
1.  Introduction
An accurate estimate of turbulent fluxes is essential to weather, climate, and environmental studies (e.g., 
Biermann et al., 2014; Bourassa et al., 2013; Helbig et al., 2021; Li et al., 2006; Natali et al., 2022; J. A. Zhang 
et al., 2008). To date, the eddy covariance (EC) is the most commonly used technique in quantifying turbulent 
fluxes (e.g., Aubinet et al., 2012; Baldocchi, 2020; Müller et al., 2010), and is the standard method used by major 
flux measurement networks around the world (e.g., AmeriFlux, AsiaFlux, CarboEuroFlux, etc.).

Several important assumptions need to be met when using the EC algorithm, such as stationary airflow and hori-
zontal homogeneity (Foken & Napo, 2008; Foken et al., 2004; Lenschow et al., 1994; Thomas & Foken, 2007). 
However, in reality the earth surface is always more or less inhomogeneous and undulate, especially in urban and 
mountainous areas, where non-stationary turbulence frequently appears (e.g., Arnfield, 2003; Babić et al., 2016; 
Panin et al., 1998; Stiperski & Rotach, 2016; Turnipseed et al., 2004). Other complications, such as time-varying 
surface heat fluxes, individual cloud elements, and horizontal pressure gradients, can also cause non-stationary 
turbulence (e.g., Andreas et al., 2008; Angevine et al., 2020; Cava et al., 2014; Donateo et al., 2013; Mahrt & 
Bou-Zeid, 2020; Momen & Bou-Zeid, 2017; Rannik & Vesala, 1999; Sunuararajan & Tjernström, 2000), More-
over, the chaotic turbulence itself may exhibit intermittent, stochastic, and non-linear characteristics, causing 

Abstract  This study evaluates the uncertainties of turbulent flux calculation using eddy covariance 
(EC) and wavelet analysis (WA) methods. First, a non-stationary data set is concocted by adding periodic 
waves and random perturbations which mimic the large eddies, turbulent intermittency, and asymmetry into 
an observational stationary data set, and the theoretical “true” fluxes are used to quantitatively evaluate the 
accuracy of these methods. Results show that EC and Morlet-wavelet generate biases ranging 50%–100% of the 
“true” values at different non-stationarity grades, whereas the Mexican hat (Mexhat) wavelet has a bias of about 
half of them. Furthermore, there is a high correlation of the Mexhat-derived fluxes to the benchmark values, 
the regression slopes of the values of these two can be improved to almost 1 by adding a correction coefficient. 
The results suggest the potential of using the Mexhat-wavelet method to calculate turbulent fluxes with high 
accuracy under non-stationary conditions.

Plain Language Summary  Eddy covariance (EC) method is the well-accepted technique to 
calculate turbulent flux under stationary conditions. However, the observational turbulence data sometimes 
show non-stationarity, and in this case, the EC method is not applicable and wavelet analysis (WA) is frequently 
used. However, because turbulent fluxes are calculated values, and there are no true flux measurements, the 
accuracy of WA-calculated fluxes remains unknown. In this study, we constructed a non-stationary data set 
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potential to be used to calculate turbulent fluxes under non-stationary conditions.
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turbulence to be severely non-stationary (e.g., Cullen et al., 2007; Deventer et al., 2018; Mahrt, 2007; Riederer 
et al., 2014).

