Distributed Consensus based COVID-19 Hotspot
Density Estimation

Monalisa Achalla
Department of ECE, CITeR,
Clarkson University, NY

Cihan Tepedelenlioglu
School of ECEE, SenSIP Center,
Arizona State University

Abstract—The primary focus of this work is an application
of consensus and distributed algorithms to detect COVID-19
transmission hotspots and to assess the risks for infection. More
specifically, we design consensus-based distributed strategies to
estimate the size and density of COVID-19 hotspots. We assume
every person has a mobile device and rely on data collected
from the user devices, such as Bluetooth and WiFi, to detect
transmission hotspots. To estimate the number of people in a
specific outdoor geographic location and their proximity to each
other, we first perform consensus-based distributed clustering to
group people into sub-clusters and then estimate the number of
users in a cluster. Our algorithm has been configured to work
for indoor settings where we consider the signal attenuation due
to walls and other obstructions, which are detected by using the
Canny edge detection and Hough transforms on the floor maps
of the indoor space. Our results on indoor and outdoor hotspot
simulations consistently show an accurate estimate of the number
of persons in a region.

Index Terms—Consensus, distributed estimation,
transmission hotspots, applications of ad-hoc networks.
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I. INTRODUCTION

The alarming rise of COVID-19 pandemic starting early
2020 brought the whole world to a halt. The pandemic affected
world economies and tremendously impacted the livelihood
of people. The development and distribution of vaccinations
helped in combating the virus to an extent, but there is
always a risk from new variants and future pandemics. Hence,
there is a need to assess whether certain locations and events
pose additional risks for disease spread. In this work, we are
developing a suite of solutions that help minimize the spread
of COVID-19 including mobile and network applications for
real-time assessments and predictions of risks [1] [2]. We focus
on the estimation of potential transmission hotspots, using net-
work size estimation and counting of mobile network nodes.
This approach together with location mapping techniques can
provide real-time risk information to mobile phone users about
the areas that they plan to visit.

In this paper, we propose to use consensus-based strategies
for estimating network size [3]-[6], node locations [7] and
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node counts [8] in a network based on minimal transmit-
receive data. We assume every person has a mobile device and
rely on data collected from user devices, such as Bluetooth
[9] and WiFi, to detect transmission hotspots. In order to
estimate the number of people in a specific outdoor geographic
location and their proximity to each other, we first perform
consensus-based distributed clustering to group people into sub
clusters and then estimate the number of users in a cluster.
Our algorithm has also been configured to work for indoor
settings. We consider the signal attenuation due to walls and
other obstructions and detect them using Canny edge detection
and Hough transforms. Since consensus methods allow us to
use a decentralized architecture and distributed processing,
our approach will show improvements in terms of accuracy,
compactness and power consumption.

We will also present our graphical user interface (GUI) that
performs network size estimation and node counting over a
specific area in real-time, only using local communications.
The GUI has controls to perform clustering using the density
based spatial clustering of applications with noise (DBSCAN)
algorithm and then selects a cluster to run distributed algo-
rithms to obtain network size and node count. Our results on
indoor and outdoor hotspot simulations consistently show an
accurate estimate of the number of people in a region and their
proximity.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a region of interest with users to be a network
of devices/users (nodes), which can be grouped into sub-
networks based on the density of nodes. Given a network
of N nodes, we model the communication among the nodes
as a connected undirected graph G = (V, &), where V =
{1,---,N} is the set of nodes and £ is the set of edges
connecting the nodes. In case of indoor setting, we consider
the signal attenuation due to walls and other obstructions and
then decide the existence of an edge between the nodes. The
set of neighbors of node ¢ is denoted by N; = {j|{7,j} € £}
The degree of the it" node, denoted by d; = |N;|, is the
number of neighbors of the i*" node. The degree matrix D
is a diagonal matrix that contains the degrees of the nodes.



