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Abstract

Pulsar timing array collaborations, such as the North American Nanohertz Observatory for Gravitational Waves
(NANOGrav), are seeking to detect nanohertz gravitational waves emitted by supermassive black hole binaries
formed in the aftermath of galaxy mergers. We have searched for continuous waves from individual circular
supermassive black hole binaries using NANOGrav’s recent 12.5 yr data set. We created new methods to
accurately model the uncertainties on pulsar distances in our analysis, and we implemented new techniques to
account for a common red-noise process in pulsar timing array data sets while searching for deterministic
gravitational wave signals, including continuous waves. As we found no evidence for continuous waves in our
data, we placed 95% upper limits on the strain amplitude of continuous waves emitted by these sources. At our
most sensitive frequency of 7.65 nHz, we placed a sky-averaged limit of h0< (6.82± 0.35)× 10−15, and
h0< (2.66± 0.15)× 10−15 in our most sensitive sky location. Finally, we placed a multimessenger limit of

( )<  ´ M1.41 0.02 109 on the chirp mass of the supermassive black hole binary candidate 3C 66B.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Astronomy data analysis (1858); Millisecond
pulsars (1062); Supermassive black holes (1663)

1. Introduction

Supermassive black hole binaries (SMBHBs) are expected to
form in the aftermath of galaxy mergers, when the two
constituent supermassive black holes eventually become
gravitationally bound (Begelman et al. 1980). If they are able
to reach an advanced stage of evolution, with subparsec orbital
separations, these binaries are predicted to be among the
brightest sources of low-frequency gravitational waves (GWs)
in the universe, emitting at frequencies of ∼10−9 to 10−7 Hz.
The GWs emitted by discrete SMBHBs are known as
continuous waves (CWs) owing to their minimal frequency
evolution, while the dominant source of nanohertz GWs is
expected to be the stochastic GW background (GWB) that has
contributions from the entire cosmic population of SMBHBs
and potentially other sources (Sesana et al. 2004; Burke-
Spolaor et al. 2019).

By carefully monitoring the radio pulses from stable
millisecond pulsars over many years, pulsar timing arrays (PTAs)
should be able to detect correlated fluctuations in the pulse times
of arrival (TOAs) owing to the influence of low-frequency GWs
(Detweiler 1979; Foster & Backer 1990). There are multiple PTA
collaborations currently operating; among them, the North
American Nanohertz Observatory for Gravitational Waves
(NANOGrav; McLaughlin 2013), the Parkes PTA (PPTA;
Hobbs 2013, 2013), and the European PTA (EPTA; Desvignes
et al. 2016) have each produced multiple pulsar timing data sets
that have been searched for GWs. These groups, along with other
pulsar timing projects, combine efforts as a consortium known as
the International PTA (IPTA; Verbiest et al. 2016).

These PTA data sets have enabled numerous searches for
GWs from SMBHBs, as well as primordial GWs (e.g.,
Vagnozzi 2021; Benetti et al. 2022), cosmic strings (e.g.,
Arzoumanian et al. 2018), and cosmological phase transitions
(Arzoumanian et al. 2021a; Xue et al. 2021). Modeling has

suggested that the GWB signal from SMBHBs will be detected

first (Rosado et al. 2015). While PTAs have not yet detected a

GWB, they have placed steadily improving limits on such a

signal (van Haasteren et al. 2011; Demorest et al. 2013;

Shannon et al. 2013, 2015; Lentati et al. 2015; Arzoumanian

et al. 2016, 2018; Verbiest et al. 2016) until around 2015, when

published limits began to stabilize at a characteristic strain

value of a few times 10−15. In the NANOGrav 12.5 yr data set

(Alam et al. 2021a), PPTA second data release (Kerr et al.

2020), EPTA data release 2 (Chen et al. 2021), and IPTA data

release 2 (Perera et al. 2019), not only does the upper limit no

longer decrease, but a common red-noise (CRN) process with

characteristics similar to those predicted for an SMBHB-origin

GWB was detected to high significance, albeit without

evidence for the specific spatial correlation assumed for the

GWB (Arzoumanian et al. 2020a; Goncharov et al. 2021;

Antoniadis et al. 2022; Falxa et al. 2023). Significant effort has

been dedicated to determining whether the CRN is an early

warning sign of a future GWB detection (Pol et al. 2021) or an

anomaly due to pulsar noise modeling (Zic et al. 2022) and to

the development of validity tests to determine between these

two scenarios (Goncharov et al. 2022), but more data are

required to make a final determination.
While this CRN process is heartening for future GWB searches

(Pol et al. 2021), it has sparked new challenges for CW searches,

as the background takes the form of a noise process, which (like

any noise process underlying a signal) will work to disrupt the

sensitivity of CW searches. Over the past decades, all-sky and all-

frequency CW searches have improved their sensitivity by several

orders of magnitude in GW strain (e.g., Yardley et al. 2010;

Arzoumanian et al. 2014; Zhu et al. 2014; Babak et al. 2016;

Aggarwal et al. 2019), allowing the sensitivity horizon of PTAs to

expand by several orders of magnitude. This has allowed the PTA

horizon to include increasing numbers of specific systems of

interest (e.g., Lommen & Backer 2001; Jenet et al. 2004;

Aggarwal et al. 2019; Charisi et al. 2022). PTAs are likely to

reach the sensitivities required to detect a CW soon after the GWB

is detected, with recent studies suggesting that this will occur in

the next 5–10 yr (Rosado et al. 2015; Mingarelli et al. 2017;

Kelley et al. 2018; Bécsy et al. 2022b). Additionally, we are

working to revise and improve CW search methodologies through
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search speed-ups (Bécsy et al. 2022a) and efficient sampling
techniques (Aggarwal et al. 2019) as CW upper limits decrease.

In this paper, we present the results of an all-sky search for
CWs from individual circular SMBHBs in the NANOGrav
12.5 yr data set. This work is an extension of the searches
performed in previous NANOGrav data sets (presented in
Arzoumanian et al. 2014 and Aggarwal et al. 2019 for the 5 and
11 yr data sets, respectively) and uses analogous techniques to
the search for CWs in the IPTA data release 2 (Falxa et al.
2023). Our new search benefited from the use of the more
sensitive 12.5 yr data set. Most critically, however, in this work
we needed to account for the existence of an emerging
common-noise signal in this data set, and we understand the
impact that this signal may have on CW sensitivity.

This paper is organized as follows. In Section 2, we present
an overview of the data used for our analysis, details of new
pulsar distance modeling methods created for CW searches,
and a description of the GW signals and analysis methods used
throughout this paper. In Section 3, we present the results of
our GW searches. In Section 4, we interpret their broader
astrophysical context. For the busy reader, our main results can
be summarized as follows:

1. For accurate low-frequency CW searches, the CRN that
has been seen in GWB searches must be accounted for in
our signal modeling; otherwise, our detection metrics
may report a false-positive result.

2. Once the CRN was taken into account, we found that no
CWs were detected in the 12.5 yr data set.

3. With this knowledge, we placed stringent limits on the
CW amplitude as a function of GW frequency. For the
most sensitive frequency of 7.65× 10−9 Hz, we reach
strain 95% upper limits of h0< (6.82± 0.35)× 10−15,
and we also placed limits on the CW amplitude at this
frequency as a function of sky location.

4. While our all-sky sensitivity has improved with each
subsequent NANOGrav data set, we found herein that for
85% of the sky, the upper limit at the most sensitive
frequency of 7.65× 10−9 Hz is comparable to or worse
than in previous data sets. Through extensive simulations
that encompass the complex evolution of pulsar noise
parameters, ephemeris updates, and Bayesian modeling,
we linked this effect to the newly detectable CRN process
in the 12.5 yr data set.

5. We used these limits to make inferences about the local
population of SMBHBs and limited the distance to an
SMBHB emitting at 7.65× 10−9 Hz to be greater than
86.7 Mpc for a 109 Me binary in the most sensitive sky
location.

6. We used multimessenger techniques to update limits on
the chirp mass of the SMBHB candidate 3C 66B to be
less than ( )<  ´ M1.41 0.02 109 and placed new
limits on the chirp mass of SMBHB candidate HS 1630
+2355 to be less than ( )<  ´ M1.28 0.03 10 .10

In Section 5, we discuss the implications of these results. In
Section 6, we summarize our conclusions.