Under non-stationary conditions, EC algorithm may introduce large biases in flux calculation (Göckede 
et al., 2019; L. Liu et al., 2022; Vitale et al., 2020), and such data are usually discarded when performing EC 
analyses in previous studies (e.g., Foken & Napo,  2008; Foken et  al.,  2004). Recently, the wavelet analysis 
(WA), which does not require the assumptions of stationarity and horizontal homogeneity, becomes an alterna-
tive method to analyze turbulence under non-stationary conditions (e.g., Kumar & Foufoula-Georgiou, 1997). 
The WA method decomposes a series into time–frequency space through fitting the turbulent series with vary-
ing amplitudes and frequencies of a selected wavelet function, which effectively extracts time and frequency 
information from the turbulent signal (Daubechies, 1990; Farge, 1992; Maraun & Kurths, 2004; Torrence & 
Compo, 1998; N. Zhang et al., 2019). In an early study, Argoul et al. (1989) used the WA method to reveal the 
cascade of turbulent eddy scales from a tunnel experiment. Mahrt (1991) found that WA was useful to distinguish 
the dominant scales of asymmetric eddies shown in aircraft observations. Hudgins et al. (1993) used the WA 
method to analyze the data collected from the boundary layer over the ocean and found intermittency related to 
small-scale turbulent mixing. Treviño and Andreas (1996) applied the WA method to the non-stationary turbu-
lence, and discussed its limitation on resolving linear and non-linear behaviors in the turbulence signal. Thomas 
and Foken (2005, 2007) used the WA method to calculate the turbulent statistics contributed by coherent eddy 
structures and found that the determined peak in the calculated wavelet variance spectrum was consistent with 
the durations of the characteristic events. Saito and Asanuma. (2008) derived wavelet co-spectra of fluxes over 
a rice and a larch forest. Zhu et al. (2010) used WA to analyze the turbulences in the unsteady, inhomogeneous 
hurricane surface layer, and revealed the roles of eddies with different scales in generating fluxes and turbulent 
kinetic energy. Schaller et al. (2017) compared the fluxes of stationary turbulence data calculated by the WA and 
EC methods and found an excellent agreement between the two methods. Schaller et al. (2019) used WA to evalu-
ate Methane flux from Arctic permafrost ecosystem, and concluded that WA was a suitable method for resolving 
flux events on the order of minutes for non-stationary turbulence. Göckede et al. (2019) investigated the impact of 
non-stationarity on turbulent fluxes by comparing EC calculations against WA references, and found substantial 
uncertainties associated with short-term fluxes.

Despite the ability of WA to process non-stationary signals, issues regarding the accuracy of WA method on 
flux calculation under non-stationary condition have yet to be thoroughly addressed. In this study, by using an 
artificial data set, which is concocted from observations and idealized waves, we aim to provide a quantitative 
evaluation on the accuracy of WA method in determination of turbulent fluxes by comparing with the theoretical 
“true” values. Section 2 describes the data and methods used in the study. Section 3 presents the evaluation results 
followed by the summary and discussions in Section 4.

2.  Data and Methods
2.1.  Data

A year-long high-frequency wind data collected at a site in Shouxian county, Anhui Province (116.78°E, 32.57°N) 
from 1 January 2017 to 31 December 2017 are used in this study. The surrounding areas of the site are generally 
flat, and are covered mostly by rice-wheat farmland with some dispersed trees. A three-dimensional ultrasonic 
anemometer (CSAT3A, Campbell Scientific Incorporation, USA) and a gas analyzer (EC150, Campbell Scien-
tific Incorporation, USA) were installed on 2.5 m height, and their sampling frequencies were 10 Hz. The 1-year 
data were divided into a total of 17,520 30-min subsets. Quality control of wild point removal and coordinate 
rotation was applied to the data following C. Liu et al. (2020), after that 10,360 subsets of data remained. Figure 
S1 in Supporting Information S1 shows the temporal variability of the observed wind, temperature, humidity, 
precipitation, and barometric pressure over the study period.

2.2.  Method

2.2.1.  Stationarity Classification

A method proposed by Foken and Wichura (1996) commonly used to categorize the stationarity of turbulent data 
series is adopted here. The relative non-stationarity (𝐴𝐴 RNCOV ) of a 30-min turbulent time series is assessed by,
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RNCOV =
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|

𝐶𝐶𝑥𝑥𝑥𝑥5min − 𝐶𝐶𝑥𝑥𝑥𝑥30min

𝐶𝐶𝑥𝑥𝑥𝑥30min

|
|
|
|
|

,� (1)

where a 30-min series is cut into six 5-min sections. 𝐴𝐴 𝐴𝐴𝑥𝑥𝑥𝑥30min and 𝐴𝐴 𝐶𝐶𝑥𝑥𝑥𝑥5min are the covariance of the 30-min series 
and the average of covariances of the six 5-min sections, respectively. Foken et al. (2004) categorized the station-
arity state of a series into nine grades according to the values of 𝐴𝐴 RNCOV (Table S1 in Supporting Information S1). 
When calculating fluxes using the EC method, data in grade 1 and 2 are defined as stationary while those in 
other grades are treated as non-stationary and usually discarded. In the original Shouxian data set, among 10,360 
subsets of 30-min data sections in total, 2,533 subsets out of them are identified as non-stationary data sections 
(i.e., grade 3–9, Table S1 in Supporting Information S1), which account for 24.5% of the total data. Noted that 
the Shouxian site has a relatively flat underlying surface. One would expect the non-stationary data portion to be 
larger in areas with heterogeneous underlying surfaces.

