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Convexifying Market Clearing of SoC-Dependent Bids From

Merchant Storage Participants
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Abstract—State-of-charge (SoC) dependent bidding allows mer-
chant storage participants to incorporate SoC-dependent operation
and opportunity costs in a bid-based market clearing process.
However, such a bid results in a non-convex cost function in the
multi-interval economic dispatch and market clearing, limiting
its implementation in practice. We show that a simple restriction
on the bidding format removes the non-convexity, making the
multi-interval dispatch of SoC-dependent bids a standard convex
piece-wise linear program.

Index Terms—Multi-interval economic dispatch, SoC dependent
bid, convexification.

I. INTRODUCTION

R
ECENT proposals [1] have allowed merchant storage

participants in the wholesale electricity market to submit

state-of-charge (SoC) dependent offers and bids to capture more

accurately the operation and opportunity costs of the energy stor-

age [2], [3], [4]. With such bids, an economic dispatch program

tends to schedule the battery SoC within a range favorable to

the battery’s health and the storage’s ability to capture future

opportunities under uncertainty.

However, a multi-interval economic dispatch with SoC-

dependent bids involves integer variables [5], making the market

clearing process computationally expensive for practical im-

plementations. The nonconvexity of SoC-dependent bids also

brings pricing challenges and the need for out-of-the-market

uplift payments.

In this paper, we propose a simple restriction to the SoC-

dependent bidding, referred to as the equal decremental-cost

ratio (EDCR) condition, that transforms the nonconvex eco-

nomic dispatch optimization into a convex piece-wise linear

program compatible with the standard market clearing process.

A procedure to produce bids satisfying the EDCR condition from

the true bid-in cost functions is also proposed.
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Fig. 1. Left: The SoC-dependent bid and offer format when K = 3. Right:
Cost of charging the storage by gC

t
from et to et+1.

II. SOC-DEPENDENT BID AND DISPATCH MODELS

A. Storage and SoC-Dependent Cost Models

We assume the standard imperfect storage model. In the

scheduling interval t, let et be the storage SoC, gC
t the charging

power, and gD
t the discharging power, respectively. The storage

SoC evolves according to

et+1 = et + gC
t η

C − gD
t /η

D, gC
t g

D
t = 0, (1)

where ηC, ηD ∈ (0, 1] are charging/discharging efficiencies.

A standard piecewise-linear SoC-dependent bid model [1]

is illustrated in Fig. 1 (left). Without loss of generality, we

partition the SoC axis intoK consecutive segments. Within each

segment Ek := [Ek, Ek+1], a pair of bid-in marginal cost/benefit

parameters (cC
k , c

D
k ) is defined. The marginal discharging (bid-in)

costs (to the grid) bD(et; c
D,E) and marginal charging (bid-in)

benefits (from the grid) bC(et; c
C,E) are functions of battery

SoC et. In particular, using the indicator function1
1,

{

bC
(

et; c
C,E

)

:=
∑K

k=1 c
C
k1{et∈Ek}

bD
(

et; c
D,E

)

:=
∑K

k=1 c
D
k1{et∈Ek}

(2)

with cC := (cC
k), c

D := (cD
k ) and E := (Ek) as parameters.

For the longevity of the battery and the ability to capture

profit opportunities, it is more costly to discharge when the SoC

is low, and the benefit of charging is small when the SoC is

high. Therefore, typical bid-in discharge costs (cD
k ) and charging

benefits (cC
k) are monotonically decreasing. Furthermore, the

storage participant is willing to discharge only if the selling price

is higher than the buying price. Hence, the storage participant’s

willingness to sell by discharge (adjusted to the discharging

efficiency) must be higher than its willingness to purchase (ad-

justed to the charging efficiency), i.e., cD
Kη

D > cC
1/η

C. Together,

SoC-dependent bids and offers satisfy the following.

Assumption 1: The SoC-dependent cost/benefit parameters

{(cC
k , c

D
k ), η

C, ηD} satisfy the following monotonicity conditions

1
1{s∈Ei}

equals to 1 when s ∈ Ei.
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∀k = 1, · · · ,K − 1:
{

cC
k ≥ cC

k+1

cD
k ≥ cD

k+1

and cC
1/η

C < cD
Kη

D.

B. Cost Function of SoC-Dependent Bids

SoC-dependent bids and offers induce SoC-dependent

scheduling costs involving the (ex ante) SoC et in scheduling

stage t before the dispatch and the (ex post) SoC et+1 after the

dispatch that may be in a different SoC partitioned segment.

Specifically, the stage cost f(gC
t , g

D
t , et) in interval t is given

by2

f
(

gC
t , g

D
t , et

)

:= fD
(

et, g
D
t

)

− fC(et, g
C
t ), (3)

where fD is the discharging cost, and fC is the charging benefit.