The connectivity structure of the graph is characterized by
the adjacency matrix A defined by, a;; = 1 if {i,j} € £ and
a;; = 0, otherwise. We consider a potential hotspot as wireless
sensor network of devices (nodes), wherein, a node ¢ can com-
municate with other nodes that are within the communication
radius, which depends on the transmission power of the node.
Each node maintains a real valued state and can generate
a random vector, which is used to propagate cluster labels.
At each iteration, nodes broadcast their state values to their
neighbors in a synchronized fashion. Every node is capable
of locally estimating their own location [7], [10] and degree
by exchanging information with their neighboring nodes. We
develop algorithms to form sub-networks and reach consensus
on the total number of active node and edges of a network,
using only local communications.

III. BACKGROUND

As detailed in section II, in a given geographical location,
we create networks only based on local communications
between the devices in a distributed fashion. We rely on the
signal strength between the nodes for proximity calculation.
However, in indoor environments, the proximity calculation
often becomes tricky as the signal between nodes is attenuated
due to the presence of walls and obstructions between the
nodes. Hence, wall detection becomes a crucial step in network
creation and estimation for indoor spaces and various methods
have been discussed in literature for wall detection. Estimation
of presence line of sight between nodes [11] using RSSI signal
quality and using floor maps are among the commonly used
wall detection methods. In this paper, we take floor maps of
each environment and use image processing techniques like
Canny edge detection and Hough Transform for wall detection
as described in section III-A.

Once environment-appropriate networks have been created,
we create clusters of users in close proximity. It has been
observed that clustering users and using these clusters to esti-
mate local hotspot density, where the spread of disease would
be higher than in the network as a whole, is advantageous.
Among the existing distributed clustering algorithms such as k-
means, spectral clustering [12], and expectation maximization
algorithms, DBSCAN (density-based spatial clustering of ap-
plications with noise) is optimal for distributed implementation
as it is robust to communication noise and quantization, and
requires lower computational complexity to implement.

DBSCAN is then followed by density estimation in each
cluster. This is performed using distributed note counting.
DBSCAN and the other distributed algorithms we use do not
store any information about individual nodes and run only
using local communications between nodes. This ensures that
the privacy of all users/nodes is preserved.

A. Wall detection algorithm

To detect walls or obstacles in an indoor setting, we
take floor maps of indoor spaces and transform the floor
map into Hough space [13]. De-Houghing the transformed
images provides us with information about the locations of

walls. The Hough transform is implemented by quantizing the
Hough parameter space into finite intervals or accumulator
cells [14]. As the algorithm runs, each edge pixel (p;, ;) is
transformed into a discretized (r, #) curve and the accumulator
cells which lie along this curve are incremented. Resulting
peaks in the accumulator array represent strong evidence that
a corresponding straight line exists in the image. Mapping
back from Hough transform space into Cartesian space yields
a set of line descriptions (walls) of the image subject. It
has been reported in literature [15] that, the presence of a
solid obstacle between nodes increases the attenuation of the
signal and reduces the proximity by about twice the actual
proximity. Once the walls are detected and networks are
created accordingly, we cluster the networks to create sub-
networks using Distributed DBSCAN algorithm [16]. It is a
well known clustering algorithm to group the network of nodes
into sub-networks in a distributed way. Once sub-networks
are formed, the number of nodes are estimated using methods
detailed in section III-B.

B. Distributed Average Consensus for node counting

In an average consensus problem, the nodes reach consensus
on the global average of all sensed data based on only local
communications [17]. It is assumed that nodes can communi-
cate only with their neighbors and there is no communication
noise between nodes. Consider x(0) to be the initial state
values of the nodes in the network. Distributed node counting
[3], [8] algorithm is formulated by relating the network size
N of a graph with average consensus as,
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where, n; ~ AN (0,1) is an i.i.d Gaussian random variable.
The node counting algorithm involves 3 steps: First, estimate
the value of the numerator in equation 1, using the average
consensus on the node state values. Assuming consensus is
reached in t* iterations,
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Next, in order to compute the denominator in equation 1
each node ¢ generates a K x 1 initial state vector, y;(0) =
[yi(l)(()),-n ,ng)(O)], where the k' element ygk)(O)

nik)xi(()) and ng is a random variable drawn from any
continuous distribution with mean 0 and variance 1. The
average consensus is performed in parallel on each k'"
element of y;(0) using distributed average consensus. As-
suming average consensus is reached at after ¢* iterations,