2.2.2.  Turbulent Flux Calculation Methods

2.2.2.1.  EC Method

The EC method is based on the Reynolds decomposition and Taylors' frozen turbulence hypothesis (Foken 
et al., 2012; Stull, 1988). Reynolds decomposition theory divides the time series of variable 𝐴𝐴 𝐴𝐴 into two parts, a 
mean value 𝐴𝐴 𝑥𝑥 indicating the mean flow, and perturbations 𝐴𝐴 𝐴𝐴

′ denoting the turbulence. The turbulent fluxes are 

calculated as the covariance of two variables, for example, the momentum turbulent flux 𝐴𝐴 𝑤𝑤′𝑢𝑢′ in the surface layer 
may be expressed as

𝑤𝑤′𝑢𝑢′ =
1

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

[(

𝑤𝑤𝑖𝑖 −𝑤𝑤
)

⋅

(

𝑢𝑢𝑖𝑖 − 𝑢𝑢
)]

,� (2)

Where 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 are the vertical velocity and horizontal wind component in the x-axis direction of a local Cartesian 
coordinate, respectively; Overbar and prime represent the mean and perturbation away from the mean, respec-
tively; and N is the number of observations in a data series.

2.2.2.2.  WA Method

The wavelet transformation of a discrete time series 𝐴𝐴 𝐴𝐴(𝑡𝑡)(𝑡𝑡 = 1 ⋅ ⋅ ⋅𝑁𝑁) is

𝑊𝑊𝑛𝑛(𝑠𝑠) =

𝑁𝑁
∑

𝑛𝑛′=1

𝑥𝑥𝑛𝑛′ (𝑡𝑡) × 𝜓𝜓
∗

(

(𝑛𝑛
′ − 𝑛𝑛)𝛿𝛿𝛿𝛿

𝑠𝑠

)

,� (3)

where 𝐴𝐴 𝐴𝐴𝑛𝑛(𝑠𝑠) is the wavelet coefficient, 𝐴𝐴 𝐴𝐴
∗ is the complex conjugate of the wavelet function 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴 , and 𝐴𝐴 𝐴𝐴𝐴𝐴 are 

the wavelet scale, translation index, and data sampling interval of a signal series, respectively. Following previ-
ous studies (e.g., Schaller et al., 2017; Torrence & Compo, 1998; Zhu et al., 2010), two frequently used wavelet 
functions Mexican hat wavelet and Morlet-wavelet, are examined here. The Morlet-wavelet may be written as,

𝜓𝜓
Morlet

(𝜇𝜇) = 𝜋𝜋
−
1

4 ⋅ 𝑒𝑒
−𝑖𝑖𝑖𝑖0𝜇𝜇

⋅ 𝑒𝑒
−
𝜇𝜇
2

2 ,
� (4)

where 𝐴𝐴 𝐴𝐴 is a time parameter. Following Farge  (1992) and Schaller et  al.  (2017), 𝐴𝐴 𝐴𝐴0 has a value of 6. The 
Mexhat-wavelet may be expressed as,

𝜓𝜓
Mexhat

(𝜇𝜇) =

2 ⋅

(

1 −
𝜇𝜇
2

𝜎𝜎2

)

√

3 ⋅ 𝜎𝜎 ⋅ 𝜋𝜋

1

4

⋅ 𝑒𝑒
−
𝜇𝜇
2

2𝜎𝜎 ,� (5)

with 𝐴𝐴 𝐴𝐴 = 1 . Then, the turbulent flux at a given scale 𝐴𝐴 𝐴𝐴 integrating over the whole data series may be calculated as,

𝐸𝐸𝑤𝑤𝑤𝑤(𝑗𝑗) =
𝛿𝛿𝛿𝛿

𝐶𝐶
⋅

1

𝑁𝑁
⋅

𝑁𝑁
∑

𝑛𝑛=1

[

𝑊𝑊
𝑤𝑤

𝑛𝑛 (𝑠𝑠𝑗𝑗) ⋅𝑊𝑊
𝑢𝑢

𝑛𝑛

∗
(𝑠𝑠𝑗𝑗)

