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1 Introduction

With the advent of gravitational wave (GW) detection [1], and the development of new
instruments (see table 1, and references therein), gravitational wave signals have become
among the most promising signatures for new physics beyond the Standard Model (SM)
in the early Universe. In particular, cosmological first order phase transitions in the early
Universe can generate gravitational wave signatures [2—6] which can be observed at current
and upcoming experiments (for reviews, see [7-13]). Considerable work has focused on
determining if particular models can produce GW signals which are observable at upcoming
experiments. There has been a recent flurry of works examining extensions of the Standard
Model which could provide gravitational wave signatures [14-63], including models with a
focus on dark sectors and dark matter [64-100].

In this work, we approach this problem from a different angle. We scan the parameter
space of a simple and well-motivated thermal effective potential with a single dark Higgs
field, which can arise from a wide class of UV-complete models. We correlate the properties
of the GW signal arising from a first-order phase transition with the parameters of the
effective potential (for other work examining general models, as well as model and signal
features and classes, see for example, [101-110], including cosmological contraints [111],
non-gaussianities [112], and circular polarization [113]).

The result of this analysis is a characterization of the sound wave GW signal which
can arise from any UV-complete model whose thermal effective potential is polynomial and
renormalizable. Interestingly, we find that dimensional analysis and scaling relations control
much of the analysis, allowing us to relate specific features of the GW signal to specific
parameters of the effective potential.

As a specific example, we find that amplitude of the gravitational wave signal is strongly
related to the ratio of the dark Higgs mass to the dark Higgs vacuum expectation value
(vev) at zero temperature. If the dark Higgs mass is less than O(1%) of the dark Higgs vev,
then the GW signal will be too small to be observed at any upcoming experiments. Because



the amplitude of the signal scales as several powers of ratio of dark Higgs mass to vev,
our result is robust. Indeed, theoretical work connecting the amplitude of a gravitational
wave signal to the underlying parameters of the phase transition is constantly evolving (for
example, more refined calculations for determining the kinetic energy fraction [114-116], the
wall velocity [117-119], and adoption of more general parameterized forms for the frequency
spectra [120] which can account for the variations from different studies, such as [121-129]),
leading one to wonder how well one can trust any even state-of-the-art result. But in
order to change our bound by an order-of-magnitude, one would need a correction to the
gravitational wave signal of many orders of magnitude, giving our result some robustness to
future developments.

We also find a general relationship between the symmetry-breaking vev and peak
frequency of the GW signal. We then characterize the optimal instruments for probing
generic first-order phase transitions, in terms of the symmetry-breaking scale at zero
temperature.

But it is also important to point out what we do not do — we do not provide a complete
analysis of any particular UV-complete model. We assume a thermal effective potential
for a single scalar field which is renormalizable and of the polynomial form. Although
well-motivated, for any particular model, this may or may not be a good approximation
to the thermal effective potential. Our results apply directly to models for which this
thermal effective potential is a good approximation, while for other models, our results are
at best indicative.

The plan of this paper is as follows. In section 2, we parameterize the thermal effective
potential, and characterize the allowed phase transitions and resulting gravitational wave
signals. In section 3, we describe the results of our scans over the parameter space of the
thermal effective potential. We conclude in section 4 with a discussion of our results.

2 First-order phase transitions with a renormalizable scalar potential

We consider a thermal effective potential for a single real scalar field ¢. We consider a
renormalizable polynomial potential [65] of the form

V(T,$) = A* K_; +e (DQ) (f)Q +b% (‘5)3 +i (fﬂ , 2.1)

where V(T = 0, ¢) is minimized at ¢ = v, and where the mass of the dark Higgs (the
excitation of ¢ about this minimum) is given by m?/v? = 2(A/v)%. This form of the
potential arises, for example, from thermal corrections in the high temperature limit, where
the dimensionless coefficients b and ¢ depend on the details of the UV model. We assume
A/v < 1, ensuring that effective potential has a perturbative quartic coupling. We also
take b < 0, as this coefficient arises in the high temperature limit from fermion loops which
contribute with a negative sign to the effective potential.

