Exceptional-point-based accelerometers with enhanced signal-to-noise ratio
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Exceptional points (EP) are non-Hermitian degeneracies where both eigenvalues and their
corresponding eigenvectors coalesce [1-4]. Recently, EPs have attracted attention as a means
to enhance the responsivity of sensors, via the abrupt resonant detuning occurring in their
proximity [5-20]. In many cases, however, the EP implementation is accompanied by noise
enhancement leading to the degradation of sensor’s performance [15-20]. The excess noise
can be of fundamental nature (due to the eigenbasis collapse) or of technical nature
associated with the amplification mechanisms utilized for the realization of EPs. Here we
show, using an EP-based PJ-symmetric [21,22] electromechanical accelerometer, that the
enhanced technical noise can be surpassed by the enhanced responsivity to applied
accelerations. The noise due to eigenbasis collapse is mitigated by exploiting the detuning
from a transmission peak degeneracy (TPD) — which forms when the sensor is weakly
coupled to transmission lines — as a sensitivity measurant. These TPDs occur at a frequency
and controlled parameters for which the bi-orthogonal eigen-basis is still complete and are
distinct from the EPs of the PJT-sensor. Our device demonstrates a three-fold signal-to-noise
ratio enhancement compared to configurations for which the system operates away from the
TPD.

In the proximity of an N —th order EP, the degenerate resonances of an open (non-Hermitian)
system abide to Puiseux generalized expansions leading to a sublinear resonance detuning Af =
|f — fgp| ~ €¥/N with respect to the perturbation strength & imposed to the system by the presence
of a perturbing agent. Obviously, in the small perturbation limit this sublinear response signifies
an enhanced sensing as compared to a linear response, i.e. Af ~ & < /N, utilized by many
sensing schemes that rely on Hermitian degeneracies [23-26]. In fact, the proposed EP-based
protocols have additional advantages compared to other sensor schemes (e.g. slow light) whose
operational principle relies on abrupt intensity variations of the measured signal. These types of
sensors turned out to be extremely sensitive at the expense of their dynamic range [27,28] i.e. the
ratio between the maximum and the minimum perturbation that a sensor can measure.

While increased sensor responsivity has been demonstrated in several EP-based sensors
[6-10,12,17], the signal-to-noise performance has been controversially debated in recent
theoretical studies [13-16,19,20]. Obviously, it is imperative to confront these disagreements via
a direct experimental investigation of the effects of noise in EP-sensor performance and identify
platforms and conditions (if any) under which they demonstrate superior performance. Currently,
the only experiment that has analyzed the effects of noise in the EP-sensitivity (precision of a
sensor) has utilized a Brillouin ring laser gyroscope platform [17,18]. Unfortunately, the
conclusions of this study were discouraging as far as the performance of EP-sensing is concerned:
the expected boost in responsivity of the gyroscope turned out to be limited by a broadening of the
two laser linewidths due to enhanced noise effects associated with the collapse of the eigenmodes.



Here, we show experimentally and theoretically a ten-fold enhancement in responsivity to
small perturbations and a three-fold signal-to-noise ratio (SNR) improvement in the sensing
performance of an EP-based PJ -symmetric electro-mechanical accelerometer (see Fig. 1a). Our
measuring protocol differs from the previous cases which were analyzing the lasing modes
detuning of a system in the proximity to an EP. Instead, ours relies on a distinction between EPs
and the transmission peak degeneracies (TPD) observed in the transmission spectrum of the PT -
symmetric sensor when it is interrogated via weakly coupled transmission lines (TL). This fact has
been already recognized in a previous theoretical work [29] for the analogous concept of
transmission dips. We point out that in the absence of loss/gain, these transmission dips (or peaks
in our case) and their associated degenerate point are related to the newly established concept of
reflectionless scattering modes (RSM) which might exhibit an EP degeneracy [30,31].
Nevertheless, the transmission dips (peaks) and their associated TPD in the case of PT -symmetric
systems are not directly related to the RSM exceptional points.

The transmission peaks frequency detuning from the TPD is influenced by the underlying
EP and follows a square-root behavior with respect to the applied acceleration a. Furthermore, at
TPD, the eigenbasis is still complete; thus, the performance of the sensor is not influenced by
excess noise effects that might be rooted to the eigenbasis collapse. The latter has been related, in
the platform of Ref. [18], with the so-called Petermann factor (PF) which diverges in the proximity
of an EP, while at TPD it remains finite and smaller than the sensitivity enhancement factor SEF
(compare blue and green lines in Fig. 1b) which measures the responsivity of the system to
acceleration variations (see Supplementary Material). Our theoretical analysis indicates that PF is
directly proportional to the technical noise due to the coupling with the TL and the noise generated
by the gain/loss elements used to create the EP-singularity. The corresponding noise enhancement
factors NEFTE, NEFFT, describing the noise power enhancements (see Supplementary Material),
remain finite in the proximity of the TPD and are surpassed by the SEF of the transmission peaks
detuning near the TPD (see brown and red lines in Fig. 1b).

