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Abstract: Laser powder bed fusion (LPBF) is an additive manufacturing technique that
offers a number of competitive advantages over conventional manufacturing methods; however,
challenges in assuring final part quality hinder its broader industrial adoption. As a step
towards closing the loop in quality control for LPBF, this paper presents an image segmentation
framework for extracting process characteristics from in-situ image data collected by a coaxial
imaging system in the visible spectrum. Since manual data annotation can be time-consuming
and error prone, we present an image processing pipeline for generating precise segmentation
labels semi-automatically. The resulting dataset is used to train a machine learning model for
segmentation of processed zone boundaries for in-situ monitoring. Experimental results validate
the effectiveness of our approach for process monitoring in LPBF across a variety of challenging

illumination and process conditions.
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1. INTRODUCTION

Laser powder bed fusion (LPBF) is a popular class of addi-
tive manufacturing (3D printing) processes whereby three-
dimensional objects are constructed from digital specifica-
tions by sequentially depositing and sintering / melting
thin layers of material powders via one or more laser
sources. Common LPBF processes include selective laser
sintering (SLS), direct metal laser sintering, and selective
laser melting. LPBF offers a number of competitive advan-
tages over conventional manufacturing methods: it sup-
ports a wide range of materials often used in engineering
applications (e.g. polymers, metals, ceramics, composites)
and allows for the direct fabrication of unsupported com-
plex geometries (e.g. overhangs) while minimizing material
waste and production costs [Gibson et al. (2015)].

Although these attributes make LPBF well-suited for a
wide range of emerging commercial applications, issues
with quality assurance, part reliability, and process repro-
ducibility limit broader adoption of this technology, par-
ticularly in safety-critical applications such as those in the
automotive [Clarke (2017)], aerospace [Bullis (2013)], and
medical devices [Grunewald (2016)] industries. One reason
for this challenge is due to the complex dynamics between
a large number of highly correlated process parameters,
many of which cannot be directly measured [Spears and
Gold (2016)]. In order to realize effective control strategies
for mitigating reliability issues during the manufacturing
process, it is crucial i) to identify process signatures that
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correlate with the quality of the final build and ii) to
develop of in-situ monitoring methods that can generate
online feedback signals from these process signatures.

Since melt pool and heat-affected zone (HAZ) signatures
provide critical information about the uniformity of part
quality and the presence of defects [Grasso and Colosimo
(2017)], various sensing strategies have been proposed for
sensing and monitoring melt pool signatures, such as op-
tical imaging, thermography, spectrometry, optical coher-
ence tomography, and acoustic techniques [Grasso et al.
(2021)]. Visible light cameras are of particular interest be-
cause they can provide detailed spatial information about
the LPBF process complementary to sensors operating in
other ranges of the electromagnetic spectrum (e.g. infrared
cameras or pyrometers) at a high data bandwidth and
comparatively low cost [Jiang (2021)].

One promising means for extracting process signatures
from camera data is through image segmentation. Im-
age segmentation is a well studied problem in the image
processing and computer vision communities with a vast
body of academic literature [Szeliski (2022)] which seeks
to partition an image into distinct regions of interest. The
resulting segmentation can then be used to directly com-
pute relevant metrics describing process characteristics -
e.g. melt pool size and geometry - in a straightforward
manner[Jiang et al. (2021)]. Prior work on LPBF moni-
toring has demonstrated that statistical pattern recogni-
tion can be applied to image segmentations for extract-
ing process characteristics and detecting anomalies [Scime
et al. (2018), Grasso et al. (2016)]. In these works, image
segmentations were obtained via global intensity thresh-
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Fig. 1. (a) Sample image captured during the build process
by the coaxial imaging system. (b) Optical contam-
inants are circled in red, and a coarse annotation
of the laser-processed zones is contained within the
blue polygon. (c¢) Non-uniform illumination of the
powder bed, which challenges (d) global thresholding
algorithms such as Otsu’s method [Otsu (1979)].

olding. However, because digital images are sensitive to
illumination conditions, contaminated optics, and poor
contrast between fused and raw materials, segmentation
via global intensity thresholding alone struggles to gen-
eralize across more challenging experimental variations,
particularly for the case of polymer laser sintering. More-
over, there is a dearth of labeled datasets for the problem
of LPBF process monitoring, and manual annotation of
LPBF data can be difficult due to subtle and imprecisely
defined boundaries surrounding the laser-processed zones.
Fig. 1 provides a representative example of an image cap-
tured during polymer SLS and illustrates some of these
difficulties.