It is convenient to express the potential in terms of the scale-free quantities ¢~> =¢/v
and T = T /v. Essentially, the symmetry-breaking scale v is used as the scale against which



all other energies are measured. Defining V (T, ¢) = A=*V (T, ¢), we have
. 1 N - 1
vV (T,0) = (—2 - cT2> O+ 016" + 10" (2.2)

We can now consider the generic behavior of this thermal effective potential. At finite
temperature, the potential can have up to three extrema, at ¢ = 0 and at factor of 2 under
the radical is fixed

/A \/9b2T2 +4 (1 — QCTQ)
¢ = 5

If ¢T? < (1/2) + (9/8)b*T?, then the discriminant is positive, and three distinct extrema

exist. In that case, one extremum is a local maximum, while the other two are local minima,

(2.3)

and at least one is a symmetry-breaking minimum.
V(T, ¢ = 0) = 0, where this extremum at ¢ = 0 is a local minimum for ¢7? > 1/2 and
a local maximum for ¢T? < 1/2. The condition for V (T, ¢) = 0 for ¢ > 0 is

+ b*T2. (2.4)

We can thus classify the behavior of the potential as the Universe cools from high
temperature. At sufficiently high temperature, the symmetry-preserving extremum is always
a local minimum at V = 0. But for ¢/b? < 1, the potential has two other zeros, with a
global minimum between them, even at high temperature. In this case, there is no phase
transition, since the Universe is always in the symmetry-breaking phase. We thus restrict
ourselves to the case c/b? > 1.

For ¢/b? > 1, then at high temperature there is a global minimum at ¢ = 0 and a
local minimum at ¢4 > 0, with a local maximum at ¢_ between them. But at low enough
temperature (T¢ = 1/1/2(c — b?)), we find V(¢;) = 0.

For T' < T¢, ¢4 is now the global minimum, and a first-order phase transition is
possible. The transition will not occur until the nucleation temperature, T, at which time
the bubble nucleation rate is larger than the Hubble expansion rate. But at sufficiently
low temperature (I' < 1/v/2c), the potential barrier goes to zero; the symmetry-preserving
extremum is now a local maximum, and if the phase transition has not yet completed, then
¢ can simply roll to the global minimum, yielding a second-order phase transition.

Note that our analysis of the minima of the potential depended only on the parameters
b and ¢, as v appears only as a scale parameter, and A has factored out. But the dependence
on A returns when we determine the nucleation temperature. The bubble nucleation rate
per unit volume (p(7')) is given by p(T') = T* exp[—Sg /T, where Sg is the Euclidean action
for the radial bounce solution between the symmetry-preserving and symmetry-breaking
vacua. The nucleation temperature Ty is the temperature at the nucleation time ty, at
which a fraction e~! of the Universe has tunnelled to the global minimum of the potential.
The nucleation time is given approximately by the relation p(ty)t3, = 1. Assuming a
radiation-dominated universe with g, = O(100) relativistic degrees of freedom, we then

find [12, 130-132]
%E =140 + O (log Ty /TeV) . (2.5)
N



Sg is the Euclidean action evaluated on the bounce solution to the radial equation [131, 133]

Py 200 _ 9V(T,9)

w2 e 0 (2:6)

where Vg(T, ¢) is the temperature and field dependent potential in the Euclidean ac-
tion. This solution interpolates between ¢ = 0 and ¢ = ¢5. We will utilize an analytic
approximation to the bounce solution for this form of the effective potential [134], given by

Sp  4.85M3 a 2.4 0.26
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For certain models, this analytic solution was compared to the Euclidean action computed
using CosmoTransitions [131], a Python package that numerically computes the properties
of phase transitions in scalar field theories, and good agreement was found. A more detailed
comparison was performed in [135], similarly finding good agreement.
To put eq. (2.6) in scale-free form, we define 7 = r(A2?/v), yielding
26 209 Ve (T.9) 9
2 FOF - 9 '
The scale-free Euclidean action, Sg, is obtained by integrating the scale-free Lagrangian,
evaluated on the bounce solution of the above equation, with respect to d*# d(1/T), and is

related to Sg by ~
Sk v2 Sp

T A2 T (2.10)
We thus find _ )
A
58, 140 () , (2.11)
TN v

where the left-hand side of eq. (2.11) depends only on b, ¢ and Ty.

