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Preheating Temperature Control and Low-Contrast
Imaging Data Analytics for Laser Powder Bed

Fusion
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Abstract—Laser powder bed fusion additive manufacturing
has seen widespread use for its unique advantages in achievable
part complexity and processable materials. However, greater
applications of this technique remain hindered by the insufficient
assurance of part qualities. A major barrier to such a long-felt
but not fully realized quality assurance arises from challenges
in sensing and model-based control, particularly when involving
materials showing low contrast under laser radiation. This paper
presents two advances that contribute to this vista. We (1)
propose a model-based multi-zone heating control for minimizing
the powder-bed temperature deviation in the presence of part-
geometry-induced cross-layer thermal disturbances and (2) create
an image analytics framework for process monitoring of low-
contrast material LPBF with visible light cameras. The proposed
methods are developed and verified on an in-house built feedback-
centric laser powder bed fusion platform.

Index Terms—Additive manufacturing, laser powder bed
fusion, process monitoring, model-based control, infrared
heating, image processing, quality assurance.

I. INTRODUCTION

Laser powder bed fusion (LPBF) is one of the additive
manufacturing (AM) (also known as three-dimensional (3D)
printing) processes, where 3D objects are built from thin
layers of materials. During the processing of each layer,
a laser beam forms a melt pool that moves at several
meters per second to sinter/melt the powder particles (Fig.
1(b)). After consolidation, the powder bed is lowered by
the thickness of a single layer. The new powder is then
spread over the current deposit to start the next repetition
(Fig. 1(a)). Since its first invention and commercialization,
LPBF has demonstrated wide-ranging competitive advantages
over conventional manufacturing methods. However, limited
reliability and reproducibility are hindering broader adoption
of this manufacturing technology, especially in such industries
as medical devices and aviation [1]–[3].

A critical step to addressing the quality assurance problem
is the development of effective real-time monitoring and
closed-loop feedback controls [4]. In LPBF, the physics of
the non-contact energy deposition is a complicated union of
thermal balance, phase change, and solid mechanics (Fig.
1(c)). Pre-process high-fidelity simulations can map out an
initial parameter space, and post-process material analyses
can reveal the internal quality of the built parts. However,
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Fig. 1. Illustration of the LPBF process.

mitigation of various in-process disturbances and uncertainties
ultimately hinges on real-time in-process controls [4]–[6]. This
has been a long-felt but not realized vista, due to obstacles
including (1) the closed architecture of the commercial LPBF
machines, (2) the lack of real-time control-oriented modeling,
and (3) the need for efficient interpretation and utilization of
the monitoring data. This work contributes to address obstacles
(2) and (3) towards a quality-assured LPBF.

First, we propose a model-based multi-zone heating control
method for minimizing the powder-bed temperature deviation
in polymer LPBF in the presence of part-geometry-induced
cross-layer thermal disturbance. In LPBF, inhomogeneous
shrinkage, warpage, in-build curling, and microstructural
inhomogeneities are common problems [3]. These defects
are greatly influenced by the inhomogeneous temperature
distribution on the powder bed surface. The heating-cooling
cycle of previously fused layers is a significant source
of such inhomogeneity. The conducted heat from previous
layers shapes the temperature profile of the surface layer.
For example, when the part has an overhang structure, the
temperature within the previously fused area is higher than
the powder-supported area, leading to inconsistent melt pool
behavior and surface quality on the overhang plane [7].

The existing preheating method utilizes the average
temperature measurement of the powder bed as the feedback
to control the power of the radiant heater [8], [9]. The
shortcoming is that there is no consideration for the
temperature distribution of the powder bed. In [9], it is reported
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that the resulting temperature deviation of the powder bed
is significant even without cross-layer thermal disturbance.
Stepping away from existing LPBF design, this paper develops
a novel multi-zone infrared (IR) heating process. Specifically,
we create a multi-input multi-output (MIMO) closed-loop
heating design, develop a control-oriented model, and propose
a new multi-zone heating algorithm. Compared with the
state-of-the-art method in the presence of different cross-
layer thermal disturbances, the proposed method provides
elevated performance similar to results from a model predictive
control (MPC) method in a commercial control toolkit. We
also demonstrate the flexibility of the proposed design by
incorporating an add-on parameter tuning scheme that is
adaptive to the thermal disturbance profile.

