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Abstract

Truncated realized quadratic variations (TRQV) are among the most widely used high-
frequency-based nonparametric methods to estimate the volatility of a process in the presence of
jumps. Nevertheless, the truncation level is known to critically affect its performance, especially
in the presence of infinite variation jumps. In this paper, we study the optimal truncation
level, in the mean-square error sense, for a semiparametric tempered stable Lévy model. We
obtain a novel closed-form 2nd-order approximation of the optimal threshold in a high-frequency
setting. As an application, we propose a new estimation method, which combines iteratively an
approximate semiparametric method of moment estimator and TRQVs with the newly found
small-time approximation for the optimal threshold. The method is tested via simulations to
estimate the volatility and the Blumenthal-Getoor index of a generalized CGMY model and,
via a localization technique, to estimate the integrated volatility of a Heston type model with
CGMY jumps. Our method is found to outperform other alternatives proposed in the literature
when working with a Lévy process (i.e., the volatility is constant), or when the index of jump
intensity Y is larger than 3/2 in the presence of stochastic volatility.
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1 Introduction

Lévy processes have experienced a revival in the past 20 years, propelled by the need for more real-
istic modeling of irregular behavior in many phenomena of nature and society. These fundamental
building blocks of stochastic modeling have been widely applied in many fields, including statistical
physics, meteorology, seismology, insurance, finance, and telecommunication. While, in principle,
Lévy models offer ideal conditions for estimation purposes, two main bottlenecks complicate their
estimation. Firstly, their marginal distributions often lack tractable or closed-form representations.
In those situations, the marginal distributions must be approximated by Fourier, Monte Carlo, or
other numerical methods, which makes the estimation slower and noisier. The second issue comes
from the need to handle high-frequency sampling data of the process. This type of data has been
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widely available in finance during the last 15 years and is increasingly more common in other fields.
The two just-mentioned issues have rendered traditional statistical methods such as likelihood and
Bayesian estimation unfeasible. We refer the reader to [6] for more information about Lévy pro-
cesses and their application in finance, [16] for a survey on frequentist parametric estimation of
Lévy process, and [22] for more information about Bayesian estimation methods.

In this paper, we study a new method for the estimation of the parameters of a Lévy model. A
semiparametric model is considered in which the jump component is assumed to exhibit small jumps
that behave like those of a Y-stable Lévy process. Specifically, the class of tempered stable processes
introduced in [8]! and [11] is considered. We focus on models of infinite variation (i.e., Y € (1,2)),
which are arguably the most relevant for financial applications (see [1], [3], and [7]). The estimation
of semiparametric Lévy models of infinite jump variation under high-frequency data is not well
developed. Jacod and Todorov [13] were the first to introduce an efficient estimator of the integrated
volatility of an Itd6 semimartingale model in the presence of a Lévy jump model of infinite variation
with Blumenthal-Getoor index 8 € (1,3/2) or when the jump component is symmetric. Their
estimator is based on locally estimating the volatility from the empirical characteristic function of
the increments of the process over time blocks of decreasing length. Recently, Mies [17] proposed
an efficient estimation method for Lévy models based on a type of approximate semiparametric

method of moments with scaling. Specifically, for some suitable moment functions fi, fa,..., fm
and a scaling factor u,, — 0o, [17] proposed to look for the parameters @ = (61, ..., 0,,) such that
N ~
=3 i (un P X) — B (£ (waAIZ)) =0, j=1,....m, (1.1)
i=1

where Z is the superposition of a Brownian motion and independent stable Lévy processes closely
approximating X in a certain sense. The distribution measure Pg of Z depends on some parameters
0, including the volatility o of X, and Eg(-) denotes the expectation with respect to Pg. Above,
A?L := L;; — Ly, , is the i-th increment of a generic process (L;);>0 given n evenly spaced random
samples Ly, ..., Ly, over a fixed time interval [0,T] (i.e., t; = ih, with hy, = T/n). If X were
assumed to follow a parametric Lévy model and we replaced Eg(f; (unA?Z )) with Eg(f;(u,Af X))
in (1.1), we will recover a standard Method of Moment Estimator (MME). However, we are assuming
that X is semiparametric and that it can be approximated closely enough by a parametric Lévy
model Z. The scaling u,, which is taken to converge to oo at the order of 1/1/In(n)/n, is also a
new feature of this method compare to the standard MME.

The moment functions fi,..., fi, and the scaling factor u, in (1.1) critically affect the perfor-
mance of the estimators. To determine an appropriate scaling u,, we connect it to the threshold
parameter ¢, of a Truncated Realized Quadratic Variation (TRQV),

n

TRQV,,(20) = > (ATX)*1{an x|<c0)s (1.2)
=1

which is known to be a consistent estimator for the integrated volatility of a general semimartingale
model. Again, above ATX = X; — X;, , and we are assuming regular sampling observations
Xy, ..., Xy, with t; = ihy, and h, = T/n. Next, note that by taking fi(z) = 2?1y,<1y in (1.1),

!The term “tempered stable” is understood here in a more general sense than in several classical sources of financial
mathematics (e.g., [2], [6], [15]) and even more general than in [19]. In fact, such class of Lévy processes is called the
tempered-stable-like Lévy processes in [8].



we recover the TRQV (1.2), which suggests the relationship u, = 1/e,. That is, 1/u, plays the
same role as the threshold in TRQV.