In this paper, we present an image segmentation frame-
work for in-situ monitoring of laser-processed zones dur-
ing LPBF from a coaxial visible light video stream. To
overcome the absence of publicly available labeled LPBF
datasets, we develop an image processing pipeline for the
semi-automatic generation of processed zone boundary
segmentation labels from videos collected from an in-house
LPBF testbed platform (Fig. 2) introduced in [Jiang et al.
(2021)]. The data annotation procedure only makes simple
assumptions about the LPBF build process and image
parameters that can be easily obtained upon inspection.
These labels are then used to train a deep learning model
for the task of processed zone boundary segmentation that
generalizes across a variety of experimental parameters.
We apply the proposed method to the task of image
segmentation of coaxial video streams collected during
polymer LPBF. Our results validate that the proposed
framework can generate reliable segmentations from im-
ages captured across different experimental instances con-
taining a variety of scan track geometries. The learned
segmentation model also provides a promising means of
correlating in-process observations with final part quality
and serves as a step towards enabling online feedback
control of the LPBF process.
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Fig. 2. (a) Block diagram of the coaxial monitoring and
control system. (b) Overview of the experimental
testbed. (c) General machine technical specifications.

2. PROBLEM FORMULATION
2.1 Image Segmentation for Processed Zone Identification

The problem of image segmentation can be formulated as
a binary classification problem where each pixel in the
image is assigned a label from a predetermined, often
mutually exclusive set of categories. Formally, given an
image I; captured at timestep ¢ with dimensions H X
W, the objective is to assign one of K classes ¢; drawn
from C' = {c;}E, to each pixel I;(m,n) where m €
{0,...,H},n € {0,...,W} such that pixels belonging to
the same category should receive the same class label.
Since each pixel in the original input image I;(m,n) is
assigned a label, we can construct an image segmentation
mask S with dimensions H x W where each S(m,n) takes
on a value from C corresponding to the label assigned to it.
Interested readers are invited to consult [Szeliski (2022),
Minaee et al. (2021)] for more details on general-purpose
image segmentation algorithms.

Since the framework presented in this paper primarily
focuses on processed zone segmentation, in our problem
setup the K = 2 classes correspond to whether a pixel
should belong to the processed zone boundary (or not).
Although the image segmentation problem formulation is
sufficiently general to accommodate more specific labels
relevant to process monitoring (e.g. melting pool, fumes,
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Fig. 3. Illustration of the optical path of the coaxial
imaging system.

spatters, defects), we focus primarily on segmentation of
laser-processed zones in this work.

2.2 Fxperimental Setup

We collect video data for our experiments on an in-house
developed LPBF testbed. The experimental platform uses
a 100-Watt CO2 laser as the power source and a SCAN-
LAB intelliSCAN14 galvanometer scanner with a f = 400
mm F-theta lens as the beam positioning system. A ZnSe
dichoric beam splitter at an incidence angle of 45° degrees
with 98.5% reflectance at 633 nm propagates approxi-
mately 70% of visible light radiation from the powder bed
to a Cyclone 2 Machine Vision camera in a coaxial con-
figuration, which allows for direct top-down observation of
the laser-material interaction dynamics on the powder bed
surface (Fig. 3). A Coaxlink Quad CXP-12 FPGA (Field-
Programmable Gate Array)-based frame grabber triggers
the monitoring camera, providing up to 5,000 MB/s data
bandwidth and allowing acquisition of full resolution HD
images (1080 pixels x 1920 pixels®) at 2158 fps. Image
and motion data is streamed to and processed by a host
computer that controls the process parameters through a
RTC (real-time control) board. We refer interested readers
to [Jiang et al. (2021)] for more details regarding the
testbed’s mechatronic design.

3. METHODOLOGY

Deep learning has proven successful on a number of prob-
lems in image processing and computer vision [Krizhevsky
et al. (2012), LeCun et al. (2015)], owing to their capacity
to automatically learn strong nonlinear feature representa-
tions directly from high-dimensional images. In particular,
many deep learning models have been developed for the
task of image segmentation across a variety of problem
domains [Minaee et al. (2021)]. However, these successes
often rely on the availability of large, diverse, labeled
datasets lacking in the LBPF problem domain.

