
The Block-based Mobile PDE Systems Are Not
Secure - Experimental Attacks

Niusen Chen1, Bo Chen1⋆, and Weisong Shi2

1 Department of Computer Science, Michigan Technological University, Michigan,
United States

2 Department of Computer Science, Wayne State University, Michigan, United States
bchen@mtu.edu

Abstract. Nowadays, mobile devices have been used broadly to store
and process sensitive data. To ensure confidentiality of the sensitive data,
Full Disk Encryption (FDE) is often integrated in mainstream mobile
operating systems like Android and iOS. FDE however cannot defend
against coercive attacks in which the adversary can force the device
owner to disclose the decryption key. To combat the coercive attacks,
Plausibly Deniable Encryption (PDE) is leveraged to plausibly deny the
very existence of sensitive data. However, most of the existing PDE sys-
tems for mobile devices are deployed at the block layer and suffer from
deniability compromises.
Having observed that none of existing works in the literature have ex-
perimentally demonstrated the aforementioned compromises, our work
bridges this gap by experimentally confirming the deniability compro-
mises of the block-layer mobile PDE systems. We have built a mobile
device testbed, which consists of a host computing device and a flash
storage device. Additionally, we have deployed both the hidden volume-
based PDE and the steganographic file system-based PDE at the block
layer of our testbed and performed disk forensics to assess potential com-
promises on the raw NAND flash. Our experimental results confirm it
is indeed possible for the adversary to compromise the block-layer PDE
systems when the adversary can have access to the raw NAND flash in
real world. We also discuss practical issues when performing such attacks
in practice.

Keywords: PDE · Coercive attacks · NAND flash · Deniability com-
promises · Experimental attacks

1 Introduction

Mobile computing devices are widely used in our daily life nowadays and, with
their increased use, more and more sensitive data are stored and processed in the
mobile devices. Therefore, it turns to become an urgent need of protecting those
sensitive data, and one of the most critical data security issues is confidentiality.

⋆ Corresponding author.



2 Niusen Chen, Bo Chen, and Weisong Shi

A straightforward approach to protect data confidentiality is to use encryption.
Currently, Full Disk Encryption (FDE) has been deployed to the mainstream
mobile operating systems including Android [1] and iOS [8]. In FDE, encryp-
tion and decryption are completely transparent to users. Without the key, the
attacker cannot obtain any knowledge about the original sensitive data. How-
ever, FDE cannot defend against a novel coercive attack in which the attacker
can force the device owner to disclose the key, and decrypt the ciphertext to
obtain the original sensitive data. For example, a journalist or a human rights
worker [34, 15] who is working in a country of conflict or oppression, has captured
some sensitive evidence of atrocities and tries to cross the border; to protect the
evidence, he/she encrypts the evidence; the border inspector however, may be
aware of the ciphertext and force the journalist to disclose the decryption key.

Plausibly Deniable Encryption (PDE) can be used to combat coercive at-
tacks. In PDE, the plaintext is encrypted with a decoy key and a true key.
When decrypting the cipher using the decoy key, we will obtain a decoy mes-
sage and when decrypting the cipher using the true key, we will obtain the true
message. Upon being coerced by the attacker, the device owner can only dis-
close the decoy key and keep the true key secret. In this way, the sensitive data
can be protected against the coercive attackers as the attackers cannot notice
the existence of the hidden sensitive data. Following the concept of PDE, a
large number of PDE systems [31, 32, 34, 15, 30, 26, 14, 16, 23, 18–21] have been
designed for mobile devices. In general, the existing mobile PDE systems can be
divided into three categories: C1) block-layer PDE systems [31, 32, 34, 15, 14, 16,
23]; C2) flash translation layer (FTL) PDE systems [26, 20]; and C3) deniability
aware flash file systems [30, 19]. A majority of the existing mobile PDE systems
belong to the category C1 which deploys PDE on the block layer. The reason is
that deploying the PDE on the block layer could be achieved much more eas-
ily, resulting in a much better usability. However, the block-layer PDE systems
are insecure, because: the hidden sensitive data will leave special traces in the
underlying flash memory and such traces cannot be removed by the block-layer
PDEs; by having access to the raw flash memory, the adversary may compro-
mise the deniability [26]. The compromises have been analyzed theoretically by
DEFTL [26], but none of the existing works have confirmed such compromises
experimentally. This work thus aims to bridge this gap by conducting the first
experimental study on understanding the deniability compromises of the existing
block-layer PDE systems.