Experimental setup - The sensor consists of a pair of capacitively coupled parity-time (PT")

symmetric RLC resonators [21] with natural frequency f, = %% ~ 2.68MHz and capacitive

coupling C.. One capacitor plate of the coupling capacitor is connected to a test-mass m which is
supported by a spring attached to the platform (see Fig. 1¢c and Methods) and its displacement from
an initial equilibrium position is used for sensing acceleration variations. The PT -symmetry
condition is achieved when the gain (—R), implemented using an amplifier, and loss (R)
parameters are balanced, and the reactive components, L and C, satisfy mirror symmetry [21].
When the capacitive coupling is above a critical value CEP, the system is in the so-called exact
phase where the normal modes are also eigenvectors of the PT -symmetric operator and the two
eigenfrequencies are real-valued. In the opposite limit (small coupling) the system is in the broken
phase where the normal modes are no longer eigenmodes of the PT -symmetric operator while the
eigenfrequencies are complex conjugates. The two phases are separated by an EP degeneracy of
order N = 2 [22].

We have weakly coupled each RLC resonator to Z = 50 Ohm TLs via capacitors C,. In the
density plot shown in Fig. 2a, we report the measured (normalized) transmittance spectrum T (f; a)
versus the applied differential in-plane acceleration a. At a = 0 the transmission spectrum
demonstrates a transmission peak degeneracy (TPD) which reflects the nearby EP degeneracy of
the eigenfrequencies of the isolated system (corresponding to C, = 0). The system is initially set



at TPD conditions with the coupling capacitor plates being at a distance d =~ 20um from one
another corresponding to CIP? ~ 50pF. An applied differential in-plane acceleration a displace
the test-mass to a new equilibrium position, leading to a capacitive coupling detuning from CI*?
and the concomitant formation of two equi-height transmittance peaks which bifurcate from the
TPD following a characteristic square-root behavior, see dashed green lines in Fig. 2a and Eq. (1)
below. The weak coupling with the TLs, together with the active nature of our platform is reflected
in the high intensity value of the transmittance peaks and in the narrow form of the linewidths
(confined dark red area). These attributes enhance the readout and boost the sensing resolution,
allowing us to identify the trajectories of the transmission peaks. Finally, the highlighted gray area
indicates the displacement values of the capacitor plates for which saturable nonlinearities are
triggered.

Sensitivity Analysis - Using a Coupled Mode Theory (CMT) (see Methods and Supplementary
Material), we derived a scattering matrix S that models the physical system and evaluated the
transmittance spectrum T(f; a) = |S,1|?. A comparison of the measurements (Fig. 2a) with the

2
CMT results (Fig. 2b) allowed us to extract the parameter y, = Z \/% (%) fo = 0.0206MHz that

model the coupling of the circuit to the TLs and the gain/loss parameter y, = R™! \/% fo=0.16MHz

describing the amplifier/resistor used in the PT-symmetric circuit. The CMT predictions for the
frequencies fy (€) of the transmittance peaks (green dashed lines in Figs. 2a,b) are

£i(€) = fo—fi\/zyof‘*‘fz_]’ez» for EZGTPD; (1)
where the CMT parameter € = e€pp + 0.0082[MHz/g] - a models the coupling detuning due to

2
acceleration and eppp = —y, + y02 +yZ2 # €gp = 0. Instead, we have that e;pp zZYTe
0

y—(; egp = 0 as expected. Accordingly, the TPD frequency is frpp = f(€ = €rpp) = f- = f4 =

fo — €rpp y—>_)0 fep = fo- Near e7pp, the transmission peak frequencies Eq. (1) scale as
e

fr < frpp * V2" V¢ + v2 -V8€; provided that §e <« 2 /),02 +v4 ()

where 6 = € — erpp. The square-root transmission peak frequency splitting Eq. (2) reflects the
EP degeneracy of the eigenfrequencies f+(0) (e =0) = fgp = f, of the isolated system (e.g. ¥, =
0) whose functional dependence on € is éiven by Egs. (1,2) by substituting ¥, = 0. The presence
of y, results in a slight enhancement of the detuning rate of f. as compared to the detuning rate of
the resonant modes f- i(o) (blue lines in Figs. 2a,b).

The resolvability of the transmission peaks is bounded by their linewidth I' (see Methods).
The CMT predictions for the linewidth I'(€) are shown in the lower subfigure Fig. 2¢ together with
the measurements which have been evaluated as the half-width at half-maximum at the
transmission peak. Although I'(€) remains essentially constant I'(€) = y, at the parameter range
where our experiment is operating, we can identify a slight increase at the proximity of erpp, where

I'(e = €rpp) = V2V, indicating that the coupling of the circuit with the leads dictates the minimum



measured uncertainty. We conclude that the uncertainty in the frequency splitting measurements
in the proximity of the TPD is only slightly enhanced due to the linewidth increase [32].