Recently, [10] studied the problem of optimal thresholding of TRQV (1.2) under the mean-square
error. Specifically, in the case of a Lévy process with volatility o, it is shown that the threshold
¢ = ¢ that minimizes the mean-square error, E((TRQV,,(¢) — 0>T)?), solves the equation:

e? +2(n — D)E(byp,(e)) — 2T0* =0,

where by p, (€) == X%n1{|xhn|§5}. By analyzing the small-time asymptotic behavior of E(b; 4, (¢))
(i.e., when n — oo so that h, — 0), [10] proved that the optimal threshold €} for a Lévy process
with a Y-stable jump component behaves like

e ~/(2=Y)o2h,In(1/hy,), n — oo, (1.3)

where hy, = T'/n is the time span between observations and, as usual, a,, ~ b, means a, /b, — 1 as
n — 00. The proportionality constant /2 — Y roughly tells us that the higher the jump activity is,
the lower the optimal threshold has to be if we want to discard the higher noise represented by the
small jumps. This fact opens the door to an iterative method to estimate o2. We can first estimate
Y and o? using, for instance, the method of moments (1.1). We can then use the TRQV with the

threshold £ = /(2 — V)52 In(1/hy).
In this paper, we first extend the result of [10] to allow for a general tempered stable Lévy

process. Furthermore, we propose a new approximation for €, of the form:

5= \/(2 ~Y)o2h, In (hi) + 202k, In (Q_CO‘)"> (1.4)

n

where C controls the overall intensity of jumps. The approximation (1.4) says that if C' is small
(relative to o) then the threshold can be loosened up (in fact, € oo as C' 0 as it should be).
In practice C' is small compare to o and (1.4) provides a significant correction compare to (1.3).
We then proceed to devise a new method to estimate the volatility, the index of jump activity Y,
and C' by combining a variation of the approximate semiparametric method of moments in [17],
TRQVs, and the approximate optimal threshold (1.4). Compared to [17] we introduce simpler
moment functions fi, ..., fi, and a systematic and objective method to tune the scaling factor u,
in (1.1). The performance of the proposed procedure is superior to the efficient methods of [13]
and [17]. Finally, as in [13], we use a localization technique to estimate the integrated volatility of
an [t6 semimartingale. Specifically, the idea is to split the time horizon into small blocks where the
process is approximately Lévy and, hence, its volatility level can be estimated using our method.
For values of Y > 1.5, our method outperforms the method proposed by [13].

The rest of this paper is organized as follows. Section 2 provides the framework and assumptions
as well as some known preliminary results from the literature. Section 3 obtains the asymptotic
behavior of E(b; 1, (¢)) and derives (1.3). The second-order approximation (1.4) is derived in Section
4 as well as a numerical assessment of the approximations in the case of a CGMY jump component.
The new method to estimate the parameters of a tempered stable Lévy model is presented in
Section 5 together with an analysis of its performance via Monte Carlo simulations. The proofs are
deferred to an appendix section.



2 The Model and Some Preliminary Results

Throughout, Ry := [0,00) and Ry := R\{0}, and we let (2,.%,F,P) be a complete filtered proba-
bility space on which all stochastic processes are defined, where F := (.%;);cr, satisfies the usual
conditions. We consider a Lévy process X := (X;)er . of the form

Xt:UWt+Jt, t€R+, (21)

where W := (W;)er, is a Wiener process and J := (J;)er, is an independent pure-jump tempered
stable Lévy process with Lévy triplet (b,0,r). The Lévy measure v is assumed to be absolutely
continuous with a density s : Ry — R of the form

v(dz)

s(w) = = = (C1(000)(T) + C-1(_ooy(2))q(z) |2[7'7Y, =z €Ry. (2.2)

Here, Cy > 0, Y € (1,2), and ¢ : Ry — R is a bounded Borel-measurable function. Concretely,
we make the following assumptions on gq.

Assumption 2.1.
(i) q(x) = 1, as x — 0;

(ii) There exist ay # 0 such that

/ lg(x) =1 - aqa e Y "tz +/ lg(z) — 1 - oz_as‘|x|_y_1d9: < 00;
(0,1] [-1,0)

1
(#4i) lim sup [ ()| < 00;

(iv) For any e >0, inf g(x) > 0;
lz|<e

(v) q(z)?)z] 1Y dr < .
lz|>1

Remark 2.2. The class of Lévy processes considered above is sometimes termed tempered stable
processes (or tempered-stable-like processes as in [8]) and includes a wide range of models appearing
in finance. Roughly, the conditions above amount to say that the small jumps of X behave like
those of a Y-stable Lévy process. We refer the reader to [12] for further background about this class.
The parameter Y is called the inder of jump activity and coincides with the Blumenthal-Getoor
index, which controls the jump activity of X in that ZSE(O,t] |AX Y < oo forall y>Y and ¢t > 0,
where AX := X, — X,_ is the jump of X at time s. The range of Y considered here (namely,
Y € (1,2)) is the most relevant for financial applications based on several econometric studies of
high-frequency financial data (cf. [1] and [7]) and short-term option pricing data (cf. [12]).