In particular, for every et ∈ Em and et+1 ∈ En,

fC
(

et, g
C
t

)

:=1{n≥m}g
C
t c

C
n + 1{n>m}

n−1
∑

k=m

∆cC
k

ηC
(Ek+1 − et) ,

fD
(

et, g
D
t

)

:=1{n≤m}g
D
t c

D
n + 1{n<m}

m
∑

k=n+1

ηD∆cD
k−1(Ek−et) ,

with ∆cC
k := cC

k − cC
k+1 and ∆cD

k := cD
k − cD

k+1. Fig. 1 (right)

illustrates fC
(

et, g
C
t

)

in an example with K = 3,m = 1, and

n = 3. Note that the stage cost f
(

gC
t , g

D
t , et

)

is nonconvex,

although it is convex if given et.

C. The Multi-Interval Economic Dispatch

We consider a multi-interval dispatch model involving T
intervals and M buses. In decision interval t, let gC

it and gD
it be

the charging and discharging decision variables, respectively,

and let eit be the SoC of unit i. With the single stage cost in (3),

the T -interval operation cost of storage i is given by

Fi

(

gggC
i , ggg

D
i ; si

)

:=

T
∑

t=1

fi
(

gC
it, g

D
it, eit

)

, (4)

where gggC
i , ggg

D
i ∈ R

T denote the vector of charging and discharg-

ing power for storage i over T -interval, respectively.

For the interval t, let dit be the demand at bus i, and we

defineddd[t] := (d1t, · · · , dMt) as the demand vector for all buses.

Let gggG[t] := (gG
1t, · · · , g

G
Mt) be the vector of bus generations.

Similarly defined are gggD[t] and gggC[t] as the vector of charging

and discharging power of the battery storage, respectively. For

simplicity, we establish the dispatch model with one generator

and one storage at each bus, which is extendable to general cases.

Given the convex generator cost fG
i (g

G
it), the initial SoC ei1 =

si, and the load forecast (ddd[t]) over the T -interval scheduling

horizon, the economic dispatch minimizes the system operation

costs is given by

minimize
{(gG

it
,gC

it
,gD

it
,eit)}

M
∑

i=1

(

Fi

(

gggC
i , ggg

D
i ; si

)

+

T
∑

t=1

fG
i

(

gG
it

)

)

subject to ∀t ∈ {1, ..., T}, ∀i ∈ {1, ...,M}

µµµ[t] : SSS
(

gggG[t] + gggD[t]− gggC[t]− ddd[t]
)

≤ qqq

2For simplicity, indexes and ramping costs for storage are ignored here.

Fig. 2. Top left: nonconvex true storage cost in 2-interval. Top right: true
SoC-dependent marginal cost and optimal EDCR approximation bids (K = 5).
Bottom left: optimal EDCR approximation cost in 2-interval. Bottom right:
EDCR approximation error.

λt : 1ᵀ
(

gggG[t] + gggD]t]− gggC[t]
)

= 1ᵀddd[t]

eit + gC
itη

C − gD
it/η

D = ei(t+1)

0 ≤ gG
it ≤ ḡG

i

0 ≤ gC
it ≤ ḡC

i

0 ≤ gD
it ≤ ḡD

i

Ei ≤ ei(t+1) ≤ Ēi

gC
itg

D
it = 0

ei1 = si, (5)

where the DC power flow model is considered with the shift-

factor matrix SSS ∈ R
2B×M for a network with B branches and

the branch flow limitqqq ∈ R
2B . The system operation constraints

include power balance constraints, SoC state-transition con-

straints, charging/discharging capacity limits, and SoC limits.

The bilinear constraint, gC
itg

D
it = 0, ∀i, t, prevents the simulta-

neous charging and discharging decisions.

Note that (5) is nonconvex for two reasons. First, the objective

function is nonconvex and subdifferentiable because the noncon-

vex multi-stage storage operation cost (4), as is shown in Fig. 2

(top left). Second, the equality constraint banning simultaneous

charging/discharging decisions in (5) is bilinear. In the following

section, we remove these two forms of nonconvexities.

III. CONVEXIFYING MARKET CLEARING

We now convexify the objective function and relax the bi-

linear equality constraints of the market clearing problem (5).

Theorem 1 below gives a condition on the bid-in cost parameters

that convexifies the objection function3.

