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Exceptional points (EP) are non-Hermitian degeneracies where both eigenvalues and their 
corresponding eigenvectors coalesce [1-4]. Recently, EPs have attracted attention as a means 
to enhance the responsivity of sensors, via the abrupt resonant detuning occurring in their 
proximity [5-20]. In many cases, however, the EP implementation is accompanied by noise 
enhancement leading to the degradation of sensor’s performance [15-20]. The excess noise 
can be of fundamental nature (due to the eigenbasis collapse) or of technical nature 
associated with the amplification mechanisms utilized for the realization of EPs. Here we 
show, using an EP-based 𝓟𝓣-symmetric [21,22] electromechanical accelerometer, that the 
enhanced technical noise can be surpassed by the enhanced responsivity to applied 
accelerations. The noise due to eigenbasis collapse is mitigated by exploiting the detuning 
from a transmission peak degeneracy (TPD) – which forms when the sensor is weakly 
coupled to transmission lines – as a sensitivity measurant. These TPDs occur at a frequency 
and controlled parameters for which the bi-orthogonal eigen-basis is still complete and are 
distinct from the EPs of the 𝓟𝓣-sensor. Our device demonstrates a three-fold signal-to-noise 
ratio enhancement compared to configurations for which the system operates away from the 
TPD. 
 
In the proximity of an 𝑁 −th order EP, the degenerate resonances of an open (non-Hermitian) 
system abide to Puiseux generalized expansions leading to a sublinear resonance detuning Δ𝑓 ≡
|𝑓 − 𝑓!"| ∼ 𝜀#/% with respect to the perturbation strength 𝜀 imposed to the system by the presence 
of a perturbing agent. Obviously, in the small perturbation limit this sublinear response signifies 
an enhanced sensing as compared to a linear response, i.e. Δ𝑓 ∼ 𝜀 ≪ 𝜀#/%, utilized by many 
sensing schemes that rely on Hermitian degeneracies [23-26]. In fact, the proposed EP-based 
protocols have additional advantages compared to other sensor schemes (e.g. slow light) whose 
operational principle relies on abrupt intensity variations of the measured signal. These types of 
sensors turned out to be extremely sensitive at the expense of their dynamic range [27,28] i.e. the 
ratio between the maximum and the minimum perturbation that a sensor can measure. 

While increased sensor responsivity has been demonstrated in several EP-based sensors 
[6-10,12,17], the signal-to-noise performance has been controversially debated in recent 
theoretical studies [13-16,19,20]. Obviously, it is imperative to confront these disagreements via 
a direct experimental investigation of the effects of noise in EP-sensor performance and identify 
platforms and conditions (if any) under which they demonstrate superior performance. Currently, 
the only experiment that has analyzed the effects of noise in the EP-sensitivity (precision of a 
sensor) has utilized a Brillouin ring laser gyroscope platform [17,18]. Unfortunately, the 
conclusions of this study were discouraging as far as the performance of EP-sensing is concerned: 
the expected boost in responsivity of the gyroscope turned out to be limited by a broadening of the 
two laser linewidths due to enhanced noise effects associated with the collapse of the eigenmodes.  



Here, we show experimentally and theoretically a ten-fold enhancement in responsivity to 
small perturbations and a three-fold signal-to-noise ratio (SNR) improvement in the sensing 
performance of an EP-based 𝒫𝒯-symmetric electro-mechanical accelerometer (see Fig. 1a). Our 
measuring protocol differs from the previous cases which were analyzing the lasing modes 
detuning of a system in the proximity to an EP. Instead, ours relies on a distinction between EPs 
and the transmission peak degeneracies (TPD) observed in the transmission spectrum of the 𝒫𝒯-
symmetric sensor when it is interrogated via weakly coupled transmission lines (TL). This fact has 
been already recognized in a previous theoretical work [29] for the analogous concept of 
transmission dips. We point out that in the absence of loss/gain, these transmission dips (or peaks 
in our case) and their associated degenerate point are related to the newly established concept of 
reflectionless scattering modes (RSM) which might exhibit an EP degeneracy [30,31]. 
Nevertheless, the transmission dips (peaks) and their associated TPD in the case of 𝒫𝒯-symmetric 
systems are not directly related to the RSM exceptional points.  

The transmission peaks frequency detuning from the TPD is influenced by the underlying 
EP and follows a square-root behavior with respect to the applied acceleration 𝑎. Furthermore, at 
TPD, the eigenbasis is still complete; thus, the performance of the sensor is not influenced by 
excess noise effects that might be rooted to the eigenbasis collapse. The latter has been related, in 
the platform of Ref. [18], with the so-called Petermann factor (𝑃𝐹) which diverges in the proximity 
of an EP, while at TPD it remains finite and smaller than the sensitivity enhancement factor 𝑆𝐸𝐹 
(compare blue and green lines in Fig. 1b) which measures the responsivity of the system to 
acceleration variations (see Supplementary Material). Our theoretical analysis indicates that 𝑃𝐹 is 
directly proportional to the technical noise due to the coupling with the TL and the noise generated 
by the gain/loss elements used to create the EP-singularity. The corresponding noise enhancement 
factors 𝑁𝐸𝐹&' , 𝑁𝐸𝐹"&, describing the noise power enhancements (see Supplementary Material), 
remain finite in the proximity of the TPD and are surpassed by the SEF of the transmission peaks 
detuning near the TPD (see brown and red lines in Fig. 1b).  

 
Experimental setup - The sensor consists of a pair of capacitively coupled parity-time (𝒫𝒯) 
symmetric RLC resonators [21] with natural frequency 𝑓( =

#
)*

#
√',

≈ 	2.68𝑀𝐻𝑧 and capacitive 
coupling 𝐶-. One capacitor plate of the coupling capacitor is connected to a test-mass 𝑚 which is 
supported by a spring attached to the platform (see Fig. 1c and Methods) and its displacement from 
an initial equilibrium position is used for sensing acceleration variations. The 𝒫𝒯-symmetry 
condition is achieved when the gain (−𝑅), implemented using an amplifier, and loss (𝑅) 
parameters are balanced, and the reactive components, 𝐿 and 𝐶, satisfy mirror symmetry [21]. 
When the capacitive coupling is above a critical value 𝐶-!", the system is in the so-called exact 
phase where the normal modes are also eigenvectors of the	𝒫𝒯-symmetric operator and the two 
eigenfrequencies are real-valued. In the opposite limit (small coupling) the system is in the broken 
phase where the normal modes are no longer eigenmodes of the 𝒫𝒯-symmetric operator while the 
eigenfrequencies are complex conjugates. The two phases are separated by an EP degeneracy of 
order 𝑁 = 2 [22].  