Using a density transformation technique in [20, Section 6.33], we can change the probability
measure from P to another locally absolutely continuous measure P, under which J is a Y-stable
Lévy process and W is a standard Brownian motion independent of J. Concretely, let

v(dx) == (Cylige0)(®) + C_1(_eo0)(2)) lz| Y ~Ldz, bi=b+ / x(v —v)(dz).
0<|z|<1



Note that v is the Lévy measure of a Y-stable Lévy process and, also,
v(dz) = e?® v(dz), with ¢(z):= —Ing(x).
Next, define P such that, for any t € R,

dP| .
= U= —e(@) _ 1)
. (dIP’](%) Ut = lig ( Z @(AJS)+t/|m|>€ (e 1)o(dz) | . (2.3)

€(0,t]:|AJs|>e

By virtue of [20, Theorem 33.1], a necessary and sufficient condition for the measure transformation
from PP to P to be well defined is given by

/ (690(“’”)/2 — 1)2u(dx) < 00
Ro

which can be shown to follow from Assumption 2.1—(i) & (ii) (cf. [12, Lemma 2.1]). Under P,
J is a Lévy process with Lévy triplet (b,0,7), and W is a standard Brownian motion which is
independent of J. In particular, under P, the centered process Z := (Z;):er, , given by

Ly = Jt—tA’YJ, ﬁ;: [NE(Jl) :Z“—/ xﬁ(dl’),
lz|>1

is a strictly Y-stable process with its skewness, scale, and location parameters given by (C} —

C_)/(C4+C-), {(Cy + C)I(-Y))] cos(wY/2)|}1/Y and 0, respectively. Let pz denote the marginal
density of Z; under P. It is well known (cf. [20, (14.37)] and references therein) that

pz(2) ~ Ci|z|7Y1, as z — 400, respectively,
so that
™ Ci _y —2Y
IP’(iZ1>z):7z +0(27%), z— oo.

The processes U := (U)icr, and Z can be expressed in terms of the j jump-measure N (dt,dx)
of the process J and its compensator N(dt,dz) := N(dt,dz) — 7(dz)dt (under P), as follows:

Uy = Uy +nt —/ / N(ds,dz) + tn, (2.4)
Ro

Jy=Z,+ty =2 + Z; + 17, (2.5)

/ /000 N(dt, dx), / / 00.0) dt ydx), 1= /Ro (e_“"(x) -1 +g0(x))17(dx).

The existence of the integral defining n follows from Assumption 2.1—(i) & (ii). Clearly, Z* :=

where

(Z;r)teRJr and —Z~ := (—Z; )ier. are independent one-sided Y'-stable processes with scale, skew-

1Y

ness, and location parameters given by (CL|T'(=Y) cos(nY/2)|)"/ ", 1, and 0, respectively, so that

f”(iZfﬁ >z) = %z‘y +0(z7), z— o0,

E(eﬂf) = exp <CiF(—Y) cos <7T2Y)sgn(1 - Y)t) < 0.



Moreover, it can be shown that (cf. [9, Lemma 2.1]) there exists a universal constant K € (0, 00),
such that for any z > 0,

P(+Zi >2) <Kz . (2.6)

Combining (2.5) and (2.6), we deduce that there exists a constant K € (0,00) such that, for any
z >0,

P(+Z >z) <Kz V. (2.7)

Furthermore, using (14.34) in [20] and an argument similar to that in the proof of [9, Lemma 2.1],
we can show that:

pz(£2) < K27V, (2.8)
pz(£2) —C:tziyil) < f(( Y15 21y (2.9)

where above, without loss of generality, we use the same constant K as in (2.7).

3 Main Result

The TRQV, defined as

n
CHOES %Z (APX) 1ganx|<ey (3.1)
i=1
is one of the most commonly used estimators for the integrated volatility of an Itd semimartingale.
Above, AT’ X := X, — Xy, | fori=1,...,n, where Xy, Xy,,...,X;, are evenly spaced observations
of X over a fixed time horizon [0, T, so that t; = t; , = ih,, for i =0,1,...,n, with h,, :== T/n. One
of its drawbacks is the necessity of tuning the threshold ¢ up, which strongly affects the performance
of the estimator. It is shown in [10] that, for a Lévy process X with volatility o > 0, there exists a
unique threshold ¢ = ¢}, which minimizes the mean-square error, E((G2(g) — 02)?). Furthermore,
the minimizer €}, is such that

*

er — 0, ~_ 00, as n — 0o, 3.2
and solves the equation
e +2(n — DE(byp, () — 2T0? =0, (3.3)

where by 5, (¢) == X i2zn1{| Xy, |<e}- Therefore, in order to determine the asymptotic behavior of the
optimal threshold &}, we need to study the asymptotic behavior of E(b n(e)) as both h — 0+
and ¢ = £(h) — 04 in such a way that £(h)/vh — 0o, as h — 0. Our main theoretical result
accomplishes this for the tempered stable Lévy processes of Section 2, and its proof is deferred to
Appendix A.

Theorem 3.1. Under Assumption 2.1, we have

0'8\/ 2/(20'2/1) C++C_

E(bLh(é‘)):JQh 9_Vv

ST 2y O(h6_52/(202h))+O(h€2_y/2)+0(h2_y/2),

as h — 04+ and e = e(h) — 0%, with ¢/vVh — .



The following result gives the asymptotic behavior of the optimal threshold e. Its proof is
similar to that of [10, Proposition 2] and is outline below for completeness and also to motivate
some approximation methods proposed below.