]

.� (6)

where, 𝐴𝐴 𝐴𝐴 is the reconstruction factor, and following Torrence and Compo (1998), it takes a value of 0.776 for 
Morlet-wavelet and 3.541 for Mexhat-wavelet, respectively. The wavelet scale is taken as,
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𝑠𝑠𝑗𝑗 = 𝑠𝑠0 ⋅ 2
𝑗𝑗⋅𝛿𝛿𝛿𝛿

, 𝑗𝑗 = 0, 1, 2. . . , 𝐽𝐽 𝐽� (7)

where, 𝐴𝐴 𝐴𝐴𝐴𝐴 is the spacing between scales, and it is set as 0.25 here following Schaller et al. (2017) to ensure a 
sufficient resolution and affordable computation capacity, and 𝐴𝐴 𝐴𝐴  takes

𝐽𝐽 = 𝛿𝛿𝛿𝛿
−1

⋅ log
2

(

𝑁𝑁 ⋅ 𝛿𝛿𝛿𝛿

𝑠𝑠0

)

.� (8)

The smallest scale 𝐴𝐴 𝐴𝐴0 here is set to 𝐴𝐴 2𝛿𝛿𝛿𝛿 . Finally, the total turbulent momentum flux over all scales (𝐴𝐴 𝐴𝐴𝑤𝑤𝑤𝑤 ) can be 
calculated by

𝐸𝐸𝑤𝑤𝑤𝑤 = 𝛿𝛿𝛿𝛿 ⋅

𝐽𝐽
∑

𝑗𝑗=0

𝐸𝐸𝑤𝑤𝑤𝑤(𝑗𝑗)

𝑠𝑠𝑗𝑗
.� (9)

For the stationary turbulence, 𝐴𝐴 𝐴𝐴𝑤𝑤𝑤𝑤 should be theoretically equal to 𝐴𝐴 𝑤𝑤′𝑢𝑢′ determined by EC.

2.2.3.  Concoction of Non-Stationary Data Series

Turbulent fluxes cannot be observed directly but have to be calculated mathematically (e.g., Aubinet et al., 2012; 
Rebmann et al., 2012). Under stationary conditions, EC is a commonly accepted method for calculating turbu-
lent fluxes (e.g., Hammerle et al., 2007). However, for non-stationary conditions, no well-accepted flux calcula-
tion method is available at present. While WA method is frequently used in processing non-stationary turbulent 
data (e.g., Schaller et al., 2017, 2019; Zhu et al., 2010), the applicability and uncertainty of this method have 
yet been thoroughly addressed and evaluated (Treviño & Andreas,  1996). Here, we concoct non-stationary 
data series by adding various periodic waves into the observed stationary data. In this way, the perturbations in 
the concocted non-stationary data series are known, and “true” fluxes can be calculated and used to evaluate 
the WA method. It is noteworthy that, various factors can cause non-stationary turbulences, for example, air 
flow through the heterogeneous surface (e.g., Arnfield, 2003; Babić et al., 2016; Panin et al., 1998; Stiperski 
& Rotach,  2016; Turnipseed et  al.,  2004); the variation of the radiation (e.g., Andreas et  al.,  2008; Cullen 
et  al.,  2007; Dias et  al.,  2004; Gluhovsky & Agee, 1994); non-local transportation and the intermittency of 
turbulence itself (e.g., Cullen et al., 2007; Klipp & Mahrt, 2004; Mahrt, 1998). And the non-stationarity of the 
turbulences can be different by different driving forces. To make the added fluctuations “physically plausible,” 
we added periodic waves with periods ranging from 1 to 150 min to represent the relatively larger eddies in the 
atmosphere (Finnigan, 2000; Wyngaard, 1992), and added sections of 2-min random perturbations to mimic the 
intermittent turbulences (Van de Wiel et al., 2003), and further modified the fluctuations to let them sometime 
be asymmetric (Agostini et  al.,  2016). The detailed method to concoct new non-stationary data series is as 
follows.