2. Methods

2.1. The 12.5 yr Data Set

We analyzed the NANOGrav 12.5 yr data set, originally
published as Alam et al. (2021a, 2021b), which consists of

TOAs and timing models from 47 pulsars. Two versions of the
data set were created from the original observations, taken
between 2004 and 2017, using independent analyses. Here we
make use of the narrowband version of the data set (Alam et al.
2021a). This adds two pulsars and 1.5 yr of observations over
the previous 11 yr data set. For GW analyses, we require the
pulsars to have a timing baseline of at least 3 yr; therefore, we
use only 45 of the 47 pulsars included in the full data set.
However, the 11 yr data set included only 34 pulsars that could
be used in GW analyses, so this addition, which includes a
factor of ∼1.5 increase in the number of pulse TOAs,
represents a significant addition of data, increasing our
sensitivity. It is important to note that the 12.5 yr data set is
not merely an addition of TOAs to previous releases but a full
reanalysis with an updated pipeline, described in detail in Alam
et al. (2021a). Thus, our search also benefited from improved
timing precision for pulsars shared with previous data sets.
However, it is important to note that this reprocessing resulted
in new values being measured for each pulsar’s noise
parameters.

2.2. Signal Model

As in previous NANOGrav searches for continuous GWs, we
will describe the effect of an individual SMBHB on a pulsar’s
TOAs and its timing model. A starting point is the residuals, δt,
obtained after subtracting a basic timing model (which excludes
noise and GW parameters) from the measured arrival times. While
the methods remain nearly identical to previous iterations, slight
alterations have been made to improve consistency with other
work in the field, to reflect more recent data, and to include the
CRN in the CW search. As such, we will lay out the methods with
particular focus on any instances that have changed since
NANOGrav’s most recent CW search (Aggarwal et al. 2019).
Note that throughout this paper we use units where G= c= 1,
cosmology calculations assume H0= 69.32 km s−1Mpc−1, and
the GW derivations assume general relativity.
The pulsar residuals can be separated into multiple

components as

( )d = + + +t M n n s, 1white red

where M is the design matrix, which describes the linearized

timing model, and ò is a vector of the timing model parameter

offsets. This term allows the timing model parameters of each

pulsar to be adjusted in accordance with the presence of any

additional signals. The variables nwhite and nred refer to vectors

describing the pulsar white and red noise, respectively, and s is

a vector of GW-induced signal present in the residuals.

2.2.1. CW Signal

For a GW source located at R.A. α and decl. δ, we define the
polar angle θ= π/2− δ and azimuthal angle f= α. The strain
of GWs emitted from such a source can be written in terms of
two polarizations as

( ˆ ) ( ˆ ) ( ˆ ) ( ˆ ) ( ˆ ) ( )W = W W + W W+
+

´
´h t e h t e h t, , , , 2ab ab ab

where Ŵ is a unit vector pointing from the GW source to Earth

(along the direction of propagation), h+,× are the polarization

amplitudes, and + ´eab
, are the polarization tensors. These can be
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written in the solar system barycenter frame as

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ( )

= -
= +

+

´

e p p q q

e p q q p 3

ab a b a b

ab a b a b

and are constructed from basis vectors,

ˆ ( ) ˆ

ˆ (
)

ˆ (
) ( )

q f q f q
y q f y f
y q f y f y q
y q f y f
y q f y f y q

= = -W
= -

+ -
= +

- -

n

p

q

sin cos , sin sin , cos

cos cos cos sin sin ,

cos cos sin sin cos , cos sin

sin cos cos cos sin ,

sin cos sin cos cos , sin sin , 4

where ψ is the GW polarization angle. Note that this basis is

different from that used in Aggarwal et al. (2019) to maintain

better consistency with previous references and the standards

used by other GW detectors. Differences can be reduced to a

rotation of the frame by an angle equivalent to the GW

polarization angle ψ. These polarization tensors are used to

construct the antenna pattern function ( ˆ )W+ ´F , , which

describes the response of the pulsar (at unit vector û) to the

GW source, as in Taylor et al. (2016), where

( ˆ )
ˆ ˆ

ˆ · ˆ
( ˆ ) ( )W º

+ W
WF

u u

u
e

1

2 1
. 5A

a b

ab
A

Now we can write the signal s induced by the GW as seen in
the pulsar’s residuals as

( ˆ ) ( ˆ ) ( ) ( ˆ ) ( ) ( )W = W D + W D+
+

´
´s t F s t F s t, , 6

where Δs+,× is the difference between the signal induced at

Earth (the “Earth term”) and that induced at the pulsar (the

“pulsar term”). This can be written as

( ) ( ) ( ) ( )D = -+ ´ + ´ + ´s t s t s t , 7p, , ,

where t and tp represent the time when the GW passes Earth

and the pulsar, respectively. These times can be related

geometrically by

( ˆ · ˆ) ( )= - + Wt t L u1 , 8p

where û is the line-of-sight vector to the pulsar and L is the

distance to the pulsar (see Section 2.3.4 for further discussion

of this value).
For a circular binary at zeroth post-Newtonian (0-PN) order,

s+,× can be written as

( )
( )

[ ( )( )]

( )
( )

[ ( ) ] ( )

w
i

w
i

= - F +

= F

+

´





s t
d t

t

s t
d t

t

sin 2 1 cos ,

2 cos 2 cos , 9

L

L

5 3

1 3
2

5 3

1 3

where ι is the inclination angle of the SMBHB, dL is the

luminosity distance to the source, ω(t) and Φ(t) are the time-

dependent angular orbital frequency and phase, respectively,

and ( ) ( )º + m m m m1 2
3 5

1 2
1 5 is a combination of the

two black hole masses known as the chirp mass. Again, note

that the forms of these signals have been reorganized compared

to those used in Aggarwal et al. (2019); due to the rotated frame

of the antenna pattern functions now in use, they are

equivalent. The variables  and ω refer to the redshifted

values of these quantities, which relate to the rest-frame

versionsr and ωr as

( ) ( )w w

=
+

= +




z

z

1
,

1 . 10

r

r

However, PTAs are currently thought to be sensitive only to

individual SMBHBs in the local universe where (1+ z)∼ 1.
For a CW, the initial orbital angular ω0 frequency is related

to the GW frequency by ω0= πfGW, where ω0= ω(t0). For this
search, we define the reference time t0 as MJD 57933 (2017
June 29), the date of the last observation for the 12.5 yr data
set. The time-dependent orbital phase and frequency of the
binary are given by

( ) [ ( ) ]

( ) ( )

w w

w w w

F = F + -

= -

- - -

-



⎛⎝ ⎞⎠

t t

t t

1

32
,

1
256

5
, 11

0
5 3

0
5 3 5 3

0
5 3

0
8 3

3 8

where Φ0 refers to the initial orbital phase (Arzoumanian et al.

2014). To account for the evolution of high chirp mass binaries

over our observations, rather than assuming that there is no

frequency evolution, we use the full expression for ω(t) as in

Aggarwal et al. (2019).

2.2.2. Noise Model

For each individual pulsar, we model both white and red
noise. We use a white noise model that is identical to that used
in previous NANOGrav analyses, using three parameters:
EFAC, EQUAD, and ECORR. EFAC scales the template-
fitting TOA uncertainties induced by finite pulse signal-to-
noise ratios by a multiplicative factor, EQUAD adds white
noise in quadrature, and ECORR describes white noise that is
correlated across TOAs derived from data collected simulta-
neously (Lam et al. 2017).
For consistency with previous NANOGrav analyses, to

model individual pulsar red noise, the noise spectrum is divided
into 30 linearly spaced bins, ranging from 1/Tobs to 30/Tobs,
where Tobs is the total observation baseline for each pulsar.
Then, the power spectral density of the red noise is fit to a
power-law model as in Shannon & Cordes (2010) and Lam
et al. (2017), where

( ) ( )
p

=
g-⎛

⎝⎜
⎞
⎠⎟

P f
A f

f12
yr . 12red

2

2
yr

3

red

Here fyr≡ 1/(1 yr), Ared is the red-noise amplitude, and γred is

the power-law spectral index. The prior on Ared is log-uniform

in the range [−20, − 11], while the prior on γ is uniform in the

range [0, 7].
As mentioned above, for the first time, a CRN signal is now

detectable in the 12.5 yr data set (Arzoumanian et al. 2020a).
Because of this, we included a CRN term in our signal model
for a portion of our analyses, where the CRN amplitude and
spectral index are held fixed to those preferred in Arzoumanian
et al. (2020a). The results of searches that only model a CW
necessitated this addition and are described in detail in
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Section 3. The power spectral density of the CRN,

( ) ( )
p

=
g-⎛

⎝⎜
⎞
⎠⎟

P f
A f

f12
yr , 13CRN

2

2
yr

3

CRN

takes the same form as that of the pulsar red noise in

Equation 12, but with an amplitude ACRN and spectral index

γCRN that are common to all of the pulsars in the array.

