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Abstract—We study the problem of co-optimizing behind-the-
meter (BTM) storage and flexible demands with BTM stochastic
renewable generation. Under a generalized net energy meter-
ing (NEM) policy—NEM X, we show that the optimal co-
optimization policy schedules the flexible demands based on a
priority list that defers less important loads to times when the
BTM generation is abundant. This gives rise to the notion of
a net-zero zone, which we quantify under different distributed
energy resources (DER) compositions. We highlight the special
case of inflexible demands that results in a storage policy
that minimizes the imports and exports from and to the grid.
Comparative statics are provided on the optimal co-optimization
policy. Simulations using real residential data show the surplus
gains of various customers under different DER compositions.

Index Terms—demand response, distributed energy resources,
energy storage, home energy management, net metering.

I. INTRODUCTION

THE falling prices of battery storage and the unremitting

reduction of NEM compensation rates for grid exports

ushered storage deployment in residential households, es-

pecially those coupled with rooftop solar1. The increasing

differential between the rates of energy imports and exports

under NEM, increases the value of self-consuming the BTM

generation, which can be achieved by demand response [3],

energy storage [4], or both [5].

Substantial research studied energy management systems

(EMS) under the existence of DER. The work in [5], however,

was the first to propose a linear-complexity and near closed-

form characterization to the storage and flexible loads co-

optimization, which enables scheduling massive numbers of

such resources as functions of the BTM renewable distributed

generation (DG). In this work, we expand on the analysis in [5]

by deriving additional structural properties and special cases

that give more insights to the optimal co-optimization policy.

The optimization of BTM storage operation has been exten-

sively studied. Researchers have studied the optimal operation

of storage for various objectives including bill minimization

(or surplus maximization) [6]–[8], wholesale market partici-

pation [9], and grid services provision [10]. The literature on

BTM residential storage operation largely omitted the situation

This work was supported in part by the National Science Foundation under
Grants 1932501 and 2218110.

The full paper, including proofs of theoretical results, is available at [1].
1According to [2], the total installed BTM storage capacity in 2020 reached

1000 MW, and 80% of the residential storage capacity is paired with solar.

of dynamically controlling both the household’s consumption

and storage to maximize the customer’s benefit by actively

scheduling the resources as functions of the renewable DG.

The handful of work done on consumption and storage co-

optimization either lacks the analyticity of our proposed solu-

tion [6], [9], [11], or co-optimizes storage and time-of-service

of deferrable load [7], [8] rather than the quantity of the elastic

load, as presented in our work.

This work builds upon the optimal policy derived in [5],

which co-optimizes flexible loads and energy storage under the

existence of stochastic renewable generation when prosumers

(customers with DG or storage) face NEM X tariff, by

providing insights, interpretations, and special cases to the

solution structure. To this end, four results are presented. First,

we show that the optimal policy generates a load priority list

that schedules demands based on the DG profile. Second, we

prove that the special case of inflexible demands simplifies the

optimal policy to one that minimizes prosumer’s imports and

exports from and to the grid. Third, we quantify the net-zero

zone, where the prosumer is operationally off-the-grid, under

different DER compositions. Lastly, we perform comparative

statics on the co-optimization policy’s optimal decisions

Our simulation results adopt the Californian NEM 3.0 policy

(also called net billing) to model household’s payment, under

various customers types, including those with and without

storage, DG and flexible demands. The surplus gain and per-

centage of self-consumed DG of the different customer types

are investigated while varying tariff and storage parameters.

II. PROBLEM FORMULATION AND OPTIMAL DECISIONS

We consider a household with BTM DER, including flexible

demands, a renewable DG, and an energy storage, facing an

electric utility under NEM (Fig.1). The surplus-maximizing

household co-optimizes its BTM DER, which reveals appeal-

ing decision and operational structures that we investigate.