1.	 �Mean values of the stationary 30-min subsets are removed and only the perturbations are kept.
2.	 �Six periodic sinusoidal waves with periods randomly selected from 1 to 10, 11–20, 21–30, 31–60, 61–90, and 

91–150 min, respectively, are added to the original data to represent the relatively larger eddies in the atmos-
phere (e.g., Finnigan, 2000; Wyngaard, 1992). The amplitudes of these waves are also randomly selected 
from 0 to 1.35 m s −1 for the vertical wind 𝐴𝐴 𝐴𝐴 and 0–2.32 m s −1 for the horizontal wind component 𝐴𝐴 𝐴𝐴 . The 
chosen value of 1.35 (2.32) is the average of the maximum perturbations of the 10,360 subsets of 30-min 
non-stationary data for 𝐴𝐴 𝐴𝐴 (𝐴𝐴 𝐴𝐴 ). The phases of these periodic waves are again set as random. The sinusoidal 
waves added to 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 are independent of each other.

3.	 �A number of sections of 2-min random perturbations are then inserted into the data. The number of sections is 
randomly chosen in 1–10. These random perturbations are used to mimic the intermittent turbulences. Their 
amplitudes are set as a random number between 0 and 0.68 (0–1.16) for 𝐴𝐴 𝐴𝐴 (𝐴𝐴 𝐴𝐴 ), half of the values in the second 
step, considering that the intermittent turbulences are generally weaker than the continuous turbulences (e.g., 
Van de Wiel et al., 2003).

4.	 �Starting from the data generated from step 3, randomly select 1–10 1-min data segments in the 30-min data 
subset, and then find the maximum (or minimum, by randomly choice) 25% of the disturbances in these 1-min 
data segments, and then reduce (or enlarge) the values larger than the 75% (or smaller than 25%) quantile 
value to the 75% (or 25%) quantile value in the corresponding 1-min data segments. This is to introduce 
asymmetries in the concocted data series (Agostini et al., 2016).
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The concoction procedures listed above successfully create a controllable non-stationary data series from a 
real observed stationary data series and yet avoid much complexity. An example of 30-min data of 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 
going through the concoction procedures stated above is shown in Figure 1. The 𝐴𝐴 RNCOV value starts from grade 
1 of the original data series from observations and ends up with grade 6 (𝐴𝐴 RNCOV  = 1.52) after concocting. 
We also  tested different concocting choices in these steps and found that the main conclusions of the study 
kept unchanged (Please refer to the Table S2 and Figure S3 in Supporting Information  S1). The observa-
tional stationary data set and the Python scripts for the non-stationary data concocting can be found in Wu 
et al. (2022).

Figure 1.  Illustration of concocting data series for vertical velocity w (left column) and x-direction wind component u (right column), respectively. (a, b): Original data 
series after removing the mean. (c, d): The six added sinusoidal waves and their summations described in step 2. (e, f): The signals after step-2 concoction. (g, h): The 
added random perturbations described in step 3. (i, j): The signals after step-3 concoction. (k, l): The introduced asymmetry as described in step 4, the removed extreme 
disturbances are marked as red and are pointed by red arrows. (m, n): The final signals after all concoction steps.
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3.  Results
3.1.  The Original Stationary Data

In the stationary state (i.e., grade 1–2 in Table S1 in Supporting Information S1), the turbulent fluxes are commonly 
calculated by the EC method. Here, we compare the fluxes by the Morlet-wavelet and Mexhat-wavelet methods 
to those by EC method using the 7,827 subsets of the grade 1–2 data (Figure S2 in Supporting Information S1). 
It is found that both the Morlet-wavelet and Mexhat-wavelet methods produce results very close to those by the 
EC method with coefficients of determination (which is the square of Pearson correlation coefficient) of 0.997 
and 0.998, respectively. However, Morlet-wavelet method is inclined to overestimate slightly and has a regres-
sion slope of 1.05, whereas Mexhat-wavelet method is inclined to underestimate with a regression slope of 0.91. 
These results are consistent with the theoretical result that in a strict stationary state the EC determined turbulent 
fluxes should be identical to those determined by WA and agree with Held (2014) and Schaller et al. (2017), who 
found that WA produces turbulent fluxes similar to those of EC, and Schaller et al. (2017), who also showed that 
Mexhat-wavelet method tended to generate slightly smaller fluxes than Morlet-wavelet.