We have weakly coupled each RLC resonator to 𝑍 = 50 Ohm TLs via capacitors 𝐶.. In the 
density plot shown in Fig. 2a, we report the measured (normalized) transmittance spectrum 𝑇(𝑓; 𝑎) 
versus the applied differential in-plane acceleration 𝑎. At 𝑎 = 0 the transmission spectrum 
demonstrates a transmission peak degeneracy (TPD) which reflects the nearby EP degeneracy of 
the eigenfrequencies of the isolated system (corresponding to 𝐶. = 0). The system is initially set 



at TPD conditions with the coupling capacitor plates being at a distance 𝑑 ≈ 	20𝜇𝑚 from one 
another corresponding to 𝐶-&"/ ≈ 	50𝑝𝐹. An applied differential in-plane acceleration 𝑎 displace 
the test-mass to a new equilibrium position, leading to a capacitive coupling detuning from 𝐶-&"/ 
and the concomitant formation of two equi-height transmittance peaks which bifurcate from the 
TPD following a characteristic square-root behavior, see dashed green lines in Fig. 2a and Eq. (1) 
below. The weak coupling with the TLs, together with the active nature of our platform is reflected 
in the high intensity value of the transmittance peaks and in the narrow form of the linewidths 
(confined dark red area). These attributes enhance the readout and boost the sensing resolution, 
allowing us to identify the trajectories of the transmission peaks. Finally, the highlighted gray area 
indicates the displacement values of the capacitor plates for which saturable nonlinearities are 
triggered. 
 
Sensitivity Analysis - Using a Coupled Mode Theory (CMT) (see Methods and Supplementary 
Material), we derived a scattering matrix 𝑆 that models the physical system and evaluated the 
transmittance spectrum 𝑇(𝑓; 𝑎) = |𝑆)#|). A comparison of the measurements (Fig. 2a) with the 

CMT results (Fig. 2b) allowed us to extract the parameter 𝛾. ≡ 𝑍M,
'
N,!
,
O
)
𝑓( = 0.0206𝑀𝐻𝑧	that 

model the coupling of the circuit to the TLs and the gain/loss parameter 𝛾( ≡ 𝑅0#M'
,
𝑓(=0.16MHz 

describing the amplifier/resistor used in the 𝒫𝒯-symmetric circuit. The CMT predictions for the 
frequencies 𝑓±(𝜖) of the transmittance peaks (green dashed lines in Figs. 2a,b) are 

𝑓±(𝜖) = Q𝑓( − 𝜖 ± S2𝛾(𝜖 + 𝜖
) − 𝛾.), 	for		𝜖 ≥ 𝜖&"/
𝑓( − 𝜖, 	for		𝜖 ≤ 𝜖&"/

;        (1)	

where the CMT parameter 𝜖 = 𝜖&"/ + 0.0082[𝑀𝐻𝑧/𝑔] ⋅ 𝑎 models the coupling detuning due to 
acceleration and 𝜖&"/ 	= 	−𝛾( +S𝛾() + 𝛾.) ≠ 𝜖!" = 0. Instead, we have that 𝜖&"/ ≈
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2!→	(
⎯̀⎯b 𝜖!" = 0 as expected. Accordingly, the TPD frequency is 𝑓&"/ ≡ 	𝑓(𝜖 = 𝜖&"/) = 𝑓0 = 𝑓5 =

𝑓( − 𝜖&"/ 2!→	(
⎯̀⎯b 𝑓!" = 𝑓(. Near 𝜖&"/ , the transmission peak frequencies Eq. (1) scale as  

𝑓± ∝ 	𝑓&"/ ± √2M𝛾() + 𝛾.)
$

⋅ √𝛿𝜖; 	provided	that	𝛿𝜖 ≪ 	2M𝛾() + 𝛾.); 							(2)	

where 𝛿𝜖 ≡ 		𝜖 − 𝜖&"/. The square-root transmission peak frequency splitting Eq. (2) reflects the 
EP degeneracy of the eigenfrequencies 𝑓±

(()(𝜖	 = 0) = 𝑓!" = 𝑓( of the isolated system (e.g. 𝛾. =
0) whose functional dependence on 𝜖 is given by Eqs. (1,2) by substituting 𝛾. = 0. The presence 
of 𝛾. results in a slight enhancement of the detuning rate of 𝑓± as compared to the detuning rate of 
the resonant modes 𝑓±

(() (blue lines in Figs. 2a,b). 
The resolvability of the transmission peaks is bounded by their linewidth Γ (see Methods). 

The CMT predictions for the linewidth Γ(𝜖) are shown in the lower subfigure Fig. 2c together with 
the measurements which have been evaluated as the half-width at half-maximum at the 
transmission peak. Although Γ(𝜖) remains essentially constant Γ(𝜖) ≈ 𝛾. at the parameter range 
where our experiment is operating, we can identify a slight increase at the proximity of 𝜖&"/ where 
Γ(𝜖 = 𝜖&"/) = √2𝛾. indicating that the coupling of the circuit with the leads dictates the minimum 



measured uncertainty. We conclude that the uncertainty in the frequency splitting measurements 
in the proximity of the TPD is only slightly enhanced due to the linewidth increase [32].  

The measurement of an individual frequency shift is the most common sensing scheme for 
(micro)electromechanical sensors [33-35]. However, a considerable advantage is obtained by 
measuring the frequency splitting since it is intrinsically self-referenced i.e., there is no need for 
an external reference to suppress or eliminate frequency drift associated with other sources. From 
Eq. (2) we have that Δ𝑓 ≡ 	𝑓5 − 𝑓0 ∝ √𝛿𝜖, see Fig. 2d. In case of weak coupling to the TLs the 
upper limit of the sublinear sensing is predominantly controlled by 𝛾(, see Eq. (2), while the extent 
of the sublinear domain is bounded by nonlinear capacitance effects occurring at small distances 
between the plates of the capacitor. Even with these limitations, our platform demonstrates an 
order of magnitude enhancement of dynamic range, as compared to conventional linear sensors 
with the same upper bound of dynamical range (see red double-side arrow in the inset of Fig. 2d). 
To further quantify the efficiency of our proposed accelerometer, we have introduced the 
sensitivity 𝜒	 = 𝜕(Δ	𝑓/𝑓()/𝜕𝑎 which in the proximity of the TPD demonstrates an ∼ 	1/√𝑎 
divergence, see Fig. 2e. A comparison with the conventional linear sensor reveals a one-order 
sensitivity improvement (red double-arrow). 
 