Corollary 3.2. Under Assumption 2.1, the optimal threshold €}, is such that

1
ef ~ \/(2 —Y)o?h, In mo as m—oo. (3.4)

n

Furthermore, setting C = (Cy + C_)/2, we have, as n — oo,

ey = \/0'2hn {(Z—Y) lnhln—F(Y—l) In lnhln—F(Y—l) In((2-Y)o?)+2In (%\;;:) —i—o(l)} . (3.5)

Proof. For simplicity, we take T = 1 so that h, = 1/n. With C = (Cy + C_)/2 and using the
asymptotic behavior of E(by 5, (¢};)) described in Theorem 3.1, we can write (3.3) as

2 : 2C
(e5)% +2(n —1) <02hn - \&Uezx/hne_(sny/(%zh") + %hn(sfl)%y + h.o.t.) — 2nh,o? =0,
P _

where h.o.t. means “higher-order terms” as n — co. In view of (3.2) and since Y € (1,2), we have
20 ey V20 S et 0<€Z e—(a;:)Q/(za?hn)) +o((en)Y) =o.
Vhn

Dividing by ¢}, rearranging the terms, and taking logarithms of both sides, we deduce that

*\2 o _
(1-Y)Ine, +o(1) = —2(?212” - %mhn +1In (W) + o(1),

which can be written as

*)2 e*)2 o(2—
fj;}?n +(1-Y)hn (%) +(1-Y)In (o) + (2= Y)Inh, —2In (%) = o(1). (3.6)

Dividing by (¢%)?/(c%h,) and using (3.2), we obtain the first result (3.4). For the second asymp-
totics, note that (3.4) implies that

In <Eff}3j> —In <(2 ~Y)ln h1n> +o(1).

Finally, plugging the above in (3.6) and solving for € gives the desired asymptotics. O

The proportionality constant v/2 — Y of the previous result is intuitive and roughly tells us that
the higher the jump activity is, the lower the optimal threshold has to be if we want to discard the
higher noise represented by the jumps and to catch information about the Brownian component.



4 Other Approximations and Illustration for a CGMY Model

In this section, we introduce other approximations to the optimal threshold derived from the for-
mulas in Theorem 3.1 and the proof of Corollary 3.2. We then illustrate their performance in the
case of a Lévy process with a CGMY jump component J (cf. [5]). The CGMY model is considered
a prototypical jump process of infinite activity in finance. In the notation of the Lévy density (2.2),
a CGMY model is given by

q(x) = e_MI1(07OO)(m) + erl(_wo) () and Cy=C_=C.

Thus, the conditions of Assumption 2.1 are satisfied with ay = —M and a— = G. We adopt the
parameter setting

C=0028, G=2318 M =4025 Y =1.35. (4.1)

These values are similar to those used in [12]?, who themselves took them from an empirical study
n [14]. We take T' = 1 year and n = 252(6.5)(60), which corresponds to a frequency of 1 minute
(assuming 252 trading days and 6.5 trading hours per day).

To compute E(by 4(¢)), we use Monte Carlo and the change of probability measure (2.3). Con-
cretely, under I?’, we have the following representation:

E(bin(e)) = IE(ff_Uh (oWh + Jn)* 1{|0W;,,+Jh\§e}>

O - L,
:E(e Mz, +GZ), nh(aWthZh*JrZh —|—’yh) 1{|0Wh+Z:+Z;+,7h|SE}),

where Z; and —Z," are independent one-sided Y-stable random variables with common scale,
skewness, and location parameters given by C|I'(—Y) cos(7Y/2)|h'/Y, 1, and 0, respectively. Such
a distribution can be simulated efficiently?.

We consider two different approximations of the equation (3.3) defining the optimal threshold
ex. For the first approximation, we replace E(bi (e, hy,)) (where h, = 1/n) in (3.3) with its leading
order terms as given by Theorem 3.1, namely,

2 2
24+ 2(n—-1) <_\\[;5, /b e~/ (20%hn) | 20Yhn52—y> — 202h,, = 0. (4.2)
p —

For the second approximation, we take a simplified version of (3.5), only keeping those terms that
are found to be significant:

gy = \/(2 —Y)o2h, In (%) + 202h, In <(2_CY)U> (4.3)

n

Interestingly, as C' — 0, we have £} — oo, which makes sense. The approximation (4.3) says that
if C' is small (relative to o) then the threshold can be loosened up.

Figure 1 shows the graphs of the left-hand expressions of (3.3) (solid blue) and the approximation
(4.2) (dashed red) against ¢ for three different values of o: 0.1, 0.2, and 0.4. The solid blue vertical

2[12] considers the asymmetric case v(dz) = C(z/|z|)q(x)|z| "'~ dz with C(1) = 0.015 and C(—1) = 0.041. Here,
we take C' = (C(1) + C(—1))/2 in order to simplify the simulation of the model. Our values of G, M, and Y are the
same as in [12].

