute all six pieces while fixing Cf;, . The decomposition is provided by the unit
circle (C1), the circle Cy : (x + 1)2 4+ y? = 1, and the line C5 : z = —1/2; see Figure 10 for the labeling of
the six regions.

We are working with the coefficient quadruple (¢,u,v,w) = (7,4, -2,4), so the centre and radius of Cf,

are given by

-1 n V48 + € . €2 4 2e\/48
= — 4+ —1 rt= —
2 8 ’ 8
Start with the Mobius transformation 7-*U, which corresponds to a reflection across the line z = —1/2. It

is clear that this swaps regions R; and Rg, R and R5, R3 and Ry, as well as preserving Cjy, .

Next, consider 715, which sends C; — Cy — C3 — C;. Furthermore, it also permutes the regions by
Ry — Rs —» R3 — Ry and Ry — Rg — R4 — Ry. If it preserves C’f,Vl, we will be done, since we can combine
T18 and T~'U in an appropriate way to preserve Cjy, and send Ry to Ry for all 1 <k <6.

Since T~'U fixes Cyy,, it suffices to show that (T~'S)~1(T~'U) = S~'U = SU preserves Cfy, . This was
done in Lemma 6.0.7 for Cfy, with k > 2, and the proof still works when £k = 1. O

Combining Lemmas 6.0.4, 6.0.5, 6.0.7, and 6.0.8 completes the proof of Theorem 6.0.2.
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FIGURE 10. The six regions of Dy, .

7. INTEGRAL PACKINGS AND SPIKES

To specialize our results to integral packings, let n be a positive integer, and consider choosing a random
q € ID(n), i.e. an A;—orbit of a primitive integral Descartes quadruple starting with curvature n. As shown
in [GLM*03], this set has size h*(—4n?), the number of PGL(2,Z)—equivalence classes of PDBQFs with
discriminant —4n?2. This fact can also be deduced from Proposition 3.1.3.

Take Sy, := {pq : ¢ € ID(n)} to be the set of all principal roots of elements of ID(n), considered as a subset
of the fundamental domain Upgr,. A classic theorem of Duke ([Duk88]) says that these points equidistribute

as n — o0o. In particular, we can apply Theorem 6.0.2!

Theorem 7.0.1. Let n be a positive integer, let W be a depth element, and take dw and t as in Theorem
6.0.2. Then as n — oo, the probability that W is a depth element for a randomly chosen element of ID(n)

tends to dy . Furthermore, the heights of such elements tend to a uniform distribution on [0,t — /12 — 1].

7.1. A precise description of the Apollonian staircase. Theorem 7.0.1 immediately tells us how to
describe the Apollonian staircase, as depicted in Figures 2 and 3, hence proving Theorem 1.0.3. For each
depth element W which intersects Upgr, let (¢, u,v,w) be the corresponding coefficient triple. Then W
contributes a single “step” from 0 to t — v/#2 — 1 with height Hd/%, where dyy is as in Theorem 6.0.2. As
long as W # Ids, this is given by
aw
21
To construct the staircase, order the depth elements by ¢, and stack the stairs on top of each other, one
depth element at at time.
Explicitly, the first 6 stairs (to 10 decimal places) are given in Table 1. Note that the last two stairs have
the same value of ¢, and combine to give a “super-stair”.
While a general formula for the stairs does not seem plausible, this process allows one to exactly compute
any given stair. Note that contributions to the bottom stair (W = Ids) are from circles that are part of a
Descartes quadruple containing the minimal curvature in the packing. In other words, they are precisely the

circles that are tangent to the outermost circle. This proves Corollary 1.0.5.
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TABLE 1. The first 6 stairs.

w t | t—Vt2 -1 Height
Id, 1 0.9549296586
S1 7 1 0.0717967697 | 0.2886751346
5451 17 1 0.0294372515 | 0.3535533906
515451 31 | 0.0161332303 | 0.1936491673
S35451 |49 | 0.0102051443 | 0.2449489743
54515451 | 49 | 0.0102051443 | 0.1224744871

7.2. Spikes. Most of the results so far apply equally to integral Descartes quadruples as non-integral quadru-
ples. On the other hand, the occurrence of spikes, as seen in Figure 3, is something specific to the integral
case. The heights of the spikes relative to the bottom stair height depends on bin size, and is thus a bit
artificial. In particular, we will only talk about the approximate heights of the spikes, as opposed to a precise

description.

Definition 7.2.1. Let ¢, co be integers. The tangency number of ¢, ¢o, denoted T'(eyq, ¢2), is equal to the

number of primitive integral ¢; —quadruple classes that contain a quadruple with ¢y as a curvature.