The measurement of an individual frequency shift is the most common sensing scheme for
(micro)electromechanical sensors [33-35]. However, a considerable advantage is obtained by
measuring the frequency splitting since it is intrinsically self-referenced i.e., there is no need for
an external reference to suppress or eliminate frequency drift associated with other sources. From
Eq. (2) we have that Af = f, — f « V8¢, see Fig. 2d. In case of weak coupling to the TLs the
upper limit of the sublinear sensing is predominantly controlled by y,, see Eq. (2), while the extent
of the sublinear domain is bounded by nonlinear capacitance effects occurring at small distances
between the plates of the capacitor. Even with these limitations, our platform demonstrates an
order of magnitude enhancement of dynamic range, as compared to conventional linear sensors
with the same upper bound of dynamical range (see red double-side arrow in the inset of Fig. 2d).
To further quantify the efficiency of our proposed accelerometer, we have introduced the
sensitivity y = d(A f/f,)/0a which in the proximity of the TPD demonstrates an ~ 1/va
divergence, see Fig. 2e. A comparison with the conventional linear sensor reveals a one-order
sensitivity improvement (red double-arrow).

Noise Analysis - Enhanced frequency splitting is an important aspect of efficient sensing as it
guarantees an enhanced transduction coefficient from the input quantity of interest (e.g., the
differential acceleration) to the output quantity (e.g., Af). Another aspect of an efficient sensing is
the precision of the measurement, which is dictated by the noise of the sensor output, and it is
associated with the smallest measurable change of the input quantity. A cumulative quantification
of the noise effects on the measured frequency splitting Af, is obtained by the Allan deviation
[36,37] oaf for various values of applied differential in-plane acceleration a (see Methods). The
Allan deviation describes the stability of the sensor as a function of the sampling time t. We find
that oaf, increases as the applied acceleration a approaches zero, i.e., in the domain where the
transmission peak splitting has a square-root response. In contrast, at the domain where the
frequency splitting exhibits a linear sensitivity (@ = 0.5 g) the Allan deviation g5y remains almost
unchanged (compare dark blue solid line and magenta dash line in Fig. 3a). Such behavior indicates
that the noise is enhanced at the vicinity of a = 0 g (where € = e;pp) (see red arrow in Fig. 3a).

A more appropriate characterization of sensor’s performance requires the analysis of the
normalized Allan Deviation o, = g5/x. Such analysis provides an estimate of the total noise
effect on the measured acceleration. Of particular interest is its short-time behavior which exhibits
velocity random walk behavior oy gy () = ayga - T~ /2. We have found that the noise-equivalent
acceleration (NEA) ayg4 decreases from ayzs = 0.0027g - Hz=Y/? at a = 1.66g to a limiting
value ayg, = 0.00086g - Hz='/?,ata = 0.01g, see Fig. 3b, indicate that there is a three-fold
signal-to-noise-ratio (SNR) improvement at the vicinity of TPD.

The a4 can be further expressed as a sum of various terms associated with different noise
sources that might affect the precision of the measurements. Specifically, we have:

1
aipa(€) = al, + a2, + abr + algg, [units ofg-Hz 2|. (3)

The thermal noise equivalent acceleration a,y arises from a thermal Brownian motion of the test-
mass. Its reduction is fundamental in minimizing ayg, towards its standard quantum limit
corresponding to the position uncertainty in the quantum ground state of the mechanical mass.
Typically, it is overrun by the other terms in Eq. (3): the thermal noise of the TLs (ar;); the PT -



circuit noise (aps) produced by the gain-loss elements of the platform; and the added noise (a444)
associated with the fluctuations due to the Brownian motion of the plates of the coupling capacitors
C., and C,, and the thermal noise produced from the movement of various mechanical parts of the
experimental setup. Both a;; and a,44 are not associated with parameters of the PT -symmetric
circuit itself and thus, do not depend on € (see Methods and Supplementary Materials).

One can further understand the demonstrated sensing efficiency by realizing that apr =
opr/x and ar; = 671 /x (Gpr and G7;, are the spectral densities of variances in the acceleration
measurements due to noise sources associated with the amplification/attenuation elements of the
isolated circuit and with the TLs respectively). These spectral densities are proportional to the
linewidth I" and to the noise enhancement factors associated with the corresponding noise sources
while they are inverse proportional to the transmitted signal through the electronic circuit (see
Supplementary Material). The theoretical analysis based on CMT indicates that both 6p+ and 67,
do not experience strong variations with respect to € and both saturate to a finite value at € = €7pp.
Since y diverges at erpp (green line in Fig. 1b), the NEA will decrease as € — erpp towards its
noise floor level az,(e = €rp) & ap, + a’q44. To appreciate further the enhancement of SNR
in the proximity of the e;pp we have normalized NEA with respect to its value at large
accelerations e.g. a = 0.8g. The normalized data (black circles) are shown in Fig. 3c and
demonstrate a three-fold noise reduction in the proximity of TPD. The CMT results are indicated
in Fig. 3¢ with a black solid line. Furthermore, the CMT analysis shows that the noise associated
with the TL coupling and gain/loss elements used to create the sensor singularity are equivalent to
voltage (or current) noise sources in the circuit. These are physically distinct from the
parametrically coupled signal transduction sensing mechanism, and are transformed differently by
the transmission singularity, toward a favorable SNR.