One common approach to labeling data for image seg-
mentation is to draw a polygon that bounds a particular
region of interest (ROI) within an image and to assign

I Following the H x W convention of expressing image dimensions
adopted in the rest of this paper
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Fig. 4. Overview of data annotation pipeline.

a label to all pixels within the closure of the polygon
[Wada (2016)]. This data annotation strategy can poten-
tially be prohibitively time-consuming, as a large amount
of data is collected during the LPBF process due to
the necessity of a high-speed camera for capturing the
rapidly changing laser-material interactions. Additionally,
because processed zone boundaries are often smooth and
ambiguous, the use of coarse polygons during the data
annotation process may lead to imprecise labels which can
negatively affect the performance of the trained machine
learning model. Instead, we propose an image processing
pipeline that exploits geometric regularities in sequentially
collected images to generate segmentation labels with min-
imal manual intervention.

8.1 Acquiring Segmentation Labels via Image Processing

Our proposed data annotation strategy assumes that im-
ages collected when the laser follows a linear scan track
and that two tracks are not being fused within the image.
We also assume a priori approximations of the melt pool
radius in pixels 7,¢;; and the location of the melt pool
center u = (me,n.) in the image plane, which remains
largely unchanged throughout the LPBF build process due
to the coaxial optical design of the experimental testbed.
We note that these variables can be easily estimated via
visual inspection; thus, the proposed annotation strategy
does not require access to exact system parameters. Given
a stream of sequentially captured images taken during the
LPBF process, the data annotation procedure (Fig. 4) is
described as follows:

(1) Apply a median filter to the current image I; to
remove optical contamination artifacts, characterized
by small dark particles. The filter kernel size is chosen
to be the smallest odd integer greater than the pixel
diameter of the largest particle.

(2) Estimate the 2D translation vector of the scan
dscan = (dm,dy) in the image plane between the
current image frame I; and the previous frame I;_;



via image alignment. Since most of the powder bed is
unchanged between consecutive frames, the pixels in
I,_1(m,n) that correspond to the unchanged powder
bed surface in I; will be displaced in the opposite
direction of the scan translation vector:

ILi_1(m,n)=L(m+dn,n+d,) (1)

This displacement vector also allows us to iteratively
accumulate the length of the laser-processed zone at

time t¢:
lt = lt—l + \/d?n+d% (2)

In our experiments, we compute this displacement
vector by optimizing with respect to the enhanced
correlation coefficient (ECC) criterion [Evangelidis
and Psarakis (2008)].

Binarize the median-filtered image such that the con-
tour of the laser-processed zone is preserved. To ac-
count for non-uniformity in powder bed illumination,
we apply adaptive Gaussian thresholding to generate
a binary image that distinguishes pixels between the
processed zone boundary and the unfused material
based on their intensity relative to nearby pixels.
Morphological dilations are used to close any gaps
within the binarized regions. Although we use adap-
tive thresholding due to its simplicity and fast compu-
tation speed, we note that alternative methods (e.g.
[Jiang et al. (2021), Chan and Vese (1999)]) can be
substituted in this step without requiring adjustments
to the rest of the pipeline.

Based on geometry and projection of the laser beam
from the rotating galvo scanner to the powder bed
surface, isolate the scan track by masking out regions
greater than r,,.;; pixels from the laser scan track.
We compute a rectangular bounding box B centered
at the laser-processed zone with length, width, ori-
entation, and center coordinate and [Bj, By, Bg, B.]
that extends from the center of the melt pool across
the laser-processed zone [; pixels in the direction of
the scan vector with fixed width 7,,e4:

By = Oscan = arctan 2(d,y,, d,,)
B = rmeit + lt
By = 2rmeis
[cos(Bg)
sm(B.g)
[cos(Bg + 7/2)
|sin(Bg + 7/2)
[cos(By — 7/2)
_sm( 9 —7/2)
Pedge,1 T Pedge,2
2

Pforward = H + Tmelt

o

Pedge,1 = M + Timelt

pedge,Z =W + Tmelt

B. = Pforward — M+

E el

The bounding box is used to generate a boolean image
mask Bj,qsk Where pixels corresponding to the closure
of B are assigned a value of 1 and all other pixels are
assigned a value of 0. The mask is used to crop the
binary image obtained from step (3) to only include
the laser-processed zones.