2.1 Thermal parameters of the phase transition

We are now able to determine Sg(7) and Ty for any parameters b, ¢ and A/v. From these,
we can determine the thermal parameters of the phase transition, which in turn feed into
the gravitational wave signature. These are speed parameter of the phase transition (5/H),
and the latent heat parameter (&).

We can write the thermal parameters as

([i‘) = (FBI(b’ c,A/v)) X (2>_27

£ =E&(b,e, Afv) x (?)4 (1%0>_1, (2.12)




where

; - (52/1)
E(b,c,A/v): TT B
T=Ty
. 3 - dV
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and g, is the number of relativistic degrees of freedom. Essentially, the parameter A/v
controls an overall rescaling of the potential, and the power-law dependence of the thermal
parameters on A/v in eq. (2.12) encodes the dependence of these parameters on that scaling.

Note that the scale-free thermal parameters (5/H) and & depend on A/v only through
the determination of the scale-free nucleation temperature, T. Thus, the actual thermal
parameters (5/H) and £ have a dependence on A/v which is nearly power-law. This
dependence would be exactly power law if the nucleation temperature were exactly the
same as the critical temperature. In fact, the nucleation temperature will be less than
the critical temperature, leading to a deviation from power-law behavior. But we will see
that this power-law behavior largely determines the maximum allowed gravitational wave
signal. Moreover, this form of the thermal effective potential is a good approximation in
the high temperature limit; if the nucleation temperature is significantly smaller than the
critical temperature, this may not be a good approximation. A typical scale where the
high-temperature approximation remains valid is given by T' 2 m (for example, in [65] the
criteria 7% > 2m? was employed). This can be translated to the constraint T > v/2(A/v)2.
However, the size of the effects of non-power law terms that would be generated if this
criteria is not met would be model dependent, thus we do not pursue that line of inquiry
further in this work.

2.2 The gravitational wave signal

First order phase transitions can produce gravitational waves via three different mechanisms:
i) bubble collisions, ii) sound waves from bubble expansion in the fluid, and iii) turbulence
in the fluid. In a runaway bubble expansion, where bubble wall velocities are not sufficiently
slowed by friction from the fluid, bubble collisions can provide the dominant gravitational
wave signal. This situation can arise, for example, for extremely supercooled systems [125,
136, 137]. The study of turbulence is ongoing, with the efficiency of converting kinetic
energy into turbulent energy being one source of some uncertainty [109, 122, 129]. Thus, as
we are not examining extremely supercooled situations, we will assume that the dominant
gravitational wave signature arises from sound waves [138]. We can express the amplitude
(h?Qgy) and frequency (fs,) of this gravitational wave signal as [8, 135, 139]

B2 () = H2QM <fi,>3 (W)WQ, (2.14)



where

oo = b are) < (2) (o) (25)
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and [114]
N ) . 1
o) =0t (1) () [« (35) g
A T 2 B ~\ —1
hQQ;rqlﬁx(bv cyA/U) = 8.5 % 1076 (4/3) (Rff)Q <f{> Vo
iy~ (2.16)

Here, v,, is the sound speed, which determines the exponent n; for v,, ~ 1, we have n = 1,
while for v,, ~ 0.5, we have n ~ 2/5 [114]. T" is the adiabatic index, which we will take to
be I' = 4/3 [65], and z, ~ 10 [123, 135].