Noise Analysis - Enhanced frequency splitting is an important aspect of efficient sensing as it 
guarantees an enhanced transduction coefficient from the input quantity of interest (e.g., the 
differential acceleration) to the output quantity (e.g., Δ𝑓). Another aspect of an efficient sensing is 
the precision of the measurement, which is dictated by the noise of the sensor output, and it is 
associated with the smallest measurable change of the input quantity. A cumulative quantification 
of the noise effects on the measured frequency splitting Δ𝑓, is obtained by the Allan deviation 
[36,37] 𝜎89 for various values of applied differential in-plane acceleration 𝑎 (see Methods). The 
Allan deviation describes the stability of the sensor as a function of the sampling time 𝜏. We find 
that 𝜎89, increases as the applied acceleration 𝑎 approaches zero, i.e., in the domain where the 
transmission peak splitting has a square-root response. In contrast, at the domain where the 
frequency splitting exhibits a linear sensitivity (𝑎 ≥ 0.5	𝑔) the Allan deviation 𝜎89 remains almost 
unchanged (compare dark blue solid line and magenta dash line in Fig. 3a). Such behavior indicates 
that the noise is enhanced at the vicinity of 𝑎 = 0 𝑔 (where 𝜖 = 𝜖&"/) (see red arrow in Fig. 3a). 

A more appropriate characterization of sensor’s performance requires the analysis of the 
normalized Allan Deviation 𝜎: = 𝜎89/𝜒. Such analysis provides an estimate of the total noise 
effect on the measured acceleration. Of particular interest is its short-time behavior which exhibits 
velocity random walk behavior 𝜎;<=(𝜏) = 𝛼%!> ⋅ 𝜏0#/). We have found that the noise-equivalent 
acceleration (NEA) 𝛼%!> decreases from 𝛼%!> = 0.0027𝑔 ⋅ 𝐻𝑧0#/) at 𝑎 = 1.66𝑔 to a limiting 
value 𝛼%!> = 0.00086𝑔 ⋅ 	𝐻𝑧0#/), at	𝑎 = 0.01𝑔, see Fig. 3b, indicate that there is a three-fold 
signal-to-noise-ratio (SNR) improvement at the vicinity of TPD.  

The 𝛼%!> can be further expressed as a sum of various terms associated with different noise 
sources that might affect the precision of the measurements. Specifically, we have:	

𝛼%!>) (𝜖) ≡ 𝛼?@) + 𝛼&') + 𝛼𝒫𝒯) + 𝛼CDD) , vunits	of	𝑔 ⋅ 𝐻𝑧0
#
)z.										(3)	

The thermal noise equivalent acceleration 𝛼?@ arises from a thermal Brownian motion of the test-
mass. Its reduction is fundamental in minimizing 𝛼%!> towards its standard quantum limit 
corresponding to the position uncertainty in the quantum ground state of the mechanical mass. 
Typically, it is overrun by the other terms in Eq. (3): the thermal noise of the TLs (𝛼&'); the 𝒫𝒯-



circuit noise (𝛼𝒫𝒯) produced by the gain-loss elements of the platform; and the added noise (𝛼CDD) 
associated with the fluctuations due to the Brownian motion of the plates of the coupling capacitors 
𝐶-) and 𝐶E and the thermal noise produced from the movement of various mechanical parts of the 
experimental setup. Both 𝛼?@ and 𝛼CDD are not associated with parameters of the 𝒫𝒯-symmetric 
circuit itself and thus, do not depend on 𝜖 (see Methods and Supplementary Materials). 

One can further understand the demonstrated sensing efficiency by realizing that 𝛼𝒫𝒯 ≡
𝜎|𝒫𝒯/𝜒 and 𝛼&' ≡ 𝜎|&'/𝜒 (𝜎|𝒫𝒯 and 𝜎|&' are the spectral densities of variances in the acceleration 
measurements due to noise sources associated with the amplification/attenuation elements of the 
isolated circuit and with the TLs respectively). These spectral densities are proportional to the 
linewidth Γ and to the noise enhancement factors associated with the corresponding noise sources 
while they are inverse proportional to the transmitted signal through the electronic circuit (see 
Supplementary Material). The theoretical analysis based on CMT indicates that both 𝜎|𝒫𝒯 and 𝜎|&' 
do not experience strong variations with respect to 𝜖 and both saturate to a finite value at 𝜖 = 𝜖&"/. 
Since 𝜒 diverges at 𝜖&"/ (green line in Fig. 1b), the NEA will decrease as 𝜖 → 𝜖&"/ towards its 
noise floor level 𝛼%!>) (𝜖 → 𝜖&") → 		 𝛼?@) 		+ 𝛼CDD) . To appreciate further the enhancement of SNR 
in the proximity of the 𝜖&"/ we have normalized NEA with respect to its value at large 
accelerations e.g. 𝑎 = 0.8𝑔. The normalized data (black circles) are shown in Fig. 3c and 
demonstrate a three-fold noise reduction in the proximity of TPD. The CMT results are indicated 
in Fig. 3c with a black solid line. Furthermore, the CMT analysis shows that the noise associated 
with the TL coupling and gain/loss elements used to create the sensor singularity are equivalent to 
voltage (or current) noise sources in the circuit. These are physically distinct from the 
parametrically coupled signal transduction sensing mechanism, and are transformed differently by 
the transmission singularity, toward a favorable SNR.  