Comparison with DEFTL. Our work is different from that of the DEFTL [26]
in a few aspects: First, DEFTL theoretically analyzes the potential deniabil-
ity compromises when deploying the PDE on the block device layer. However,
our work experimentally validates the deniability compromises in real-world de-
vices. Especially, we have created a mobile device testbed which includes a host
computing device (ARM architecture) and a self-made flash-based block device
(using an open-source flash controller and a cheap USB development prototype
board). This self-built mobile device follows the architecture of mainstream mo-
bile devices in real world. We then deploy a few representative block-based PDE



The Block-based Mobile PDE Systems Are Not Secure Experimental Attacks 3

systems in our testbed, and perform forensic analysis over the raw NAND flash
to study the deniability compromises. Second, DEFTL only focuses on the de-
niability compromises on the PDE systems which use hidden volume technique,
but our work assesses both the hidden volume-based and the steganographic
file system-based PDE. Third, we have identified extra deniability compromises
which have not been discovered in DEFTL.

2 Background

2.1 Flash Memory

Flash memory especially NAND flash has been used broadly as the external
storage of mobile computing devices nowadays. Flash memory usually consists
of blocks, and each block consists of pages. Typically, each flash block is a few
hundreds of kilobytes in size and each page is a few kilobytes in size. Compared to
conventional hard disk drives (HDD), flash memory has a few different features:
1) The unit of a read/write operation is a page, but the unit of an erase operation
is a block. 2) A flash page needs to be erased before it can be programmed. 3) Due
to the unique features of 1) and 2), the in-place update in flash memory would
be expensive. Therefore, the flash storage typically uses an out-of-place instead
of in-place update strategy [24]. 4) Each block in the flash memory can only be
programmed/erased for a limited number of times and, therefore, programmings
and erasures should be distributed evenly across the entire flash to prolong the
service life.

2.2 Flash Translation Layer

To manage flash memory, we can use a flash-specific file system like YAFFS or
JFFS. However, the flash-specific file systems are rarely used in mobile com-
puting devices today. Instead, a flash translation layer (FTL) is incorporated
into the flash storage media (e.g., SD cards, UFS cards, MMC cards) to trans-
parently handle the unique nature of NAND flash hardware, so that the flash
storage media can expose a block access interface externally and the traditional
block-based file systems can be deployed. The core functions implemented in the
FTL include garbage collection, wear leveling, and bad block management.
Garbage collection. As the flash storage media adopt the out-of-place update
strategy, the flash pages storing old data may be invalidated. Garbage collection
is typically used to reclaim those invalid pages. The garbage collection usually
works as follows: The FTL selects a victim block which has the largest number
of invalid pages. It then copies data stored in valid pages in the victim block to
an empty block, and erases the victim block.
Wear leveling. Each flash block only supports a limited number of program/erase
(P/E) cycles. The main purpose of wear leveling is to distribute P/E cycles evenly
across the entire flash. There are a lot wear leveling strategies including static
wear leveling and dynamic wear leveling. A fundamental idea is to swap hot and



4 Niusen Chen, Bo Chen, and Weisong Shi

Fig. 1: The hidden volume-based PDE technique.

cold data, so that the hot data will be relocated to those blocks with least P/E
cycles and the cold data will be relocated to those blocks with most P/E cycles.

Bad block management. Over time, a flash block may turn “bad” and cannot
be used to reliably store data, as there were too many P/E cycles performed on
this block in the past. Therefore, the FTL needs to keep track of those bad blocks
and prevents them from being used to store data. Typically, a bad block table
can be used to keep track of bad blocks. If a block turns bad, the FTL will copy
data from this block to an empty block and add this bad block to the bad block
table.

2.3 Plausibly Deniable Encryption

Plausibly deniable encryption can be leveraged to combat coercive attacks. Typ-
ically, there are two techniques which can be used to implement the PDE system,
namely, the hidden volume technique [6, 7] and the steganographic file system [9,
28].

