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ABSTRACT

Dense suspensions of particles in a liquid, with industrial examples including coatings or precursors to solid ceramics
and cements, can be quite difficult to process because their flow properties are very sensitive to particle surface inter-
actions. We focus on the extreme rate dependence known as “discontinuous shear thickening” (DST) where the viscos-
ity undergoes a finite and typically large discontinuous jump in viscosity at some shear rate. Simultaneous with DST,
there is a large increase in the normal stress, including the nonequilibrium osmotic pressure, or ‘particle pressure’, lead-
ing to the historical name of “dilatancy’ for shear thickening. Our computational simulations inclusive of the three in-
gredients of i) lubrication hydrodynamics, ii) repulsive interparticle forces (e.g. due to surface charge) and iii) contact
with friction have been shown to reproduce the primary features of DST found experimentally; this is called lubricated-
to-frictional (LF) rheology. We describe the main features of the shear thickening transition in the LF scenario, includ-
ing the observation of extreme fluctuations. Using our simulation results, we explore the microscopic basis for the LF
transition in the force network developed under flow.

Videos to this article can be found online
j-sctalk.2022.100031.
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concentrated cornstarch-in-water dispersion. Figure taken from Khandavalli & Rothstein [1].

2772-5693/© 2022 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 2. The relative viscosity of a suspension of 520 nm diameter silica particles in nearly-index matched (hence negligible van der Waals forces) 200 MW poly-ethylene glycol
as function of a) dimensionless shear rate, Pe; and b) shear stress. Figure taken from Cwalina & Wagner [3].
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Fig. 3. The shear rate dependence of the relative viscosity of polyvinylchloride particles of diameter 1.4 ym in dioctylphtalate (also studied in Hoffman's seminal work [2]), at
two temperatures, 20 °C (left curve) and 50 °C. Figure taken from Boersma et al. [4].
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Fig. 4. The time series of the relative viscosity at 20 °C from Fig. 3, showing very large fluctuations returning to a relatively constant baseline. Figure taken from Boersma
etal. [4].
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Fig. 5. Data from simulation method of Mari et al. [10] illustrating shear thickening regimes.
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Fig. 6. Shear rate dependence from Stokesian Dynamics simulations of Brownian hard sphere suspensions at the volume fractions ¢ shown, in comparison with experimental
data [7,8]. Figure from Foss & Brady [5] (similar to Phung et al. [6]).
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Fig. 7. Lubrication breakdown: the minimum gap for a ¢ = 0.51 suspension of monodisperse hard spheres interacting only by Stokes flow, using different integration
schemes for the particle motion (A-F), showing the inability of lubrication to keep surfaces from reaching scales for which continuum theory breaks down in O(1) strain.

Figure from Melrose & Ball [9].
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Fig. 8. Unpublished work showing the relative viscosity response for different interparticle friction coefficients shown by the legend as a function of the imposed stress o,
normalized by the repulsive force and particle size, oo = Fr/a>. For 0,0, << 1, no effect of friction is seen.
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Fig. 9. Summary of flow curves obtained by the simulation model LF-DEM [10]: relative viscosity as a function of dimensionless shear. Blue + points are at controlled shear

rate and others at controlled stress, with ¢ values labeled.
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Fig. 10. Flow state diagram [11,12] on volume fraction-dimensionless stress axes for a friction coefficient of 1 and bidisperse suspension of half large and small particles at
radius ratio 1.4. The solid vertical lines at ¢ ~ 0.58 and 0.65 are the frictional (large stress) and frictionless jamming (low stress) fractions.
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Fig. 11. Dimensionless stress as a function of shear rate from simulation [12,13] and fitting to the Wyart & Cates [11]. The shaded region shows a transition from single-

¢

g " =054
% ® $=0.55
f * $=0555
- $=056
0.02 0.04 0.06 0.08
.'T

valued to multivalued behavior as a function of shear rate with varying stress and is analyzed below.

—¢=054
- $=055
g = 0,555
~-¢=0.56

¢. = 0.55316...

Fig. 12. Stress susceptibility defined as the rate of variation of stress with shear rate, deduced from the Wyart & Cates model [11] fitted to simulation data (figure taken from
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[131). The susceptibility diverges first at the ¢ ~ 0.553 value noted on the plot and is multivalued for larger ¢.
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Fig. 13. Dimensionless stress fluctuations as a function of strain (dimensionless time) at fixed shear rates. (left) & = 0.55 (DST onset) and (right) & = 0.56 (fully in DST).

Figure taken from [13].
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Fig. 14. Probability of dimensionless stress corresponding to the time series of Fig. 15: (left) ¢ = 0.55 (DST onset) and (right) ¢ = 0.56 (fully in DST). Note the flat
distribution at intermediate shear rates for ¢ = 0.55, and bimodal distributions for ¢ = 0.56 [14].Figure taken from [14].

Fig. 15. Unpublished results

(similar in [10]) showing that very similar pair distribution function across the DST onset, i.e. a strong shear thickening transition.
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Fig. 16. a) Frictional contact network in DST response of a 2D suspension at ¢ = 0.78, with b) the direction of flow and (red lines) frictional contacts shown for point 1 at
0/0p = 0.5, and c) the contacts for points 24, at 0/0y = 1, 2, and 100 (left to right). Figure adapted from [14].
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