Theorem 1: If a storage participant’s bid-in parameters satisfy

the equal decremental-cost ratio (EDCR) condition,

cC
k − cC

k−1

cD
k − cD

k−1

= ηCηD, ∀k, (6)

3Storage index i is omitted in Theorem 1 and Section IV for simplicity.
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under Assumption 1, the multi-interval storage operation cost in

(4) is piecewise linear convex given by

F
(

gggC, gggD; s
)

= max
j∈{1,...,K}

{

αj(s)− cC
j 1

ᵀgC + cD
j 1

ᵀgD
}

(7)

with αj(s) := −
∑j−1

k=1
∆cC

k
(Ek+1−E1)

ηC −
cC
j(s−E1)

ηC + h(s) and

h(s) :=
∑K

i=1 1{s∈Ei}

(

cC
i (s−E1)

ηC +
∑i−1

k=1
∆cC

k
(Ek+1−E1)

ηC

)

.

See the proof in Appendix [6]. Note that if bid-in costs are

derived from the value function of the stochastic storage opti-

mization based on price forecasts as in [4], [5], the derived bids

satisfy (6)4. The following lemma supports the exact relaxation

of gC
itg

D
it = 0, ∀i, t.

Lemma 1: Under Assumption 1 and EDCR condition, if the

locational marginal prices (LMPs) from the relaxed economic

dispatch are non-negative, the relaxation of the bilinear con-

straints gC
itg

D
it = 0, ∀i, t in (5) is exact.

See the proof in Appendix [6]. The computation of LMP (after

relaxation of the bilinear constraint) is standard. Specifically,

we define the LMP by πit := λ
∗
t −SSS(:, i)ᵀµ∗[t] for bus i and

interval t with the optimal dual solutions of (5) after relaxing

the bilinear equality constraints.

The non-negative assumption on LMP has been considered

in [7], [8] for the exact relaxation of bilinear constraint in (5)

for differentiable objective functions. Here we have a slight

generalization for a convex piecewise linear objective function

by deploying the subgradient measure [[9], p. 281]. See the proof

in Appendix [6].

IV. OPTIMAL EDCR APPROXIMATKON

In constructing the SoC-dependent storage bids and offers in

(2), the true marginal costs (or true marginal cost b̃D(et) and

marginal benefit b̃C(et)) may not satisfy the EDCR condition.

The following optimization aims at finding the optimal approx-

imation of b̃C(et) and b̃D(et) with the EDCR condition satisfied

by parameters θ = {cC, cD,EEE},

minimize
θ∈Θ

||bC(·|θ)− b̃C(·)||22 + ||bD(·|θ)− b̃D(·)||22. (8)

The objective fuction measures the distance between the orig-

inal true marginal cost and the approximation bids/offers,

and θ is restricted in a set Θ satisfying Assumption 1 and

the EDCR condition from Theorem 1. With N data samples

(Sn, B
C
n, B

D
n)

N
n=1 from the true marginal cost, the objective is

1
N

∑N
n=1((b

C(Sn|θ)−BC
n)

2 + (bD(Sn|θ)−BD
n)

2).
Optimization (8) for the optimal EDCR approximation is in

general nonconvex. By fixing EEE while solving for (cC, cD), or

fixing (cC, cD) while solving forEEE, we can iteratively approach

the (local) optimal solution by solving a convex problem in each

iteration.

V. EXAMPLE

Consider an ideal storage with the initial SoC at 15.5 MWh,

T = 2 and the original nonconvex multi-interval storage cost

shown in the top left of Fig 2. The axis labels use the notation

gt = gD
t − gC

t , t = 1, 2, for storage’s net-producing power. The

4Adopting SoC-independent marginal discharge cost and efficiency parame-
ters as used in [4], the SoC-dependent bid derived in equation (4) of [5] satisfies
the EDCR condition (6) in this paper.

true SoC-dependent bids, b̃C(et) and b̃D(et), are shown in Fig. 2

(top right). From the EDCR approximation in (8) with even SoC

partitions5, we can approximate the true SoC-dependent bids

and achieve the convex cost function shown in Fig. 2 (bottom

left and top right). In this ideal storage which has ηC = ηD = 1,

the EDCR condition in Theorem 1 decreased to a special case,

cC
k − cC

k−1 = cD
k − cD

k−1, ∀k (shown in top right of Fig. 2).

The bottom right part of Fig. 2 illustrates the approximation er-

ror between the original SoC-dependent bids, b̃C(et) and b̃D(et),
and the optimal EDCR approximation bids, bC(et) and bD(et).
It is observed that, with more SoC partition segments, a smaller

approximation error can be achieved.

VI. CONCLUSION

It’s essential to remove non-convexities for a large-scale de-

ployment of storage. This paper convexifies the market clearing

process by imposing a condition on the SoC-dependent bidding.

We propose a sufficient condition—the equal decremental-cost

ratio (EDCR) condition—to convexify the market clearing of

multi-interval economic dispatch with SoC-dependent bids from

merchant storage participants. And an optimal EDCR approxi-

mation method is proposed to compute the SoC-dependent bid

from the true cost of storage.
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