2.3. Bayesian Methods

We utilized Bayesian inference techniques to determine the
posterior distributions of GW parameters. In previous CW
analyses (Arzoumanian et al. 2014; Aggarwal et al. 2019),
these results were compared to a frequentist metric, the p
statistic (Ellis et al. 2012), to confirm our key results. However,
as this method does not currently account for a common
process other than a CW in the data, more development will be
necessary to produce reliable frequentist results on the 12.5 yr
data set through the addition of noise marginalization
capabilities, similar to Vigeland et al. (2018). Therefore, in
this work we will focus solely on the Bayesian searches, and
the frequentist analyses will be presented in a future work.

In each analysis, we include the BAYESEPHEM model
(Vallisneri et al. 2020) to account for the uncertainties in the
solar system ephemeris, which, as first described in Arzouma-
nian et al. (2018), can have large impacts on the computation of
GW upper limits with PTAs. We used DE438 (Folkner &
Park 2018) plus BAYESEPHEM to transform from individual
observatory reference frames to an inertial frame centered at the
solar system barycenter.

As in previous NANOGrav CW searches, we use the
enterprise (Ellis et al. 2019) package to construct the
priors and evaluate the likelihood, which takes the same form
as in Aggarwal et al. (2019) and Arzoumanian et al. (2014).
The Markov Chain Monte Carlo (MCMC) sampler package
PTMCMCSampler (Ellis & van Haasteren 2017) was used to
explore the parameter space. Before analyzing our data, we
performed a prior-recovery analysis to ensure that the sampler
could search the entire prior volume.

The CW signal model can be described by nine global
parameters,

{ } ( )q f yF f i d h, , , , , , , , , 14LGW 0 0

which describe the circular SMBHB’s

1. position on the sky (θ, f);
2. GW frequency, related to the orbital frequency at a

reference time ( fGW);
3. orbital phase at a reference time (Φ0);
4. GW polarization angle (ψ);
5. orbital inclination (ι);
6. chirp mass ();
7. luminosity distance (dL); and
8. strain amplitude (h0), which is related to the chirp mass,

GW frequency, and luminosity distance.

Since h0 can be defined as

( )
( )

p
=


h

f

d

2
, 15

L
0

5 3
GW

2 3

there is a degeneracy between h0, , fGW, and dL, and

therefore only eight of these parameters are required to fully

describe the global CW signal. The following types of searches

use a variety of prior setups to sample the necessary eight

global parameters and are described below and summarized in

Table 1. Including the necessary parameters to model the red

noise in and distance to each of the 45 pulsars and model

uncertainties in the solar system ephemeris with BayesE-

phem, there are 198 parameters in our all-sky MCMCs.
As in Aggarwal et al. (2019), to determine whether a CW has

been detected by any of our analyses, we first performed a
detection analysis with the priors described in Table 1, with the
key difference between this and upper limit analyses being a
log-uniform prior on the strain amplitude of the CW. Then, we
calculated the Bayes factor using the Savage–Dickey formula
(Dickey 1971),

[ ]
[ ]

( ∣ )
( ∣ )

( )

º =
=
=






 

p h

p h
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evidence

0

0 ,
.

16

10
1

0
0 1

0 1

Here1 is the model with a CW,0 is the model without one,

( ∣ )= p h 00 1 is the prior at h0= 0, and ( ∣ )=  p h 0 ,0 1 is the

posterior at h0= 0. Since1 and0 are nested models (i.e.,0

is = h: 01 0 ), we used the Savage–Dickey formula to

estimate ( ∣ )=  p h 0 ,0 1 as the average fraction of samples

in the lowest-amplitude bin in a histogram of h0 samples for a

range of bin sizes. We then computed the 1σ error on the Bayes

factor as

( )s =

n
, 17

10

where n is the number of samples in the lowest-amplitude bin.

As with the Bayes factor values, the average error is computed

for a range of histogram bin sizes.
Throughout this work, we computed 95% upper limits as the

95th percentile of relevant strain (or chirp mass, for multi-
messenger analyses) posterior distributions. For these analyses,
a uniform prior on the strain amplitude is used, which translates
to a linear-exponential (LinExp) prior on hlog10 . The error on
the 95% upper limit, due to the finite number of samples, is
calculated as

( )

( ∣ )
( )s =

-

= 
x x N

p h h

1
, 18

s
UL

0 0
95%

where x= 0.95 and Ns is the number of effective samples in the

MCMC chain.

2.3.1. All-sky Searches

To search for GWs from SMBHBs located in any direction,
we use uniform priors on the source sky position ( )q fcos , , as
well as the cosine of the source inclination icos , polarization
angle ψ, and GW phase Φ0. We used log-uniform priors on h0
for detection analyses and uniform priors on h0 for upper limit
analyses, so as to set the most conservative upper limit. For
both analysis types, priors on ( )hlog10 0 span the range [−18,
− 11], which accounts for an overconservative range around
the sensitivity of the most recent data sets (order −15), and the
minimum of which is well below our sensitivity.
We performed many searches at fixed values of fGW, to

evaluate detection statistics and our sensitivity across the entire
nanohertz GW band. The lowest frequency value was set by the
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time span of our data set, fGW= 1/(12.9 yr)= 2.45× 10−9 Hz.
The highest frequency value is limited by the observation
cadence of our data (approximately one observation per
2–4 weeks). However, SMBHBs at that frequency, at the mass
range where their strains would be large enough to be
detectable by PTAs, have exceedingly short inspiral timescales
(from a few weeks up to ∼3 months). Thus, they are unlikely to
be detectable in our data set owing to rapid evolution, and
therefore low residence times, at these frequencies, coupled
with decreasing sensitivity of the PTA with increasing GW
frequency caused by white noise (Islo et al. 2019; Aggarwal
et al. 2020). Therefore, we set our maximum frequency to
3.178× 10−7 Hz (equivalent to one GW cycle every ∼36 days
and a GW inspiral time of ∼34 days). This is the same high-
frequency cutoff value used in Arzoumanian et al. (2014) and
Aggarwal et al. (2019).

For most of the frequency band, we searched over
( ) Mlog10 with a log-uniform prior with a range of

[7, 10]. However, for very high frequency sources, we limit
the maximum value of the prior to account for high chirp mass
binaries never emitting GWs at the highest frequencies in our
band, as they will have merged prior to emitting GWs at the
searched frequency. This cutoff is relevant at fGW�

1.913× 10−7 Hz. Assuming that binaries merge when the
orbital frequency is equal to the innermost stable circular orbit
(ISCO) frequency, must satisfy


( )

( )
p +

 ⎡
⎣⎢

⎤
⎦⎥f

q

q

1

6 1
, 19max 3 2

GW
2

3 5

where q is the SMBHB mass ratio. Here we calculated the chirp

mass cutoff for q= 1.

2.3.2. Sky Map

Due to the nonuniform distribution of pulsars on the sky, the
NANOGrav PTA is not equally sensitive in all directions. To
analyze the differences in sensitivity, once detection analyses
were completed, we placed upper limits on 768 pixels
distributed isotropically across the sky using healpy (Górski
et al. 2005; Zonca et al. 2019); each pixel covers an area of
53.72 deg2. This value is chosen to balance healpyʼs
requirements for map transformations with our desired
resolution. These settings allow us to resolve details on the
sky sensitivity map but not overwhelm our computational
capabilities or explore much beyond the expected localization
capabilities of PTAs (Sesana & Vecchio 2010). We allowed the

sampler to search a uniform prior across each of the 768 pixels,
so as to still sample the entire sky across the entire analysis.
Due to the large computational cost required to conduct 768

independent runs, the sky map is created at only a single
frequency, and only upper limits are computed. We selected
7.65× 10−9 Hz, as it was the most sensitive in the sky-
averaged analysis. As this is in the low-frequency regime
where we expect the inclusion of the CRN to be significant, it is
included in our signal model. All other modeling is done
identically to Section 2.3.1 and is summarized in Table 1.