Fig. 1. Solar+storage prosumer under NEM. The variables of load consump-
tion d and DG output g are real and non-negative, whereas storage output e
and net consumption z variables are real.978-1-6654-9071-9/23/$31.00 ©2023 IEEE
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A. BTM DER Models

We study the sequential scheduling of consumption (dt)
and battery operation (et) of the arrangement in Fig.1 over a

finite horizon indexed by t = 0, . . . , T − 1.
a) Flexible demand: The prosumer has K devices whose

consumption vector, for every t = 0, . . . , T − 1, is denoted by

dt = (dt1, · · · , dtK) ∈ D, with

D := {d : d � d � d} ⊆ R
K
+ ,

where d,d represent the consumption’s lower and upper

bounds, respectively.

The utility Ut(dt) of consuming dt in interval t is assumed

to be strictly concave, strictly increasing, continuously differ-

entiable, and additive, i.e.,

Ut(dt) :=

K
∑

k=1

Utk(dtk), t = 0, . . . , T − 1. (1)

The marginal utility function is denoted and defined by

Lt := ∇Ut = (Lt1, · · · , LtK). (2)

b) Renewable: For t = 0, . . . , T −1, the DG output gt ∈
R+ is an exogenous (positive) Markovian random process.

c) Battery storage: For t = 0, . . . , T − 1, the battery

control is given by et = [et]
+−[et]

− ∈ [−e, ē], where [x]+ :=
max{0, x} and [x]− := −min{0, x} denote the positive and

negative part functions for any x ∈ R, respectively, and e and

ē are the limits of battery’s discharging and charging rates,

respectively. When et > 0, the storage is charged, and when

et < 0, the storage is discharged.

The efficiencies of discharging and charging the storage are

denoted by ρ, τ ∈ (0, 1], respectively. This means that charging

with [et]
+ increases the SoC by τ [et]

+, whereas discharging

by [et]
− decreases the SoC by 1

ρ
[et]

−. We denote the storage

SoC by st ∈ [s, s̄] with s and s as the lower and upper SoC

bounds, respectively. The SoC evolution is driven by et as

st+1 = st + τ [et]
+ − [et]

−/ρ, t = 0, . . . , T − 1, (3)

with s0 = s as the initial SoC, which is assumed to be

exogenous and independent of the household’s decisions.

B. NEM X Tariff Model

The customer’s payment to the utility under NEM policy is

based on the household’s net-consumption zt ∈ R defined by

zt := 1
⊤dt + et − gt, t = 0, . . . , T − 1. (4)

The period at which the netting operation under NEM is

performed might be as brief as 5 minutes and as extended

as a month [12]. For brevity, we limit our exposition to the

instance when the NEM netting period is equivalent to the

prosumer scheduling period, allowing us to index the netting

period by t as well.

By adopting the NEM X tariff model introduced in [3],

we use the NEM X tariff parameter πt = (π+
t , π

−
t , π

0
t ), to

compute the household’s payment (bill) under NEM X as

Pπt

t (zt) := π+
t [zt]

+ − π−
t [zt]

− + π0
t , t = 0, . . . , T − 1, (5)

where π+
t , π

−
t , π

0
t ∈ R+ are the retail (buy) rate, export (com-

pensation) rate, and fixed (connection) charge2, respectively.

For every t = 0, . . . , T − 1, when zt ≥ 0, the prosumer is a

net-consumer facing π+
t , whereas when zt < 0, the prosumer

is a net-producer facing π−
t .

The retail and export rates can be temporally varying (e.g.,

time-of-use (ToU)) or fixed (e.g., flat pricing).

C. Prosumer Decision Problem

The problem is formulated as a T -stage Markov decision

process (MDP). The MDP state in interval t consists of storage

SoC st and renewable DG output gt, xt := (st, gt) ∈ X . The

evolution of the MDP state is defined by (3) and the exogenous

Markov random process (gt). The MDP initial state is denoted

by x0 = (s, g).
The MDP policy µ := (µ0, . . . , µT−1) is a sequence of

decision rules, xt
µt

→ ut := (dt, et), for all xt and t, that

determines consumption and battery schedule in each stage.