The second contribution is an image analytics framework
for the monitoring of low melt pool contrast material LPBF
using visible light cameras. In metal AM, due to the significant
temperature differences between the melt pool and the
unprocessed loose powder, a simple pixel-level thresholding
algorithm is sufficient for identifying the melt isotherm [10]–
[12]. However, such a distinction is not available in LPBF
of low melt temperature materials, including polymer and
composite/coated powders (e.g., glass-filled nylon) [13]. For
such applications, substantial work based on infrared cameras
has been reported, but a systematic framework on process zone
identification, signature extraction, and defect detection using
visible light cameras remains underdeveloped. Compared with
the IR camera, the visible light camera has several unique
advantages for real-time control of LPBF, including (1) higher
frame rate and resolution, (2) straightforward employment in
coaxial monitoring setup1, and (3) significantly lower cost.

With the benefits of visible light cameras on the one
hand and challenges of data analytics on the other, this
paper presents an efficient workflow for extracting important
information that reflects the multi-physics evolution of
the melt pool, laser-material interaction characteristics, and
potential process imperfections. Targeting first at addressing
such raw-image issues as noises, inconsistent illumination,
and low contrast of the processed zone, we propose to
utilize a combination of pre-processing algorithms including
the morphological operation, imaging field correction, and
adaptive histogram equalization. Utilizing a graph-based
segmentation, this approach isolates the area that is processed
by the laser source (heat-affected zone). With the segmentation
results, we further present the detection of a discontinuity
defect and the estimation of the melt pool width for real-time
closed-loop control.

The remainder of the paper is organized as follows. Section
II describes an in-house developed platform on which this
study was performed. Section III presents the powder bed
preheating control, following the image analytics framework
in Section IV. Section V concludes this paper.

II. EXPERIMENT PLATFORM

This work is performed on an in-house developed feedback
control-centric polymer LPBF platform. Fig. 2 provides an

1IR camera usually requires a wide range of wavelength to calculate the
object temperature, which makes optical system design challenging.
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Fig. 2. In-house developed LPBF testbed.

TABLE I
GENERAL TECHNICAL SPECIFICATIONS OF THE DEVELOPED POLYMER

LPBF TESTBED

Material polymer (PA12, PEEK, etc.)
Effective building volume 250 × 250 × 150 mm

Feed volume 250 × 178 × 300 mm
Layer thickness 10 µm and above

Laser type 100-watt CO2 laser, 10.6 µm wavelength
Scan speed up to 10 m/s

Build plate temperature up to 300 °C
Process chamber temperature up to 200 °C

System controller host computer and NI cRIO-9035
Scanning controller Scanlab RTC5 control board

Software in-house developed LabVIEW® program

overview and subsystems of the developed platform. The
testbed follows the hardware architecture of industrial LPBF
machines (Fig. 1(a)). Table I summarizes the general technical
specifications of the testbed.

The platform features various sensors and actuators, thereby
allowing closed-loop control for multiple process parameters
such as powder-bed temperature, build-chamber temperature,
laser power, and scan velocity. The results presented in this
paper are based on two control-oriented features described
below.

A. Multi-zone Powder Bed IR Heating System

In polymer LPBF, the material must be preheated to a level
between the material’s cooling and melting onset temperatures
before the laser exposure [14]–[16]. State-of-the-art infrared
heating uses a single sensor measurement to regulate the
average powder-bed temperature but has no control over
temperature distribution [8], [9].

This paper proposes a novel multi-zone closed-loop heating
design that controls the build surface temperature profile.
The IR heater above the powder bed (Fig. 2 and 3(a)) heats
the powder bed via thermal radiation from nine independent
heating zones (Fig. 3(b)). Each zone is composed of one or two
quartz tube heaters. The radiation power for different zones
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Fig. 3. Proposed powder bed temperature control system. (a) Illustration of
the multi-zone infrared heating process. (b) Heating zone layout of the multi-
zone infrared heater.

can be separately controlled using a 16-channel analog voltage
output DAC (digital-to-analog converter).

The temperature measurement can be obtained from either
a pyrometer or an infrared camera. The pyrometer measures
the average temperature of an area on the powder surface.
The infrared camera, on the other hand, provides a spatially
resolved thermal profile with a resolution of 320 pixel × 240
pixel at a frame rate up to 60 Hz. In the captured image, we
sample the temperature at nine locations (Fig. 3(a)) and use
the measurements to control the nine heating zones of the IR
heater, which will be discussed in detail in Section III.