Distinguish unique connected regions within the
cropped binary image via connected components la-
beling, excluding the background (which can be iden-

tified as the largest connected component in the im-
age).
Uniformly sample L line segments of length B; across
the width of B and compute the percentage of pix-
els across these line segments that intersect with a
non-background region. The endpoints s; 1, s; 2 corre-
sponding to line segment s; = {(1 —¢)s;1 + 82|t €
(0,1)} can be directly computed from the parameters
of B as follows:
_ B+ By |cos(Bg +/2)
80,c = 2 sin(By + 7/2)
( )]
(B )

COSs

Ste=Bet+ 5= 2 Lln

2 212
By [cos(Be + 71')}
2 |sin(By + )

With the endpoint values of each line segment
8i1,8i2, we can index the pixels across the line
segment in the image and compute the percentage
that overlap with the regions identified in (5). Since
regions corresponding to the processed zone edges
have greater color continuity than that of the raw
powder, we keep only the regions that overlap with
the two unique line segments that intersect with the
least amount of background pixels.

Return the final binary image, where the filtered re-
gions from (6) comprise a training label for processed
zone segmentation of input image I;.

84,2 = Si,c

(7)

Floating-point numbers are used in all computations above
and quantized to the nearest integer when a pixel location
is referenced (bounded by image dimensions H x W).
With minimal tuning of the rectangular mask size and
image binarization parameters, the proposed method is
capable of generating precise labels for linear scan track
observations when there is only one melted track, when
the melt pool is clearly visible in the observed image, and
when the scan track is mostly unbroken.

8.2 Deep Learning for Processed Zone Segmentation

To generalize beyond the assumptions described in the
aforementioned data labeling procedure, we train a deep
learning model for the task of processed zone boundary
segmentation.

In recent years, convolutional neural networks (CNNs)
[Krizhevsky et al. (2012)] have been successfully applied
to a wide variety of image processing and analysis tasks,
ranging from recognition of a diverse category of objects
to classification of defects in manufacturing. In contrast
to classical approaches in image processing and computer
vision which often rely on human-designed models or fea-
tures characterizing salient aspects of the task at hand,
CNNs can automatically learn visual feature representa-
tions for a given task from image data. Since these features
are learned at the pixel level, CNNs are not subject to the
limitations of the image processing pipeline described in
the prior section.
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A common network architecture used in pixel-wise se-
mantic segmentation is the fully convolutional network
(FCN) [Long et al. (2015)]. FCNs spatially downsample
the high dimensional input image with a CNN and up-
sample the image to generate a dense output of the same
spatial resolution as the input, which is decoded via the
softmax operator o(z); = e*/ Zf:Bl €% to a probability
distribution over K possible classes for each pixel in the
input image, thus producing an output of H x W x K
dimensions with values between (0, 1). During training,
supervision is provided at the pixel level for each (image,
segmentation label) pair. At inference, each pixel in the
final segmentation S(z,y) is typically assigned the label
that corresponds to the class with the highest probability.

We adopt DeepLabv3, which has achieved state-of-the-
art results on several semantic segmentation benchmarks
[Chen et al. (2017)] as our deep learning model. To resolve
the issue of spatial resolution loss from downsampling
convolutional layers, DeepLabv3 modifies the basic FCN
architecture by instead using successive upsampled con-
volutional filters ("atrous convolutions”). The upsampled
filters are generated by zero padding between filter taps at
multiple image scales.

Leveraging the successes of transfer learning [Minaee et al.
(2021)], we fine-tune a DeepLabv3 model with a ResNet-
50 [He et al. (2015)] feature extraction backbone pre-
trained on ImageNet [Deng et al. (2009)]. Since the feature
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Fig. 6. Results from running the data annotation pipeline.
(left) Original image captured by imaging sys-
tem (middle) Output of the proposed image pro-
cessed pipeline (right) Naive thresholding using [Otsu
(1979)]

extractor is trained on RGB images and expects a 3-
channel input, we repeat the 1-channel grayscale 3 times
across the channel dimension before feeding the input into
the network. Input images are normalized with respect
to the pre-computed mean and variance of the ImageNet
dataset and downsampled to 224 pixels x 398 pixels prior
to being passed into the network. The network’s output
layers are replaced for the task of binary classification, and
the model is trained using binary cross entropy loss via
stochastic gradient descent with momentum and weight
decay. We train on a dataset of 3000 images using a
learning rate of 0.02 for 15 epochs with a batch size of
16. For comparison, we also test using a MobileNet v3-
based feature extractor [Howard et al. (2019)], a more
lightweight feature extractor optimized for performance on
mobile CPUs, and with applying histogram equalization to
the raw image to normalize the illumination profile of the
inputs to the network.