Essentially, T'(¢1, c2) is equal to the number of primitive integral Apollonian circle packings that contain

circles of curvatures ¢; and cy that are tangent.

Definition 7.2.2. Let n be a positive integer, and let RMCgy(n) denote the multiset of ratios of minimal

curvatures to n, where we only count the bottom stair of the Apollonian staircase. In other words,
RMCy(n) := {MC(q)/n : g € ID(n) has depth element Ids}.

For each integer 0 < ¢ < n, the multiplicity of ¢/n in RMCy(n) is T'(n, —¢). When creating the histogram
for RMC(n), we group together points in small ranges, and add up the corresponding multiplicities. Spikes
will occur when a certain value of ¢ has T'(n, —c) differing greatly from its “expected value”, i.e. when there is
a large variation in the values of T'(n, —c) on the given range. Smaller bin sizes will accentuate the appearance
of spikes, whereas larger bin sizes will start to wash away their effect.

To study the expected value, we go back to ¢; and cy, where we can assume that ¢; + co > 0. Each
quadruple counted in T'(cy, ¢a) corresponds to a quadruple (¢, ¢e, a, b), which is unique up to the action by

words in Sy, P3y4), i.e.
(c1,¢2,a,b) ~ (c1,c2,a,2¢1 + 22 + 2a — b) ~ (c1,¢2,b,a).
Using the bijection ¢, this corresponds to the BQF quadruple equivalence
[c1,¢1+co,c1 +ca+a—Db,cp +a]l ~[c1,¢1+ca,—c1 —ca—a+bcg+al ~[er,e1 +co, 01+ co+b—a,cq +b)].

Write [A, B,C] = [¢c1 + c2,¢1 + ¢2 + a — b,¢1 + a], which is a primitive integral binary quadratic form of
discriminant —4c?. The equivalence is thus

[A,B,C] ~[A,~B,C] ~[A,2A - B,A+C — B],
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which gives the orbit of the group ((1) fl) for x € Z. There is a unique representative for each orbit with

0 < B < A, which proves the following lemma.

Lemma 7.2.3. Let ci+cy = A > 0. Then T(cy, ¢a) is equal to the number of integral solutions to B2 —4AC =
—4c3 with ged(A, B,C) =1 and 0 < B < A.

By analyzing these conditions further, we obtain the following characterization.

Lemma 7.2.4. For a prime p° || A, let s, = sp(e,c1) denote the number of solutions x (mod p®) to

2, .2
2> =—c? (modp®) and ptged (x, z tcl) .
e

Then

1
0 S T(Cl,CQ) — 5 H Sp S 1.
pellA

Proof. Adopting the notation of Lemma 7.2.3, B is even, so write B = 2z. The equation rearranges to

2. 2
x°+c
C= L,
A
so we have a solution (ignoring the other two conditions) if and only if 22 = —¢? (mod A). Next, we claim

that the condition ged(A,2xz,C) = 1 can be replaced by ged(A,z,C) = 1. If not, then there is a situation
where A and C are even, but x is odd. Since 2 | A | 22 + ¢, ¢; must also be odd. However 22 + ¢ = 2
(mod 4), so C' = LXC% must be odd (or not integral), contradiction.

Next, we claim that ged(A, z,C) = 1 can be deduced from x (mod A) only. To this end, assume there is
a prime p with p | ged(A, z, C). Write = p/u, where p/ = ged(z,p¢), and f > 1. We know u (mod p~/),
whence we know 22 (mod p°*/). In particular, we know 224 c? modulo p¢*!, and thus C' (mod p). Therefore
this condition does not depend on the representative of the equivalence class  (mod A).

The final condition is 0 < 2z < A. If z = 2/ is a solution to 22 = —c? (mod A), then there will be exactly
one solution to 0 < 2z < A from the equivalence classes © = +2’ (mod A). This is two distinct classes
unless £ =0 (mod A) or x = A/2 (mod A) are solutions. In particular, dividing the number of solutions z
(mod A) to 22 = —c? (mod A) and ged (A,x, IQIC%) =1 by 2 yields T(¢1, ¢2), where we undercount by 0,

1
bR or 1.

Finally, by the Chinese remainder theorem, it suffices to solve this for all prime powers dividing A, and

multiply the number of solutions together. O

To understand T'(¢q, ¢2), it suffices to understand s, for all p© || A. The generic case is when p 1 ¢1, where

it is clear that
2 ifp=1 (mod4);
Sp=41 if p® =2;
0 otherwise.

2 2
Next, if p | ¢; and e = 1, then = 0 (mod p). However, p | %, so the ged condition fails and s, = 0.