There are additional factors listed in brackets [135], which depend on the details of the
model, encoded in quantities such as the time scale for turbulence (7)) and the Hubble scale
at which the source becomes active (Hg). Indeed, as pointed out in [139], there are a variety
of suppression factors which can arise from a more diligent treatment of gravitational wave
production, which can suppress the signal amplitude by more than an order of magnitude.
As we begin with an effective potential for the scalar, but no detailed microphysics, it is
not possible to attain this level of precision. But for our purpose, it is not necessary. Since
the gravitational wave amplitude scales as more than 10 powers of (A/v), this analysis will
be sufficient to determine classes of models which will be easily inaccessible to all upcoming
experiments. Moreover, although future theoretical developments may uncover additional
correction factors, unless their collective size is several orders of magnitude, they will not
change our results appreciably. For similar reasons, it is sufficient for us define the thermal
parameters at the nucleation temperature, rather than the percolation temperature.

In a similar vein, there are a variety of theoretical uncertainties with both the first-order
phase transition and the associated gravitational wave signature, and there has been much
recent theoretical progress, including studies of gauge dependence, renormalization group
equations, and the one-loop effective potential [140, 141], discussions within an effective
field theory framework [142-144], issues related to the perturbative expansion including
its scale dependence [145-148], and non-perturbative models and resummation and use of
numerical simulations (for example, see [115, 121-123, 125, 126, 149-155]). It would be
interesting to incorporate these effects in a more detailed analysis, but it is not necessary
for our purpose here.

The main quantities we are interested in are the peak amplitude of the GW signal
(h2Qmax) "and the frequency at which that peak is obtained (fs,). If the nucleation temper-
ature were equal to the critical temperature, then h2Q§3§X and fs, would be independent of



A /v, the dependence of the GW signal parameters on A/v would be entirely determined by
the scaling relations in eq. (2.12). We would then find

-1 10+8n
2 max 2(n+2) ﬁ é
(h w >TN=TCOC§ (H) x (v) ’

2
(fow)ry=1p X %U x (A> v, (2.17)

v

where (A/v)* = m?/2v2, and the power-law dependence on A /v is induced by the dependence
of the thermal parameters on the overall scale of the potential.

Reducing m/v by an order of magnitude would reduce the amplitude of the GW signal
by a factor of at least 10° (taking n = 0). We thus expect to find a sharp minimum for m/v;
for dark Higgs masses which are sufficiently smaller than the symmetry-breaking scale, the
amplitude of the GW signal will be unobservable.

Note, however that although the amplitude of the GW signal depends on m /v, it has no
actual dependence on v itself, a result which could be anticipated from dimensional analysis.
But the symmetry-breaking scale does enter into fs,, to which it is directly proportional.
Thus far, our analysis has been completely scale-free. We now see that the energy scale
of the phase transition only enters in the last step, setting the frequency scale of the GW
signal.

Some of these considerations will be modified once we include the dependence of the
nucleation temperature on (A/v). But we expect that this modification should not change
the result substantially; if Tv < T, then the phase transition is very supercooled, and this
form of the thermal effective potential may in any case not be a good approximation to
the thermal potential of a UV complete model. We will see from more detailed numerical
calculation that this intuition is correct.

3 Results

In this section, we describe our strategy for scanning over the parameter space of the
thermal effective potential and then present the results of the scan. First, we briefly specify
the conditions for a parameter space point to be of interest.

o A/v < 1: this condition ensures that the zero-temperature quartic coupling is pertur-
bative.

e ¢/b? > 1: this condition is required for a phase transition to occur at all. If it is not
satisfied, then the symmetry-breaking minimum is the global minimum even at high
temperature.

o ¢T% > 1/2: this is necessary in order for the transition to be first-order. If this is not
satisfied, then the barrier disappears before the nucleation temperature is reached,
leading to a smooth phase transition.

e [/H > 1: this condition is needed for the bubble growth rate to exceed the Hubble
expansion, so that bubbles grow. This is equivalent to 3/H > (A/v)?.



e £ > 0: afirst order transition will only proceed if the latent heat parameter is positive
at the nucleation temperature. This is equivalent to é > 0.