2.3.3. Targeted Search

In addition to the two variations of searches described above,
we also perform a targeted search for two known SMBHB
candidates, 3C 66B and HS 1630+2355. Rather than a search
for a generic SMBHB within a nearby galaxy cluster, as was
done in Aggarwal et al. (2019) and Arzoumanian et al. (2021b),
here we targeted these binary candidates directly. 3C 66B was
the subject of Arzoumanian et al. (2020b) and was first
identified because of observed orbital motion in the active
galactic nucleus core (Sudou et al. 2003). Here we were able to
provide an updated analysis with the addition of new data
included in the 12.5 yr data set. HS 1630+2355 was first
identified as a periodic quasar in Graham et al. (2015), and was
identified as a top PTA CW candidate in Xin et al. (2021)
owing to its location near our best-timed pulsars.
For the targeted search, we perform detection and upper limit

analyses in the same way as in Section 2.3.1, with a few
differences in the model priors. Because we know the sky
location and luminosity distance to 3C 66B, as well as a
frequency estimate, these parameters are set to constants in this
search. This allows us to place constraints directly on the
(observer-frame) chirp mass of the binary, rather than its GW
strain amplitude. For a detection analysis the prior on

( ) Mlog10 is log-uniform in the range [7, 10], while for
upper limit analyses the prior is uniform over this range. The
remaining priors are identical to the above analyses and are
summarized in Table 1.

2.3.4. Pulsar Distance Priors

In this work, we adopted a data-driven approach to handle
the large uncertainties on pulsar distance measurements, which,
in addition to a phase at each pulsar, affect the modeling of the
pulsar terms of the CW signal. As in previous searches, the
pulsar distance was used as a free parameter in the search. This

Table 1

CW Parameter Priors for Each Analysis

All-Sky Sky Map Targeted

Analysis Type Detection Upper Limit Upper Limit Detection Upper Limit

CRN Y/N Y/N Y Y/N Y/N

hlog10 Uniform(–18,–11) LinExp(–18,–11) LinExp(–18,–11) L L

log10 Uniform(7,max) Uniform(7,max) Uniform(7,max) Uniform(7,max) LinExp(7,max)

dlog L10 L L L Constant Constant

flog10 GW Constant (many) Constant (many) Constant (single) Constant Constant

f Uniform(0,2π) Uniform(0,2π) Uniform(pixel) Constant Constant

qcos Uniform(–1,1) Uniform(–1,1) Uniform(pixel) Constant Constant

ψ Uniform(0,π) Uniform(0,π) Uniform(0,π) Uniform(0,π) Uniform(0,π)

Φ0 Uniform(0,2π) Uniform(0,2π) Uniform(0,2π) Uniform(0,2π) Uniform(0,2π)

icos Uniform(–1,1) Uniform(–1,1) Uniform(–1,1) Uniform(–1,1) Uniform(–1,1)
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allowed us to marginalize over the pulsar distance and avoid
incorrect modeling of the signal at the location of the pulsar.
Without such modeling, we would be required to dramatically
increase our prior volume to allow the pulsar distances to vary
across galactic scales, or, if the incorrect value were assumed,
risk losing our chance at detecting the pulsar term of the CW
signal. This is particularly critical at high GW frequencies,
where sources evolve significantly between the Earth and
pulsar terms.

In previous versions of this search (e.g., Aggarwal et al.
2019; Arzoumanian et al. 2020b), the pulsar distance prior was
constructed from a Gaussian scaled to the parallax distance and
associated uncertainty listed in Verbiest et al. (2012); if no
distance was listed, a value of 1.0± 0.2 kpc was assumed.
While this assumption is reasonable while placing upper limits
(see discussion within Arzoumanian et al. 2020b), as the PTA
reaches sensitivities where a detection is nearly possible, an
improvement was needed.

In this work, every pulsar distance prior was constructed
from a measurement or estimate. If a pulsar had a significant
independent parallax measurement,50 such as from very long
baseline interferometry, or timing parallax measured in the 12.5
yr data set, this value was used to construct a prior on pulsar
distance (L),

( )
( )

( )
ps s

=
- -

v v

-⎡
⎣⎢

⎤
⎦⎥

p L
L

L1

2
exp

PX

2
, 20

2

1 2

2

which inverts the approximately Gaussian shape of a parallax

prior to describe the prior for distance (Vigeland &

Vallisneri 2014). Here significance was defined by the parallax

measurement (ϖ) having an associated uncertainty (σϖ) of less

than 30%, so as to avoid the introduction of any errors due to

the Lutz–Kelker bias (Lutz & Kelker 1973). If multiple

measurements of sufficient quality existed, these values and

uncertainties were combined with a weighted average before

being used to construct the parallax distance prior, which

ensures that the highest-quality measurements contribute the

most to the resulting prior.
If there are no parallax measurements that could be used to

calculate the pulsar’s distance, the pulsar’s dispersion measure
(DM) was used to construct a distance estimate using NE2001
(Cordes & Lazio 2002) and, subsequently, the distance prior.
Since these values are only an estimate, we constructed a broad,
nearly uniform prior for the DM–distance value and a 20%
uncertainty (Cordes & Lazio 2002; Lam et al. 2016; Jones
et al. 2017), with the shape

 ( )

( )

=
- <

- >

⎧
⎨⎩

p L

L L

L L L

L L

Half Gaussian if 0.8

Uniform if 0.8 1.2

Half Gaussian if 1.2

.

21

DM

DM DM

DM

Here the half-Gaussian additions have standard deviations of
one-quarter of the DM–distance uncertainty. Unlike a sharp
boundary, these additions allowed the sampler to move into the

edges of this prior range, which accounted for any differences
in distance estimates by alternative electron density models,
such as Yao et al. (2017). While pulsar distance priors will still
only induce minor influences on the results of an upper limit
analysis (Arzoumanian et al. 2020b), by constructing new
priors to accurately handle pulsar distance measurements and
estimates, we have prepared our methods for a future detection
of a CW, which will be more reliant on the pulsar term of the
signal than upper limit evaluations. These values and the priors
used are compiled in Table 2.

3. Results

3.1. All-sky Searches

For each GW frequency in our search, we performed a
detection analysis on the 12.5 yr data that marginalized over the
source sky location. Figure 1 shows the Bayes factor for a CW
at each searched GW frequency in purple. It is important to
note that the Bayes factor for fGW= 2.45× 10−9 Hz (the lowest
frequency analyzed) was undefined, with a steady decrease in
the following four frequency bins. Ordinarily, a very large (or
undefined) Bayes factor would be a first indication for the
detection of a CW. However, given the strong evidence for the
existence of a CRN process in the 12.5 yr data set
(Arzoumanian et al. 2020a), it is clear that this signal appears
to be of similar form, that is, what we have detected is bright at
low frequencies and declines toward higher frequency. Once a
CRN process is added to the model, with the Alog10 CRN and
γCRN parameters fixed to the maximum likelihood values
(−15.80 and 6.08, respectively) found by a search analogous to
Arzoumanian et al. (2020a), the Bayes factors for a CW at low
fGW return to <1 (leftmost red points in the figure). Therefore,
throughout this paper we will present the results of many
analyses with a fixed CRN included in our model. To constrain
the initially undefined Bayes factor at fGW= 2.45 nHz, we
adapt the methodology described in Chatziioannou et al. (2014)
to use a second MCMC analysis to “zoom in” on the low end of
the strain prior range by limiting the prior to the 10th percentile
of the original posterior. Therefore, the posterior height at
h0= 0 becomes