We conclude that in the specific case of accelerometers the lower limit of NEA is dictated
by the Brownian motion of the test-mass and the capacitor plates which scales proportionally to
the sensitivity y. We stress that the Brownian motion has to be modeled as a fluctuation of the
Hamiltonian matrix elements (i.e., coupling coefficient) while the electronic thermal noise due to
amplifiers, resistors and TLs is described by additive stochastic Langevin terms in the Hamiltonian
matrix. The electronic thermal noise does not scale with y; it rather abides to a noise-specific
transfer function which in the case of the PT-symmetric circuit is proportional to the PF.
Therefore, whenever the sensitivity y overwhelms the noise-specific transfer function, the limiting
value of ayg, is the same for any sensing (linear or sub-linear) scheme. An example of a linear
response (LR) sensing protocol that demonstrates extreme sensitivity is associated with slow light
sensors, utilizing high-Q resonant modes like the ones occurring at the band-edges of a Fiber Bragg
grating (FBG) [27,28]. Such sensors rely on the abrupt intensity variations of the transmission of
a CW when a perturbation (e.g., stress) modifies the effective refractive index of the FBG, thus
inducing a spectral shift of the high-Q Lorentzian resonance. This enhanced sensitivity is offset by
an extremely short dynamic range that these sensors demonstrate: while the large sensitivity y
leads to a reduction of the lower sensing bound by minimizing the NEA, it simultaneously lowers
the upper sensing bound, which is typically limited by the maximum measured signal that the
sensor can output. In contrast, the enhanced sensitivity demonstrated by the TPD sensing scheme
reduces the lower sensing bound, while not affecting the upper sensing bound of the measured
accelerations. Additionally, in LR sensors the high sensitivity is inversely proportional to the
mechanical resonant frequency of the test-mass f,,. The value of f,, dictates the operational
bandwidth of the sensor - if the frequency of the applied acceleration signal exceeds the f,, this
signal will not be detected by the sensor. As a result, the high sensitivity of a LR sensor also comes



at a cost of its bandwidth. Based on these key figures of merits, the performance of our proposed
TPD-based proof-of-concept accelerometer compares favorably with the available on-market on-
chip accelerometers such as NXP MMA1270KEG [39]. For example, they both demonstrate an
aygs = 0.00086g - Hz='/2, for a measurement range up to (= 2) g, while our prototype has a
6.5 times larger operational bandwidth.

An alternative way to reach the ultimate bound of the SNR of a LR sensor is by increasing
the power of the input signal to ““infinite" levels. This is practically challenging — if not impossible.
In our case, a finite power consumption enhancement is automatically taking place when the
system operates near the TPD. It is therefore imperative to also take this effect into consideration
when comparing the efficiency of a sensor. This point has been recently raised in Ref. [38] which
introduced an additional Figure of Merit (FOM) that takes into consideration the consumed power
P used for the sensing. We express FOM in terms of ayg, as FOM = (aZz,P)~* and plot in Fig.
3¢ the rescaled FOM (with the value FOM(a = 0.8g) extracted from the CMT (red solid line)
and the experiment (red crosses) using the measured ayg,. The analysis indicates an improved
FOM of the PT -symmetric sensor in the proximity of TPD.

Conclusions - We have studied the sensing performance of a PT -symmetric electromechanical
accelerometer at the proximity to a transmission peak degeneracy (TPD) influenced by the
presence of an underlying EP in the resonant spectrum. The TPDs occur at distinct parameter
values from the EP, ensuring a completeness of the eigenbasis. At the vicinity of TPDs, we
measured a three-fold SNR enhancement. Our TPD measurant protocol shows promise for the use
of EP-based platforms for enhanced avionic sensors, microfluid flow sensors, pressure sensors,
magnetometers, etc. Exciting future research directions include the ramifications of nonlinearities
in EP-sensing performance, or the identification of physical platforms and measurant protocols
where the various platform-dependent noise sources scale in such a way that the SNR is not
overruled by noise.
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Figure 1: PT-symmetric platform for enhanced acceleration sensing. a, Schematic of the PT -
symmetric electromechanical sensor. The PT -symmetric circuit is capacitively coupled to the
transmission lines with a capacitor C,. The two circuit tanks are coupled together with a variable
capacitor C,. with one plate connected to a test mass that senses the acceleration. b, The behavior
of the sensitivity enhancement factor SEF (green line), Petermann factor PF (blue line), and of
noise enhancement factors associated with the PT-symmetric components of the circuit NEF*”
(dark red dotted line) and the transmission line NEFT" as a function of the applied acceleration a
(magenta dotted line). The black vertical lines indicate the TPD (solid), EP (dotted) and LP
(dashed) points. The highlighted domain indicates the accelerations which are not captured by the
experimental platform. ¢, The actual acceleration sensing platform utilizes a micro-fabricated
coupling capacitor which is connected to the test-mass used to sense the applied acceleration.
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Figure 2: Experimentally measured response of the sensor to applied acceleration. a, Density
plot of the measured normalized transmittance spectrum versus acceleration a (top x-axis). The
bottom x-axis indicates the associated capacitance variation €(a). The trajectory of the
transmittance peaks is indicated with green dashed lines. At the proximity of the TPD the peaks
demonstrate a square-root behavior, see Egs.(1,2). The trajectories of the eigenfrequencies of the
isolated dimer are shown by dark blue lines. They coalesce at € = 0 (EP degeneracy). The
highlighted gray area is excluded from our measurements. In this domain, saturable nonlinearities
are triggered. b, The same as in a for the transmittance spectrum calculated using a CMT. ¢, (Top)
The transmission peak versus the capacitance variation €(a). The red line indicates the CMT
predictions while the dotted light blue line is the measured data. The inset presents the same data
in a double-logarithmic fashion referring to the capacitance variations with respect to the lasing
point. The dashed and dotted black lines indicate a logarithmic slope of —1 and —2. (Bottom) The
behavior of half-width-half-maximum linewidth I" versus € in the proximity of the TPD. The red
(dotted light blue) line indicates the CMT (experimental) results. d, The measured relative
transmission peak splitting Af /f, versus the applied differential acceleration a plotted in double-
logarithmic plot. The dotted (dashed) black line indicates a square-root (linear) scaling with a.
Inset shows the same data in linear plot. The red arrow shows the dynamical range enhancement
of the proposed accelerometer with respect to an equivalent sensor based on linear response. e,
The sensitivity of the PT-symmetric accelerometer demonstrating an order (red arrow)
enhancement in the proximity of the EP as opposed to a system configuration away from the EP.
In the inset we report the same data in a double-logarithmic plot. Error bars on panels d and e
denote +1 standard deviation obtained from 10 independent measurements.
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Figure 3: Measured Allan Deviation. a, Measured Allan deviation g, of the transmission peaks
splitting as a function of the sampling time t for various values of the applied acceleration a (see
legend). The enhancement of o, at the vicinity of the TPD at a = 0 g is shown by red arrow. b,
Measured normalized Allan deviation g, = oa¢/x as a function of the sampling time 7 for various