For the hidden volume technique (see Figure 1), the entire disk is filled with
random data initially. Two volumes — a public volume and a hidden volume —
will be introduced. Correspondingly, two keys — a decoy key and a true key—
are selected. The public volume is encrypted via the decoy key and placed across
the entire disk, and the hidden volume is encrypted with the true key and placed
to the end of the disk starting from a secret offset (derived from the true key).
Upon being coerced, the victim will simply disclose the decoy key. Via the decoy
key, the attacker can decrypt the public volume, but will not notice the existence
of the hidden volume stored stealthily among the random data.

One implementation of the steganographic file system is to fill the disk with
random data initially, and to encrypt and to hide the sensitive data at a secret
location which can be derived from a secret key. To prevent loss of sensitive data,
multiple copies of sensitive data are stored in multiple locations across the disk.



The Block-based Mobile PDE Systems Are Not Secure Experimental Attacks 5

Fig. 2: The storage architecture of main-stream mobile computing devices

3 Model and Assumptions

System model. We consider a mobile computing device which is equipped with
flash memory (e.g., UFS cards, eMMC cards, microSD cards, etc) as the external
storage. The storage architecture of main-stream mobile devices is shown in
Figure 2. A mobile user directly communicates with apps (e.g., a PDF viewer
app) running at the application layer. The OS/file system will manage storage
hardware and provide system calls for the applications to access the data stored
at the storage hardware. The underlying flash memory storage is typically used in
the form of a block device. The FTL will handle special nature of flash memory,
exposing a block access interface externally.
Adversarial model. We assume the adversary can capture both the victim
and his/her mobile device, and coerce the owner to disclose the decryption key.
The adversary is rationale and will stop coercing the user once he/she believes
that the decryption key is disclosed [31, 15, 16, 26]. Using the disclosed key, the
adversary will play with the mobile devices to compromise the PDE. In addition,
the adversary can extract the raw image from the flash storage equipped with
the victim device and obtain the hardware parameters (e.g., page size and block
size) of the underlying flash memory chips. The adversary can then perform
forensic analysis on the raw image — with the help of the disclosed key — to
identify the existence of PDE.

4 Experimentally Attacking The Block-layer PDE
Systems

The hidden volume technique and the steganographic file system (Sec. 2.3) are
two major techniques which have been leveraged to implement the PDE sys-
tem at the block layer. We therefore focus on attacking those two types of PDE
systems. For each type of PDE systems, we first deploy a representative PDE
implementation on a self-built mobile device testbed, and then perform forensic



6 Niusen Chen, Bo Chen, and Weisong Shi

Fig. 3: A self-made mobile device testbed for our experiment. Firefly AIO-3399J
is the host computing device and LPC-H3131 (with flash controller) is the flash-
based block device.

analysis to identify any potential deniability compromises. We mainly concen-
trate on the deniability compromises in the underlying storage medium, which
is typically NAND flash for mobile devices.

4.1 Experimental Setup

A challenge faced in our experiment was that, almost every commercially avail-
able mobile device (smartphones, tablets, smart watches, or the recent IoT de-
vices like smart home assistants) uses a well encapsulated flash-based block
device, e.g., UFS cards, eMMC, microSD cards. To facilitate our attacks, we
have built a mobile device testbed, which consists of a flash-based block de-
vice and a host computing device (Figure 3). The flash-based block device was
built by porting [33] an open-sourced flash controller OpenNFM [22] to a USB
header development prototype board LPC-H3131 [3] (Major hardware: ARM9
32-bit ARM926EJ-S, 180Mhz, 32MB RAM, and 512MB NAND flash. The flash
memory consists of 128KB blocks, and each block consists of 2KB pages). The
host computing device was an embedded development board, Firefly AIO-3399J
(Major hardware: Six-Core ARM 64-bit processor, 4GB RAM). The Firefly AIO-
3399J was managed by Linux kernel 4.4.194. This mobile device testbed shares
a common architecture with mainstream mobile devices in real world.