B. Coaxial In-process Monitoring System

The in-process monitoring system exploits a coaxial optical
configuration, where the imaging optical axes are shared with
the laser beam. This configuration enables the acquisition of
high lateral resolution images of melt pool dynamics and is
widely used in LPBF monitoring studies [17], [18].

The camera employed on the developed platform is a
monochrome visible light camera that provides more than
2,000 frames per second at a full resolution of 1920 pixel
× 1080 pixel. A higher framerate is possible by reading from
only a smaller region of interest. The camera is triggered by an
FPGA (Field-Programmable Gate Array)-based frame grabber.
After acquisition, the data is processed by the FPGA. The
results (e.g., process signatures, defect formation dynamics)
are then transferred to the host computer, which controls
the process parameters through a real-time control (RTC)
board. The computer also parses the scanning vectors and
collects motion data for the two galvo scanner axes. These
data, including part, layer, scan parameter, scan vector types,
direction, and other vector metadata, can be synchronized with
captured imaging data.
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Fig. 4. Schematic illustration of the thermal processes during infrared
preheating.

III. POWDER BED TEMPERATURE CONTROL

In this section, we elaborate on the multi-zone powder bed
temperature control method.

A. Multi-zone IR Heating Model

Fig. 4 illustrates the thermal processes involved in
preheating materials in LPBF. Consider a small target area
A on the powder bed with the thickness of one layer d.
For the targeted controls, the thermal conduction of the
polymer powder material is slow compared to the radiative and
convective energy transfer. Therefore, the governing equation
of the temperature T (t) for this area is:

ρdcp
dT (t)

dt
= q + hc [Te − T (t)] + εσB

[
T 4
e − T 4(t)

]
, (1)

where the relevant parameters are described in Table II.
The right-hand side of (1) characterizes the heat flux from
the heating zone, the convection, and the radiation with the
environment. Assuming that the IR radiation power of the
heating zone is u, the heat flux can be expressed as

q = Fεu, (2)

where ε is the emissivity and the F is the view factor, which
can be modeled as

F =
cosθ1cosθ2

πS2
=

cos2θ

πS2
, (3)

where θ1 and θ2 are the angles between the surface normals
(n⃗1 and n⃗2 in Fig. 4) and a ray between the target area A
on the powder bed and the heating zone, S is the distance
between them. Because the heater is parallel with the powder
bed, we have n⃗1 ∥ n⃗2 and θ1 = θ2 = θ.

Fig. 4 shows the thermal process when there is only one
heating zone and one target area. Next we extend to n heating
zones and m target areas to create the state-space model of
the multi-zone IR heating process.
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TABLE II
PARAMETERS OF POWDER BED HEAT TRANSFER GOVERNING EQUATION

Parameter Description Unit
ρ powder density kg/m3

cp specific heat capacity J/kg/K
d layer thickness m
hc convection heat transfer coefficient W/m2/K
ε emissivity n/a
σB Stefan-Boltzmann constant W/m2/K

4

q input heat flux from a heating zone W/m2

Te ambient temperature K

Consider a target area i ∈ {1, 2, . . . ,m}, when there are
n heating zones, combining (1) and (2) gives the governing
equation of this area

ρdcp
dTi(t)

dt = ε
[
F1i F2i · · · Fni

]


u1(t)
u2(t)

...
un(t)


+hc [Te − Ti(t)] + εσB

[
T 4
e − T 4

i (t)
]
,

(4)

where Ti(t) is the temperature of area i, F1i, F2i, . . . , Fni

are the view factors between n heating zones and the area i,
and u1(t), u2(t), . . . , un(t) are the radiation powers of the
heating zones.

Note that (4) is a non-linear ordinary differential
equation. With a working temperature (or set-point preheating
temperature) T0, the linearization of the nonlinear term is
T 4
i (t) = T 4

0 +4T 3
0 [Ti(t)− T0]. Organizing and extending (4)

to m target areas on the powder bed, we obtain the following
n input m output state-space linear approximation model

ρdcp
k1

d
dt


T̃1(t)

T̃2(t)
...

T̃m(t)

=I


T̃1(t)

T̃2(t)
...

T̃m(t)

+ ε


F11F21 · · ·Fn1

F12F22 · · ·Fn2

...
...

. . .
...