We conclude that in the specific case of accelerometers the lower limit of NEA is dictated 
by the Brownian motion of the test-mass and the capacitor plates which scales proportionally to 
the sensitivity 𝜒. We stress that the Brownian motion has to be modeled as a fluctuation of the 
Hamiltonian matrix elements (i.e., coupling coefficient) while the electronic thermal noise due to 
amplifiers, resistors and TLs is described by additive stochastic Langevin terms in the Hamiltonian 
matrix. The electronic thermal noise does not scale with 𝜒; it rather abides to a noise-specific 
transfer function which in the case of the 𝒫𝒯-symmetric circuit is proportional to the 𝑃𝐹. 
Therefore, whenever the sensitivity 𝜒 overwhelms the noise-specific transfer function, the limiting 
value of 𝛼%!> is the same for any sensing (linear or sub-linear) scheme. An example of a linear 
response (LR) sensing protocol that demonstrates extreme sensitivity is associated with slow light 
sensors, utilizing high-Q resonant modes like the ones occurring at the band-edges of a Fiber Bragg 
grating (FBG) [27,28]. Such sensors rely on the abrupt intensity variations of the transmission of 
a CW when a perturbation (e.g., stress) modifies the effective refractive index of the FBG, thus 
inducing a spectral shift of the high-Q Lorentzian resonance. This enhanced sensitivity is offset by 
an extremely short dynamic range that these sensors demonstrate: while the large sensitivity 𝜒 
leads to a reduction of the lower sensing bound by minimizing the NEA, it simultaneously lowers 
the upper sensing bound, which is typically limited by the maximum measured signal that the 
sensor can output. In contrast, the enhanced sensitivity demonstrated by the TPD sensing scheme 
reduces the lower sensing bound, while not affecting the upper sensing bound of the measured 
accelerations. Additionally, in LR sensors the high sensitivity is inversely proportional to the 
mechanical resonant frequency of the test-mass 𝑓F. The value of 𝑓F dictates the operational 
bandwidth of the sensor - if the frequency of the applied acceleration signal exceeds the 𝑓F this 
signal will not be detected by the sensor. As a result, the high sensitivity of a LR sensor also comes 



at a cost of its bandwidth. Based on these key figures of merits, the performance of our proposed 
TPD-based proof-of-concept accelerometer compares favorably with the available on-market on-
chip accelerometers such as NXP MMA1270KEG [39]. For example, they both demonstrate an 
𝛼%!> = 0.00086𝑔 ⋅ 𝐻𝑧0#/), for a measurement range up to (≥ 	2)	𝑔, while our prototype has a 
6.5 times larger operational bandwidth. 

An alternative way to reach the ultimate bound of the SNR of a LR sensor is by increasing 
the power of the input signal to ̀ `infinite" levels. This is practically challenging – if not impossible. 
In our case, a finite power consumption enhancement is automatically taking place when the 
system operates near the TPD. It is therefore imperative to also take this effect into consideration 
when comparing the efficiency of a sensor. This point has been recently raised in Ref. [38] which 
introduced an additional Figure of Merit (FOM) that takes into consideration the consumed power 
𝑃 used for the sensing. We express FOM in terms of 𝛼%!>  as 𝐹𝑂𝑀 = (𝛼%!>) 𝑃)0# and plot in Fig. 
3c the rescaled FOM (with the value 𝐹𝑂𝑀(𝑎 = 	0.8𝑔) extracted from the CMT (red solid line) 
and the experiment (red crosses) using the measured 𝛼%!>. The analysis indicates an improved 
FOM of the 𝒫𝒯-symmetric sensor in the proximity of TPD.  
 
Conclusions - We have studied the sensing performance of a 𝒫𝒯-symmetric electromechanical 
accelerometer at the proximity to a transmission peak degeneracy (TPD) influenced by the 
presence of an underlying EP in the resonant spectrum. The TPDs occur at distinct parameter 
values from the EP, ensuring a completeness of the eigenbasis. At the vicinity of TPDs, we 
measured a three-fold SNR enhancement. Our TPD measurant protocol shows promise for the use 
of EP-based platforms for enhanced avionic sensors, microfluid flow sensors, pressure sensors, 
magnetometers, etc. Exciting future research directions include the ramifications of nonlinearities 
in EP-sensing performance, or the identification of physical platforms and measurant protocols 
where the various platform-dependent noise sources scale in such a way that the SNR is not 
overruled by noise.  
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Figure 1: 𝓟𝓣-symmetric platform for enhanced acceleration sensing. a, Schematic of the 𝒫𝒯-
symmetric electromechanical sensor. The 𝒫𝒯-symmetric circuit is capacitively coupled to the 
transmission lines with a capacitor 𝐶.. The two circuit tanks are coupled together with a variable 
capacitor 𝐶- with one plate connected to a test mass that senses the acceleration. b, The behavior 
of the sensitivity enhancement factor 𝑆𝐸𝐹 (green line), Petermann factor 𝑃𝐹 (blue line), and of 
noise enhancement factors associated with the 𝒫𝒯-symmetric components of the circuit 𝑁𝐸𝐹𝒫𝒯 
(dark red dotted line) and the transmission line 𝑁𝐸𝐹&' as a function of the applied acceleration 𝑎 
(magenta dotted line). The black vertical lines indicate the TPD (solid), EP (dotted) and LP 
(dashed) points. The highlighted domain indicates the accelerations which are not captured by the 
experimental platform. c, The actual acceleration sensing platform utilizes a micro-fabricated 
coupling capacitor which is connected to the test-mass used to sense the applied acceleration. 
 
 
 
 
 
 
 
 
 
 

10-4 10-3 10-2
Acceleration, a (a.u.)