3In our code, we use the R package stabledist to generate them.



line is the “true” optimum threshold € = ¢, the dotted brown vertical line shows ¢ = & with £

given as in approximation (4.3), and the dotted/dashed vertical green line is the approximation
e=c¢p:=+/(2—=Y)o%h,1In(1/h,) derived in (3.4) of Corollary 3.2. We also show the vertical line
passing at the root of (4.2) (vertical dashed red). It is evident that for the considered values of Y
and o, the root of (4.2) and &) are reasonably good approximations of 7. However, we cannot say

the same about &, = /(2 — Y))o2h,, In(1/h,,), which is a good approximation of €}, only for small
values of o and, otherwise, it underestimates ¢ .
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Figure 1: Graphs of the respective left-hand expressions of (3.3) (solid blue) and (4.2) (dashed red)
against ¢ for 0 = 0.1 (left panel), o = 0.2 (center panel), and o = 0.4 (right panel), respectively. We
also show the vertical lines e = €}, (solid blue), e = the root of (4.2) (dashed red), ¢ = €} (dotted brown),
and € = /(2 = Y)o2h, In(1/h,) (dotted/dashed green). The parameters for the CGMY model are set as
C =0.028, G =2.318, M =4.025, and Y = 1.35.

Next, we consider the value of Y = 1.5, while all the other CGMY parameter values remain
unchanged. Figure 2 below shows the graphs of the left-hand expressions of (3.3) (solid blue)
and (4.2) (dashed red), against ¢ for three different values of o: 0.1, 0.2, and 0.4. The Equation
(4.2) derived from Theorem 3.1 is a relatively accurate approximation of (3.3), especially for larger
values of 0. As before, the approximation (3.4) established in Corollary 3.2 is accurate for small
and medium values of o but not for larger values. The approximation (4.3) is reasonably accurate
for all considered values of o.

Finally, we consider the value of Y = 1.7. All the other CGMY parameter values remain the
same. The approximations are shown in Figure 3. We deduce that for such a large value of Y, the
approximation (4.2) derived from Theorem 3.1 is not accurate anymore, though it improves as o
gets larger. On the other hand, the other suggested approximation (4.3) is still relatively accurate
to approximate the optimal threshold e (the root of (3.3)). We again have that for small and
medium values of o, the approximation (3.4) is good, which is not the case for large values of o.

To summarize, while for values of Y < 1.5, the approximation (4.2) may be the most accurate,
this is not the case anymore for larger values of Y. On the other hand, the approximation (4.3) is
reasonably good for a large range of values of Y. Due to this reason, in our simulations of Section
5, we use (4.3) to assess the finite sample performance of the proposed estimation method below.
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Figure 2: Graphs of the respective left-hand expressions of (3.3) (solid blue) and (4.2) (dashed red)
against ¢ for 0 = 0.1 (left panel), o = 0.2 (center panel), and o = 0.4 (right panel), respectively. We
also show the vertical lines e = €}, (solid blue), € = the root of (4.2) (dashed red), ¢ = €} (dotted brown),
and ¢ = /(2 — Y)o2h,, In(1/h,) (dotted/dashed green). The parameters for the CGMY model are set as
C =0.028, G =2.318, M =4.025, and Y = 1.5.

5 A New Method To Estimate The Volatility

In this section, we propose a new method for estimating the volatility ¢? and other parameters
of a tempered-stable Lévy process using the TRQV (3.1) and the approximations of the optimal
threshold derived in Section 3. Then, we illustrate the method in the case of a CGMY Lévy
process. Finally, using a localization technique, we adapt our method to estimate the integrated
variance under a Heston stochastic volatility model with CGMY jumps and compare it to the
method proposed by [13], which is known to be efficient when Y < 1.5.

5.1 Estimation of Stable-Like Lévy Measures

As shown by (3.3) and the asymptotic expansion of Theorem 3.1, the optimal threshold £} depends
on the volatility, and vice versa. It is then natural to consider an iterative method to estimate
ey . But before this, we need to estimate C'y and Y. Several methods have been proposed in the
literature for this purpose (see, e.g., [1], [4], and [18]). Mies [17] recently proposed an efficient
method using the method of moments. In this part, we adapt and modify this method and apply
it in combination with the approximations of Theorem 3.1 to estimate the optimal threshold €} of
the TRQV and subsequently the other parameters o, Y, and Cy.

Consider a Lévy process X := (Xy)icr, with characteristic triplet (s, o2,v). The approach of
[17] builds on the assumption that v can be well approximated by the superposition of stable Lévy
measures in the sense that

lv([z,00)) = ([, 00))| < Llz|™*,  x € (0,1], (5.1)
|v((—00,2]) = v((—o00,2])| < Llz| ™", =€ [-1,0),

for some L, p € (0,00), where ¥ is given by

Z| B (rmlizso0r + rmliz<oy) dz, (5.3)
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Figure 3: Graphs of the respective left-hand expressions of (3.3) (solid blue) and (4.2) (dashed red)
against ¢ for 0 = 0.1 (left panel), o = 0.2 (center panel), and o = 0.4 (right panel), respectively. We
also show the vertical lines e = €}, (solid blue), e = the root of (4.2) (dashed red), ¢ = €} (dotted brown),
and € = \/(2—Y)o2h, In(1/h,) (dotted/dashed green). The parameters of the CGMY model are set as
C =0.028, G =2.318, M =4.025, and Y = 1.7.

for some N € N, a = (a1,...,an) € (0,2)Y, and r = (r{",r],..., 7y, 7y) € R2Y such that
(&%)} + _
ap > a9 > > an > 5 any>p, To+7r,>0 m=1,...,N,
for some ag € (0,00). We want to estimate 6 := (02,7, ) given n observations, X;,, X¢,, ..., Xy,

of the process X at known times 0 =ty < t; < --- < t, =T. As before, we assume the sampling
times are evenly spaced and we done the time step between observations as h,, := T'/n. Conditions
(5.1), (5.2), and (5.3) essentially say that we can approximate X by a fully specified Lévy process

Z := (Zt)ier, with characteristic triplet (0, 02,7) and, hence, with the decomposition

N
Zy=oWi+ > SP teRy,
m=1
where W := (W})icr, is a standard Brownian motion and S™ := (S{")icr,, m = 1,..., N, are in-
dependent a,,-stable processes, independent of W, each with Lévy density o, |z|~1~%m (rﬁzl{xw} +
Tmliz<0}), respectively.