( ∣ ) ( )= = p h
n

N

n

N dh
0 ,

1
, 220 1

2

2

1

1

with fractional uncertainty

( )+
n n

1 1
, 23

1 2

where N1 is the number of samples in the initial run and n1 is

the number of samples in the focused region (defined as the

10th percentile of the initial run). Then, N2 is the number of

samples in the focused run, with n2 of those samples located in

the lowest-amplitude bin of width dh.
We note that a few frequencies above fGW= 1× 10−7 Hz

have 10 values that are returned as undefined. However, upon
inspection, this is due to poor sampling in a few frequency bins,
where the sampler does not explore low strain values, rather
than a detection of a CW. This occurs in areas of parameter
space where the likelihood is particularly complex and difficult
to explore in a finite run time owing to the numerous
complexities at fGW> 1× 10−7 Hz, such as covariances
between the CW likelihood with pulsar binary orbits and
potential unmodeled red noise above the 30-frequency

50
http://hosting.astro.cornell.edu/research/parallax/, with values compiled

from Ding et al. (2020), Jennings et al. (2018), Deller et al. (2019), Guillemot
et al. (2016), Stovall et al. (2014), Abdo et al. (2013), Freire et al. (2012),
Verbiest et al. (2009), Lazaridis et al. (2009), Chatterjee et al. (2009), Hotan
et al. (2006), Lommen et al. (2006), Jacoby et al. (2005), Splaver et al. (2005),
Löhmer et al. (2004), Toscano et al. (1999), Camilo et al. (1994).
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power-law cutoff (Chalumeau et al. 2022). Therefore, a few
elevated Bayes factors are not unexpected. To mitigate this
effect, we again apply the “zoom-in” methodology described
above. After this procedure, all frequencies have Bayes factor
values of  1010 .

The only frequency that needed this treatment for both the
CW and CW+CRN models is 1.763× 10−7 Hz, which resulted
in a Bayes factor of 15.43 in the CW+CRN case and 7.79 in
the CW-only case. While we inspected our analyses at this
frequency with extra care, these Bayes factors are still relatively

low compared to those required to claim a detection, especially

since binaries at these high frequencies are expected to be quite

rare (Kelley et al. 2018; Bécsy et al. 2022b). For comparison,

evidence in favor of a given model is generally not considered

strong for Bayes factors 100 (Kass & Raftery 1995).

Therefore, we will monitor this frequency in future data sets,

but currently our analyses indicate that no CWs are detected in

the 12.5 yr data set.
As we found no strong evidence for a GW from an

individual SMBHB in the 12.5 yr data set, we proceeded to

place all-sky upper limits on the GW strain, with results shown

in Figure 2. We again conduct this analysis using two different

models, one that includes only a CW (purple) and one that

includes both a CW and a CRN process (red). While in both

cases the most sensitive frequency (that with the lowest strain

upper limit) is 7.65× 10−9 Hz, the strain upper limits are lower

when the CRN is included in the model. In this case, we can

limit the strain to h0< (6.82± 0.35)× 10−15, whereas when

the CRN is neglected, the best limit we can place on CW strain

is h0< (9.11± 0.10)× 10−15. This trend of the CW+CRN

model resulting in lower upper limits than a CW-only model

continues until frequencies of approximately 1× 10−8 Hz,

above which, where the effect of the power-law CRN is

minimal, the upper limit values are nearly equal. Therefore,

throughout the remainder of this work we opted to include the

CRN in analyses that are too computationally expensive to be

completed with both models, such as the sky map analyses

described in Section 3.2. We note that we do not find a

significantly higher upper limit at any of the frequencies where

we found ~ 1010 for either the CW or CW+CRN models:

this indicates that the noise sources are decreasing the posterior

Table 2

Compiled Pulsar Distance Values and Uncertainties for Each Pulsar Used in the 12.5 yr CW Analysis, Along with the Parallax (PX) or DM Prior Identifier

Pulsar Prior Distance (kpc) Error (kpc) Pulsar Prior Distance (kpc) Error (kpc)

B1855+09 PX 1.4 0.24 B1937+21 PX 3.55 0.64

B1953+29 DM 4.64 0.93 J0023+0923 PX 1.82 0.41

J0030+0451 PX 0.32 0.01 J0340+4130 DM 1.71 0.34

J0613–0200 PX 1.06 0.13 J0636+5128 PX 0.73 0.12

J0645+5158 PX 1.11 0.19 J0740+6620 DM 0.68 0.14

J0931–1902 DM 1.88 0.38 J1012+5307 PX 0.83 0.05

J1024–0719 PX 1.08 0.14 J1125+7819 DM 0.65 0.13

J1453+1902 DM 1.15 0.23 J1455-3330 PX 1.01 0.22

J1600–3053 PX 1.96 0.31 J1614-2230 PX 0.69 0.03

J1640+2224 DM 1.14 0.23 J1643-1224 PX 0.45 0.08

J1713+0747 PX 1.11 0.02 J1738+0333 PX 1.47 0.11

J1741+1351 PX 2.36 0.62 J1744-1134 PX 0.42 0.01

J1747–4036 DM 3.5 0.7 J1832-0836 PX 2.1 0.57

J1853+1303 DM 2.08 0.42 J1903+0327 DM 6.49 1.3

J1909–3744 PX 1.17 0.02 J1910+1256 DM 2.35 0.47

J1911+1347 DM 2.08 0.42 J1918-0642 PX 1.17 0.15

J1923+2515 DM 1.63 0.33 J1944+0907 DM 1.8 0.36

J2010–1323 PX 2.45 0.71 J2017+0603 DM 1.57 0.31

J2033+1734 DM 1.99 0.4 J2043+1711 PX 1.39 0.12

J2145–0750 PX 0.64 0.02 J2214+3000 DM 1.54 0.31

J2229+2643 DM 1.43 0.29 J2234+0611 PX 1.19 0.15

J2234+0944 DM 1.0 0.2 J2302+4442 DM 1.18 0.24

J2317+1439 PX 1.62 0.21 L L L L

Note. Values compiled using measurements from Ding et al. (2020), Jennings et al. (2018), Deller et al. (2019), Guillemot et al. (2016), Stovall et al. (2014), Abdo

et al. (2013), Freire et al. (2012), Verbiest et al. (2009), Lazaridis et al. (2009), Chatterjee et al. (2009), Hotan et al. (2006), Lommen et al. (2006), Jacoby et al. (2005),

Splaver et al. (2005), Löhmer et al. (2004), Toscano et al. (1999), Camilo et al. (1994), and Alam et al. (2021a).

Figure 1. Savage–Dickey Bayes factors for a CW at each GW frequency. At
low frequencies, inclusion of a CRN in the model (filled red) is necessary to
avoid a false CW detection as in the CW-only model (open purple). Squares
indicate a frequency where the initial analysis returned an undefined Savage–
Dickey Bayes Factor, meaning that the zoom-in analysis was necessary to
calculate an accurate Bayes factor. With these methods, we found that no CWs
are detected in the 12.5 yr data set. Key frequencies are marked by vertical
lines, including fyr (blue solid), =f T30max,RN obs (black dotted), and

=f T5max,CRN obs (red dashed).

8

The Astrophysical Journal Letters, 951:L28 (17pp), 2023 July 10 Arzoumanian et al.



PDF at low strain amplitudes but not increasing the posterior
PDF at the high strain amplitudes.

We are interested in looking at how our sensitivity to CWs
changes as we increase the number of pulsars and extend the
observing baseline. One approach is to perform “slice”
analyses, where we truncate the data set to form shorter data
sets and compare the upper limits from the sliced and full data
sets (Hazboun et al. 2020). However, these sliced upper limits
are not equivalent to previously published upper limits.
Another approach is to directly compare this result to those
of previous NANOGrav searches for CWs. In Figure 3, we
compare this result to those of previous NANOGrav searches
for CWs (Aggarwal et al. 2019). Direct comparisons between
these data sets are complicated, due to the reprocessing of data
resulting in new noise parameter values; nevertheless, such
comparisons are useful to examine in order to understand how
the sensitivity to CWs improves between data sets. While
analyses have shown a factor of ∼2 improvement between the
previous three data sets, we see only a modest sensitivity
improvement between the 11 and 12.5 yr data, with a
difference of only 7% between the two lowest strain limits of
h0< (6.82± 0.35)× 10−15

(12.5 yr) and h0< (7.33±
0.29)× 10−15

(11 yr). In addition to the smaller fractional
increase in observing baseline between the 11 and 12.5 yr data
sets as compared to previous data sets, this is likely due to the
presence of the CRN, which, while it is no longer causing a
false positive in the CW search if included in the model, does
represent a significant noise process that will limit our
sensitivity to low-frequency CWs over the years to come
(Hazboun et al. 2019b).