3.2.  The Concocted Non-Stationary Data

The WA method has been frequently used to analyze turbulences in the non-stationary condition. However, 
the uncertainty of the fluxes derived by WA has not yet been thoroughly evaluated because no benchmark flux 
measurements are available under non-stationary conditions. By using the method described in Section 2.2.3, the 
7,827 subsets of stationary data are concocted, and 6,483 out of them become non-stationary (i.e., categorization 
higher than or equal to grade 3) (Table S1 in Supporting Information S1). For these non-stationary subsets, the 
perturbations are the summation of those in the original stationary data and those in the added known signals. In 
other words, the added signals are all treated as perturbations, and by adding them to the original perturbations, 
we have the exact perturbations. Therefore, by adding the perturbations caused by each part (i.e., the original 
stationary data and the added known signals), we can have the exact perturbations (𝐴𝐴 𝐴𝐴

′

exact
 and 𝐴𝐴 𝐴𝐴

′

exact
 ) for 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 , 

respectively:

𝑥𝑥
′

exact = 𝑥𝑥
′

stationary
+ 𝑥𝑥

′

sin
+ 𝑥𝑥

′

random
+ 𝑥𝑥

′
asym.� (10)

Here, 𝐴𝐴 𝐴𝐴 can be replaced by 𝐴𝐴 𝐴𝐴 or 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴
′

stationary
 represents the perturbation in the original stationary data, 𝐴𝐴 𝐴𝐴

′

sin
 is the 

perturbation of the added six periodic sinusoidal waves in the second step of non-stationary data concocting. 
𝐴𝐴 𝐴𝐴

′

random
 and 𝐴𝐴 𝐴𝐴

′
asym are the perturbations introduced in the third and fourth step of non-stationary data concocting, 

respectively.

And the fluxes of the concocted non-stationary data can be obtained by calculating 𝐴𝐴 𝑢𝑢
′

exact
𝑤𝑤

′

exact
 (the overbar means 

averaging over the 30 min):

𝑢𝑢
′

exact𝑤𝑤
′

exact =

(

𝑢𝑢
′

stationary
+ 𝑢𝑢

′

sin
+ 𝑢𝑢

′

random
+ 𝑢𝑢

′
asym

)(

𝑤𝑤
′

stationary
+𝑤𝑤

′

sin
+𝑤𝑤

′

random
+𝑤𝑤

′
asym

)

.� (11)

It should be mentioned that the inclusion of the flux from these added frequencies is not linear, that is, not simply 
by adding 𝐴𝐴

(

𝑢𝑢
′

sin
+ 𝑢𝑢

′

random
+ 𝑢𝑢

′
asym

)(

𝑤𝑤
′

sin
+𝑤𝑤

′

random
+𝑤𝑤

′
asym

)

 to the original stationary flux, but including the interac-
tion between the stationary and non-stationary parts of the perturbations as shown in Equation 11.

The fluxes calculated by Equation 11 are further taken as the benchmark to quantitatively evaluate the accuracy 
of EC, Morlet-wavelet and Mexhat-wavelet flux-calculation methods, as shown in Figures 2a1–2c1. It can be seen 
that values from all the three methods deviate from the benchmark values. The EC and Morlet-wavelet methods 
have a regression slope of 0.40 and 0.23, and coefficient of determination of only 0.415 and 0.427, respectively. 
Mexhat-wavelet method has a regression slope of 0.54 which is also an indication of underestimation, but it shows 
a large coefficient of determination of 0.889, suggesting that its accuracy may be improved by adding a correction 
coefficient.