values of the applied acceleration a (see legend). The suppression of o, due to enhanced sensitivity
at the vicinity of a = 0 g is shown by red arrow. The black dotted lines on panels (a,b) indicate a
power decay T~%/2, associated with a VRW regime, while the black dashed lines are proportional
to 7 indicating the presence of a RR regime. ¢, The normalized noise equivalent acceleration
anea/avea(a = 0.8g) (black line and circles and the normalized FOM /FOM (a = 0.8g) (red line
and crosses) versus the applied differential acceleration. The black/red arrows indicate a threefold
reduction/enhancement of the noise/FOM in the proximity of the TPD. The black dashed line
describes the contribution to ayg, associated with the internal and the external noise sources

V(@3 + a?,), while the contribution associated with the thermal noise and the added noise
J(@g, + aZ,,) is shown by a black dotted line. Both terms are normalized with ayg,(a = 0.8g).

Methods

Transmittance spectrum and frequency splitting measurements - The transmitted signal
through the electronic circuit was collected for different applied in-plane projections of gravity
acceleration. The device was mounted on a rotational stage Newport ESP100BCC which was
electronically controlled via a Newport ESP301 controller. The setup allows to control the
horizontal tilt of the device with minimal increment of 0.2 mdeg and, thus, vary the in-plane
projection of the gravity acceleration in a range of 2g ([-1 g :1 g]). At each specific tilting angle
the transmission spectrum was collected using an ENA network analyzer Keysight ES080A. The
individual frequency sweeps contain 401 points in a range of 2.58 MHz - 2.74 MHz, with
intermediate frequency bandwidth of 1.5 MHz. Single measurement is obtained from the collected
spectrum which was averaged over 100 consecutive individual sweeps for each applied
acceleration, which resulted in a sampling time of 7 = 25 ms. The frequencies of the
transmittance peaks f; were then identified from the resulted spectrum, which allows to calculate
the frequency splitting Af.

Coupled Mode Theory modeling - To better understand the outcome of these measurements we
have performed a theoretical analysis using the most general framework of coupled mode theory
(CMT) which was appropriately mapped to describe our PT" -symmetric circuit (see details in the



Supplementary Material). Specifically, the scattering matrix S that describes the open circuit, takes
the form

S(f) = =1 — IWG()WT; G(f) = (Hopp — F 1) 4)

where, I is the two-dimensional identity matrix and G(f) is the Green's function. The effective
Hamiltonian H,f that describes the PT -symmetric dimer coupled to the TLs is
. fo—€+ivo Yo T € . 5
RPN N )
Yo+ € fo—€—1ivo
where the diagonal matrix W,,;, = 6,m+/ 2¥. models the coupling of the dimer with the TLs and
H, is the Hamiltonian of the isolated dimer (corresponding to y, = 0). For € = €5p = 0 the

l
Heff = HO _EWTW, HO = <

isolated system forms a second order (N = 2) EP degeneracy at frequency f. +(0) = fegp = fo (see
Supplementary Material).