To confirm this hypothesis, we calculated the sensitivity
curves of the 9, 11, and 12.5 yr data sets using each pulsar’s
red- and white-noise contributions and timing model with
hasasia (Hazboun et al. 2019a, 2019b) and calculated the
relative improvement in sensitivity between each data set at
high frequencies (>fyr), where red noise has little effect. We
observed that on average the hasasia-calculated sensitivity
at these frequencies improved by a factor of 1.28 between the 9
and 11 yr data sets and by a factor of 1.24 between the 11 and
12.5 yr data sets. In our full Bayesian analysis, our upper limits
at frequencies above fyr improved by a factor of 1.52 between

the 9 and 11 yr data sets and by a factor of 1.40 between the 11
and 12.5 yr data sets. These proportionalities are even greater
than our calculated improvements, so we are able to conclude
that NANOGrav’s sensitivity to CWs is improving as expected
at high frequencies where red noise is not dominant.

3.2. Sky Map

In Figure 4, we show the GW strain upper limits for a model
including a CRN at the most sensitive CW frequency
fGW= 7.65× 10−9 Hz as a function of sky location. As
expected, the portion of the sky that is the least sensitive to
CWs is that which contains the fewest pulsars. At the most
sensitive pixel the strain upper limit is h0< (2.66± 0.15)×
10−15, while at the least sensitive pixel h0< (1.12± 0.05)×
10−14, a range of sensitivities that varies by a factor of ∼4.
In Figure 5, we compare the 12.5 yr CW strain map to that

constructed in Aggarwal et al. (2019) for the 11 yr data set by
plotting Δh95= h95,12.5− h95,11. While a portion (14%) of the
sky shows a significant reduction in strain upper limits, 85% of
our pixels show an increase in strain upper limit, indicating a

Figure 2. All-sky CW strain 95% upper limits and associated error regions, with (red) and without (purple) a CRN included in the model. At low frequencies,
modeling the CRN is necessary to avoid overestimating our strain upper limits. We are the least sensitive to CWs at fGW = 1/(1 yr) owing to Earth’s orbit, creating the
large feature seen in this and other figures.

Figure 3. The upper limits on CW strain are continuing to decrease. The 12.5 yr
data set (red curve and error region) is more sensitive than the 11, 9, and 5 yr data
sets (blue, orange, and green curves, respectively) at high frequencies. At the
most sensitive frequency of fGW = 7.65× 10−9 Hz, the CRN is impeding further
sensitivity improvements, and upper limits are comparable between the 12.5 and
11 yr data sets. At frequencies greater than fyr, NANOGrav’s sensitivity has
improved by a factor of 1.40 since the 11 yr data set.
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loss of sensitivity in the newest data set for much of the sky at
our most sensitive frequency, including in the most sensitive
area of the sky.

To investigate the cause of this apparent sensitivity loss, we
conducted an analysis of the simulated data utilized in Pol et al.
(2021). We selected portions of the data set with included
pulsars and observation baselines corresponding to the 11 and
12.5 yr data sets that also included a CRN corresponding to that
found in Arzoumanian et al. (2018). Then, we conducted upper
limit analyses corresponding to the best-fit model for each data
set (i.e., for a CW-only model for the 11 yr slice and a CW
+CRN model for the 12.5 yr slice) for an equatorial slice of sky
pixels (i.e., for the pixels with θ∼ π/2). When plotted against
f in Figure 6, the patterns in Δh95 in the real data are well
within the range represented by the same analysis in the 10
simulated data sets, each containing a different realization of
the CRN. We observe that between 2h<RA< 8h, where
NANOGrav has the fewest pulsars, the spread of upper limit

difference values is by far the largest, which is consistent with

our results. The mean value of Δh95 across each included pixel

is nearly identical for the real data (D = ´ -h 1.12 1095
15) and

the simulations (D = ´ -h 0.94 1095
15), and the real values are

well within the intervals spanned by the 10 realizations. This

indicates that the change in upper limits observed is likely a

statistical fluctuation within the range of expected changes

shown by our simulations. Together, this allows us to

confidently state that while exact comparison between data

sets is complex, this apparent pattern in our evolving sensitivity

across the sky is due to the emerging CRN. This effect will

have significant impacts on future PTA analyses and will be

explored more extensively in future work (C. A. Witt & N. S.

Pol 2023, in preparation).

Figure 4. Map of CW strain 95% upper limits at fGW = 7.65 × 10−9 Hz, the most sensitive frequency searched, for the 12.5 yr data set. Pulsar locations are shown as
white stars, with new pulsars added from the 12.5 yr data set outlined in red. The most sensitive pixel is marked with a red circle and is located at an R.A. of 19h07m30s

and a decl. of-  ¢ 30 00 00 . In this region, where our best-timed pulsars lie, our upper limits are nearly an order of magnitude more sensitive than the least sensitive
pixel.

Figure 5. Difference in strain 95% upper limits for the 12.5 yr data set vs. the
11 yr data set at our most sensitive frequency. Blue pixels indicate a decrease in
upper limit, while red pixels indicate an increase. The overall increase in upper
limit across much of the sky at the most sensitive frequency was found to be
due to the presence of the CRN and is consistent with the all-sky limit shown in
Figure 3.

Figure 6. The difference in strain upper limits for an equatorial slice of the sky
map shown in Figure 5 plotted against f (or RA). The results for the real data
(red points) are well within the range of values encompassed bythe standard
deviation of 10 realizations simulated (blue), with near-identical mean values
of Δh95 (horizontal red and blue lines). Therefore, we conclude that the overall
increase in upper limit across much of the sky at our most sensitive frequency
is due to the 12.5 yr data set’s sensitivity to the CRN.
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4. Astrophysical Limitations of Nearby SMBHBs

In recent years, numerous studies have modeled the SMBHB
population in the nearby universe (Simon et al. 2014; Rosado
& Sesana 2014; Schutz & Ma 2016; Mingarelli et al. 2017;
Arzoumanian et al. 2021b), and multiple SMBHB candidates
have been discovered with electromagnetic techniques (Sudou
et al. 2003; Graham et al. 2015; Hu et al. 2020; Lehto &
Valtonen 1996; Charisi et al. 2016; Liu et al. 2019). Even
without a CW detection, our limits can add crucial insights into
SMBHH populations, including limiting the distance to nearby
SMBHBs and placing multimessenger mass constraints on
SMBHB candidates.

4.1. Distance Limits

Our limits on CW strain can be transformed using
Equation 15 to calculate the 95% lower limit on the luminosity
distance to a source of a given chirp mass. The distance limits
for an SMBHB with = M109 are shown in Figure 7. For
the most sensitive frequency of fGW= 7.65× 10−9 Hz, we can
limit the distance to an SMBHB with = M109 to
dL> 33.9 Mpc. These limits may be scaled to larger or smaller
SMBHBs directly using Equation (15) as

( )= ´





 ⎜ ⎟⎛
⎝

⎞
⎠

D D
M10

. 24M95, 95,10 9

5 3

9

However, it is important to note that while this frequency

produces the lowest strain upper limit, it does not produce the

farthest luminosity distance lower limit. This value is dL> 35.0

Mpc at fGW= 3.82× 10−8 Hz.
This technique can be applied to the strain upper limit sky

map as well, to calculate the 95% luminosity distance lower
limit for an SMBHB emitting CWs at fGW= 7.65× 10−9 Hz
as a function of sky location. The results of this transformation
are shown in Figure 8. At the most sensitive sky location, we
can limit the minimum distance to an = M109 SMBHB to

dL> 86.7 Mpc and that to an = M1010 SMBHB to
dL> 4.02 Gpc. In the least sensitive sky location, we can limit
the minimum distance to an = M109 SMBHB to

dL> 20.5 Mpc and that to an = M1010 SMBHB to
dL> 0.95 Gpc. These values vary by over a factor of 4 between
the most and least sensitive parts of the sky.