To examine the accuracy of these methods at different non-stationary grades, Figures  2a2–2a8, 2b2–2b8, 
and 2c2–2c8 further presents the scatterplots of the three methods for different non-stationary grades. Generally, 
biases increase with the non-stationary grades, in particular for the EC and Morlet-wavelet methods. To quan-
tify the deviations of the fluxes determined by the three methods away from the benchmark values, we used a 
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parameter known as the absolute values of relative error (AVRE), which is 
defined as,

AVRE =
|
|
|
|

𝐹𝐹ECWA − 𝐹𝐹benchmark

𝐹𝐹benchmark

|
|
|
|

× 100%,� (12)

where 𝐴𝐴 𝐴𝐴ECWA represents the flux derived by the EC, Morlet-wavelet or 
Mexhat-wavelet methods, and 𝐴𝐴 𝐴𝐴benchmark is the benchmark flux obtained from 
Equation 11. The results are shown in Figure 3. It can be seen that the AVRE 
values for the EC and Morlet-wavelet methods are about 50% when the 
non-stationary grade is below grade 6, but they reach nearly 100% at grade 9. 
In contrast, the median values of AVRE for the Mexhat-wavelet method are 
only about half of those of the other two methods. Moreover, although the 
AVRE values increase and the regression slopes decrease with the increase 
of non-stationary grades (meaning that underestimation becomes worse), 
the  coefficients of determination of the Mexhat-wavelet method remain 
large (>0.88) and almost invariant with the grades (Figures 2b2–2b8). These 
results suggest that the fluxes calculated by the Mexhat-wavelet method are 
less biased from and more correlated to the benchmark values than the other 
two methods when processing non-stationary data.

3.3.  Correction Based on Mexhat-Wavelet

The above analyses indicate that the Mexhat-wavelet method is the most accu-
rate among the three compared methods, but it still tends to underestimate the 
benchmark fluxes. The underestimation is mainly caused by its inability to 
reconstruct the signals with large periods (i.e., the added signals with periods 
larger than 1 min). As illustrated by Figure S3 in Supporting Information S1, 
the larger the periods of the added signals, the larger the biases are generated. 
A spectrum analysis also shows no apparent losses of signals during the WA 
of the concocted non-stationary series (figure not shown). However, we note 
that the fluxes calculated by the Mexhat-wavelet method have large coeffi-
cients of determination, thus, it is plausible to correct the estimated fluxes by 
adding a correction coefficients (𝐴𝐴 𝐴𝐴0 ) to the Mexhat-wavelet method based on 
the benchmark values,

𝐸𝐸𝑤𝑤𝑤𝑤(modified) = 𝐶𝐶0𝐸𝐸𝑤𝑤𝑤𝑤(original).� (13)

The values of the correction coefficients for different grades are given in 
Table S1 in Supporting Information S1. These correction coefficients appear 
to work well for the concocted data constructed in this study. As illustrated 
by Figure  4, the corrected fluxes from the Mexhat-wavelet method have 
the regression slopes near 1 for all non-stationary grades. It is also found 
that the correction coefficients are sensitive to the periods of the sinusoidal 
waves being added (Figure S3 in Supporting Information S1), suggesting that 
cautions are needed when correcting the WA derived fluxes for turbulence 
data that contains large eddies. This issue will be further investigated in our 
future study. Finally, it should be pointed out that the correction coefficients 
listed in Table S1 in Supporting Information S1 are derived from the artificial 
concocted data series. Whether they can be applied to real non-stationary 
turbulent data is an issue that needs to be further addressed.

4.  Summary and Discussion
Atmospheric turbulence often shows non-stationary characteristics. Although EC method is taken as the 
flux measurement technique under stationary conditions, there is no well-accepted flux calculation method 

Figure 2.  Scatterplot of benchmark flux values against the values by (a1–a8) 
the eddy covariance method, (b1–b8) the Mexhat-wavelet method, and (c1–c8) 
the Morlet-wavelet method. Rows 1–8 are the plots of non-stationary data with 
all non-stationary grades and grades of 3–9, respectively. The dashed red and 
black lines indicate the linear regression line and 1:1 line, respectively.
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Figure 3.  Boxplots of absolute values of relative error for the eddy covariance (maroon), Mexhat-wavelet (green), and 
Morlet-wavelet (blue) methods. The median values are indicated by the black lines within the boxes. The upper and lower 
edges of the boxes indicate the 25th and 75th percentiles.

Figure 4.  Same as Figure 2, but for Mexhat-wavelet method only. (a–g) Are the plots of non-stationary data with grades of 
3–9, respectively.
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for non-stationary turbulence. While WA is a frequently used method for turbulence decomposition under 
non-stationary conditions, issues regarding the accuracy of the fluxes calculated by WA have not been thoroughly 
addressed.