The reward function rπt

t consists of prosumer surplus Sπt

t as

a stage reward, and storage salvage value as a terminal reward:

rπt

t (xt, ut) :=

{

Sπt

t (ut; gt), t ∈ [0, T − 1]

γ(sT − s), t = T,
, (6)

where

Sπt

t (ut; gt) := Ut(dt)− Pπt

t (1⊤dt − gt + et), (7)

and γ is the salvage value of stored energy.

The storage and flexible loads co-optimization is given by

P : Maximize
µ=(µ0,...,µT−1)

Eµ

{

T
∑

t=0

rπt

t (xt, ut)

}

(8a)

Subject to for all t = 0, . . . , T − 1,

st+1 = st + τ [et]
+ − [et]

−/ρ (8b)

gt+1 ∼ Fgt+1|gt (8c)

s ≤ st ≤ s̄ (8d)

0 ≤ [et]
− ≤ e (8e)

0 ≤ [et]
+ ≤ ē (8f)

d � dt � d (8g)

x0 = (s, g), (8h)

where the expectation is over the exogenous stochastic renew-

able generation (gt), and Fgt+1|gt is the conditional distribu-

tion of gt+1 given gt.

D. Optimal Prosumer Decisions

The solution of the storage-consumption co-optimization in

(8) is provided in [5] under two assumptions: (A1) non-binding

SoC limits (8d), and (A2) sandwiched salvage value, where

max{(π−
t )} ≤ τγ ≤ γ/ρ ≤ min{(π+

t )}. (9)

Under A1-A2, the solution has a highly-scalable threshold-

based structure that co-schedules the consumption and storage

2Without loss of generality, we assume zero fixed charges (π0
t = 0,∀t), as

the optimization and solution structure are not affected by it.
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based on the availability and level of the BTM DG. For every

t = 0, . . . , T − 1, the co-optimization policy has six BTM-

DG-independent thresholds, ordered as

∆−
t ≥ σ−

t ≥ σ−o
t ≥ σ+o

t ≥ σ+
t ≥ ∆+

t , (10)

and computed as:

∆+
t := ft(π

+
t )− e, σ+

t := ft(γ/ρ)− e, σ+o
t := ft(γ/ρ)

∆−
t := ft(π

−
t ) + e, σ−

t := ft(τγ) + e, σ−o
t := ft(τγ)

(11)

where ft is the sum of inverse marginal utilities defined as

ft(πt) :=

K
∑

k=1

ftk(πt) (12)

ftk(πt) := max{dk,min{L−1
tk (πt), dk}}, (13)

and Ltk is as defined in (2) with L−1
tk as its inverse.

For every t = 0, . . . , T−1, the optimal consumption d∗tk(gt)
of every device k, battery operation e∗t (gt), net-consumption

z∗t (gt), and the resulting payment P ∗,πt

t (gt) are monotonic

in gt, and their structures are summarized in Table I (Also

depicted in Fig.3). The household operates in 1) the net

consumption zone (+) if gt ≤ ∆+
t , 2) the net production zone

(−) if gt ≥ ∆−
t , and 3) the net zero zone (0) if gt ∈ [∆+

t ,∆
−
t ],

under which the household is off-the-grid.

III. SOLUTION PROPERTIES AND SPECIAL CASES

We discuss some properties and special cases of the optimal

co-optimization policy in Sec.II-D. Sec.III-A shows the load

priority ranking structure of the solution. Sec.III-B consid-

ers the special case of solving (8) under passive3 demands.

Sec.III-C, quantifies the net zero zone, and show that the more

flexible resources the prosumer has, the larger its net zero

zone. Lastly, Sec.III-D, provides comparative statics analysis

on the solution structure.

A. Load Priority Ranking Rule

The optimal consumption schedule reveals important mi-

croeconomics interpretations based on marginal utilities of

devices and the rates π+
t , π

−
t , γ/ρ and τγ. Devices with higher

marginal utilities are prioritized in the net-consumption zone

(z∗t (gt) > 0); when the DG output is low. Less important

devices (lower marginal utilities) are exercised only when the

DG output is high. Proposition 1 formalizes the conditions for

device consumptions in each net-consumption zone.