10-1

100

101

R
-RC

C L
L

Ce
Ce

Cc
TPDEPLP

!

a b

c



Figure 2: Experimentally measured response of the sensor to applied acceleration. a, Density 
plot of the measured normalized transmittance spectrum versus acceleration 𝑎 (top 𝑥-axis). The 
bottom 𝑥-axis indicates the associated capacitance variation 𝜖(𝑎). The trajectory of the 
transmittance peaks is indicated with green dashed lines. At the proximity of the TPD the peaks 
demonstrate a square-root behavior, see Eqs.(1,2). The trajectories of the eigenfrequencies of the 
isolated dimer are shown by dark blue lines. They coalesce at 𝜖 = 0 (EP degeneracy). The 
highlighted gray area is excluded from our measurements. In this domain, saturable nonlinearities 
are triggered. b, The same as in a for the transmittance spectrum calculated using a CMT. c, (Top) 
The transmission peak versus the capacitance variation 𝜖(𝑎). The red line indicates the CMT 
predictions while the dotted light blue line is the measured data. The inset presents the same data 
in a double-logarithmic fashion referring to the capacitance variations with respect to the lasing 
point. The dashed and dotted black lines indicate a logarithmic slope of −1 and −2. (Bottom) The 
behavior of half-width-half-maximum linewidth Γ versus 𝜖 in the proximity of the TPD. The red 
(dotted light blue) line indicates the CMT (experimental) results. d, The measured relative 
transmission peak splitting Δ𝑓/𝑓( versus the applied differential acceleration 𝑎 plotted in double-
logarithmic plot. The dotted (dashed) black line indicates a square-root (linear) scaling with 𝑎. 
Inset shows the same data in linear plot. The red arrow shows the dynamical range enhancement 
of the proposed accelerometer with respect to an equivalent sensor based on linear response. e, 
The sensitivity of the 𝒫𝒯-symmetric accelerometer demonstrating an order (red arrow) 
enhancement in the proximity of the EP as opposed to a system configuration away from the EP. 
In the inset we report the same data in a double-logarithmic plot. Error bars on panels d and e 
denote ±1 standard deviation obtained from 10 independent measurements. 
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Figure 3: Measured Allan Deviation. a, Measured Allan deviation 𝜎89 of the transmission peaks 
splitting as a function of the sampling time 𝜏  for various values of the applied acceleration 𝑎 (see 
legend). The enhancement of 𝜎89 at the vicinity of the TPD at 𝑎 = 0 g is shown by red arrow. b, 
Measured normalized Allan deviation 𝜎: = 𝜎89/𝜒  as a function of the sampling time 𝜏 for various 
values of the applied acceleration 𝑎 (see legend). The suppression of 𝜎: due to enhanced sensitivity 
at the vicinity of 𝑎 = 0 g is shown by red arrow. The black dotted lines on panels (a,b) indicate a 
power decay 𝜏0#/), associated with a VRW regime, while the black dashed lines are proportional 
to 𝜏 indicating the presence of a RR regime. c, The normalized noise equivalent acceleration 
𝛼%!>/𝛼%!>(𝑎 = 0.8g) (black line and circles and the normalized 𝐹𝑂𝑀/𝐹𝑂𝑀(𝑎 = 0.8g) (red line 
and crosses) versus the applied differential acceleration. The black/red arrows indicate a threefold 
reduction/enhancement of the noise/FOM in the proximity of the TPD. The black dashed line 
describes the contribution to 𝛼%!> associated with the internal and the external noise sources  
S(𝛼𝒫𝒯) + 𝛼&') ), while the contribution associated with the thermal noise and the added noise 
S(𝛼?@) + 𝛼CDD) ) is shown by a black dotted line. Both terms are normalized with 𝛼%!>(𝑎 = 0.8g). 
 
 

Methods 
Transmittance spectrum and frequency splitting measurements - The transmitted signal 
through the electronic circuit was collected for different applied in-plane projections of gravity 
acceleration. The device was mounted on a rotational stage Newport ESP100BCC which was 
electronically controlled via a Newport ESP301 controller. The setup allows to control the 
horizontal tilt of the device with minimal increment of 0.2 mdeg and, thus, vary the in-plane  
projection of the gravity acceleration in a range of 2g ([-1 g :1 g]). At each specific tilting angle 
the transmission spectrum was collected using an ENA network analyzer Keysight E5080A. The 
individual frequency sweeps contain 401 points in a range of 2.58 MHz - 2.74 MHz, with 
intermediate frequency bandwidth of 1.5 MHz. Single measurement is obtained from the collected 
spectrum which was averaged over 100 consecutive individual sweeps for each applied 
acceleration, which resulted in a sampling time of 𝜏 ≈ 	25 ms. The frequencies of the  
transmittance peaks 𝑓± were then identified from the resulted spectrum, which allows to calculate 
the frequency splitting Δ𝑓. 
 
Coupled Mode Theory modeling - To better understand the outcome of these measurements we 
have performed a theoretical analysis using the most general framework of coupled mode theory 
(CMT) which was appropriately mapped to describe our 𝒫𝒯 -symmetric circuit (see details in the 
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Supplementary Material). Specifically, the scattering matrix 𝑆 that describes the open circuit, takes 
the form  

𝑺(𝑓) = −𝑰 − 𝑖𝑾𝑮(𝑓)𝑾&; 	𝑮(𝑓) = ä𝑯.99 − 𝑓	𝑰å
0#; 													(4)	

where, 𝑰 is the two-dimensional identity matrix and 𝑮(𝑓) is the Green's function. The effective 
Hamiltonian 𝑯.99 that describes the 𝒫𝒯-symmetric dimer coupled to the TLs is  

𝑯.99 = 𝑯( −
𝑖
2𝑾

𝑻𝑾;		𝑯𝟎 = é𝑓( − 𝜖 + 𝑖𝛾( 𝛾( + 𝜖
𝛾( + 𝜖 𝑓( − 𝜖 − 𝑖𝛾(

è ;						(5)	

where the diagonal matrix 𝑾FI = 𝛿FIS2𝛾. models the coupling of the dimer with the TLs and 
𝑯𝟎 is the Hamiltonian of the isolated dimer (corresponding to 𝛾. = 0). For 𝜖 = 𝜖!" = 0 the 
isolated system forms a second order (𝑁 = 2) EP degeneracy at frequency 𝑓±

(() ≡	𝑓!" = 𝑓( (see 
Supplementary Material). 

Using Eq. (4) we have extracted the transmittance 𝑇(𝑓; 𝑎) = |𝑆)#|) and via direct 
comparison with the experimental data we were able to identify the various parameters that have 
been used in our CMT modeling. Specifically, we have estimated that the linewidth of the 

resonances of the individual circuit tank, due to its coupling with the TL is 𝛾. ≡ 	𝑍M,
'
	N,!