We then deployed a block-based PDE system in the host computing device.
For the hidden volume-based PDEs, we deployed VeraCrypt [7], a fork of the
discontinued TrueCrypt project. Note that a large number of PDE systems de-
ployed on the block layer (including PDE systems [6, 11] designed for PCs as well
as PDE systems [31, 32, 34, 15, 14, 16] designed for mobile devices) have utilized
the hidden volume technique, and our attack can be applied to most of them.
For the steganographic file systems, we deployed stegfs [5], a recent open-source



The Block-based Mobile PDE Systems Are Not Secure Experimental Attacks 7

implementation of steganographic file systems [9, 28, 29] in user space3. For each
deployed PDE system, we analyzed the raw NAND flash to identify the potential
PDE compromises.

4.2 Experimental Attacks

Experimentally Attacking the Hidden Volume-based PDEs. We deployed
VeraCrypt [7] in the host computing device, and manually created both a public
and a hidden volume via VeraCrypt. The public volume occupies the entire disk
(i.e., the flash-based block device built by porting OpenNFM to LPC-H3131)
and the hidden volume is 200MB in size. The file system deployed in the public
volume was exFAT, which writes data sequentially from the beginning of the
disk to avoid overwriting the hidden volume stored stealthily in the second half
of the disk. We also deployed exFAT in the hidden volume. We performed three
tests to simulate behaviors of a device owner as follows:
Test #1: We entered the public mode, and wrote non-sensitive data to the
public volume. The size of the non-sensitive data being written is small (i.e., the
size is in the magnitude of a few kilobytes, and should be always smaller than
the size of a flash block). We then quit the public mode, entered the hidden
mode, and wrote a small amount of sensitive data to the hidden volume. The
size of the sensitive data being written is similar to the size of the non-sensitive
data being written to the public volume. We also repeated the aforementioned
operations a few times. This behavior is reasonable. For instance, the user may
write a short article to the public volume and then store a small secret audio
record to the hidden volume.
Test #2: We entered the public mode and wrote non-sensitive data to the public
volume. The size of the non-sensitive data being written should be large, e.g.,
always larger than the size of one flash block. Then, we quit the public mode,
entered the hidden mode, and wrote a small amount of sensitive data to the
hidden volume. The size of the sensitive data being written should be small,
e.g., in the magnitude of a few kilobytes which is always smaller than the size
of a flash block. This behavior is reasonable. For instance, the user may store a
large video to the public volume and then store a small secret audio record to
the hidden volume.
Test #3: We entered the hidden mode and wrote a small file (i.e., file 1) to
the hidden volume. The size of file 1 is a few kilobytes (e.g., 3 KBs). We then
modified a few randomly selected locations in file 1 and saved it. Next, we wrote
a large file (i.e., file 2) to the hidden volume. The size of file 2 is more than
128 kilobytes. This behavior is reasonable. For instance, the user may create a
small secret document in the hidden mode and modify it later; the user may
then create another secret document which is large in size.

After each test, we analyzed the corresponding flash memory image. Note
that the coercive adversary should have access to the decoy key.

3 Note that the original implementation of the steganographic file system [2, 9, 28] was
done in 1999 for Ext2, and has not been updated since then.



8 Niusen Chen, Bo Chen, and Weisong Shi

From the image obtained after running test #1, we have identified the first
type of special flash blocks, i.e., “special block 1” in Figure 4. Such a block is
completely filled with random data, but a portion of pages among this block
cannot be decrypted successfully. Without the PDE deployed, there are only
two possibilities for a block completely filled with random data: 1) All data
stored in it can be decrypted successfully, i.e., the block is filled with public
data. 2) All data stored in it cannot be decrypted successfully, i.e., the block
is completely occupied by random data filled initially. However, with the PDE
deployed, some of the pages in the block are occupied by the hidden data and
cannot be decrypted, as we wrote a small amount of data to the public volume
and the hidden volume in turn repeatedly during the test #1. The existence of
“special block 1” indicates the device owner has entered the hidden mode and
committed hidden sensitive data to the external storage before.

From the image obtained after test #2, we have identified the second type of
special blocks, i.e., “special block 2” in Figure 4. Such a block has a few pages
in the beginning storing random data and the remaining pages filling with all
‘1’ bits; among the random data, those located in the end cannot be decrypted.
Without the PDE deployed, a block is erased and then partially used by the
public data which are all decryptable. However, with the PDE deployed, some
of pages in this block may be used by the hidden data and hence cannot be
decrypted. Especially in our test #2, the hidden data will occupy those pages
before the empty pages (i.e., a page with all ‘1’s) of the block. Therefore, the
existence of “special block 2” also indicates the device owner has committed
hidden sensitive data to the external storage before.