Proposition 1 (Load priority ranking rule). Under A1-A2, and

assuming w.l.o.g that dk = 0,∀k, the scheduling of every

device k and t = 0, . . . , T −1 in any of the three consumption

zones, depends on its marginal utility Ltk(·). If

1) Ltk(0) > π+
t , device k is consumed in all zones.

2) π+
t ≥ Ltk(0) > γ/ρ, device k is consumed in all zones,

except the net-consumption zone.

3) γ/ρ ≥ Ltk(0) > τγ, device k is consumed only if gt >
σ+o
t .

3We use passive and active to refer to customers with DG-inelastic and
DG-elastic demands, respectively [12].

4) τγ ≥ Ltk(0) > π−
t , device k is consumed only if gt >

σ−
t .

5) π−
t > Ltk(0), device k is never consumed.

To illustrate Proposition 1, marginal utilities of five devices

corresponding to the 5 cases in Proposition 1 are shown in

Fig.2. Note that since the marginal utility of device 1 at

zero consumption Lt1(0) is greater than π+
t , the device was

consumed in all zones because the non-increasing marginal

utility intersected all of the four price lines, granting a pos-

itive consumption. On the other hand, for device 55, since

(Lt5(0) ≤ π−
t ), the device was not consumed in any zone.

Devices 2, 3 and 4 do not consume in the net-consumption

zone since Lt2(0), Lt3(0), Lt4(0) < π+
t , however, they start

consuming from the smallest point under which their marginal

utilities intersect with the price.

Fig. 2. Consumption allocation to devices based on marginal utilities.

B. Passive Prosumer

For every t = 0, . . . , T − 1, the passive SDG4 prosumer

schedules the consumption as if the household faces only π+
t ,

and therefore consumes ft(π
+
t ) for any DG output. It turns

out that the the optimal policy of a passive SDG prosumer is

to minimize the absolute value of its net-consumption zt.

Proposition 2 (Optimal policy under DG-passive demands).

Under A1-A2 and for any DG-passive consumption bundle

d̂t ∈ D, the optimal storage operation is to discharge/charge

as much as possible to minimize the absolute value of net

consumption:

µ∗
t ∈ arg min

et∈{−e,ē}

|zt|. (14)

for every t = 0, . . . , T − 1,

The passive SDG prosumer optimal policy is intuitive

(Fig.3). The storage exercises a balancing control that tries to

null the renewable-adjusted consumption d̃t := 1
⊤d̂t−gt [13].

For the given fixed total consumption ft(π
+
t ), the battery’s

stored energy is used to a) reduce net consumption in case

d̃t < 0, b) increase net consumption (production) in case

d̃t > 0, and c) maintain net-zero as much as possible. Under

(a), the prosumer gains at the rate of π+ and losses at the rate

of γ/ρ, whereas under (b), the prosumer gains at the rate of

τγ and losses at the rate of π−. Proposition 2 also implies

4We refer to prosumers with standalone DG as DG prosumers, and
prosumers with storage and DG as SDG prosumers.
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TABLE I
SUMMARY OF THE OPTIMAL CO-OPTIMIZATION POLICY.

Zone (+) (0) (−)

gt gt < ∆+ gt ∈ (∆+
t , σ+

t ] gt ∈ (σ+
t , σ+o

t ] gt ∈ (σ+o
t , σ−o

t ] gt ∈ (σ−o
t , σ−

t ] gt ∈ (σ−

t ,∆−

t ] gt > ∆−

t

d∗
tk
(gt) ftk(π

+
t ) ftk(f

−1
t (gt + e)) ftk(f

−1
t (γ/ρ)) ftk(f

−1
t (gt)) ftk(f

−1
t (γτ)) ftk(f

−1
t (gt − e)) ftk(π

−

t )

e∗t (gt) −e −e gt − σ+o
t 0 gt − σ−o

t e e
z∗t (gt) z∗t > 0 z∗t = 0 z∗t = 0 z∗t = 0 z∗t = 0 z∗t = 0 z∗t < 0

P ∗,πt

t (gt) π+
t z∗t 0 0 0 0 0 π−

t z∗t

that the ratio of self-consumption over the scheduling period

SC ∈ [0, 1], defined by

SC(zt) := 1 +

T−1
∑

t=0

[zt]
−

gt
, for

T−1
∑

t=0

gt > 0, (15)

is maximized.