4.2. SMBHB Number Density Limits

Using our limits on the luminosity distance to an SMBHB,
we can also place limits on the local number density of
SMBHBs of a given binary configuration. After placing a lower
limit on the effective comoving distance dc to sources of given
binary parameters, we can say that the local density is less than

[( ) ]p= = -n V d1 4 3c c c
3 1. However, to consider this as a

limit on the average density in some volume that is relatively
local but larger than the explicitly measured volume, there
should be some additional prefactor to account for the
confidence of having a source within this volume based on
Poisson distributions of sources. For a number of events
Λ= ncVc the likelihood of no detections is P0(Λ)= e−Λ. To
find an upper limit on the occurrence rate, ΛUL, we must
integrate from that limit to infinity, such that the result matches
our desired confidence level p0. Therefore, ( )L =FUL UL

ò L = -
L

¥ -Le d p1 0
UL

is solved as

( )
( )=

- -
n

p

V

ln 1
. 25ul

c

0

Here our desired confidence level is p0= 0.95. To calculate the

comoving distance dc, we transform our luminosity distance

limits (shown in Figure 7) as dc= dL/(1+ z), and z is

calculated for the relevant luminosity distance values using

astropy.
The results of this calculation are shown for various SMBHB

chirp masses in Figure 9. As can be expected, we find that we
can place more constraining upper limits on large SMBHBs
( = M109.5 ) than smaller ones ( = M108 ) in the local
universe.

4.3. Multimessenger Analyses

Using the methodology described in Section 2.3.3, we
conducted a multimessenger search for GWs from the SMBHB
candidate 3C 66B to provide an update to the results of
Arzoumanian et al. (2020b). The detection analyses result in
nearly identical Savage–Dickey Bayes factors, whether the
CRN was included or not. This is to be expected, as the CRN is
very weak at frequencies as high as that of 3C 66B
( fGW= 6.04× 10−8 Hz). The Bayes factors for the CW-only
analysis and the CW+CRN analysis are 0.70± 0.02 and

Figure 7. The 95% lower limits on the luminosity distance to an individual
SMBHB. While we can limit SMBHBs emitting GWs at the most sensitive
value of fGW = 7.65 × 10−9 Hz to dL > 33.9 Mpc, at fGW = 3.82 × 10−8 Hz
they can be limited to farther away at dL > 35.0 Mpc. Figure 8. Map of the 95% lower limit on the distance to individual SMBHBs

with = M109 and 7.65 × 10−9 Hz. White diamonds indicate the positions
of known SMBHB candidates and large galaxy clusters that could contain an
SMBHB. As PTA sensitivities improve, these candidates may come into reach.
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0.67± 0.01, respectively. Both of these values are very near 1,
meaning that the data do not indicate the presence of a CW
corresponding to a binary within 3C 66B.

Because no GW was detected, we constrain the chirp mass of
a potential binary with an upper limit analysis, again performed
with and without a CRN to confirm consistency. The posteriors
from these two searches are plotted in Figure 10, with resulting
95% upper limits of ( )<  ´ M1.41 0.02 109 when a

CRN is included and ( )<  ´ M1.34 0.01 109 when
only CWs are included in the signal. For comparison, the 95%
chirp mass upper limit for 3C 66B from the 11 yr data set was
< 1.65× 109 Me. This represents an improvement of

2.4× 108 Me, or a factor of 1.2 smaller; by adding pulsars,
extending timing baselines, and improving timing and search-
ing methods, the PTA’s sensitivity has clearly improved. These
upper limits are nearer to the value of the upper bound of the
Iguchi et al. (2010) chirp mass estimate. In subsequent data
sets, or by using more sophisticated analyses such as advanced
noise modeling (J. Simon & J. S. Hazboun 2023, in
preparation), this error region may soon be within reach.

In Arzoumanian et al. (2020b), it was shown that a targeted
search, like this analysis, results in a factor of ∼2 reduction in
upper limits compared to those of an all-sky search at a
corresponding GW frequency. When converted to strain
amplitudes rather than chirp masses, the 95% upper limits are
h0< 1.90× 10−14 and h0< 1.74× 10−14 for the searches with
and without a CRN, respectively. In comparison, the all-sky
analysis in Section 3.1 returned strain upper limits of
h0< 3.56× 10−14 and h0< 3.82× 10−14 at fGW= 6.01×
10−8 Hz, the nearest frequency to that of 3C 66B at
fGW= 6.04× 10−8 Hz. These all-sky strain upper limits are a
factor of 1.88 and 2.20 larger, very similar to the value for the
11 yr data set. Therefore, the improvement in upper limits
gained by using this multimessenger technique has stayed
stable across the addition of new pulsars, more data, and the
emergence of the CRN.

Additionally, we performed a new search for the electro-
magnetic SMBHB candidate HS 1630+2355. First identified as
a periodic quasar in Graham et al. (2015), this candidate is
identified as a top PTA CW candidate in Xin et al. (2021) with
a GW frequency of fGW= 1.13× 10−8 Hz and a luminosity
distance of 5.26 Gpc. In the 12.5 yr data set, we do not detect

any CWs from HS 1630+2355; in a CW+CRN analysis
(necessary owing to the low GW frequency), we calculate a
Bayes factor of 0.74± 0.02. Then, we are able to set an upper
limit of ( )<  ´ M1.28 0.03 1010 on the chirp mass of
an SMBHB within HS 1630+2355, which corresponds to a
strain of h0< 4.03× 10−15. For comparison, the all-sky upper
limit at the nearest frequency of fGW= 1.10× 10−8 Hz is
h0< 1.07× 10−14, a factor of 2.66 larger than the targeted
upper limit. Due to this candidate’s favorable position near the
PTA’s most sensitive sky location, we are able to overcome the
much larger source distance to set a constraining upper limit.
However, this limit is still approximately 4 times larger than the
estimated chirp mass of 3.15× 109 Me (Xin et al. 2021),
meaning that more data are needed to rule out or detect an
SMBHB within HS 1630+2355. The simulations in Xin et al.
(2021) indicate that HS 1630+2355 will not be detectable even
by IPTA data sets by the late 2020s, so this result is
unsurprising; therefore, HS 1630+2355 will require continued
monitoring until PTA sensitivity brings it into reach.

4.4. Local Detection Prospects

At the most sensitive sky pixel, we conducted a final upper
limit analysis across the entire frequency band, with results
plotted in Figure 11. Here we observed that for all frequencies
the PTA is dramatically more sensitive to CWs from sources at
this sky location than across the entire sky on average.
Mingarelli et al. (2017) carried out a comprehensive study of
the detection prospects of SMBHBs within a 225Mpc volume,
the completeness limit for their chosen K-band luminosity in
the Two Micron All Sky Survey. Using these new 12.5 yr
upper limit curves, we assess our level of surprise at our current
nondetection of CWs.
Figure 11 shows an example realization of the local SMBHB

population created with nanohertz_gws (Mingarelli 2017).
It is 1 out of 75,000 Monte Carlo realizations Mingarelli et al.
(2017) carried out, where they varied black hole masses via the
scatter in various M−Mbulge relations, mass ratios, and more.
While the chosen realization shows what a detectable SMBHB
would look like, on average we found that only 398 realizations
out of the 75,000 contained detectable SMBHB systems at the

Figure 9. Number density limits of SMBHBs per comoving Mpc−3 in the local
universe, where, as expected, we placed significantly more stringent upper
limits on the largest SMBHBs than on the smallest ones, with limits decreasing
from those on chirp masses of 108 Me (purple) to 108.5 Me (blue) to 109 Me

(teal) to 109.5 Me (green).
Figure 10. Posterior distributions for a targeted upper limit analysis of the
SMBHB candidate 3C 66B. While 95% upper limits (red and purple lines) are
lower than in the 11 yr data set (blue line), they cannot rule out the model from
Iguchi et al. (2010) (orange region).
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best sky location. We therefore only had a 0.5% chance of
making a detection of such a local source with the 12.5 yr data
set. Furthermore, when we consider the entire sky, we found
that an order of magnitude fewer SMBHBs were detectable—
only 43 realizations contained detectable binaries.

It is interesting to compare this result to that of our previous
upper limit (Aggarwal et al. 2019). With the NANOGrav 11 yr
all-sky upper limits, we found 34 detectable SMBHBs, and
here we find 43—an overall improvement. However, the upper
limit at our best sky location has deteriorated owing to the
CRN, which has in turn decreased the number of detectable
binaries by a factor of ∼2, from a 1.2% chance of detection
to 0.5%.