On the other hand, if p | ¢; and e = 2, then x = pz’ (mod p?) for some 0 < 2/ < p—1, and the ged condition
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becomes 22 + (¢1/p)? £ 0 (mod p). This always has p — 2, p — 1, or p solutions:

p if€:2,p||C1,pE3 (m0d4)7
p—1 ife=2and (p?|c; or p=2);

Sp =
p—2 ife=2plle,p=1 (mod 4);
0 ife=1.

This change in behaviour is enough to introduce variation in the histogram of RMCy(n), where larger primes
p induce larger variations.
The final case is p | ¢; and e > 3. It follows that z = pz’, with 2’ defined modulo p¢~!, and
@ + (c1/p)”

pe—2
2

2% = —(c1/p)* (mod p®~2) and pt

)

1

whence 2’ is counted in s,(e — 2,¢1/p). This counts solutions modulo p°~2, so going up to p°~' multiplies

the count by p. When counting s,(e — 2, ¢1/p), we have the slightly less restrictive condition of
12 2
ptged (m’,x +(C;/p) )
pe

If p | ¢1/p, then p | 2’ necessarily, whence all lifted solutions are valid. If p { ¢; /p, then we must consider the
p solutions modulo p¢~!, i.e. 2’ + kp*~2 for k = 0,1,...,p— 1. If p # 2, then exactly one of these fails to lift.
If p =2, then s,(e — 2,¢1/p) = 0 unless e = 3, and it can be seen that both solutions lift. In particular, if
e >3 and p | ¢1, then
psp(e —2,¢1/p) if p=2orp?|ei;
sple,c1) =

(p—1Dsp(e—2,c1/p) ifpisoddand p|| .

By inducting and considering the various cases, it can be shown that

Lemma 7.2.5. Assume that p’ || c;. If p is odd, then

2(p—1y=0)p/™t ife>2f+1andp=1 (mod 4);
0 ife>2f+1andp=3 (mod4);
(p—2)pf~t ife=2f andp=1 (mod 4);
sple,c1) =
p! ife=2f andp=3 (mod 4);
(p— 1)p/2~1 ife <2f and e is even;
0 if e <2f and e is odd.
If p=2, then
0 ife>2f +2;
2f ife=2f+1;
sa(e,c1) =
2¢/2=1 ife < 2f and e is even;
0 if e <2f and e is odd.

The main takeaway is that for s,(e,ci1) to be larger than normal, we must have e > 2 and f > 1.
Furthermore, the size of s,(e,c1) is approximately p?in(e/2.f) when it is non-zero. Specializing back to

RMC(n), we obtain the following theorem.
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Theorem 7.2.6. Let n be a positive integer. Spikes occur in the histogram of RMCy(n) (and RMC(n)) for
each prime p < \/n that divides n. These spikes occur near < where 0 < ¢ < n—1 is an integer with p? | n—c,

and larger values of p give larger spikes.

Proof. A spike occurs near < when T'(n, —c) is larger than normal. Lemma 7.2.4 implies that this happens
when a value of s, is large, for some p | n — ¢. Lemma 7.2.5 implies that p | n and p? | n — ¢, hence
n > ¢+ p? > p?. The lemma also implies that larger p gives larger spikes, since the value of s, grows as a

power of p. O

If n is prime, then it has no prime divisors at most y/n, so by Theorem 7.2.6, there are no spikes! An
example of this was already seen in Figure 2, where the histogram was very smooth.

The effect of small prime powers is low for two reasons: they create the least variation, and the bin size
required to make a good histogram ends up grouping enough terms together. In turn, this creates more of a

fuzzy effect, as opposed to isolated spikes. See Figure 11 for the example of n =2-3-5-1110023.

I
o0

Relative Frequency
o o
=~ N

e
[

0 0.2 0.4 0.6 0.8 1
RMCQ(TL)

F1Gure 11. Histogram for n = 33300690; 8479975 data points in 2000 bins.

Finally, consider n = 26516187 = 33 - 9912, as depicted in Figure 12. Large spikes occur near 1 — 5,

corresponding to
9912 | n — (27 — ¢;)991% = ¢;9912.
However, we note that these spikes do not occur for each value of ¢;, namely they occur when

¢; €{1,2,5,9,10,13,17,18,25,26}.

Furthermore, when ¢; € {1,2}, the spikes are about half the size! This is explained fully by Lemmas 7.2.4
and 7.2.5: the 9912 causes sgg; to be abnormally large, but prime powers that divide ¢; also contribute to
the extra height. When ¢; € {1,2}, this is an extra factor of 1, whereas the other ¢; give an extra factor
of 2, explaining the height difference. The values of ¢; not listed all had a prime factor with s, = 0, which

completely nullified the corresponding spike.
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