From the image obtained after running test #3, we have identified the third
type of special blocks, i.e., “special block 3” in Figure 4. Such a block is com-
pletely filled with undecryptable random data, but some of them (i.e., in arbi-
trary locations across the block) are marked as invalid. A snapshot of a portion
of special block 3 is also provided in Figure 5. This is because: With the PDE
deployed, a flash block may have been used by the hidden volume, and arbitrary
pages across the block may have been updated by the user and hence invalided
by the FTL; in addition, the hidden data are encrypted by the true key and
cannot be decrypted via the decoy key. However, Without the PDE deployed,
the data being updated by the user and invalidated by the FTL will be the
public data which are decryptable via the decoy key. Therefore, the existence
of “special block 3” indicates the existence of the hidden volume. Note that the
“special block 3” has not been discovered in the literature.

Experimentally Attacking The Steganographic File System-based PDEs.
We deployed stegfs [5] in the host computing device. Note that the stegano-
graphic file system works differently from the hidden volume technique that:
the file system is initially filled with randomness and the sensitive data are en-
crypted via a secret key and stored at random locations of the entire disk; it also
needs to maintain a few copies of the hidden data across the disk to mitigate
loss of hidden sensitive data as the public data may overwrite them over time.
We performed one test to simulate the behavior of a device owner as follows:



The Block-based Mobile PDE Systems Are Not Secure Experimental Attacks 9

Fig. 4: Special blocks observed in raw NAND flash.

We first mounted the FAT file system on the flash device, and wrote a certain
amount of public non-sensitive data. Then, we manually mounted the stegano-
graphic file system, and wrote a certain amount of sensitive data. This behavior
is reasonable. For instance, the user may first store a few non-sensitive images
to the disk via the public file system and then store some secret documents to
the disk using the steganographic file system.

After the test, we extracted the corresponding flash memory image and ana-
lyzed it. We have identified a few special traces due to the existence of the PDE:
1) Trace #1: public data and random data are interleaving across the entire flash.
However, without the existence of the hidden sensitive data, the distribution of
the data across the flash should be public data followed by random data. This
is because: The steganographic file system fills random data across the entire
flash initially and, since the FTL uses log-structured writing, regardless how the
file system writes public data at the upper layer, the FTL will always program
flash blocks from the beginning. Therefore, the observed trace #1 indicates the
existence of the hidden sensitive data. 2) Trace #2: public data and random
data share the same flash block. Figure 6 shows a snapshot we obtained from
one flash block after the test, in which we can observe some of the pages in a
flash block store public data which are semantically meaningful, while some of
the pages of the block store random undecryptable data. However, without the
existence of the hidden sensitive data, the distribution of data in a flash block
should be either i) public data, followed by all ‘1’ bits, or ii) all public data.
This is because: Without the existence of hidden data, each time when the FTL
writes public data but cannot find empty pages, it will erase a flash block, and
write public data sequentially from the beginning of the block due to the use
of log-structured writing; if any pages in this block have not been filled, they



10 Niusen Chen, Bo Chen, and Weisong Shi

Fig. 5: A snapshot (portion) of special block 3. Every 4 bits have been converted
to the corresponding hexadecimal digit. In this snapshot, the data stored on
page 28 has been updated and invalidated by the FTL, and the newly updated
data are written to page 36. The data stored in the aforementioned pages are
undecryptable.

Fig. 6: A snapshot (portion) from a flash block when attacking the stegano-
graphic file system

remain empty and contain all ‘1’s. Therefore, the observed trace #2 indicates
the existence of the hidden sensitive data.

5 Discussion

Assessing the difficulty of performing our attacks. To compromise the
deniability by having access to the raw flash memory, the adversary needs to
tackle two issues: 1) how to extract an image from the NAND flash memory
given a victim mobile device, and 2) how to perform forensic analysis over the
raw flash memory data. For the first issue, Breeuwsma et al. [12] introduced a
few low-level data acquisition methods for flash memory, including flasher tools,
using an access port commonly used for testing and debugging, etc. Chen et
al. [20] mentioned a method of obtaining raw data from SSDs “by opening the



The Block-based Mobile PDE Systems Are Not Secure Experimental Attacks 11

covers and directly reading the memory chips with cheap off the shelf readers”.
For the second issue, the adversary can use the existing digital forensic tools
available on the market (e.g., Photorec [4], etc.) or develop new special tools to
analyze the captured image.