,
O
)
	𝑓( =

	0.0206	𝑀𝐻𝑧. Similarly, we have found that the variations at the coupling strength between the 
two resonant modes of the dimer, due to the displacement of the plates of the capacitor 𝐶- when 
an acceleration 𝑎 is imposed to the system, can be modeled by the parameter 𝜖(𝑎) = 𝜖&"/ +
0.0082	 êJKL

M
ë ⋅ 	𝑎. The coupling strength in the absence of any acceleration is 𝜖&"/ =

0.0013	𝑀𝐻𝑧 - and is associated with the TPD. Finally, 𝛾( =	𝑅0#	M
'
,
𝑓( = 0.16	𝑀𝐻𝑧, is the CMT 

gain/loss parameter describing the amplifier/resistor used in the 𝒫𝒯-symmetric circuit. 
 
Lasing Threshold and Transmission peak scaling - To guarantee the stability of our system, we 
have also identified theoretically the lasing condition of the open circuit (see Supplementary 
Material). The latter is associated with the real poles of the scattering matrix Eq. (4) occurring at 
𝑓' = 𝑓( − 𝜖' where 𝜖' = −𝛾( + S𝛾() − 𝛾.) < 𝜖!" = 0 < 𝜖&"/. Its existence can be also 
recognized by the divergence of the transmission at this frequency and perturbation values. In the 
upper subfigure of Fig. 2c we report the un-normalized transmission peaks 𝑇N.CO = 𝑇(𝑓±; 𝜖) 
extracted from the measurements (dashed blue line), together with its theoretical values calculated 
using the CMT modeling (red line). We find that at the lasing point 𝑇N.CO(𝜖 → 𝜖') → ∞ as 
expected. The divergence is characterized by a 𝑇N.CO(𝜖) ∝ 	 (𝜖 − 𝜖')0)		[𝑇N.CO ∝ (𝜖 − 𝜖')0#] 
scaling, which applies in the range 𝜖 < 𝜖&"/	[𝜖 > 𝜖&"/ and it is nicely confirmed from the 
experimental data].   
 
Transmission peak resolvability and Linewidth bound - While an enhanced transmitted 
intensity is an important element for the readability of the output signal and the identification of 
the transmission peak frequencies 𝑓±, the other crucial factor is the sensing resolution. This bound 
is proportional to the linewidth Γ of the transmission peaks. In the limit of very strong coupling 
𝜖 ≫ 𝛾(, we can disregard the 𝒫𝒯 nature of the circuit and we expect that the linewidth Γ will be 
dictated by the coupling of the dimer with the TLs. The latter is characterized by the coupling 
constant 𝛾. which in our setting takes the value 𝛾. ≈ 	0.02,𝑀𝐻𝑧. At the other limiting case of 𝜖 →



𝜖' we expect a narrowing of the linewidth which in the semiclassical picture (e.g. without taking 
into consideration the non-orthogonality of the modes etc) becomes zero. In fact, the CMT 
modeling provides us with the possibility to derive an exact expression for the linewidth Γ(𝜖) for 
the whole range of perturbations 𝜖 (see Supplementary Material). These CMT results are shown 
in the lower subfigure Fig. 2c together with the extracted values from the measurements which 
have been evaluated as the half-width at half-maximum (HWHM) at the transmission peak. 
Although Γ(𝜖) remains essentially constant Γ(𝜖) ≈ 𝛾. at the parameter range where our 
experiment is operating, we are able to identify a slight increase in the proximity of 𝜖&"/. 
Specifically, our CMT analysis indicates that for 𝛿𝜖 ≡ 𝜖 − 𝜖&"/ ≥ 0 the linewidth takes the form 
Γ(𝛿𝜖 → 	0) ∼ √2𝛾. − √2(𝛾.) + 𝛾())#/P√𝛿𝜖. For 𝛿𝜖 = 0 we get that Γ(𝛿𝜖 = 0) = √2𝛾. indicating 
that the coupling of the circuit with the leads dictates the minimum measured uncertainty. This 
prediction is confirmed by the measurements (see light blue dotted line in Fig. 2c). On the other 

side of 𝜖&"/ i.e. 𝛿𝜖 < 0 the linewidth behaves as Γ(𝜖) ≈ √2𝛾. +
Q)R2!"52#"S

2!
𝛿𝜖. This small 𝛿𝜖 

expansion persists even for 𝜖 ≈ 𝜖!" where Γ(𝜖 = 𝜖!") ≈ 	0.7𝛾.. From this analysis we conclude 
that the uncertainty in the frequency splitting measurements in the proximity of the TPD is only 
slightly enhanced due to the linewidth increase [32]. Nevertheless, it can be always confined to 
small values when the system operates in the weak coupling regime. Of course, this conclusion is 
subject to the analysis of other characteristics like the sensitivity or other noise sources that might 
also affect the measurement process. 
 
Allan deviation measurement - The Allan deviation 𝜎89(𝜏) of the transmission peak splitting is 
defined as 

𝜎89(𝜏) =
1

2(𝑀 − 1)	ñäΔ𝑓óóóóF5# − Δ𝑓óóóóFå
)

J0#

FT#

; 									(6) 

where 𝜏 is the sampling time, 𝑀 is the total number of frequency measurements, and Δ𝑓óóóóF indicates 
the average frequency splitting during the sampling time interval [𝑛𝜏, (𝑛 + 1)𝜏]. For the extraction 
of Allan deviation the transmittance peak splittings Δ	𝑓 were sampled with frequency of 400 Hz 
(𝜏IUF = 	2.5	𝑚𝑠) over a period of 90 s. 
 
Brownian motion contributions to noise-equivalent acceleration – The contributions to the 
NEA from the Brownian motion of the test-mass is given by 𝛼?@ = S4𝑘V𝑇	𝜔F/𝑚𝑄. In this 
expression 𝑘V is the Boltzmann's constant, 𝑇 = 293	𝐾 is the ambient temperature, 𝑚 = 27gr is 
the mass, 𝜔F = 2𝜋	𝑓F = 	2513𝑟𝑎𝑑/𝑠𝑒𝑐 is the frequency and 𝑄 = 40 is the quality factor of the 
resonant mode of the mechanical test-mass (see below design and fabrication details of the spring-
mass). 
 