As was the case in previous sections, we note that this
comparison is nontrivial, due to the complex changes in
sensitivity between data sets, and that this deterioration is
happening primarily at low frequencies where the CRN is
manifesting in the data and the most sensitive sky location is
heavily affected (Figures 5 and 6). Xin et al. (2021) show that
at higher GW frequencies the effect of the GWB, or any
equivalent CRN, is very small, so the detection prospects for
local SMBHBs are unaffected.

4.5. Binary Population Model Consistency

Finally, it was also useful to assess whether our current
nondetection of CWs is consistent with expectations from
SMBHB population models. In Figure 12 we compared an
astrophysically motivated SMBHB model to GW upper limits
set with the 12.5 yr CW search. The SMBHB model was
derived from theoretical galaxy major merger rates (Chen et al.
2019), which are themselves based on observed galaxy pair
fractions (Mundy et al. 2017) and theoretical galaxy merger
timescales. It is related to the GWB via (Phinney 2001;
Sesana 2013)
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where hc is the characteristic strain of the GWB and is the

chirp mass in the observer frame. This was fit to the results of

the NANOGrav search for the GWB in the 12.5 yr data set

(Arzoumanian et al. 2020a) and assumes that the CRN is due to

a GWB, comparable to the fit in Middleton et al. (2021).
The GW limits in Figure 12 were calculated using the most

sensitive frequency of both the all-sky and most sensitive sky
location analyses. Figure 12 thus shows what regions of z–
parameter space were accessible to the 12.5 yr CW search.
Since no CWs were detected, we are able to rule out the high-
mass and low-z region across the entire sky and at the most
sensitive sky location for the PTA’s most sensitive frequency.
We calculate the expected number of detectable SMBHBs by

relating the differential SMBHB mass function fBHB to the
differential number of binaries per chirp mass, frequency, and
redshift (Sesana et al. 2008) as
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and integrating across the relevant region of z– space, while

also considering the entire strain sensitivity curve in frequency

space. Here tr and fr are the proper time and binary GW

frequency in the SMBHB’s rest frame, respectively. We find in

both cases that the expected number of SMBHBs is =1. At the

all-sky sensitivity the calculated number is ´-
+ -0.6 100.4
1.1 4,

while at the most sensitive sky location the calculated number

is ´-
+ -8.6 105.5
12.9 4. Our nondetection of a CW signal is thus

consistent with theoretical models of the SMBHB population,

which predict that the most massive, and therefore loudest,

SMBHBs are exceedingly rare.

5. Discussion and Future Prospects

While the NANOGrav PTA is continuing to increase our
sensitivity to GWs by adding data from ongoing observations
and adding new pulsars to the PTA, our limits on CW strains
across the nanohertz GW frequency band and the sky have not
improved as steadily as in previous data sets. This is due to the

Figure 11. The 95% strain upper limit curve for the all-sky (red solid) CW
search compared with the 95% strain upper limit curve in the most sensitive
sky location (red dashed). The nondetection of a nearby SMBHB is
unsurprising—there was at best a 0.5% chance of making such a detection.
Here we show one of the 75,000 realizations of the local universe from
Mingarelli et al. (2017). This realization shows a detectable SMBHB, together
with our 95% upper limit curves for both sky-averaged and best sky locations.
In this realization there are 87 local SMBHBs (all within 225 Mpc); none of
them lie above the sky-averaged upper limit curve, but one could be detected if
it were at the most sensitive sky location.

Figure 12. The SMBHB mass function (fBHB) derived from astrophysical
models shows the modeled number density of SMBHBs (color bar) across log
chirp mass (  Mlog10 ) and redshift (z). Side panels show fBHB in one
dimension integrated across each respective variable. Regions that are
inconsistent with our 12.5 yr CW search are shown in white, with the all-
sky (average) and most sensitive (best) sky location upper limits shown under
the solid and dashed–dotted white curves, respectively. Created using methods
from J. A. Casey-Clyde et al. (2023, in preparation).
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CRN first detected in the 12.5 yr data set in Arzoumanian et al.
(2020a), which has impacted the PTA’s ability to distinguish a
CW source. While adding a CRN to the search model that is
fixed to the maximum likelihood values from a dedicated
search avoids confusion in detection analyses, this adds a
significant source of noise to the PTA and therefore limits our
sensitivity to CWs at frequencies below 10 nHz.

We have entered an interesting era where surprising results
will continue to be uncovered. In future data sets, the CRN will
likely be even more apparent in the data, and it may eventually
resolve to be due to a stochastic GWB from SMBHBs (Pol
et al. 2021). In any case, due to the multifrequency nature of
the GWB, this will continue to impact CW searches, and
significant efforts will be needed to continue development on
methods that will allow for efficient detection of both types of
nanohertz GW signals such as in Bécsy & Cornish (2020), as
well as extensive simulations that evaluate detection possibi-
lities, as in Pol et al. (2021), that include multiple types of GW
signal in the simulated data sets. Additionally, significant effort
will be needed to improve sampling methods that can
efficiently explore the complex CW parameter space (Bécsy
et al. 2022a), particularly at high GW frequencies or if full
eccentricity modeling is desired (Taylor et al. 2016). These
complexities will only be exacerbated as data sets expand,
particularly for the complex data sets produced by the IPTA,
which, while more sensitive, contain more pulsars and noise
parameters over which to sample. One promising path forward
are targeted searches of quasars, which may be much more
likely to host SMBHBs than random galaxies (J. A. Casey-
Clyde et al. 2023, in preparation). Since multimessenger
analyses can improve upper limits by a factor of 2
(Arzoumanian et al. 2020b), improve detection prospects (Liu
& Vigeland 2021; Charisi et al. 2022), and can be made
drastically more efficient than traditional all-sky searches
(Charisi et al. 2022), further development of these methods is
also crucial, as with more data electromagnetic SMBHB
candidates may soon be detectable (Xin et al. 2021), and many
more will be identified in upcoming surveys (Charisi et al.
2022; Witt et al. 2022). By balancing these efforts, a CW signal
may soon come into reach.

6. Conclusions

With extensive Bayesian analyses, we have searched the
NANOGrav 12.5 yr data set for CWs from individual
SMBHBs. In our detection analyses, we showed that no CWs
were detected to a high degree of confidence. We then placed
all-sky upper limits on the strain amplitude for all CWs
emitting between 2.45× 10−9 Hz and 3.19× 10−7 Hz, as well
as upper limits as a function of sky location for the 12.5 yr data
set’s most sensitive frequency of 7.65× 10−9 Hz.

This analysis also included the development of new methods
to accurately reflect the realistic distribution of possible values
of pulsar distances from updated measurements. The way we
treat these values in search pipelines has a significant impact on
our ability to detect the pulsar term of a CW signal, and these
methods will be critical as we proceed toward PTA sensitivities
that enable a CW detection.

Unlike previous data sets, the 12.5 yr data set contains a
significant CRN. Therefore, for the first time, we included the
CRN in our Bayesian searches by fixing the model parameters
to those recovered in Arzoumanian et al. (2020a). This had a
significant effect on the results of many of our analyses and

proved critical to avoid a false detection of a CW at
2.45× 10−9 Hz. This process also significantly impeded the
reduction of our upper limits between the 11 and 12.5 yr
NANOGrav searches at the most sensitive frequency of
7.65× 10−9 Hz in most areas of the sky. The presence of a
CRN will also impact searches for other types of signals, such
as bursts with memory and fuzzy dark matter, and so searches
for those sources will also need to include the CRN.
Despite these new necessities, we are able to place

significant astrophysical constraints on the local SMBHB
population. In our most sensitive sky location, we can rule out
the existence of any SMBHB with a mass of at least 109 Me

emitting at 7.65× 10−9 Hz within 86.7 Mpc. Furthermore, we
demonstrate that significant improvements to chirp mass upper
limits of SMBHB candidates can be made through multi-
messenger analysis techniques, and we limit the chirp mass of
3C 66B to ( )<  ´ M1.34 0.01 109 . With the inclusion
of more data, we will soon be able to rule out or confirm this
source and other binary candidates, as well as those that are yet
undiscovered.
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