Fig. 3. Active (solid) and passive (dashed) SDG prosumers decisions.

C. Net Zero Zone Quantification

The passive SDG prosumer case shows the propensity of

prosumers to achieve net-zero. We hence define and quantify

the net-zero zone length under different DER compositions.

Definition 1 (Net-zero zone length). For t = 0, . . . , T−1, and

for any optimal policy µ∗ the net-zero zone length is given by

|Gµ
∗

t | := Maximize
gt∈Gµ∗

t

gt − Minimize
gt∈Gµ∗

t

gt (16)

where Gµ
∗

t = {gt ∈ R+ : zµ
∗

t (gt) = 0} is a convex set.

Definition 1 is used in Corollary 1 to show that the co-

optimization policy’s net-zero zone length is the sum of the

net-zero zone lengths of DG active [3] and SDG passive

prosumers (Sec.III-B).

Corollary 1 (Net-zero zone length quantification). Under A1-

A2, and for every t = 0, . . . , T−1, the net-zero zone lengths of

optimal: 1) passive DG |G
µ

∗

1

t |, 2) active DG |G
µ

∗

2

t |, 3) passive

SDG |G
µ

∗

3

t | and 4) active SDG |G
µ

∗

4

t | prosumers are ordered

as

|G
µ

∗

4

t | ≥ |G
µ

∗

3

t | ≥ |G
µ

∗

2

t | ≥ |G
µ

∗

1

t |, (17)

if ft(π
−
t )− ft(π

+
t ) ≤ e+ e, and ordered as

|G
µ

∗

4

t | ≥ |G
µ

∗

2

t | ≥ |G
µ

∗

3

t | ≥ |G
µ

∗

1

t |, (18)

if ft(π
−
t )− ft(π

+
t ) > e+ e.

It also holds that

|G
µ

∗

4

t | = |G
µ

∗

2

t |+ |G
µ

∗

3

t |. (19)

The corollary shows that the more flexible resources (active

loads and storage) an optimal prosumer has, the longer its

net-zero zone length, as in |G
µ

∗

4

t |. The length of net-zero zone

is compromised if one or both of the decision variables are

dropped, i.e., d in |G
µ

∗

3

t |, e in |G
µ

∗

2

t | and both d, e in |G
µ

∗

1

t |.
Shrinking the net-production and net-consumption zones

lengths, while increasing |Gµ
∗

t | has crucial economical and

technical implications. As |Gµ
∗

t | increases, the customer’s bill

becomes more immune to π− reductions, because SC in

(15) becomes higher. For grid operators and utilities, higher

|Gµ
∗

t | achieves operational benefits such as reducing reverse

power flows, which improves network’s reliability [14]. This,

however, may come at the cost of higher grid defection rates

[15], requiring utilities to reshape their business model.

D. Comparative Statics

Here we offer a comparative statics analysis on the opti-

mal policy to investigate how the parameters and variables

influence the solution structure in each net-consumption zone.

Theorem 1 in [1] formalizes the effect of changing exogenous

parameters on the endogenous quantities of consumption, stor-

age operation, payment, and surplus. Table II summarizes the

comparative static analysis by considering ǫ-increases of the

exogenous parameters and examining changes of endogenous

quantities at interior points of the three zones.

Table II shows that the increase in the renewable output

enables increasing the consumption and the storage output,

which results in a decreasing payment and increasing surplus.

This is because, under NEM X, self-consumption of the

renewable output is valued more than exporting it back.

Varying the NEM X tariff parameters π = (π+, π−, π0),
as shown in Table II have direct implication on S∗,πt

t (gt). In-

creasing π+
t negatively affects S∗,πt

t (gt), since the household

consumption will be reduced. However, increasing the export

rate positively effect S∗,πt

t (gt) as the payment to the utility

reduces and the consumption increases. Increasing π0
t reduces

S∗,πt

t (gt), because the payment increases. Interestingly, the

storage output is independent of the NEM X tariff parameters.