Evaluation of NEA – We have analyzed the contribution of the various noise sources to the 
cumulative spectral density of the variance in the frequency splitting 𝜎8WX . Broadly speaking, it can 
be decomposed into two terms: (a) 𝜎8WX,  associated with the uncertainty in the measurement of the 
transmission peaks splitting Δ𝜔¢, due to the cumulative circuit noise generated by the gain/loss 
elements of the circuit and the ambient noise of the transmission lines [see Eqs. (S38,S40) in the 
Supplementary Material]; and (b) 𝜎8WXY  [see section S6 in the Supplementary Material] associated 



with uncertainty in the measurement of the transmission peaks splitting Δ𝜔¢, due to the fluctuations 
of the coupling strength between the two RLC circuit tanks. We can now express the cumulative 
spectral density of the variance in terms of these quantities as  𝜎8WX) =êä𝜎8WX, å) + (𝜎8WXY ))ë. Skipping 
the details of the calculation (see section S7 in the Supplementary Material), the result for 
𝛼%!>) (𝜖) = #

Z"([)
\%&'
"

8(
	(Δ9 is inversely proportional to the sampling time over which the signal is 

measured and averaged) is 

𝛼%!>) (𝜖) ∝ £
𝑘V𝑇Γ)(𝜖)

§𝑎'#UF §
) •2𝑅

𝛾(
𝛾.
⋅ ((𝛾( + 𝜖)) − 𝛾(𝛾.) + 𝑍( ⋅ ((𝛾( + 𝜖)) + 𝛾())¶ (2𝛾(𝜖 + 𝜖) − 𝛾.))

+ ä𝜎[,CDDY å)ß é
𝜕𝜖
𝜕𝑎è

0)

+
4𝑘^𝑇𝜔F
𝑚𝑄 ,									(7)	

where we have used the expression 𝜒)(𝜖) = 	4𝑆𝐸𝐹(𝜖) ⋅ N_[
_C
O
)
for the sensitivity of the frequency 

splitting between the transmission peaks with respect to an applied acceleration 𝑎. The first term 
in Eq. (7) describes 𝛼𝒫𝒯) , the second is 𝛼&') , the third is 𝛼CDD)  and the last term is associated with  
𝛼?@) , see Eq. (5). The behavior of the various noise terms that contribute to 𝛼%!> and their scaling 
with respect to the acceleration 𝑎 is reported in Fig. 3c. A more detail analysis of the expression 
Eq. (7) is further presented at section S7 in the Supplementary Material. 
 
Long-time behavior of Allan deviation – We have also analyzed the long-time growth of 𝜎:(𝜏) 
(see Fig. 3). This analysis allows us to extract the so-called drift rate ramp (DRR), describing 
systematic (deterministic) errors due to temperature fluctuations. By definition 𝜎/<<(𝜏) = 𝛼/<< ⋅
𝜏 , with best fit 𝛼/<< ≈ 	0.0007	𝑔 ⋅ 𝑠0# for almost all acceleration values. Finally, the saturation 
value 𝜎V`(𝜏) = 𝛼V` ⋅ 𝜏( of the Allan deviation (black dashed line) is indicative of the Bias 
Instability (BI), and sets the smallest possible reading of our sensor due to the random flickering 
of electronics or other components. The extracted value ranges from 𝛼V` ≈ 	0.0009	𝑔 
(accelerations closer to TPD) to 𝛼V` ≈ 	0.0014	𝑔 (accelerations away from TPD).  
 
Figure of Merit (FOM) and consumed power -Using the CMT analysis (see Supplementary 
material) one can show that: 

|𝑆)#|) + |𝑆##|) + 2𝛾)|𝑎)|) − 2𝛾#|𝑎#|) − 1 = 0; 	𝒂 = −𝑖𝑮𝑾&(1,0)&; 						(7) 
where 𝛾#(𝛾)) is the gain(loss) of the first (second) cavity. In our settings 𝛾# = 𝛾) =	
𝛾(. The total power 𝑃 consumed by the platform is  

𝑃 = 	 © (|𝑆)#|) + |𝑆##|) + 2𝛾)|𝑎)|))

9)*+

9),-

§𝒂&'.
UF §)𝑑	𝑓 = © (2𝛾#|𝑎#|) + 1)

9)*+

9),-

§𝒂&'.
UF §)𝑑	𝑓.				(8)	

In our experimental platform 𝑓IUF = 2.58 MHz and 𝑓ICa = 2.74 MHz, which are the lower/upper 
bound of frequency range used to perform the measurements. Taking into account the fact that the 
input signal 𝒂&'.

UF  has a uniform spectral density, the 𝐹𝑂𝑀 introduced in Ref. [38] is written as  



𝐹𝑂𝑀 = (𝛼%!>) 𝑃)0# ∝ © (𝛼%!>) (|𝑆)#|) + |𝑆##|) + 2𝛾)|𝑎)|)))0#
9)*+

9),-

	𝑑𝑓.							(9) 

We fitted the extracted 𝑆)# scattering parameter with the CMT results, in order to estimate the 
consumed power total power 𝑃 using Eq. (8). This information, in combination with the 
experimental data for 𝛼%!>, allows us to estimate the 𝐹𝑂𝑀 using Eq. (9). 
 
Circuit design and fabrication-The detailed schematics of the 𝒫𝒯-symmetric circuit is shown in 
the Extended data Fig. 1. The main elements of the circuit are a pair of RLC resonators, where 
resistor, inductor and capacitor are connected in parallel to ground. The inductor L in each unit is 
a Murata 11R103C with inductance of 𝐿 = 10	𝜇𝐻. The total capacitance consists of a pair of in-
parallel connected capacitors C and 𝐶E, where the former one is Murata GRM21A5CE271JW01D 
with fixed value of 𝐶 = 270	𝑝𝐹, while the latter one is a voltage controlled capacitor Murata 
LXRW0YV33-0-056 with variable capacitance 𝐶E = 16.5 − 33	𝑝𝐹. It is used to precisely control 
the resonant frequency of each resonator. External voltage was used in order to control the 𝐶E. It 
was applied via an EG&G 7265 DSP Lock-in amplifier, connected via a BNC port through a 
resistor 𝑅E Yageo RC0402FR-75KL with resistance 𝑅E = 5 kOhm and grounded 10𝜇𝐹 
capacitance 𝐶E# Murata GCM32EL8EH106KA7. The total resistance in each resonator unit 
consists of a fixed resistor 𝑅# Bourns CR1206FX-1101ELF with resistance 𝑅# = 1.1 kOhm, which 
is connected in-series with a mechanically controlled variable resistor 𝑅) Bourns 3296'w-1-20RLF 
with resistance 𝑅) = 0 − 200 Ohm.  