Implications of our experimental attacks. Our attacks performed in this
work confirm that it is indeed feasible to compromise the block-based PDE
systems in practice. Our results further justify that the deniability compromise
in the lower storage medium is indeed a significant issue and should be considered
seriously when designing any future PDE systems for mobile computing devices.
An immediate remediation would be moving the entire PDE system design to
the flash translation layer (FTL) [25, 20] which however, would not be a good
solution as it will impose a large burden on the FTL firmware. In addition, as
the PDE integrated in the FTL firmware is far away from the user applications,
making it user unfriendly. It is unclear how to design a PDE system which is 1)
secure (i.e., eliminating deniability compromises in the flash memory), and 2)
keeping the FTL lightweight, and 3) user-friendly. This is still an open problem
in the literature.

Other attacks on the PDE systems. This work only focuses on the single-
snapshot attack in which the adversary is only allowed to have access to the
victim device once. A stronger adversary may conduct the multiple-snapshot
attack by periodically accessing to the victim device [17, 18, 20]. By capturing
different snapshots of the external storage over time and comparing the differ-
ent snapshots, the adversary will detect changes of the hidden sensitive data,
compromising the deniability. For example, if the hidden volume technique is
used, by comparing different snapshots, the adversary may observe data changes
performed in the space which is claimed empty but actually hides the hidden
volume. Some of mitigation strategies can be accompanying public writes with
dummy writes and hiding the sensitive data into the dummy writes [17, 18], or
using the WOM (write-once memory) code to encode the hidden data in a public
cover [20]. In addition, this work only focuses on the deniability compromises
in the external storage, but hidden sensitive data may leave traces in the inter-
nal memory, and such traces may be extracted by the adversary by performing
memory forensics [13]. One potential solution is to power-off the device each time
after quitting the hidden mode in which the user can manage the hidden sensi-
tive data. Another solution could be leveraging trusted execution environments
(TEE) like Arm TrustZone [27] so that the memory used to process the hidden
sensitive data can be protected, avoiding being accessed by the adversary.

6 Related Work

In the following, we summarize the major PDE systems utilizing the hidden vol-
ume technique or the steganographic file systems. A thorough literature review
of PDE system can be found in [35].



12 Niusen Chen, Bo Chen, and Weisong Shi

6.1 The Hidden Volume-based PDE systems

Skillen et al. proposed Mobiflage [31, 32], which adapts the hidden volume tech-
nique to Android devices. There are a few variants of Mobiflage. One variant as-
sumes the existence of an FAT32 SD card, and deploys the public volume/hidden
volume to this SD card. Another variant releases the aforementioned assumption
by using a modified Ext4 file system. Yu et al. proposed [34] MobiHydra to mit-
igate a booting-time attack faced by Mobiflage. In addition, MobiHydra allows
the user to switch from the public to the hidden mode without rebooting the
device and supports multi-level deniability. Chang et al. designed Mobipluto [15,
14], the first file system friendly PDE system which allows any block-based file
systems to be deployed on the public volume, by smartly integrating the hidden
volume technique with thin provisioning. Chang et al. further extended the hid-
den volume technique to combat the multi-snapshot adversary by introducing
dummy writes on the block layer [16]. Jia et al. proposed DEFTL [26], the first
hidden volume-based PDE system integrated with the flash translation layer.
Barker et al. [10] proposed Artifice, which can meet a few additional security re-
quirements including: 1) information leakage resistance, and 2) deniable changes,
and 3) deniable software.

6.2 The Steganographic File Systems

Anderson et al. [9] proposed the first steganographic file system. One of their
constructions is to hide the secret data among the randomness. The system
maintains several copies of secret data to reduce the possibility of losing them.
Inspired by Anderson et al’s construction, McDonald et al. [28] designed a more
practical as well as efficient steganographic file system, in which secret files are
hidden in unused blocks of a partition which also contains normal files. Pang
et al. [29] proposed StegFS, a new steganographic file system which allows the
user to hide his/her files or directories in a selective manner. A salient advantage
of StegFS is that it can ensure integrity of files while maintaining effective disk
utilization. Zhou et al [36] further mitigate the attacks which may compromise
the steganographic file system by analyzing data access of use applications.