Mies [17] proposed to estimate the parameters, @ = (02,7, @), of the approximating process 7
using the method of moments. We now proceed to briefly review her method. The first step is
to choose 3N + 1 moment functions f = (f1,..., fan+1)"', one for each parameters of Z, and a
suitable scaling factor w, o< 1/4/hyIn(1/hy,), where “oc” hereafter means “proportional to”. Next,
define the MME én to be a solution of the following equation

Fo(6) = > f(unAlX) ~ Eo(F(unZn,)) =0, (5.4)
=1

where 0 = (0,...,0)T € R3V+! and Eg(f(unZp,)) denotes the expectation such that Zj  is deter-
mined by the parameter vector 8. Since Zhn is fully specified and, thus, its characteristic function
is available, Eg(f (unZhn)) can be computed by, e.g., Fourier methods.

Our idea is to combine a version of Mies’ method with our results in Section 3 to improve our

estimation of ¢ and Y. Concretely, we propose to first find the roots of F},(8) and plug them into
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a suitable approximation of Equation (3.3) to obtain an estimate of the optimal threshold €. This
can in turn be used to estimate the volatility via thresholding. To solve the 3N 4 1 equations (5.4),
we propose to solve an optimization problem with objective function of the form

Vo (0; f) := F, (0)A, (O)A, 1 (0)F,(6), (5.5)

n n

where
R T 2 «@ «@ «@ «@ « «@
N (0) = diag(hpu;, hpul, hault, hpudt, ..o haud™  hpud™  hpupN ).

This particular weights are motivated by the scaling of the Central Limit Theorem for F;, ()
established in [17, Lemma 5.4].

For simplicity, suppose we only want to estimate a = aq, rli, and o2 (the method can easily be
adapted to estimate more parameters of 7). We then propose the following procedure:

1. Start with some initial values 8y := (03, 70, ag) and a suitable scaling factor u,, (to be specified
later on).

2. Find the roots of F,(6), which we call (9\”71 = (3,2%1, Tn,1,0p 1), by minimizing the objective
function V,,(0; f) in (5.5).

3. Using 0An71, we solve a suitable approximation of (3.3) (e.g., (4.2) or (4.3)) to get an estimation
of the optimal threshold e}, denoted by &,1. This estimate is then used to compute an
estimate of o2 as

n

~ 1
Tr2 =7 0 (A1X) Lapxi<e, -
i=1

4. Fix 8%72 and use 3N moment functions g := (g1, ...,gsn)T to find (¥, 2, @ 2) by solving

n
G (r, o 872172) = i;g(unA?X) = E@%,Qﬂ‘va) (g(unzln)) =0, (5.6)

or minimizing
Vo(r, o 8,%72,9) =G (r, a;&fL,Z)Gn (r, a;82’2). (5.7)
5. Using (52
a new estimation of €}, denoted by &}, and update 3721’2 by

2,Tn,2, 0 2) and solving the same approximating equation as in Step 3, we obtain

SN 1 — "o 2
(7)" = 7 D (A X) 1gapxi<ey)-
=1

Remark 5.1. We could stop right after Step 3 and make 8,2172 our final estimate of the volatility.
However, our simulation results show that Step 4 significantly improves our estimates of (7, )
when Y < 1.5. We could also follow the Steps 1—5 and repeat Steps 4 and 5 iteratively by letting
029 = (07) until the sequence of estimates (o7,
increase the sample error of the estimators. In the steps 2 and 4 above, there is no guarantee that
the roots therein exist in a finite sample setting. This is another reason to use the minimum (or

local minimum) of V,,(8; f) and G, (r, a;@%g) instead of solving (5.4) and (5.6), respectively.

)2 stabilizes. This approach, however, tends to
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5.2 Estimation of a Lévy Process with CGMY Jump Component

In this subsection, we apply the method introduced in the previous subsection to the case of a
CGMY jump component and compare it to the estimators of Mies [17] and Jacod and Todorov
[13]. Specifically, we work with simulated data from the model (2.1) where J, is a pure-jump
CGMY Lévy process, independent of the Brownian motion W, with Lévy measure

C — x x
voamy (dx) == voamy (x)dz = W(e M lizsoy + @ 1{x<0}>da:.