A 1-year long 10-Hz high frequency data set observed over a rice-wheat paddy is used in this study. It is found 
that, for the 10,360 legs of 30-min data, 24.5% of them are non-stationary based on the categorization crite-
rion proposed by Foken et  al.  (2004). The stationary observational data are used to concoct the fabricated 
non-stationary data by adding six periodic waves and random perturbations, which mimic the large eddies, turbu-
lent intermittency, and asymmetry, respectively (Agostini et al., 2016; Finnigan, 2000; Van de Wiel et al., 2003; 
Wyngaard, 1992). The fluxes derived from the concocted data series are taken as the benchmark to quantita-
tively evaluate the accuracy of the fluxes calculated by the EC and WA methods. The results show that the EC 
and Morlet-wavelet methods generate large biases about 50% of the benchmark values when the non-stationary 
grades are below grade 6, but reach nearly 100% at grade 9, whereas the errors generated by the Mexhat-wavelet 
method are only about half of those of the other two methods. In addition, the calculated fluxes from the EC and 
Morlet-wavelet methods are less correlated to the benchmark values than those from the Mexhat-wavelet method 
that has a coefficient of determination of 0.889 for the entire concocted non-stationary data. It is further found 
that the underestimation of fluxes by the WA methods is mainly caused by the added turbulent components with 
large periods, suggesting that such flux underestimation may be relaxed by adding a correction coefficient. This 
correction method works particularly well for the Mexhat-wavelet method. Our results show that after the correc-
tion the regression slopes between the fluxes determined by the Mexhat-wavelet method and the benchmark 
values can reach nearly 1 for all non-stationary grades.

It should be noted that in the methods of adding random perturbations, the vertical wind component 𝐴𝐴 𝐴𝐴 and the 
horizontal wind component 𝐴𝐴 𝐴𝐴 are treated separately, in other words, the added perturbations of 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 are 
independent from each other. However, in reality, it is plausible that the 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 fluctuations are correlated. 
Therefore, to simulate this situation, additional experiments are performed in which w and u are generated at the 
same frequencies but with different phases to mimic the correlated 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 . The rest steps of adding fluctuations 
remain the same as those described in the baseline experiments. After the same processing technique with EC, 
Mexhat-wavelet and Morlet-wavelet methods, similar results as in Figure 2 are found: EC and Morlet-wavelet 
methods are not capable of calculating the fluxes particularly for non-stationarity grade 8 and 9 where the corre-
lation coefficients to the benchmark values drops below 0.2. In contrast, the calculated fluxes of Mexhat-wavelet 
method show high correlation with the benchmark values for all non-stationarity grades, although the degree of 
correlation to the benchmark values and the regression slopes change slightly depending on how 𝐴𝐴 𝐴𝐴 is correlated 
to 𝐴𝐴 𝐴𝐴 (Figure not shown). The above results show that whether the added 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 fluctuations are correlated or 
not, the main conclusions here are not affected.

This study provides a quantitative evaluation of the accuracy of the fluxes determined by the WA method under 
non-stationary conditions. The characteristics of biases generated by the WA method are revealed, and the correc-
tion coefficients for relaxing the biases generated by the Mexhat-wavelet method are derived. However, it should 
be cautious when applying these coefficients to process the real observational data, since they are derived purely 
from a concocted data set. How to correct the fluxes of real non-stationary turbulent flow determined by the WA 
methods is an issue that requires further investigation. Nonetheless, this study suggests that the Mexhat-wavelet 
provides a promising method for estimating turbulent fluxes in non-stationary conditions. To further explore 
this possibility, our future work will focus on the following two areas. First, analyze more observational data to 
characterize the non-stationary turbulence generated by different atmospheric processes and to create the corre-
sponding concocted datasets in each category, and then, compare the similarities and differences of the correction 
coefficients derived under different characterized turbulence categories. Second, examine if the linear under-
estimation of the fluxes of concocted datasets by the Mexhat-wavelet method is common to all non-stationary 
turbulence with different characteristics and explore the mechanisms underlying the flux underestimation. We 
believe that these practices may shed a new light on quantifying turbulent fluxes in non-stationary conditions.

Data Availability Statement
The observational stationary data set and the Python scripts for the non-stationary data concocting are archived 
on Zenodo (https://doi.org/10.5281/zenodo.7145616, Wu et al., 2022).
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