Using Eq. (4) we have extracted the transmittance T'(f;a) = |S,,]? and via direct
comparison with the experimental data we were able to identify the various parameters that have
been used in our CMT modeling. Specifically, we have estimated that the linewidth of the

2
resonances of the individual circuit tank, due to its coupling with the TLis y, = Z \/% (%) fo =

0.0206 MHz. Similarly, we have found that the variations at the coupling strength between the
two resonant modes of the dimer, due to the displacement of the plates of the capacitor €, when
an acceleration a is imposed to the system, can be modeled by the parameter €(a) = €rpp +

0.0082 [M:Z

0.0013 MHz - and is associated with the TPD. Finally, y, = R™! \/%fo = 0.16 MHz, is the CMT

]~ a. The coupling strength in the absence of any acceleration is €rpp =

gain/loss parameter describing the amplifier/resistor used in the PT -symmetric circuit.

Lasing Threshold and Transmission peak scaling - To guarantee the stability of our system, we
have also identified theoretically the lasing condition of the open circuit (see Supplementary
Material). The latter is associated with the real poles of the scattering matrix Eq. (4) occurring at

fi=fo—€ where €, =—yo+¥¢—v2 <e€gp =0 <erpp. Its existence can be also
recognized by the divergence of the transmission at this frequency and perturbation values. In the
upper subfigure of Fig. 2¢ we report the un-normalized transmission peaks Tpeqr = T (f4; €)
extracted from the measurements (dashed blue line), together with its theoretical values calculated
using the CMT modeling (red line). We find that at the lasing point Tpeq(€ = €,) = o0 as
expected. The divergence is characterized by a Tpeqi(€) < (€ — €,)7% [Tpear X (€ —€,)7!]
scaling, which applies in the range € < €rpp [€ > €rpp and it is nicely confirmed from the
experimental data].

Transmission peak resolvability and Linewidth bound - While an enhanced transmitted
intensity is an important element for the readability of the output signal and the identification of
the transmission peak frequencies f,., the other crucial factor is the sensing resolution. This bound
is proportional to the linewidth I" of the transmission peaks. In the limit of very strong coupling
€ > y,, we can disregard the PT nature of the circuit and we expect that the linewidth I will be
dictated by the coupling of the dimer with the TLs. The latter is characterized by the coupling
constant y, which in our setting takes the value y, = 0.02, MHz. At the other limiting case of € —



€, we expect a narrowing of the linewidth which in the semiclassical picture (e.g. without taking
into consideration the non-orthogonality of the modes etc) becomes zero. In fact, the CMT
modeling provides us with the possibility to derive an exact expression for the linewidth I'(€) for
the whole range of perturbations € (see Supplementary Material). These CMT results are shown
in the lower subfigure Fig. 2¢ together with the extracted values from the measurements which
have been evaluated as the half-width at half-maximum (HWHM) at the transmission peak.
Although T'(¢) remains essentially constant I'(¢) = y, at the parameter range where our
experiment is operating, we are able to identify a slight increase in the proximity of €rpp.
Specifically, our CMT analysis indicates that for ¢ = € — €7pp = 0 the linewidth takes the form
['(8e » 0) ~V2y, —V2(¥2 + y2)V/*V5e. For 8 = 0 we get that I'(§e = 0) = /2y, indicating
that the coupling of the circuit with the leads dictates the minimum measured uncertainty. This
prediction is confirmed by the measurements (see light blue dotted line in Fig. 2c). On the other

J2(E+v8) '
y—6e. This small de

e
expansion persists even for € = €zp where I'(e = €zp) = 0.7y,. From this analysis we conclude

that the uncertainty in the frequency splitting measurements in the proximity of the TPD is only
slightly enhanced due to the linewidth increase [32]. Nevertheless, it can be always confined to
small values when the system operates in the weak coupling regime. Of course, this conclusion is
subject to the analysis of other characteristics like the sensitivity or other noise sources that might
also affect the measurement process.

side of erpp i.e. 86 < 0 the linewidth behaves as T'(€) = V2, +

Allan deviation measurement - The Allan deviation o5 ¢(7) of the transmission peak splitting is
defined as

2

R
081 ® = 357=5 O, B =R s (©

where 7 is the sampling time, M is the total number of frequency measurements, and Af,, indicates
the average frequency splitting during the sampling time interval [nz, (n + 1)7]. For the extraction
of Allan deviation the transmittance peak splittings A f were sampled with frequency of 400 Hz
(Tmin = 2.5 ms) over a period of 90 s.

Brownian motion contributions to noise-equivalent acceleration — The contributions to the

NEA from the Brownian motion of the test-mass is given by a;, = +/4kgT w,,/mQ. In this
expression kp is the Boltzmann's constant, T = 293 K is the ambient temperature, m = 27gr is
the mass, w,, = 2m f,, = 2513rad/sec is the frequency and Q = 40 is the quality factor of the
resonant mode of the mechanical test-mass (see below design and fabrication details of the spring-
mass).