In the first resonator these resistors are connected to the output voltage port of an 
operational amplifier (Op Amp) in order to produce gain. The Op Amp used in the circuit is one 
of the three on-chip Op Amps of the Analog Devices ADA4862-3 triple amplifier. The internal  
resistance between the inverting port to ground is 𝑅b# 	= 	550 Ohm . This is the same as the 
resistance between the output port and the inverting input port 𝑅b) 	= 	550 Ohm (see extended 
data Fig. 1). The non-inverting input of the amplifier unit is connected to the node of the first 
resonator via the resistor Rs, Bourns RC0402FR-075KL with resistance 𝑅c = 133 Ohm. The 
second unit of the same ADA4862-3 triple amplifier is connected with non-inverting input to the 
node of the first resonator through the same resistance 𝑅c = 133 Ohm. The resistor 𝑅b)	is left 
floating in order to obtain a unity gain. The tripple amplifier is powered via the voltage source 
through ports -Vs and +Vs, as shown in extended data Fig. 1. The output port of the Op Amp unit 
is connected with the probing input BNC port via the capacitor Ce, Murata 
GCM1887U1H103JA6J with capacitance 𝐶. = 10 nF. This capacitance was used to block the DC-
signals from entering the circuit, while the coupling of the input probing signal is achieved via 
parasitic capacitive coupling between the input BNC port and the circuit elements. The resistors 
𝑅.#, Bourns CRM1206FX2700ELF with resistance 𝑅.# = 270 Ohm and 𝑅.), Bourns 
CR1206FX60R4ELF with resistance 𝑅.# = 50 Ohm are connected as shown in the extended data 
Fig. 1 to match the circuit impedance with the 50 Ohm coaxial cable connected to the BNC port. 

In the second resonator unit the resistors 𝑅# and 𝑅) are connected to ground in-parallel to 
the capacitors C and 𝐶E. The probing output BNC port is connected to the node of the second 
resonator through the Op Amp unit of another ADA4862-3 triple amplifier. The Op Amp unit 
operates in a unity gain regime (similar to the second Op Amp connected to the node of the first 
resonator). 



The two resonator units are capacitively coupled together using a trimmed capacitor 𝐶-) 
Knowles JZ300HV with variable capacitance 𝐶-) = 5.5 − 30 pF. The spring-mass is coupled to 
the circuit producing an extra coupling capacitance 𝐶-E ≈ 	35 pF, when the spring-mass is at rest. 
When an in-plane acceleration is applied, the mass with the attached capacitor plate moves toward 
the stationary plate, resulting in an increase of the capacitance 𝐶-E . The circuit was built on a 
prototype board and was mounted on top of the spring-mass as it is seen in Fig. 01. The electrodes 
of the spring mass were connected to the circuit with 0.18 mm wires which provides enough 
flexibility during the motion of the test-mass. The wires were glued to the electrodes using silver 
filled epoxy adhesive MG Chemicals 8331-14G.  
 
Spring-mass capacitive sensor design and fabrication-The spring-mass capacitive sensor 
consists of two main pieces. The first one is a base plate shown in Figs. 2a and b. It consists of a 
56 x 25 mm x 5 mm copper plate with one side having a 20 mm long ledge with 6 mm height. The 
ledge is used to mount the stationary capacitor plate. The second main piece is a 0.027 kg, 5 mm 
thick copper mass which is suspended on four 10 x 0.3 x 2 mm bendable beams attached to 
stationary stands (see Figs. 2c and d). The mass is suspended 1 mm above the bottom level of the 
stationary stands. The mass and base plates were micro machined using electrical discharge 
machining (EDM) technique. The pair of 23 x 0.5 x 5 mm glass substrates were used to sputter 
(PVD) a 10 nm thin Ti layer followed by a 100 nm thin Au layer which acts as electrodes for the 
capacitor plates. One of the glass plates was glued to the ledge of the base plate (as it is shown in 
Fig. 3a) at the noncoated side. In a similar manner the second plate was glued to the back vertical 
surface of the copper mass at the noncoated side (see Fig. 3b). The copper mass with the glass 
plate was then mounted on the copper base and glued with a conductive adhesive (see Fig. 3c). 
The assembly was performed under a microscope with a custom built micro-translational stage to 
achieve the 20𝜇𝑚 gap between the two gold-metalized surfaces of the glass plates (see inset in 
Fig. 3c). The spacing between the pair of glass plates with gold nanolayers forms a capacitance of 
about 35 pF, when the mass is at rest. When an acceleration is applied to the platform, the plates 
are moving closer to one another, leading to an increase of the capacitance. The open parts of the 
metalized surfaces were connected to the circuit as it is discussed above, while the platform and 
the mass are grounded. The pair of glass plates form the parasitic capacitances 𝐶N# and 𝐶N)  
between the gold electrodes and the grounded test-mass. These parasitic capacitances are shown 
in Fig. 1 and originally result in a frequency mismatch between the LC resonators. The tuning 
capacitors 𝐶E were used to compensate the associated frequency mismatch between the resonators.  
 
Data availability: The datasets generated during and/or analyzed during the current study are 
available in the Zenodo repository https://doi.org/10.5281/zenodo.6397748 
 
Code availability: The Matlab code which has been used for the evaluation of Allan deviation is 
available at https://www.mathworks.com/help/nav/ref/allanvar.html   

 

 

 



 

Extended Data Figure 1: Schematic of the circuit diagram. The blue elements are ADA4862- 3 
amplifiers, while the green element indicates the spring-mass which provides the acceleration 
dependent capacitance 𝐶-E.  
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Extended Data Figure 2: Details of the mechanical sensor elements. a,b, Drawings of the copper 
platform. c,d, Drawings of the test-mass.  

 

 

 

 

 

Extended Data Figure 3: Assembly process of the acceleration capacitive sensor. a, Deposition 
of the gold nanofilms on a glass substrate that create conductive electrodes which form the capac- 
itors plates. Attachment of the glass plates to the stationary platform and test-mass. b, Placement 
of the test mass with glass plate on top of the copper base. c, Assembled capacitive inertial sensor. 
The inset shows the magnified view of the area between the capacitor plates which is about 20 um.  
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