7 Conclusion

In this work, we have experimentally confirmed the deniability compromises of
the block-layer PDE systems deployed on the mobile computing devices. Our
work conducts the first experimental attacks by 1) deploying both the hidden
volume-based PDE and the steganographic file system on the block layer of a
mobile device testbed, and 2) allowing the adversary to have access to the flash
memory and to perform forensic analysis over the raw flash memory data. Our
results strengthen the necessity of taking care of the deniability compromises
in the lower storage layer when designing any future PDE systems for mobile
devices.



The Block-based Mobile PDE Systems Are Not Secure Experimental Attacks 13

Acknowledgments. This work was supported by US National Science Foun-
dation under grant number 1928349-CNS, 1928331-CNS, 1938130-CNS, and
2043022-DGE.

References

1. Android full disk encryption. Retrieved on April 21, 2022, from https://source.

android.com/security/encryption/.
2. Index of /~mgk25/stegfs. Retrieved on April 21, 2022, from https://www.cl.

cam.ac.uk/~mgk25/stegfs/.
3. Lpc-h3131. Retrieved on April 21, 2022, from https://www.olimex.com/

Products/ARM/NXP/LPC-H3131/.
4. Photorec. Retrieved on March 28, 2022, from https://www.cgsecurity.org/

wiki/PhotoRec.
5. stegfs. Retrieved on April 21, 2022, from https://sourceforge.net/projects/

stegfs/.
6. Truecrypt. Retrieved on April 21, 2022, from http://truecrypt.sourceforge.

net/.
7. Veracrypt. Retrieved on April 21, 2022 from https://www.veracrypt.fr/code/

VeraCrypt/.
8. How to encrypt your devices, 2017. Retrieved on April 21, 2022, from https:

//spreadprivacy.com/how-to-encrypt-devices/.
9. Ross Anderson, Roger Needham, and Adi Shamir. The steganographic file system.

In International Workshop on Information Hiding, pages 73–82. Springer, 1998.
10. Austen Barker, Yash Gupta, Sabrina Au, Eugene Chou, Ethan L Miller, and Dar-

rell D Long. Artifice: Data in disguise. In Proceedings of the 36th International
Conference on Massive Storage Systems and Technology (MSST 2020), 2020.

11. Erik-Oliver Blass, Travis Mayberry, Guevara Noubir, and Kaan Onarlioglu. Toward
robust hidden volumes using write-only oblivious ram. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, pages 203–
214. ACM, 2014.

12. Marcel Breeuwsma, Martien De Jongh, Coert Klaver, Ronald Van Der Knijff, and
Mark Roeloffs. Forensic data recovery from flash memory. Small Scale Digital
Device Forensics Journal, 1(1):1–17, 2007.

13. Mariusz Burdach. Physical memory forensics. USA: Black Hat, 2006.
14. Bing Chang, Yao Cheng, Bo Chen, Fengwei Zhang, Wen-Tao Zhu, Yingjiu Li,

and Zhan Wang. User-friendly deniable storage for mobile devices. computers &
security, 72:163–174, 2018.

15. Bing Chang, Zhan Wang, Bo Chen, and Fengwei Zhang. Mobipluto: File system
friendly deniable storage for mobile devices. In Proceedings of the 31st annual
computer security applications conference, pages 381–390, 2015.

16. Bing Chang, Fengwei Zhang, Bo Chen, Yingjiu Li, Wen-Tao Zhu, Yangguang Tian,
Zhan Wang, and Albert Ching. Mobiceal: Towards secure and practical plausibly
deniable encryption on mobile devices. In 2018 48th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN), pages 454–465.
IEEE, 2018.

17. Bo Chen. Towards designing a secure plausibly deniable system for mobile de-
vices against multi-snapshot adversaries–a preliminary design. arXiv preprint
arXiv:2002.02379, 2020.



14 Niusen Chen, Bo Chen, and Weisong Shi

18. Bo Chen and Niusen Chen. Poster: a secure plausibly deniable system for mobile
devices against multi-snapshot adversaries. In 2020 IEEE Symposium on Security
and Privacy Poster Session, 2020.