Evaluation of NEA — We have analyzed the contribution of the various noise sources to the
cumulative spectral density of the variance in the frequency splitting g5 . Broadly speaking, it can
be decomposed into two terms: (a) o5 associated with the uncertainty in the measurement of the
transmission peaks splitting Aw, due to the cumulative circuit noise generated by the gain/loss
elements of the circuit and the ambient noise of the transmission lines [see Eqgs. (S38,S40) in the
Supplementary Material]; and (b) o [see section S6 in the Supplementary Material] associated



with uncertainty in the measurement of the transmission peaks splitting A@, due to the fluctuations
of the coupling strength between the two RLC circuit tanks. We can now express the cumulative
spectral density of the variance in terms of these quantities as JAZ(;):[(O'AC(;)) + (GKG))Z]. Skipping

the details of the calculation (see section S7 in the Supplementary Material), the result for

aipa(e) = 21(6) Iy (Af is inversely proportional to the sampling time over which the signal is

measured and averaged) is

afga(€) {ICBLZ(E) (

aLll
-2
2 aE 4ka(U
+ (O-:,add) }<_6a) + _mQ n (7)

where we have used the expression y2(€) = 4SEF (¢) - ( ) for the sensitivity of the frequency

R )/_ ((ro+€)?* —voYe) +Zo - (Yo + €)% + Yo)> (2yoe + €* —y&)

e

splitting between the transmission peaks with respect to an applied acceleration a. The first term
in Eq. (7) describes a3, the second is aZ,, the third is a2, and the last term is associated with
a?,, see Eq. (5). The behavior of the various noise terms that contribute to ayg, and their scaling
with respect to the acceleration a is reported in Fig. 3c. A more detail analysis of the expression
Eq. (7) is further presented at section S7 in the Supplementary Material.

Long-time behavior of Allan deviation — We have also analyzed the long-time growth of g, (7)
(see Fig. 3). This analysis allows us to extract the so-called drift rate ramp (DRR), describing
systematic (deterministic) errors due to temperature fluctuations. By definition opzz(T) = apgg -
7, with best fit apggr = 0.0007 g - s~ for almost all acceleration values. Finally, the saturation
value op;(1t) = ag; - t° of the Allan deviation (black dashed line) is indicative of the Bias
Instability (BI), and sets the smallest possible reading of our sensor due to the random flickering
of electronics or other components The extracted value ranges from ag; = 0.0009 g
(accelerations closer to TPD) to ag; = 0.0014 g (accelerations away from TPD).

Figure of Merit (FOM) and consumed power -Using the CMT analysis (see Supplementary
material) one can show that:
1S211% + [S111% + 2v3laz]* = 2y1la4 | =1 = 0; a = —iGW"(1,0)";  (7)

where y; (¥,) is the gain(loss) of the first (second) cavity. In our settings y; =y, =
Yo- The total power P consumed by the platform is

fmax fmax
f S22 + 11212 + 273las1?) @it |2d £ = f Crilaf? + 1) o [2df. (8)
fmln fmln

In our experimental platform f,,;, = 2.58 MHz and f,,,,, = 2.74 MHz, which are the lower/upper
bound of frequency range used to perform the measurements. Taking into account the fact that the
input signal a®% , has a uniform spectral density, the FOM introduced in Ref. [38] is written as



fmax

FOM = (afg,P) ™! x f (@fea(1S211% + 151112 + 2y5laz 1)~ df. (9)

fmin

We fitted the extracted S,; scattering parameter with the CMT results, in order to estimate the
consumed power total power P using Eq. (8). This information, in combination with the
experimental data for ayz,, allows us to estimate the FOM using Eq. (9).

Circuit design and fabrication-The detailed schematics of the PT -symmetric circuit is shown in
the Extended data Fig. 1. The main elements of the circuit are a pair of RLC resonators, where
resistor, inductor and capacitor are connected in parallel to ground. The inductor L in each unit is
a Murata 11R103C with inductance of L = 10 uH. The total capacitance consists of a pair of in-
parallel connected capacitors C and C,,, where the former one is Murata GRM21ASCE271JW01D
with fixed value of C = 270 pF, while the latter one is a voltage controlled capacitor Murata
LXRWO0YV33-0-056 with variable capacitance C,, = 16.5 — 33 pF. It is used to precisely control
the resonant frequency of each resonator. External voltage was used in order to control the C,. It
was applied via an EG&G 7265 DSP Lock-in amplifier, connected via a BNC port through a
resistor R, Yageo RCO0402FR-75KL with resistance R, =5 kOhm and grounded 10uF
capacitance C,; Murata GCM32ELS8EH106KA7. The total resistance in each resonator unit
consists of a fixed resistor R; Bourns CR1206FX-1101ELF with resistance R; = 1.1 kOhm, which
is connected in-series with a mechanically controlled variable resistor R, Bourns 3296'w-1-20RLF
with resistance R, = 0 — 200 Ohm.