It may seem unusual that the latent heat parameter can be negative. It is easy to
demonstrate that, if the phase transition occurs at the critical temperature, then the latent
heat parameter must be positive. But it may become negative if the phase transition is
sufficiently supercooled. As we have already mentioned, such a transition would potentially
stretch the effective potential beyond its regime of validity. But in any case, if the latent
heat parameter is negative, no GW signal will be produced.

The scale-free Euclidean action, Sg, is determined by T and the parameters b and c.
For any choice of parameters b, ¢ and A/v, the nucleation temperature T is approximately
determined by the solution of the equation

Sp(b,e,Tw) _ <A)2‘

= 3.1
1407 v (3:1)

In figures 1 and 2, we plot contours of Sg(b, ¢, T)/140T in the (b, ¢)-plane, for eight different
choices of T. We can then solve eq. (3.1) by setting (A/v)? equal to the Sg/140T, for a
value of T which is taken as the nucleation temperature. These figures thus encode all
choices of the parameters (b, ¢, A/v) for which the scale-free nucleation temperature is given
by a particular choice Tn. Note, we only plot parameters points which are of interest, as
defined by the criteria described at the beginning of this section.

Note that the range of parameter space which is of interest is very small for T ~ 1,
near (b,c) ~ (—v/2,2). More parameter space is available for Ty < 1, and for relatively
large T, the available parameter space is focused near the curve ¢ = b2. But as Ty becomes
small, the high temperature approximation becomes less valid; in that case, it is not clear if
this effective potential can be realized from a UV complete model. In particular, note that,
although we do not consider the range ¢ > 25 for reasons of computational ease, that range
in any case corresponds to small T.

In figures 3 and 4, we plot contours of /3 /H in the (b, ¢)-plane, for different choices of
Tx. Only parameter points satisfying the criteria described in the beginning of this section
are considered. In particular, for any choice of Ty, only points in the (b, ¢)-plane are shown
for which there exists some choice of A/v consistent with the given Ty.

Similarly, in figures 5 and 6, we plot contours of £ in the (b, ¢)-plane for different choices
of Tv. Note that unless Ty < 1, we find & < O(10) throughout the entire parameter space.
This implies that, unless the phase transition occurs well below the symmetry breaking
scale, we will find

R2Qmax < 0(0.1),

2QmE < 0(0.1) (

: (3.2)

The maximum sensitivity of LISA is roughly h2Qg,, ~ O(10713), implying that LISA
will be insensitive to any model for which A/v < O(107!). Note that we can directly relate
the parameters of the thermal effective potential to the mass and vev of the dark Higgs at
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Figure 1. Contours of Sg/140T are shown in the (b, c) plane for smaller values of T: T' = 0.15
(upper left), 0.20 (upper right), 0.25 (lower left), and 0.30 (lower right). The contours also satisfy
the conditions: ¢ > b2, ¢T' > 1/2, a < 1,0 < Sg/140T < 1, §/H > Sg/140T and & > 0.

zero temperature through the relation (A/v)? = m/v/2v. We thus see that these simple
scaling arguments imply a powerful connection between gravitational wave observations
of a cosmological phase transition and laboratory probes of the hidden sector at zero
temperature. In particular, if the mass of the dark Higgs particle excitation is less than
O(1%) of the dark Higgs vev, then the gravitational wave signal arising from condensation
of the dark Higgs in the early Universe would have an amplitude too small to be observed
at LISA. If the hidden sector is coupled to the Standard Model, then the dark Higgs mass
and vev can be probed at fixed target or beam dump experiments, thus determining if a
gravitational wave signal can be seen. Note that, although the maximum sensitivity of BBO
will be 4-5 orders of magnitude better than LISA this leads to much less than an order of
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Figure 2. Contours of Sp/140T are shown in the (b, ¢) plane for larger values of T: T = 0.40
(upper left), 0.50 (upper right), 0.60 (lower left), and 0.80 (lower right). The contours also satisfy
the conditions: ¢ > b2, ¢T' > 1/2, a < 1,0 < Sg/140T < 1, §/H > Sg/140T and & > 0.

magnitude improvement in minimum value of m /v for models which can be probed with
gravitational waves.