The salvage value rate affects the optimal consumption,

storage operation, and prosumer surplus only in the net-

Authorized licensed use limited to: Cornell University Library. Downloaded on August 21,2023 at 03:54:25 UTC from IEEE Xplore.  Restrictions apply. 



zero zone, where the consumption and surplus reduce as γ
increases, and the storage output increases as γ increases.

TABLE II
COMPARATIVE STATIC ANALYSIS.

Quantity Zone gt ↑ π+
t ↑ π−

t ↑ γ ↑ π0
t ↑

d∗
tk
(gt)

+ — ↓ — — —
− — — ↓ — —
0 ↑ — — ↓ —

e∗t (gt)
+ — — — — —
− — — — — —
0 ↑ — — ↑ —

P ∗,πt

t (gt)
+ ↓ × — — ↑

− ↓ — ↓ — ↑

0 — — — — ↑

S∗,πt

t (gt)
+ ↑ ↓ — — ↓

− ↑ — ↑ — ↓

0 ↑ — — ↓ ↓

↑ : increasing ↓ : decreasing — : unchanged × : indeterminant

IV. NUMERICAL RESULTS

We consider a household receiving service under a NEM

policy. Five prosumer types are studied: 1) consumers: cus-

tomers without BTM DER, 2) active DG prosumers: customers

who schedule their consumption based on available DG [3],

3) active SDG prosumers5: customers who co-optimize storage

and consumption as in Sec.II-D, 4) passive DG and 5) passive

SDG prosumers: customers who do not schedule consumption

based on available DG. Passive prosumers consume as if they

are consumers.

To model household consumption and renewable generation,

we used the Smart project data set6, which has a 1-minute

granularity of aggregated and individual home circuits col-

lected over the year 2016. We restricted our simulation to only

three months of 2016 (June-August).

The consumption preferences are captured by the following,

widely-adopted, quadratic concave utility function

Utk(dtk) =

{

αtkdtk − βtk

2 d2tk, 0 ≤ dtk < αtk

βtk

α2
tk

2βtk

, dtk ≥ αtk

βtk

,
(20)

where αtk and βtk are some utility parameters that are learned

using historical consumption and price data by positing an

elasticity of demand7 as in [12].

The discharging and charging efficiencies of the battery ρ, τ
were assumed to be 0.95. By considering Tesla Powerwall8 2,

the capacity of the battery was chosen to be 13.5 kWh. The

salvage value γ was chosen such that A2 in (9) holds.

The household faces the Californian NEM 3.0 tariff, which

has a ToU-based retail rate π+, a dynamic avoided-cost-based

export rate π−, and a fixed charge of π0 = $15/month. For

π+, we adopted PG&E 2022 summer E-TOU-B rate schedule,

which has peak and off-peak rates of π+
h = $0.49/kWh and

π+
l = $0.37/kWh, respectively, and a 16–21 peak period. For

5SDG prosumers are customers with storage+DG.
6The data repository can be accessed at Smart Data Set. We used home D.
7The long-run price elasticity of electricity demand used was -0.21 [16].
8Tesla Powerwall datasheet can be found at Tesla Powerwall.

π−, the 2022 average avoided cost rates, developed by E3 Inc.

avoided cost calculator (ACC), were used9.

A. Surplus Gain

We compared the average daily surplus gain achieved by the

five prosumer types, using consumers as the benchmark. Table

III shows the average percentage gain in daily surplus over that

achieved by a consumer under one-minute and one-hour net-

ting frequencies and three different storage charge/discharge

rates e = e ∈ {0.5, 0.75, 1}.

Four key observations are in order. First, active SDG

customers achieved the highest surplus gain of all cases.

Second, increasing the netting frequency from an hourly to

a minute basis always resulted in lower surplus gains, as

customers became more vulnerable to the lower export rate.

Third, the value of being active was significant, with an 8%

surplus gain increase for both DG and SDG customers. Lastly,

increasing the storage rate by 0.25kW for both passive and

active customers resulted in a roughly 4% surplus gain.

