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Convexifying Market Clearing of SoC-Dependent Bids From
Merchant Storage Participants

Cong Chen

Abstract—State-of-charge (SoC) dependent bidding allows mer-
chant storage participants to incorporate SoC-dependent operation
and opportunity costs in a bid-based market clearing process.
However, such a bid results in a non-convex cost function in the
multi-interval economic dispatch and market clearing, limiting
its implementation in practice. We show that a simple restriction
on the bidding format removes the non-convexity, making the
multi-interval dispatch of SoC-dependent bids a standard convex
piece-wise linear program.

Index Terms—Multi-interval economic dispatch, SoC dependent
bid, convexification.

1. INTRODUCTION

ECENT proposals [1] have allowed merchant storage

participants in the wholesale electricity market to submit
state-of-charge (SoC) dependent offers and bids to capture more
accurately the operation and opportunity costs of the energy stor-
age [2], [3], [4]. With such bids, an economic dispatch program
tends to schedule the battery SoC within a range favorable to
the battery’s health and the storage’s ability to capture future
opportunities under uncertainty.

However, a multi-interval economic dispatch with SoC-
dependent bids involves integer variables [5], making the market
clearing process computationally expensive for practical im-
plementations. The nonconvexity of SoC-dependent bids also
brings pricing challenges and the need for out-of-the-market
uplift payments.

In this paper, we propose a simple restriction to the SoC-
dependent bidding, referred to as the equal decremental-cost
ratio (EDCR) condition, that transforms the nonconvex eco-
nomic dispatch optimization into a convex piece-wise linear
program compatible with the standard market clearing process.
A procedure to produce bids satisfying the EDCR condition from
the true bid-in cost functions is also proposed.
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Fig. 1. Left: The SoC-dependent bid and offer format when K = 3. Right:
Cost of charging the storage by gtC from e; to ez 41.

II. SOC-DEPENDENT BID AND DISPATCH MODELS
A. Storage and SoC-Dependent Cost Models

We assume the standard imperfect storage model. In the
scheduling interval ¢, let e; be the storage SoC, ¢¢ the charging
power, and gP the discharging power, respectively. The storage
SoC evolves according to

e = e+ g0 —gr/n°s gigr =0, M
where 7, nP € (0, 1] are charging/discharging efficiencies.

A standard piecewise-linear SoC-dependent bid model [1]
is illustrated in Fig. 1 (left). Without loss of generality, we
partition the SoC axis into K consecutive segments. Within each
segment &, := [Ey, Ex11], apair of bid-in marginal cost/benefit
parameters (c$, cP) is defined. The marginal discharging (bid-in)
costs (to the grid) bP(ey; cP, E) and marginal charging (bid-in)
benefits (from the grid) b¢(es; cC, E) are functions of battery
SoC e;. In particular, using the indicator function! 1,

b (e ¢ B) = i lierean)
0 (er;e® ) = 3340, Rlerees)
with € 1= (c§), c® := (cP) and E := (E}) as parameters.

For the longevity of the battery and the ability to capture
profit opportunities, it is more costly to discharge when the SoC
is low, and the benefit of charging is small when the SoC is
high. Therefore, typical bid-in discharge costs (¢} ) and charging
benefits (c$) are monotonically decreasing. Furthermore, the
storage participant is willing to discharge only if the selling price
is higher than the buying price. Hence, the storage participant’s
willingness to sell by discharge (adjusted to the discharging
efficiency) must be higher than its willingness to purchase (ad-
justed to the charging efficiency), i.e., cRn® > ¢§ /1. Together,
SoC-dependent bids and offers satisfy the following.

Assumption 1: The SoC-dependent cost/benefit parameters
{(c5, cR),n<, nP} satisfy the following monotonicity conditions

@

I]l{segi} equals to 1 when s € &;.
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B. Cost Function of SoC-Dependent Bids

SoC-dependent bids and offers induce SoC-dependent
scheduling costs involving the (ex ante) SoC e; in scheduling
stage ¢ before the dispatch and the (ex post) SoC e, after the
dispatch that may be in a different SoC partitioned segment.
Specifically, the stage cost f(g¢, gP,e;) in interval ¢ is given
by?