We can provide an even tighter bound on the amplitude of the gravitational wave signal

by accounting for the dependence of h2Q12% on ¢ and 3 /H. In figure 7a, we scan over

parameters (b, c, A/v), plotting each point on the (R2Q23% A /v)-plane. We have assumed

sw !
vy = 1. If we could ignore the effects of supercooling, then we would expect from eq. (2.17)

that the set of points with the largest values of h2Q™2% correspond to the choice of (b, c)

sSw

for which h2Q22% is largest, and lie along the line h2Q22% o (A/v)'8. In fact, the slope

of this line (plotted as the solid blue line in figure 7a) is ~ 17.2, which is only slightly
different from that given above, indicating that the dependence of h2Q™2% on A /v induced

— 10 —
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Figure 3. Contours of /3 /H are shown in the (b, c) plane for the allowed parameter space for
lower values of Tn: Ty = 0.15 (upper left), 0.20 (upper right), 0.25 (lower left), and 0.30 (lower
right). The contours also satisfy the conditions: ¢ > b2, Ty > 1/2, a < 1,0 < S’E/MOTN <1,
B/H > Sg/140Ty and € > 0.

by the effects of supercooling is relatively minor. Similarly, in figure 7b, we scan over the
parameters (b, ¢, A/v), plotting each point in the (fs,, A/v)-plane. Again, we see that most
of the points roughly follow the fy, /v oc (A/v)~2 relation which we found earlier (ignoring
the effects of supercooling), with a spread of roughly an order of magnitude in fg, /v for
any A/v.

In figure 8, we plot the set of points in the (b, ¢)-plane for which A2Q02% is within 2%
of the maximum for any given value of A/v. These points correspond to the (b, c) values
of the points near the solid blue line in figure 7a, discussed above. We see that scatter
in these points is small, another indication that the effects of supercooling are relatively
minor (if these effects were negligible, then all parameter points on this line would have the

— 11 —
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Figure 4. Contours of /3 /H are shown in the (b, ¢) plane for the allowed parameter space for
higher values of Ty: Ty = 0.40 (upper left), 0.50 (upper right), 0.60 (lower left), and 0.80 (lower
right). The contours also satisfy the conditions: ¢ > b Ty > 1/2,a < 1,0 < SE/14OTN <1,
B/H > Sp/140Ty and € > 0.

same values of b and ¢, differing only in the parameter A/v). We also plot shaded regions
indicating values of (b, ¢) for which a given nucleation temperature Tn can be realized. We
see that these models with maximal signal amplitude can only be realized with T < 0.4.

Finally, in figure 9, we scan over models, which are plotted in ths (fs,, h2Qm2%)-plane,
taking v,, = 1. In particular, we scan over b, ¢, and A/v, with v = 1 MeV (brown), 100 GeV
(green), 1 TeV (pink), and 1000 TeV (blue). We find fs, o v, while for any choice of v,
we roughly find h2QMa% oc 29 as one would expect from eq. (2.17). We also plot the
sensitivity of a variety of current and upcoming gravitational wave observatories in figure 9.

Note that the most sensitive upcoming experiments (BBO and ALIA) will probe models

with symmetry-breaking scales in the range O(100 — 1000) GeV. For scenarios with new

— 12 —
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Figure 5. Contours of £ are shown in the (b, ¢) plane for the allowed parameter space for lower
values of Ty: Ty = 0.15 (upper left), 0.20 (upper right), 0.25 (lower left), and 0.30 (lower right).
The contours also satisfy the conditions: ¢ > b2, Ty > 1/2, 0 < 1,0 < SE/14OTN <1,
B/H > Sg/140Ty and € > 0.

physics appearing at the MeV-scale, experiments such as THEIA would provide the leading
sensitivity, while for scenarios with new physics appearing at the PeV-scale, experiments
such as ET and CE would provide the leading sensitivity. But the absence of sensitivity for
models with m/v < O(0.01) is largely independent of scale; even at the scales for which
future experiments will be most sensitive, this lower bound can be reduced by no more than
a factor of a few. These experiments are described in table 1.