F1mF2m · · ·Fnm



u1(t)
u2(t)

...
un(t)



y1(t)
y2(t)

...
ym(t)

=I


T̃1(t)

T̃2(t)
...

T̃m(t)

 ,

(5)
where T̃i(t) = k1Ti(t) + k2, Ti(t) is the affined temperature
of the target area i, I is an m×m identity matrix, Fji is the
view factor between heating zone j and target area i, k1 =
−(hc + 4εσBT

3
0 ), and k2 = hcTe + εσBT

4
e + 3εσBT

4
0 .

B. Multi-zone Heating Control

In this paper, we propose a suboptimal multi-zone control
design based on a decoupled form of the MIMO model (5).
Specifically, we select the temperature sampling areas in Fig.
3(a) such that the area i is right under the heating zone
i. In other words, the view facor angle θ in equation (3)
between the area i and the heating zone i is 0. Such a layout
makes the diagonal entries of the view factor matrix in (5)
one or two orders of magnitude larger than the off-diagonal
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Fig. 5. Block diagram of the proposed multi-zone powder bed heating control.
(a) multi-input Multi-output IR heating model. (b) Control design utilizing the
decoupled IR heating model.

entries. Therefore, we can drop the off-diagonal entries and
approximate the full-order equation (5) with a decoupled
model2

ρdcp
k1

d

dt


T̃1(t)

T̃2(t)
...

T̃9(t)

= I


T̃1(t)

T̃2(t)
...

T̃9(t)

+ ε

πh2


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1



u1(t)
u2(t)

...
u9(t)

 , (6)

where h is the nominal distance between the IR heater and
powder bed surface.

Fig. 5 shows the multi-zone control block diagram. Fig.
5(a) illustrates the multi-input multi-output IR heating model
described by (5). The decoupled form based on (6) are
nine independent first-order plants P1(s), P2(s), . . . , P9(s),
where the transfer function Pi(s) is

Pi(s) =
ε

πh2

k1
−k1 + ρdcps

(7)

Therefore, the proposed multi-zone control is to use nine
individual controllers C1, C2, . . . , C9 to regulate the affined
temperatures T̃1(t), T̃2(t), . . . , T̃9(t) based on the reference
r(t). Upon convergence, the error signals ei(t), ej(t) → 0 and
∆ij ≜ T̃i(t) − T̃j(t) → 0, for ∀i, j ∈ {1, 2, . . . , 9}, i ̸= j. In
other words, the multi-zone control minimizes the temperature
gradient across the powder bed by minimizing the temperature
difference among the sampling points.

C. Heating Experiment Verification

We verified the proposed method in the experiment of
Polyamide 12 (PA12, a.k.a. Nylon 12) preheating. We
considered different stages of fabrication and the impact of
part-geometry-induced thermal disturbance. Fig. 6 shows three
different temperature profiles of the powder bed surface plane.
They were measured after a new layer of powder material was
spread across the powder bed (step 2 in Fig. 1(a)) and before

2Recall Section II-A. We have nine heating zones and nine sampling points
in the developed platform. Therefore, we have m = n = 9.
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Fig. 6. Illustration of different thermal profiles before preheating starts. (a)
Initial layer of the part. (b) Previously fused layer is around the center. (c)
Previously fused layer is around the back corner.

the preheating started. Fig. 6(a) corresponds to the initial layer
of the printing and there is only loose powder/build plate below
the new powder layer. Fig. 6(b) and 6(c) can either represent
two different layers/stages of the same part or two parts with
different geometries3. The previously processed areas are seen
to have a higher temperature than the surrounding unprocessed
area, which creates a part-geometry-induced interlayer thermal
disturbance. The impacted area is around the center in Fig.
6(b), and around the backleft area in Fig. 6(c).

The proposed multi-zone control was tested for preheating
the powder bed with the three initial thermal profiles in
Fig. 6. The performance is additionally compared against
two representative controls. The design details for all three
controllers are described below.

Model predictive control: We applied a multivariable MPC
that utilizes the full-order MIMO heating process model (5)
and calculates a sequence of future control actions (control
horizon) such that a cost function over the prediction horizon
is minimized. The MPC is implemented via the National
Instruments Inc LabVIEW® predictive control toolkit. The
development of the toolkit follows [19], which is based on
generalized predictive control (GPC) detailed in [20], [21].