We use the same values of C', G, and M as in (4.1), but with different values of o and Y. We consider
observations of a 5 minutes frequency over a one-year (252 days) time horizon with a trading time
of 6.5 hours per day (so that n = 252 x 6.5 x 12 = 19656). It should be clarified that we are indeed
in the same setting as that of Subsection 5.1 since, as z — 0, vogumy (z) = Clz|1 7Y + O(|z|~Y).
This suggests us to take N =1 in (5.3) and to use a Y-stable process to approximate the CGMY
process because only the parameters o2, C, and Y are of primary interest. Then Assumptions
(5.1)—(5.3) are satisfied with p = Y and Z; = oW; + S;, t € Ry, where (St)ter, is a Y-stable
process with Lévy measure 7(dz) := C|z|~'~Ydx. The parameters of the approximating model are
0= (c%0Y).
Next, we choose the 3 moment functions f = (f1, fa, f3)T as

filz) = e o) = e VI (@) = 2?10y, T ER, (5.8)

and a suitable scaling factor u, to be specified below. These functions are simpler than the ones
proposed in [17, Section 4] and were chosen because of their superior performance. Even though
the moment functions (5.8) do not meet the strict constraints imposed in [17] (see Assumptions
(F1)—(F2) therein), we believe that most of the assumptions therein are not needed for the validity
of the asymptotic theory in [17]. This will be investigated in a future work together with an
objective and systematic method to calibrate the moment functions.

To determine a suitable scaling factor u,, we will connect it to the threshold parameter € of the
TRQV estimator (3.1). The key observation is to analyze the moment equation corresponding to
the function f3, namely,

% Z f3(un AT X) — Eg (f3 (unZhn)> =0,
i1

which, after some trivial simplifications, can be written as

L m  onon? ~
nE_; (Ai X) Liarx|<i/un} — Eo (Z?Ln]'{|2hn|§1/un}> =0.

This suggests that 1/u,, has a similar role to that of the threshold € in the TRQV estimator; namely,
the choice of u, should ensure that > . | f3(u,A?X) is dominated by the Brownian component
or, equivalently, to eliminate the increments in which the jump component J of X dominates the
Brownian component. Hence, in what follows, we will fix u,, as 1/e,, where &, = \/ 200h In(1/hy,)
and o3 is a suitable initial estimate of o>. We consider the following initial values for o2:

n n

5 1 1

. 2 ~2 o n
Groi =72 (A L n e iy Onor= g0 (A1) (18715, /352 (1) (O

1=1 i=1
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where

n

~2 L 1 1 2
On,00 -= T Z (AnX {larx|< /232 thn In(1/hn)}’ nRV T Z (AZLX) :

=1 =1

n

Broadly, we recommend to use the loose estimator 312%01 as our initial value (78 if the volatility is
“large” (say, 0.4 or larger), and, otherwise, use the tighter estimator 3%702.

For the moment functions g := (g1, g2)T in Step 4 of the algorithm in Subsection 5.1 (the ones
used to correct estimates of 7 and a while fixing that of %), we choose

gi(x) = (1= |z))Lgp<1y,  g2(x) = (1— x2)1{‘x|<1}, z €R. (5.10)

Finally, we use the approximation (4.3) in Steps 3 and 5 of the algorithm outlined in Subsection
5.1. For clarity and easy reference, we outline below the precise estimation procedure for the case

of the CGMY model.

1. Start with some initial guesses (08, Co,Yp). Here we take Cy = 0.1, Yy = 1.3, and 0(2) = 8,21701

when o = 0.4 or 0% = 372%02 when o = 0.2, as defined in (5.9). Given o2, we fix the scaling

factor u, = 1/1/203hy, In(1/hy,).

2. Find the roots of F,, () with the moment functions f in (5.8), which we call (2 Op1s C’n,l, ?n,l)’
by minimizing the objective function V,,(0; f) in (5.5).

3. Usmg (52 Op1s én,l, S}Wl)? we apply the second-order approximation (4.3) to get an estimate of
€r, denoted by &1, and compute its corresponding TRQV estimator 372%2.

4. Fix 02 o and then use the moment functions g in (5.10) with u, = 1/\/2 n2hn In(1/hy) to

get the estlmates (Cmg, n,g) by solving the roots of Gy,(C,Y;57,) in (5.6) or minimizing
Va(C,Y;57 5,9) in (5.7)*

5. Using (2 025 Cn’g, 17”72), we again apply (4.3) to get a new estimate of €7, denoted by &. This
threshold is plugged into the TRQV estimator to compute a final estimation of o2, denoted
by (57,)%.

We compare the simulated performance of our estimator (53)? to the estimator 2, (which
could be considered the plain estimator proposed by [17]) and the estimator O'n7 jT in [13]. In the
latter one, we use the equation (5.3) therein with ¢ = 1.5 and k,, = 252 x 6.5 x 12 = 19656, which is
reasonable since the volatility is constant and there is no need to localize the estimator (so we only
need one block). We take the scaling factor u, = (In(1/hy,))~'/3°, as proposed in the simulation
portion of [17], and @, = (8/3)u, for the term S7 of equation (5.3) in [13]. [13] suggests to use
ty, = (In(1/hy,))~Y3/v/BV and @, = 0.3u,, where BV is the bipower variation, which we also
tried in our simulation, but obtained worst results. In fact, we tried different parameters settings
for {, kn, u,, and u,, and select the values with the best performance. In each simulation, we
divided the one-year data into 12 months and compute the estimate of o for each month, and then
take the average of these 12 monthly estimators as 87217 JT-

“In Steps 2 and 4, we choose the minimization method. We use the R function nloptr from the package nloptr
with the algorithm NLOPT_LD_LBFGS.
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The results are summarized in Tables 1—6 for different parameter settings. The tables report
the sample means, standard deviations (SDs), sample mean and SD of relative errors, and MSEs
for different parameter settings based on 2000 simulations. We also report the TRQV estimator,
denoted by ()2, using the threshold £* given in (4.3) with the true values of 02, C, and Y. Finally,
we also report the TRQV estimator, denoted by (¢07)2, corresponding to the true optimal threshold
e obtained by solving (3.3) after finding E(b;(¢)) via a large scale Monte Carlo experiment.