* : 1 N

yi(t*) =~ lmy,oyi(t) = 7 > ;=1 ¥i(0). Next, a post
processing function g(-) is applied at each node by squaring
each element in the K X 1 state vector y,;(¢*) and computing
the average. For node ¢, the post processing is performed

as, g(yi(t*)) = %Zszl (yfk)(t*))Q. The post processed



result g(y;(t*)) can be related to the I3 norm of the initial
measurements x(0) as,
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The estimate of network size N is computed by taking the
ratio of node state values computed in previous steps, i.e,
equations (2) and (3), as follows,
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Note that, computation of z;(¢*) and g(y;(¢*)) can be per-
formed simultaneously, reducing the computation time.
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Fig. 1. Flowchart of the proposed approach to estimate network size of a
potential hotspot, as an application of consensus and distributed algorithms.

IV. DISTRIBUTED NETWORK SIZE ESTIMATION

In this section, we discuss the approach to estimate the
number of nodes and edges in the COVID-19 hotspots. The
flowchart of our proposed is shown in Figure 1. The global
characteristics of a network can be inferred using the con-
sensus based distributed algorithms on the larger network.
However, in order to find the local characteristics, clustering
algorithms are run on larger network to form the sub-networks,
over which distributed algorithms are run to obtain local
characteristics. We use a wall detection algorithm, as discussed
in Section III-A, to detect the walls in the indoor setting, and
then establish an edge between two nodes which contains a
wall between only if the signal strength between them is above
a threshold 7. Alternatively, in case of outdoor setting, an edge
is formed between two nodes if they are within the communi-
cation radius e within each other. DBSCAN algorithm forms
clusters by sharing the label to the neighboring nodes (label
propagation), if there are at least 7 number of nodes withing
the communication radius of e.

Finally, after the sub-networks are formed, we run the
distributed node counting (Section III-B) and distributed edge
counting algorithms, to reach consensus on the number of
nodes and edges in each sub-network. Our solutions thus
allows a user to accurately estimate the number of devices
and the size of the network within a certain radius.

V. SIMULATION RESULTS

In this section, we discuss the Graphical user interface
(GUIs) that have been developed for network size estimation
in both indoor and outdoor settings. The GUIs are designed to
give the estimates of number of devices (nodes) and number of
edges (connections between the nodes) in any given network.
Our algorithm can be actively tuned to provide the risk
assessment based on the most recent public health guidelines.

To demonstarte our results for an indoor setting we have
used the floor map of Science Center, Clarkson University,
shown in figure 2(a), and detect the presence of walls. The
first step in wall detection is performing Canny edge detection
to detect the edges in an image. Once the edges are detected
through a canny edge detector,the next step is to apply hough
transform for exactly detecting the wall locations. The image
in Hough space is De-houghed and the walls, obstacles in the
floor map are reconstructed and detected as shown in figure
2(c). Once walls are detected, we create network in the given

Fig. 2. a) Floor map of indoor environment for network estimation, b) Floor
map after passing through the Canny Edge Detector. b) De-houghing the
Hough Space to reconstruct walls of indoor environment.

indoor space using only local communication between nodes.
We create a network with 160 nodes and run the distributed
DBSCAN algorithm, with communication range € as six feet.
The DBSCAN clustered the nodes into 4 major clusters with
nearly 6 nodes as outliers. We developed a GUI in which a user
can create networks in an environment of their choice, fine-
tune the parameters like network range, number of nodes. The
GUI shows the clusters formed on the right side and also gives
details about each cluster, estimated number of nodes as shown
in figure 3. The distributed average consensus algorithms as
discussed in section III-B are used on each cluster to estimate
the number of nodes each cluster. The results of estimates in
each cluster are shown in figure 4.
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about the areas that they plan to visit. Our research has
applicability to other fields such as 5G+ communications,
increasing the accuracy of location information, indoor user
tracking, and infrastructure-free implementations applicable to
robotics, location-aware patient care and other mobile health
applications.
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