In the first resonator these resistors are connected to the output voltage port of an
operational amplifier (Op Amp) in order to produce gain. The Op Amp used in the circuit is one
of the three on-chip Op Amps of the Analog Devices ADA4862-3 triple amplifier. The internal
resistance between the inverting port to ground is R;; = 550 Ohm . This is the same as the
resistance between the output port and the inverting input port Rz, = 550 Ohm (see extended
data Fig. 1). The non-inverting input of the amplifier unit is connected to the node of the first
resonator via the resistor Rs, Bourns RC0402FR-075KL with resistance Ry = 133 Ohm. The
second unit of the same ADA4862-3 triple amplifier is connected with non-inverting input to the
node of the first resonator through the same resistance R; = 133 Ohm. The resistor R, is left
floating in order to obtain a unity gain. The tripple amplifier is powered via the voltage source
through ports -Vs and +Vs, as shown in extended data Fig. 1. The output port of the Op Amp unit
is connected with the probing input BNC port via the capacitor Ce, Murata
GCM1887U1H103JA6J with capacitance C, = 10 nF. This capacitance was used to block the DC-
signals from entering the circuit, while the coupling of the input probing signal is achieved via
parasitic capacitive coupling between the input BNC port and the circuit elements. The resistors
R, Bourns CRMI206FX2700ELF with resistance R,y =270 Ohm and R,,, Bourns
CR1206FX60R4ELF with resistance R,; = 50 Ohm are connected as shown in the extended data
Fig. 1 to match the circuit impedance with the 50 Ohm coaxial cable connected to the BNC port.

In the second resonator unit the resistors R; and R, are connected to ground in-parallel to
the capacitors C and C,. The probing output BNC port is connected to the node of the second
resonator through the Op Amp unit of another ADA4862-3 triple amplifier. The Op Amp unit
operates in a unity gain regime (similar to the second Op Amp connected to the node of the first
resonator).



The two resonator units are capacitively coupled together using a trimmed capacitor C,,
Knowles JZ300HV with variable capacitance C., = 5.5 — 30 pF. The spring-mass is coupled to
the circuit producing an extra coupling capacitance C., = 35 pF, when the spring-mass is at rest.
When an in-plane acceleration is applied, the mass with the attached capacitor plate moves toward
the stationary plate, resulting in an increase of the capacitance C, . The circuit was built on a
prototype board and was mounted on top of the spring-mass as it is seen in Fig. 01. The electrodes
of the spring mass were connected to the circuit with 0.18 mm wires which provides enough
flexibility during the motion of the test-mass. The wires were glued to the electrodes using silver
filled epoxy adhesive MG Chemicals 8331-14G.

Spring-mass capacitive sensor design and fabrication-The spring-mass capacitive sensor
consists of two main pieces. The first one is a base plate shown in Figs. 2a and b. It consists of a
56 x 25 mm x 5 mm copper plate with one side having a 20 mm long ledge with 6 mm height. The
ledge is used to mount the stationary capacitor plate. The second main piece is a 0.027 kg, 5 mm
thick copper mass which is suspended on four 10 x 0.3 x 2 mm bendable beams attached to
stationary stands (see Figs. 2¢ and d). The mass is suspended 1 mm above the bottom level of the
stationary stands. The mass and base plates were micro machined using electrical discharge
machining (EDM) technique. The pair of 23 x 0.5 x 5 mm glass substrates were used to sputter
(PVD) a 10 nm thin Ti layer followed by a 100 nm thin Au layer which acts as electrodes for the
capacitor plates. One of the glass plates was glued to the ledge of the base plate (as it is shown in
Fig. 3a) at the noncoated side. In a similar manner the second plate was glued to the back vertical
surface of the copper mass at the noncoated side (see Fig. 3b). The copper mass with the glass
plate was then mounted on the copper base and glued with a conductive adhesive (see Fig. 3c).
The assembly was performed under a microscope with a custom built micro-translational stage to
achieve the 20um gap between the two gold-metalized surfaces of the glass plates (see inset in
Fig. 3¢). The spacing between the pair of glass plates with gold nanolayers forms a capacitance of
about 35 pF, when the mass is at rest. When an acceleration is applied to the platform, the plates
are moving closer to one another, leading to an increase of the capacitance. The open parts of the
metalized surfaces were connected to the circuit as it is discussed above, while the platform and
the mass are grounded. The pair of glass plates form the parasitic capacitances C,; and Cp,
between the gold electrodes and the grounded test-mass. These parasitic capacitances are shown
in Fig. 1 and originally result in a frequency mismatch between the LC resonators. The tuning
capacitors C,, were used to compensate the associated frequency mismatch between the resonators.

Data availability: The datasets generated during and/or analyzed during the current study are
available in the Zenodo repository https://doi.org/10.5281/zenodo.6397748

Code availability: The Matlab code which has been used for the evaluation of Allan deviation is
available at https://www.mathworks.com/help/nav/ref/allanvar.html
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Extended Data Figure 1: Schematic of the circuit diagram. The blue elements are ADA4862- 3

amplifiers, while the green element indicates the spring-mass which provides the acceleration
dependent capacitance C,,.
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Extended Data Figure 2: Details of the mechanical sensor elements. a,b, Drawings of the copper
platform. ¢,d, Drawings of the test-mass.
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Extended Data Figure 3: Assembly process of the acceleration capacitive sensor. a, Deposition
of the gold nanofilms on a glass substrate that create conductive electrodes which form the capac-
itors plates. Attachment of the glass plates to the stationary platform and test-mass. b, Placement
of the test mass with glass plate on top of the copper base. ¢, Assembled capacitive inertial sensor.
The inset shows the magnified view of the area between the capacitor plates which is about 20 um.