TABLE III
SURPLUS GAIN OVER CONSUMERS (%).

DER Customer e = e (kW) 1-min 1-hour

– Consumer 0 0 0

D
G Passive 0 69.27 70.82

Active 0 77.48 79.21
D

G
+

S
to

ra
g

e

Passive
0.5 81.27 82.98

0.75 86.13 87.90
1 90.52 92.33

Active
0.5 89.44 91.23

0.75 94.19 96.02
1 98.32 100.25

B. DG Self-Consumption

Table IV shows the self-consumption (computed as in (15))

percentage of the studied customer types under a one-minute

and one-hour netting frequencies and three different storage

charge/discharge rates e = e ∈ {0.5, 0.75, 1}.

Broadly speaking, customers who achieved high surplus

gains in Table III managed to achieve high self-consumption

percentages (Table IV). This is, however, not always the case,

as active DG prosumers achieved higher self-consumption

but lower surplus gain compared to passive SDG prosumers

with 0.5kW storage charge/discharge rates. The reason is that,

although active DG prosumers more effectively reduced en-

ergy exports, they under-performed in reducing energy imports

compared to SDG prosumers, which is more costly. At 0.75kW

and 1kW storage rates, passive SDG prosumers had both

higher surplus gains and higher self-consumption.

Table IV shows that increasing the netting frequency de-

creased the self-consumption percentage, as customers had a

shorter banking period for loads to consume the DG output.

For both netting frequencies, installing a DG without actively

9The ACC rates can be accessed at E3 ACC.
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scheduling the consumption based on the available DG, re-

sulted in exporting back more than 57% of the DG. Actively

scheduling the consumption based on the available DG, as

proposed [3], increased self-consumption to over 55%. When

the prosumer installed storage in addition to the DG, self-

consumption increased to more than 61% when the customer

was passive, and to over 74% when the prosumer was active.

TABLE IV
DG SELF-CONSUMPTION (%).

DER Customer e = e (kW) 1-min 1-hour

– Consumer 0 – –

D
G Passive 0 41.02 42.25

Active 0 55.22 56.68

D
G

+
S

to
ra

g
e

Passive
0.5 52.22 53.32

0.75 57.18 58.19
1 61.64 62.67

Active
0.5 66.24 67.40

0.75 70.87 71.97
1 74.79 76.00

C. Value of Storage

Fig.4, shows surplus gains of active and passive SDG pro-

sumers compared to active and passive DG prosumers10 under

varying export rates (left) and storage efficiencies (right).

The left plot shows that the value of storage (VoS) and the

value of demand response (VDR) increased as the differential

between the retail and export rates enlarged. The gain increase

was higher in the active SDG – passive DG case (yellow)

because the curve augmented both VDR and VoS. The surplus

gain increased in the passive SDG – passive DG (orange) and

active SDG – active DG (blue) cases, as the π− decreased was

primarily due to VoS, which has a higher value when locally

absorbing g becomes more valuable. The passive SDG – active

DG surplus gain as π− decreased, compares the effectivity of

VoS alone and VDR alone in reducing exported generation.

The right plot shows that VoS increased as the storage

charging/discharging efficiencies increased. Interestingly, the

passive SDG – active DG curve (purple) shows that when the

storage was relatively inefficient, VDR exceeded VoS, which

was reversed as the storage efficiency improved.
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Fig. 4. Surplus gain over active/passive DG prosumers (e = e = 0.75kW).

10This is also called value of storage.

V. CONCLUSION

This work analyzed the structural properties of the optimal

policy co-optimizing flexible demands and storage devices

when operated with a renewable DG. The policy is shown to

abide by a load priority ranking rule that exercises consump-

tion decisions based on load importance, which gets relaxed

when the renewables are abundant. Comparative statics on

the optimal decisions, prosumer payment, and reward have

been investigated under different tariff and household DER

parameters. Lastly, it has been shown that under the special

case of inflexible demands, the storage is operated in a manner

that minimizes the inflows and outflows from and to the grid.
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