Note from figure 7a that, although the upper bound on h2Q12% follows fairly closely
the scaling relations we have derived, and in particular, grows steeply with A /v, the actual
amplitude may be much smaller than this maximum. For example, the behavior of the SM
electroweak phase transition is different, with the amplitude of a gravitational wave signal
decreasing with my /v, and disappearing entirely for m; = 125 GeV, at which point the
phase transition is smooth. This is because the thermal effective potential for the Standard
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Figure 6. Contours of é are shown in the (b, ¢) plane for the allowed parameter space for higher
values of Tn: Ty = 0.40 (upper left), 0.50 (upper right), 0.60 (lower left), and 0.80 (lower right).
The contours also satisfy the conditions: ¢ > b2, ¢In > 1/2, « < 1,0 < SE/I4OTN <1,
B/H > Sp/140Ty and € > 0.

Model Higgs sector corresponds to a choice of parameters which lie well below the upper
bound on A2Qax For sufficiently large my, /v, the parameter ¢ becomes small enough that
the potential barrier disappears before reaching the nucleation temperature. This example
illustrates the point that, although this analysis provides an upper limit on the gravitational
wave signal, it would be much more difficult to translate a measurement of m/v into a
prediction for the gravitational wave amplitude, or vice versa.

4 Conclusions

We have considered gravitational wave signals from sound waves in the context of an effective
field theory with a renormalizable thermal potential exhibiting a first-order phase transition
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Figure 7. Plot of h?Qmax (left) and fs, /v (right) against A/v for a set of models obtained by
scanning of 0 < A/v <1, =5 < b < 0and 0 < ¢ < 25. The dashed lines in the left panel are the
maximum sensitivities of LISA (green), BBO (beige), SKA (magenta) and CE (purple). The solid
blue line in the left panel presents the maximum value of h2Q22% obtained for a given A /v, for
any (b, ¢); this line has a slope of ~ 17.2.

in the early Universe. We have considered a thermal effective potential of power law form,
which would arise, for example, in the high temperature limit. This approach allows us
to consider the gravitational wave signals produced by phase transitions in a wide class
of models.

We find that for this class of models, there is a relatively clean relationship between
the parameters of the gravitational wave signal and the parameters of the thermal effective
potential. The effective potential can be expressed in terms of one dimensionful parameter,
the vacuum expectation value of the dark Higgs (v), which sets the frequency scale of the
gravitational wave signal. The amplitude of the gravitational wave signal is largely set by
one dimensionless parameter, A/v, which sets the ratio of the potential energy scale to the
dark Higgs vev. Since the amplitude of the gravitational wave signal scales as A/v to a very
high power, the dependence on the other dimensionless parameters is subdominant.

This approach leads to a striking conclusion. If the ratio of the dark Higgs mass to
the dark Higgs vev is less than O(1072), then the magnitude of the gravitational wave
signal will be so small as to be undetectable by any upcoming observatories. This bound
on sensitivity is nearly independent of the scale of new physics. This result is also robust
against future developments in our understanding of the amplitude of gravitational sound
waves produced by a first-order cosmological phase transition. Since the amplitude depends
on my/v raised to a high power, to modify our bound by an order of magnitude would
require a new correction to the sound wave amplitude of several orders of magnitude.

This result leads to several intriguing possibilities. For example, in scenarios of new
MeV-scale physics, one may potentially be able to probe the symmetry-breaking scale with
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Figure 8. Plot in the (b, c)-plane of parameter points for which A2Q2% is within 2% of solid
blue line shown in figure 7a. The shaded regions indicate regions in the (b, ¢)-plane for which
various nucleation temperatures Ty can be realized.

forward detectors at high-luminosity beam experiments, which could potentially determine
the mass and coupling of the dark photon. The detection of a gravitational wave signal from
the corresponding first-order phase transition would then provide a lower bound on the Higgs
mass. Similarly, it is possible that future high-energy beam experiments could produce a
heavy (> O(TeV)) dark Higgs. In this case, the amplitude of a gravitational wave signal from
the phase transition would correspond to an upper bound on the symmetry-breaking scale.