The MPC implementation was realized via the steps below:
1) We first preheated the powder bed to the working

temperature 150 °C and then stimulated all heating zones
with PRBS (pseudorandom binary sequence) signals.
With the input and measured temperature output data,
we identified the parameters in (5) with the Matlab
system identification toolbox.

2) Based on the identified model, we measured the step
response and obtained the average rise time.

3) With the rise time, we set the sampling time, prediction
horizon, and control horizon of the MPC based on
empirical design rules and computation complexity. For
example, the sampling time was selected such that we
fit 20 samples within the rise time.

4) We chose the output error weightings, control action
error weightings, and control change rate weightings

3We tested two parts at different locations in this study.

TABLE III
TUNED MPC PARAMETERS [20]

Sampling Time
TS (s)

Prediction
Horizon NP

Control
Horizon NC

Control Change
Rate Weightings

R
1 30 12 0.1×I9×9

Output Error
Weightings Q

Control Error
Weightings N

Control Action
Limit (V)

Output Limit
(°C)

I9×9 0.1×I9×9 0 - 4.5 100 - 170

PID 𝑘𝑘

controller 𝐶𝐶

𝑒𝑒(𝑡𝑡) 𝑢𝑢(𝑡𝑡)𝑣𝑣(𝑡𝑡)

Fig. 7. Schematic of the controller in multi-zone and single-loop control.

based on their relative significance. In this problem, the
latter two are less important and thus have much lower
weightings compared with the output error.

5) The tuning results are shown in Table III. With the
identified model and the design parameters, we obtained
the MPC controller in LabVIEW®, which was then used
to control the powder-bed temperature.

Multi-zone control: As shown in Fig. 5(b), the multi-
zone control is composed of nine separate closed loops for
nine heating zone-sample point pairs. The schematic of the
controller for each loop is illustrated in Fig. 7. It is composed
of an anti-windup PID controller, a saturation, and a heating
gain. The PID controller has the transfer function Kp(1 +
1

Tis
+ Tds), where Kp, Ti, and Td are the proportional gain,

integral time, and derivative time, respectively. The saturation
limits the voltage output v(t) of the heating power control
DAC to the range of [0, 4.5] V. The PID controller uses an
integral sum correction algorithm to facilitate the anti-windup
design [22]. The power regulation circuit of each heating zone
is modeled as a gain k that transfers the control voltage v(t) to
IR radiation power u(t). The PID gains are tuned with Ziegler-
Nichols method and provided in Table IV. The proportional
gains of different heating zones are inversely correlated with
the power regulation circuit gains. The integral time and
derivative time are set as identical for all heating zones because
their periods of oscillation are close. The sampling time of the
PID controllers is 0.2 s.

Single-loop control: The average temperature over a large
area is used as feedback, and all heating zones share the
same control output from one controller – a state-of-the-art
method in the current polymer LPBF process. In this study,
we use the pyrometer signal to measure the average powder-
bed temperature.

A controller with the same schematic in Fig. 7 is used for
this method. The controller gains are Kp = 13.21, Ti = 3.87
s, and Td = 0.97 s. Note that compared with that of multi-
zone control, the oscillation time is higher because the control
action is based on the common mode of all heating zones.

As a case study, we selected the temperature reference as
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TABLE IV
PID CONTROLLER GAINS FOR MULTI-ZONE CONTROL

Heating Zone Kp Ti (sec) Td (sec)
Front Right 13.11

1.63 0.41

Front 15.22
Front Left 13.41

Right 11.15
Center 8.29

Left 11.45
Back Right 13.11

Back 15.82
Back Left 13.41

+ + +

+ + +

+ + +

𝑇𝑇1(𝑡𝑡) 𝑇𝑇2(𝑡𝑡) 𝑇𝑇3(𝑡𝑡)

𝑇𝑇4(𝑡𝑡) 𝑇𝑇5(𝑡𝑡) 𝑇𝑇6(𝑡𝑡)

𝑇𝑇7(𝑡𝑡) 𝑇𝑇8(𝑡𝑡) 𝑇𝑇9(𝑡𝑡)

Back
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Fig. 8. Preheating result with multi-zone control for the initial layer. (a)
Temperature evolution for all sampling locations. (b) Thermal profile of the
powder bed at the steady state.

150 °C. This level was chosen such that we could evaluate the
impact of worst-case interlayer thermal disturbance to compare
the performance of the three control methods and, at the same
time, avoid over melting caused by potential large temperature
overshoot, especially for single-loop control.