19. Chen Chen, Anrin Chakraborti, and Radu Sion. Infuse: Invisible plausibly-deniable
file system for nand flash. Proceedings on Privacy Enhancing Technologies, 4:239–
254, 2020.

20. Chen Chen, Anrin Chakraborti, and Radu Sion. Pearl: Plausibly deniable flash
translation layer using wom coding. In The 30th Usenix Security Symposium, 2021.

21. Niusen Chen, Bo Chen, and Weisong Shi. Mobiwear: A plausibly deniable en-
cryption system for wearable mobile devices. In EAI International Conference on
Applied Cryptography in Computer and Communications, pages 138–154. Springer,
2021.

22. Google Code. Opennfm. Retrieved on April 21, 2022, from https://code.google.

com/p/opennfm/.
23. Wendi Feng, Chuanchang Liu, Zehua Guo, Thar Baker, Gang Wang, Meng Wang,

Bo Cheng, and Junliang Chen. Mobigyges: A mobile hidden volume for prevent-
ing data loss, improving storage utilization, and avoiding device reboot. Future
Generation Computer Systems, 2020.

24. Le Guan, Shijie Jia, Bo Chen, Fengwei Zhang, Bo Luo, Jingqiang Lin, Peng Liu,
Xinyu Xing, and Luning Xia. Supporting transparent snapshot for bare-metal
malware analysis on mobile devices. In Proceedings of the 33rd Annual Computer
Security Applications Conference, pages 339–349. ACM, 2017.

25. Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. Nfps: Adding undetectable secure
deletion to flash translation layer. In Proceedings of the 11th ACM on Asia Con-
ference on Computer and Communications Security, pages 305–315. ACM, 2016.

26. Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. Deftl: Implementing plausibly deni-
able encryption in flash translation layer. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 2217–2229, 2017.

27. Jinghui Liao, Bo Chen, and Weisong Shi. Trustzone enhanced plausibly deniable
encryption system for mobile devices. In 2021 IEEE/ACM Symposium on Edge
Computing (SEC), pages 441–447. IEEE, 2021.

28. Andrew D McDonald and Markus G Kuhn. Stegfs: A steganographic file system for
linux. In International Workshop on Information Hiding, pages 463–477. Springer,
1999.

29. HweeHwa Pang, K-L Tan, and Xuan Zhou. Stegfs: A steganographic file sys-
tem. In Proceedings 19th International Conference on Data Engineering (Cat. No.
03CH37405), pages 657–667. IEEE, 2003.

30. Timothy M Peters, Mark A Gondree, and Zachary NJ Peterson. DEFY: A deniable,
encrypted file system for log-structured storage. In 22th Annual Network and
Distributed System Security Symposium, NDSS, 2015.

31. Adam Skillen and Mohammad Mannan. On implementing deniable storage encryp-
tion for mobile devices. In 20th Annual Network and Distributed System Security
Symposium, NDSS 2013, San Diego, California, USA, February 24-27, 2013.

32. Adam Skillen and Mohammad Mannan. Mobiflage: Deniable storage encryption-
for mobile devices. IEEE Transactions on Dependable and Secure Computing,
11(3):224–237, 2014.

33. Deepthi Tankasala, Niusen Chen, and Bo Chen. A step-by-step guideline for cre-
ating a testbed for flash memory research via lpc-h3131 and opennfm. 2020.

34. Xingjie Yu, Bo Chen, Zhan Wang, Bing Chang, Wen Tao Zhu, and Jiwu Jing.
Mobihydra: Pragmatic and multi-level plausibly deniable encryption storage for



The Block-based Mobile PDE Systems Are Not Secure Experimental Attacks 15

mobile devices. In International conference on information security, pages 555–
567. Springer, 2014.

35. Qionglu Zhang, Shijie Jia, Bing Chang, and Bo Chen. Ensuring data confidentiality
via plausibly deniable encryption and secure deletion–a survey. Cybersecurity,
1(1):1, 2018.

36. Xuan Zhou, HweeHwa Pang, and Kian-Lee Tan. Hiding data accesses in stegano-
graphic file system. In Proceedings. 20th International Conference on Data Engi-
neering, pages 572–583. IEEE, 2004.