LPBF monitoring data is highly correlated due to the
temporal relationship between successive observations. To
improve robustness to different process conditions, we ap-
ply standard data augmentation techniques to all training
labels. Left-right flipping, vertical flipping, and random
rotations in the range [—60,60] degrees are applied at
regular intervals to increase geometric diversity of the
training set.

4. CASE STUDY AND EXPERIMENTAL RESULTS

We evaluate our proposed framework on coaxial video
streams collected by processing a single-layer geometry
consisting of a square (29mm x 29mm) and a triangle
inscribed within the square using white Polyamide 12
(PA12 / Nylon 12) powder material (Fig. 5). To investigate
the melt pool behavior during the fusion of an unsupported
overhang, the fusion is performed on a thick powder bed
such that the melt pool never reaches the underlying solid
substrate. Before printing, the powder bed is preheated to
150°C. The camera is set to capture video at 50 fps to
allow for adequate exposure, and the laser scanning speed
is fixed at 6 mm/s with a duty cycle of 0.8%.

Fig. 6 shows the qualitative results of generating segmen-
tation labels via our proposed image processing pipeline.



White regions in the binary image correspond to the
boundary of the laser-processed zones, while black regions
correspond to the background (i.e. everything else). Upon
visual inspection, it is clear that the contour of the laser-
processed zone is ambiguous and poorly defined, and at-
tempting to manually annotate the data using a polygonal
selection tool would be time-consuming and likely result
in labels that do not have precise boundaries. In contrast,
our proposed method is sensitive to local geometric varia-
tions in the laser-processed zone and can reliably generate
annotations for a full linear scan track using a single set
of parameters. As a baseline, we also include results from
applying simple global thresholding.

Fig. 7 shows the trained deep network’s predicted segmen-
tation masks, and Table 1 reports the mean pixel accuracy
(mPA) and mean intersection-over-union (mIOU) of the
segmentation model on a test dataset of 500 images, with
the outputs of the image processing pipeline described in
Section 3.1 treated as ground truth. In our experiments,
the learned image segmentation model significantly out-
performs Otsu’s method, a global thresholding strategy
adopted in prior work on extracting process signatures
from LBPF image data. Furthermore, the learned model
accurately segments a number of images that our proposed
data labeling procedure cannot directly handle - e.g. the
images with multiple laser-processed tracks from previous
material fusion, images in which the laser-processed zone
consists of a small proportion of the image, and images
in which the laser changes scan direction. These results
demonstrate that the network is capable of learning an
adaptable internal feature representation for image seg-
mentation that generalizes beyond the linear geometries
provided in the training dataset and can thus be used to
extract process metrics from unlabeled data with minimal
retraining.

Table 1 also reports the mean runtime needed to process
a single image. Our framework, implemented in Python
/ PyTorch / OpenCV / scikit-image, runs at >12 Hz
on a modern desktop computer (Intel® Core™ i5-7600K,
NVIDIA GTX1080), and is thus suitable for adoption in
an online control scheme.

Table 1. Summary of experimental results

Method mPA mIOU | Speed (ms)
Otsu’s 76.0% 29.7% 0.3
DeepLab v3 (MobileNetv3) 79.7% 66.1% 37.7
DeepLab v3 (ResNet-50) 94.6% || 79.4% 82.2
+CLAHE 94.6% 77.6% 82.2

5. CONCLUSIONS

We present a framework for the segmentation of laser-
processed zones from in-situ coaxial image data captured
during the LPBF process. We describe in detail our im-
age processing pipeline for acquiring ground truth labels
with minimal assumptions about experimental parame-
ters, which can then be used to train a more general
deep learning model for image segmentation. Our proposed
framework is able to reliably segment the boundaries of
laser-processed zones across a variety of conditions not
present in the training data. Future work will focus on
correlating in-situ process metrics extracted from the seg-
mentation masks to final build quality and optimizing the

Fig. 7. Results of applying the learned segmentation model
to a representative sample of challenging cases to
directly annotate. (a) Multiple fused tracks (b) Small
melt pool (¢) Change in laser scan direction

proposed network architecture for real-time inference in
feedback control.
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