Fig. 8 shows the heating result using the proposed multi-
zone control when there is no cross-layer thermal disturbance
(case in Fig. 6(a)). The temperature of all nine sampling
points increased from 100 °C to the reference temperature
150 °C within 60 seconds. At the steady state, the temperature
deviation is constrained within the envelope of [148.5, 151.5]
°C. Fig. 8(b) shows the powder-bed thermal profile at t = 200
s, where peak-peak temperature deviation within the box is
less than 3 °C.

Fig. 9 shows the heating results using the three control
schemes when the cross-layer thermal disturbance occurs
around the center (Fig. 6(b)). Before the center zone
temperature reached the reference (the time instance denoted
by the arrow), both single-loop and multi-zone methods
operated all heating zones with full power. MPC limited
some control efforts of the non-center zones. After this point,
the proposed control was able to effectively turn off the
unnecessary center heating, as shown in Fig. 9(b). MPC
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Fig. 9. Comparison of heating control algorithms. (a) Temperature evolution
of the sampling locations on the powder bed. (b) Center zone heating power.

reduced the power of the center zone gradually, and single-
loop control continued to operate the center zone at full scale
until all sampling locations reached the reference temperature.

As a result, the single-loop control, the multi-zone control,
and MPC have heating speeds in descending order. The
zoomed-in plot in Fig. 9(a) shows the peak temperature
overshoots at the center zone. The multi-zone control and
MPC have comparable peak errors. On the contrary, the single-
loop control generated a much larger overshoot, which can
potentially cause the powder to melt before laser exposure, in
which case the fabrication has to be aborted.

At the steady state, the MPC, multi-zone control, and single-
loop control lead to temperature deviations of 0.39 °C, 0.30
°C, and 0.76 °C across all heating zones, respectively. The
steady-state performance of single-loop control is significantly
inferior because, at each moment, the control action is not
discrete for different locations of the powder bed.

When there are previously fused layers, as in the cases
of Fig. 6(b) and 6(c), we propose an adaptive parameter
tuning building on the multi-zone control. Specifically, as the
geometry of the previous layer can be obtained from the CAD
model, the location of the high-temperature area is available
to the controller before the heating for the current layer starts.
We can then limit the control power for the heating zones that
fall in the predicted high-temperature area. Moreover, when
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Fig. 10. Multi-zone control with interlayer thermal disturbance around
backleft area. (a) Baseline case without add-on parameter tuning. (b) With
add-on tuning.

the temperature of these zones reaches the reference point,
we further limit the control power of other heating zones to
mitigate the impact of the latent heat.

Fig. 10 illustrates this adaptive preheating process for the
initial thermal profile in Fig. 6(c). The interlayer thermal
disturbance was around the backleft corner. Therefore, the
power control of the backleft and back zones was reduced from
4.5 V to 2 V from t = 0− s. After 10 s, the temperature of
the back area reached the reference temperature, the algorithm
further limited the power control of other heating zones to 2
V. As a result, compared with the baseline case (Fig. 10(a)),
this adaptive parameter tuning reduced the peak temperature
error from 12 °C to 9 °C.

In summary, in this section, we propose a control-oriented
MIMO IR heating model. Based on the full-order and
decoupled form MIMO model, we demonstrated comparable
results of an MPC method and an in-house developed multi-
zone heating method. The advantages of the MPC formulation
are adjustable constraints and centralized consideration of
different heating zones under an optimization framework.
Such a model-based configuration is recommended when the
parameters in model (5) can be accurately identified. The
advantages of the formulated multi-zone control are direct
control of individual heating zones, flexibility for parameter
tuning to accommodate different initial thermal conditions,
and design for robustness. Such a formulation is recommended
when designers have a good engineering understanding of the
system dynamics and/or when the physical process contains
uncertainties and time-varying dynamics.

IV. LOW-CONTRAST IMAGING DATA ANALYTICS

With the sensing and controls to assure proper material
conditions before the laser irradiation, this section discusses
the in-situ monitoring and data analytics framework for the
signature dynamics in the laser-material interaction area.
Along with this process, we propose a data processing

29 mm

29 mm

Laser beamPowder bed

Laser beam travel Melting pool area

(a)

Heat-affected 
zone (HAZ)

Dust 
particles

(c)

(b)

0.5 mm 

Fig. 11. Experiment setup. (a) Schematic diagram of fusion geometry. (b) Raw
image example. (c) Solidified geometry with light- and dark-color materials.

analytics framework that (1) addresses salient challenges in
the raw image when the temperature gradient is low between
the laser-heat affected zone and the surrounding materials,
(2) collects defect formation dynamics related to material
melting and solidification, and (3) provides important process
signatures (e.g., melt pool width).