f(gfag?’(at) = fD (et’g?)_fc(et’gtc)a (3)
where fP is the discharging cost, and f€ is the charging benefit.
In particular, for every e; € &, and e;41 € &,

n—1
AcS
fc (eta gtc) = :H-{an}gtCCSL + ]-{n>m} Z TCk (Ek+1 - et) )

k=m

m
fD (etng) = ﬂ{ngm}g?cg + l{n<m} Z WDACEq(Ek—et) )
k=n+1
with Ac§ := ¢, — ¢, and Ac}) := ¢} — ¢}, ;. Fig. 1 (right)
illustrates fC (et, gf) in an example with K = 3, m =1, and
n = 3. Note that the stage cost f (gf, g?,et) is nonconvex,
although it is convex if given e;.

C. The Multi-Interval Economic Dispatch

We consider a multi-interval dispatch model involving T'
intervals and M buses. In decision interval ¢, let g5, and g be
the charging and discharging decision variables, respectively,
and let e;; be the SoC of unit ¢. With the single stage cost in (3),
the T-interval operation cost of storage 4 is given by

T
F; (g5.9%:s:) = Zfi (95900~ €it) »

t=1

“
where g¢, g? € RT denote the vector of charging and discharg-
ing power for storage ¢ over T -interval, respectively.

For the interval t, let d;; be the demand at bus 7, and we
defined[t] := (dy¢, - - - , dare) as the demand vector for all buses.
Let g%[t] := (g%, -+, g%;,) be the vector of bus generations.
Similarly defined are gP[t] and g©[t] as the vector of charging
and discharging power of the battery storage, respectively. For
simplicity, we establish the dispatch model with one generator
and one storage at each bus, which is extendable to general cases.
Given the convex generator cost f&(g$), the initial SoC e;; =
si, and the load forecast (d[t]) over the T-interval scheduling
horizon, the economic dispatch minimizes the system operation
costs is given by

M T
minimize F g,c’ gD; s:) + f»G gG
{(g?t,gft,g?t,e“)} FZI z( 7 3 l) ; 7 ( zt)

subjectto Vt € {1,....,T},Vi e {1,...., M}

ult]: S (g°[t] + "t — gt —d[t]) <4q

2For simplicity, indexes and ramping costs for storage are ignored here.
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Fig. 2. Top left: nonconvex true storage cost in 2-interval. Top right: true
SoC-dependent marginal cost and optimal EDCR approximation bids (K = 5).
Bottom left: optimal EDCR approximation cost in 2-interval. Bottom right:
EDCR approximation error.

ht 17 (g0 + g1 — g°ft)) = 17d[t]
eir + g5n” — gn/n° = €i(t+1)

0<g5<g’

0<g5<gf

0<gh<gp

E; <ejup1) < E;
959 =0
5)

where the DC power flow model is considered with the shift-
factor matrix S € R28*M for a network with B branches and
the branch flow limitq € R?%. The system operation constraints
include power balance constraints, SoC state-transition con-
straints, charging/discharging capacity limits, and SoC limits.
The bilinear constraint, ¢5,g> = 0, Vi, t, prevents the simulta-
neous charging and discharging decisions.

Note that (5) is nonconvex for two reasons. First, the objective
function is nonconvex and subdifferentiable because the noncon-
vex multi-stage storage operation cost (4), as is shown in Fig. 2
(top left). Second, the equality constraint banning simultaneous
charging/discharging decisions in (5) is bilinear. In the following
section, we remove these two forms of nonconvexities.

€i1 = Si,

III. CONVEXIFYING MARKET CLEARING

We now convexify the objective function and relax the bi-
linear equality constraints of the market clearing problem (5).
Theorem 1 below gives a condition on the bid-in cost parameters
that convexifies the objection function®.

Theorem 1: 1f astorage participant’s bid-in parameters satisfy
the equal decremental-cost ratio (EDCR) condition,

C(k: B C(szl _ .C, D Vi 6
D _ D =nn, ) ( )
€k~ Ck—1

3Storage index 7 is omitted in Theorem 1 and Section IV for simplicity.
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under Assumption 1, the multi-interval storage operation cost in
(4) is piecewise linear convex given by

F (gC,gD;s) = {04] — chngC + cjpngD} 7

Z] 1 Apk(Ek+1 Ei)

max

c (s El)

with o;(s) := + h(s) and

h(s) = Y0t Lisee,) ( il El) + 3 M)

See the proof in Appendlx [6]. Note that if bid-in costs are
derived from the value function of the stochastic storage opti-
mization based on price forecasts as in [4], [5], the derived bids
satisfy (6)4 The following lemma supports the exact relaxation
of gSgb = 0,Vi,t.