There are several avenues for further exploration. We have considered a power-law
form for the thermal effective potential, which is expected to be a good approximation for
renormalizable models, in the high-temperature limit. But there are a variety of models
in which the phase transition is supercooled (see, for example [177-180]), and nucleation
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Figure 9. Plot in the (h?Qg., fsw)-plane of the gravitational wave signal obtained from a scan
of parameter points (b, ¢, A/v). The values of v used are 1 MeV, 100 GeV, 1 TeV and 1000 TeV
(from left to right). Also plotted are the sensitivities of the following current and upcoming exper-
iments: 1. EPTA [156], 2. NANOGrav [157, 158], 3. Gaia [159], 4. SKA [160], 5. THEIA [161], 6.
LISA [12, 162, 163], 7. Taiji [164], 8. TianQin [165], 9. ALIA [166], 10. BBO [167, 168], 11. DE-
CIGO [169, 170], 12. aLIGO [171, 172], 13. A+ [173], 14. ET [174], 15. CE [175].

temperature is relatively low. In these cases, although the corrections to the form of the
potential may be small, they need not be. There has been significant recent work regarding
theoretical issues in finite temperature perturbation theory (see, for example, [145, 181]).

Similarly, we have assumed that the thermal effective potential is renormalizable. There
are interesting models of new physics in which the phase transition can only be seen with
the inclusion of non-renormalizable terms. It would be interesting to consider more general
forms of the thermal effective potential, to better determine the extent to which the lessons
found here generalize.
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Classifications
based on
frequency reach

Dark sector T ¢

e o
scale that YI? i
experiments
can be probed P

Experiments

Very low frequency

Ground-based
telescope using

EPTA (European Pulsar
Timing Array) [156]

NANOGrav (North
American Nanohertz

<1M
107° — 1078 Hz < 1MeV pulsar timing Observatory for
observation technique Gravitational Wave) [157, 158]
SKA (Square Kilometer Array) [160]:
World’s largest radio telescope
Gaia [159]
Space-based THEIA (Telescope for
telescope Habitable Exoplanets and
using astrometry Intersteller /Intergalactic
Astronomy) [161]:
Proposed upgrade of Gaia
Space-based
frequenc heliocentric constellation
prored Y ~ 100 MeV of satellites p-Ares [176]

107 —10~° Hz

using Laser
interferometry technique

Low frequency
107% -1 Hz

Space-based
i fi
100 GeV-1 TeV 1nte.r erometer
using Laser

interferometry technique

LISA (Laser Interferometer Space
Antenna) [12, 162, 163]

ALIA (Advanced Laser Interferometer

Antenna) [166]
Taiji [164]
TianQin [165]

BBO
(Big Bang Observer) [167, 168]

DECIGO
(Deci-Hertz Interferometer
Gravitational Wave
Observatory) [169, 170]

Table 1. Description of upcoming gravitational wave observatories, including the frequency range
to which they would be sensitive, and the correspond symmetry-breaking scale (continues).
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Classifications Dark sector

based on scale that
frequency reach can be probed

T f
ype © Experiments
experiments

High frequency
10 — 100 Hz

Second generation
Ground-based aLIGO (Advanced LIGO) [171, 172]
~1000 TeV interferometer
using Laser A+ [173] (Quantum LIGO)
interferometry technique

Third generation
Ground-based ET (Einstein Telescope) [174]
interferometer
using Laser CE (Cosmic Explorer) [175]
interferometry technique

Table 1. Description of upcoming gravitational wave observatories, including the frequency range
to which they would be sensitive, and the correspond symmetry-breaking scale.
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