We verified this framework in a benchmark printing
experiment on the developed platform. As shown in Fig. 11,
we monitored the melt pool area when processing a geometry
that is composed of a square and a triangle. Both light- and
dark-color PA12 materials were tested.

A. Preprocessing for image enhancing

In a typical in-situ collected image (Fig. 11(b)), several
salient challenges exist that hinder data interpretation:

• noise due to optical path contamination, characterized by
small yet dark particles,

• uneven background intensity: e.g., the right part of the
image is brighter than the left because of inconsistent
illumination, and

• low contrasts between the processed zone and the
surrounding loose powder.

We propose to utilize a combination of pre-processing
algorithms to address these issues. We use morphological
image processing to remove the dust particle noises. Most
morphological algorithms involve a combination of set
operations between image f and structuring elements (SEs)—
shapes used to probe an image understudy for properties
of interest. The specific algorithm we propose to use here
is grayscale closing [23]. The effect of this operation is to
attenuate the small and dark features in f while keeping
the bright details and background relatively intact. Fig. 12(b)
shows the results of applying grayscale closing on the raw
image with a disk SE diameter of 17 pixels. Except for
one dust particle larger than the SE, all particle noises are
successfully removed. Meanwhile, the profile and texture of
the laser-processed zone remain unaffected. Next, we use
flat-field correction (FFC) to compensate for the uneven
illumination in the raw image. The algorithm creates a flat-
field image that represents the background intensity [24].
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Fig. 12. Pre-processing results with proposed algorithms. (a) Raw noisy
image. (b) Remove dust particle noises with grayscale closing. (c) Improve
background intensity with flat-filed correction. (d) Enhance contrast using
CLAHE.

With the estimated flat-field image, each original image pixel
is adjusted. As a result, the background intensity of the
corrected image distributes evenly across the whole image, as
shown in Fig. 12(c). We then apply contrast limited adaptive
histogram equalization (CLAHE) [25], to improve the local
contrast around the boundary of the processed zone and
enhance the edges’ definitions. As viewed in Fig. 12(d), in
the enhanced image, CLAHE increases the grayscale-level
difference between the laser-processed and unprocessed zones,
which is beneficial for the following segmentation algorithm
discussed in Section IV-B.

Both grayscale closing and CLAHE have a computational
complexity of O(n) for an image with n pixels using
efficient implementation methods [26], [27]. Therefore, they
are suitable for online analysis. With a flat-field image, the
complexity of FFC is also O(n). There are two methods
to estimate the flat-field image. One method is to fit a
mathematical model on the target image intensity. This is
performed on a sampled grid of pixels and the complexity
is substantially high. The second is to measure a dark image
and a flat image of the field of view using the camera. For
online implementation, it is recommended to use the second
method to obtain the flat-field image before printing. In this
study, the image processing was performed offline and the first
method was implemented.

B. Heat-affected zone identification

Identification of the melt pool and the heat-affected
zone is necessary to understand the complex laser-material
interactions. However, this is challenging for materials such
as light-color polymer. When subject to laser radiation, the
grayscale levels for the processed and the unfused powder are
similar, and the simple threshold-based binarization algorithm
is insufficient to distinguish them. As illustrated in Figs.
13(a)-(c), for dark-color polymer, the processed zone can
be isolated using thresholding and morphological processing.
However, for light-color polymer (e.g., white PA12, white
PEEK), the grayscale level of the processed zone varies wildly.
The observed feature also overlaps with pixels of unprocessed
powder and lightly illuminated regions (corners in Fig. 13(e)

low 
illumination 
area

powder particle 
texture

(a) (b) (c)

(d) (e) (f)

0.5 mm 

0.5 mm 

Fig. 13. Processed zone identification with simple thresholding algorithm.
(a) Captured image for dark-color PA12. (b) Global-thresholding of (a). (c)
Morphological opening of (b). (d) Captured image for light-color PA12. (e)
Global-thresholding of (d). (f) Local thresholding of (d).

and 13(f)). CLAHE mitigates such an overlap. However,
neither global nor local thresholding is effective enough to
separate different zones. Therefore, for light-color polymer,
we need a more effective identification algorithm.