Lemma 1: Under Assumption 1 and EDCR condition, if the
locational marginal prices (LMPs) from the relaxed economic
dispatch are non-negative, the relaxation of the bilinear con-
straints g5g> = 0, Vi, t in (5) is exact.

See the proof in Appendix [6]. The computation of LMP (after
relaxation of the bilinear constraint) is standard. Specifically,
we define the LMP by 7, := A} — S(:, )T *[t] for bus ¢ and
interval ¢ with the optimal dual solutions of (5) after relaxing
the bilinear equality constraints.

The non-negative assumption on LMP has been considered
in [7], [8] for the exact relaxation of bilinear constraint in (5)
for differentiable objective functions. Here we have a slight
generalization for a convex piecewise linear objective function
by deploying the subgradient measure [[9], p. 281]. See the proof
in Appendix [6].

IV. OpTIMAL EDCR APPROXIMATKON

In constructing the SoC-dependent storage bids and offers in
(2), the true marginal costs (or true marginal cost b°(e;) and
marginal benefit b€ (e;)) may not satisfy the EDCR condition.
The following optimization aims at finding the optimal approx-
imation of b€ (e,) and bP (e, ) with the EDCR condition satisfied
by parameters 6 = {c®, cP E},

OB+ 11B° (1) =P O)II3. (8

The objective fuction measures the distance between the orig-
inal true marginal cost and the approximation bids/offers,
and O is restricted in a set © satisfying Assumption 1 and
the EDCR condition from Theorem 1. With N data samples
(S, BS, B2YN_| from the true marginal cost, the objective is
WZ?L:I((bC(STL'a) - n) (bD(S’ﬂ|0) - n)2)

Optimization (8) for the optimal EDCR approximation is in
general nonconvex. By fixing E while solving for (c€, cP), or
fixing (cC, cP) while solving for E, we can iteratively approach
the (local) optimal solution by solving a convex problem in each
iteration.

minimize |[b(:|0) —
0cO

V. EXAMPLE

Consider an ideal storage with the initial SoC at 15.5 MWh,
T = 2 and the original nonconvex multi-interval storage cost
shown in the top left of Fig 2. The axis labels use the notation
gt = g° — g&,t = 1,2, for storage’s net-producing power. The

4Adopting SoC-independent marginal discharge cost and efficiency parame-
ters as used in [4], the SoC-dependent bid derived in equation (4) of [5] satisfies
the EDCR condition (6) in this paper.
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true SoC-dependent bids, b (e;) and b° (e;), are shown in Fig. 2
(top right). From the EDCR approximation in (8) with even SoC
partitions®, we can approximate the true SoC-dependent bids
and achieve the convex cost function shown in Fig. 2 (bottom
left and top right). In this ideal storage which has n® = n° = 1,
the EDCR condition in Theorem 1 decreased to a special case,

& — & =P —cP | Vk (shown in top right of Fig. 2).

The bottom right part of Fig. 2 illustrates the approximation er-
ror between the original SoC-dependent bids, b (e, ) and bP (),
and the optimal EDCR approximation bids, b<(e;) and b° (e, ).
It is observed that, with more SoC partition segments, a smaller
approximation error can be achieved.

VI. CONCLUSION

It’s essential to remove non-convexities for a large-scale de-
ployment of storage. This paper convexifies the market clearing
process by imposing a condition on the SoC-dependent bidding.
We propose a sufficient condition—the equal decremental-cost
ratio (EDCR) condition—to convexify the market clearing of
multi-interval economic dispatch with SoC-dependent bids from
merchant storage participants. And an optimal EDCR approxi-
mation method is proposed to compute the SoC-dependent bid
from the true cost of storage.
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5&, satisfies B, = E + (k- 1)(E-E) based on the SoC upper bound £ = 25

K
MWh and lower bound £ = 9MWh forall k € {1, ..., K'}.
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