The technique we propose to identify the processed zone
is an efficient graph-based image segmentation [28]. In this
algorithm, the original image is transformed into a graph
G = (V,E), where each node vi ∈ V corresponds to a
pixel in the image, and the edges (vi, vj) ∈ E connect
certain pairs of neighboring pixels. A weight w((vi, vj)) is
associated with each edge, which is defined as the absolute
grayscale difference between elements vi and vj . Using this
representation, the algorithm then defines a predicate for
measuring the evidence for a boundary between two regions.
Based on this predicate, the segmentation can be created by
pairwise region comparison. The method runs in O(n log n)
time for n image pixels and generally runs in a fraction of a
second on an average desktop computer for a 320 pixel × 240
pixel image in the offline processing. Leveraging the parallel
computation advantage of the FPGA, the execution time is
expected to be reduced to milliseconds.

Fig. 14 illustrates the result of the proposed zone
identification with graph-based segmentation. After
preprocessing (Fig. 14(b)) and segmentation, the original
image is divided into five components (annotated by five
colors) in Fig. 14(c). Recall that the imaging data is
synchronized with the scan data (Section II-B). The light blue
component thus depicts the processed zone as it overlaps with
the current scan vector. Note that the bilateral boundaries of
the processed zone are accurately identified along the scan
direction. However, the front edge of the melt pool is not
found from the synchronized image because the melt pool
area has not solidified yet and the grayscale-level difference
with surrounding powder is minimal (it is difficult to identify
this edge even with human perception). Nevertheless, we
can estimate this edge a priori by combining the location of
the melt pool center and the estimated diameter of the melt
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Fig. 14. Proposed zone identification with graph-based segmentation. (a)
Raw image. (b) Pre-processed image. (c) Segmentation result. (d) Identified
processed zone.
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Fig. 15. Excessive heating defect detection. (a) Processed zone with
discontinuities. (b) Segmentation result of the red box area in (a).

pool. The former is fixed in each image frame as a benefit
of the coaxial optical design. The latter can be obtained by
calculating the processed zone width in the previous frame.
Using this estimated edge to split the component, we can
accurately extract the processed zone (Fig. 14(d)) from the
original noisy and low-contrast raw image.

C. Defect detection and process signatures extraction

Based on the identification result, we can further detect
various defects. For example, Fig. 15 illustrates an excessive
heating defect, which can result from abnormal printing
parameters or challenging part structures (e.g., down-facing
overhang surface). When this happens, the solidification rate
of the melt pool is too high, which causes the processed
zone discontinuities. Fig. 15(b) shows the segmentation result
for the image captured at the location denoted by the red
box in Fig. 15(a). We see that in the segmented image, the
discontinuity is flagged by multiple components along the path
of the scanning vector. When such a defect is detected, an in-
process controller can either modify the printing parameters
or abort the printing.

The image analytics framework can also provide process
signatures that correlate to the part quality metrics. For
example, the melt pool width of each frame can be estimated
by calculating the ratio between the component size in
Fig. 14(d) and the scan vector length in Fig. 14(c). The
result, after filtering (with e.g., Kalman filter [29]), could

be used as a feedback for closed-loop control. In [30], we
proposed two quantitative process signatures based on the
segmentation result, specifically (1) the ratio between the
component perimeter and the scan vector length and (2) width
variance along the laser traveling direction. We showed there
that these features correlate with the delivered laser energy
density.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented (1) a model-based multi-
zone heating control method for minimizing the powder-
bed temperature deviation in the presence of part-geometry
induced cross-layer thermal disturbance and (2) an image
analytics framework for process monitoring of low melt
pool contrast material LPBF using visible light cameras.
We compared three powder preheating controller designs
and revealed the benefits of different algorithms. Leveraging
multiple image processing algorithms, the image analytics
framework identifies the laser-processed area and provides
process signatures based on visible light camera data, which
is a missing piece in the literature on monitoring the LPBF
process of low-contrast materials such as light-color polymer.

In this paper, the proposed image analytics framework was
developed and verified offline using captured image database.
Further work includes implementing the framework on the
FPGA frame grabber on the fly, data analytics, and controls
with the extracted process signatures.
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