Tables 1—3 show that, when o = 0.2, the MSEs of 0§ = 57 oy, 0. 1, 05 9, and (77) are getting
smaller in each step. The MSE of (573)? is about 81.8%, 71.8%, and 56.8% lower than the MSE of
812%1, for Y = 1.7, 1.5, 1.35, respectively, while this is 98.5%, 23.4%, and 21.7% lower than the MSE
of 827JT, for Y = 1.7, 1.5, 1.35, respectively. Similarly, as shown in Tables 4—6, when ¢ = 0.4, the
MSEs of 0§ = 02 4, 04 1, 0n g, and (0;)? are also getting smaller in each step. The MSE of (5})?
is about 35.3%, 47.3%, and 56.8% lower than the MSE of 372%1, for Y = 1.7, 1.5, 1.35, respectively.
The MSE of (5%)? are 96.5%, 3.5%, and 58.5% lower than the MSE of G%JT, forY =1.7, 1.5, 1.35,
respectively. So the iterative method has a good performance and significantly improves the MSEs
721,1 and 63’ jr- Regarding the estimates of ¥ and C, we notice that the second
step estimates }7”72 and 6’,172 (obtained from fixing 872172 and then applying (5.6)) are significantly
better than the first step estimates 57“,1 and én,l when Y < 1.5. When Y = 1.7, there is no

significant improvement.

of the estimators ¢

Mean of SD of
Sample Mean Sample SD Relative Error Relative Error MSE

0(2) 0.083128 0.001101 1.078190 0.027526 1.8612E-03
3%’1 0.045788 0.001450 0.144696 0.036257 3.5602E-05
Ch1 0.038116 0.008910 0.361281 0.318223 1.8172E-04
Yoa 1.649710 0.028049 -0.029582 0.016499 3.3158E-03
En 0.003361 0.000105 0.053750 0.032827 4.0365E-08
372172 0.043465 0.002063 0.086634 0.051572 1.6264E-05
@L,Q 0.039492 0.009402 0.410411 0.335795 2.2046E-04
Y2 1.649803 0.030043 -0.029528 0.017672 3.4224E-03

ey 0.003219 0.000122 0.009143 0.038203 1.5703E-08
(83)2 0.040622 0.002467 0.015561 0.061681 6.4747E-06
3%,JT 0.060648 0.003161 0.516191 0.079013 4.3631E-04
)2 0.037780 0.000326 -0.055490 0.008160 5.0331E-06
(o)
(03)2 0.040061 0.000350 0.001528 0.008747 1.2615E-07

Table 1: Estimation based on simulated 5-minute observations of 2000 paths over a one-year time horizon.
The parameters are C = 0.028, Y = 1.7, and o = 0.2. We take 03 = 8721’02. In this case, we compute
er = 0.00319 and £, = 0.003080.

5.3 Integrated Variance Estimation for a Stochastic Volatility Model with Jumps

In this subsection, we apply the method in the previous subsection to estimate the integrated
variance under a stochastic volatility model with a CGMY jump component. We also examine the
finite sample performance of the resulting estimator and compare it with the estimator of Jacod
and Todorov [13]. The basic idea is to split the time-period [0,7] into smaller subintervals so

15



Mean of SD of

Sample Mean Sample 5D Relative Error Relative Error MSE

0(2) 0.048487 0.000569 0.212166 0.014213 7.2347E-05
872%1 0.034272 0.001892 -0.143197 0.047310 3.6390E-05
én,l 0.009674 0.004040 -0.654512 0.144291 3.5218E-04
?n,l 1.718718 0.052867 0.145812 0.035245 5.0632E-02
Enl 0.003300 0.000184 -0.122242 0.048974 2.4517E-07
8%72 0.036122 0.002019 -0.096961 0.050470 1.9118E-05
@L,Q 0.018535 0.009119 -0.338043 0.325676 1.7275E-04
i}n,g 1.618217 0.071105 0.078811 0.047403 1.9031E-02

Ex 0.003470 0.000206 -0.077027 0.054674 1.2614E-07
(o%)? 0.037833 0.001989 -0.054178 0.049722 8.6521E-06
8%7” 0.043206 0.001006 0.080159 0.025152 1.1293E-05
(o%)? 0.041920 0.000393 0.048008 0.009837 3.8424E-06
(o%)? 0.040460 0.000371 0.011491 0.009284 3.4918E-07

Table 2: Estimation based on simulated 5-minute observations of 2000 paths over a one-year time horizon.
The parameters are C = 0.028, Y = 1.5, and 0 = 0.2. We take 0(2) = ’0\721702. In this case, we compute
er =0.00376 and £, = 0.003974.

that o would be approximately constant in each subinterval and, hence, X is approximately Lévy
within that interval. We then apply the method developed in Subsection 5.1 to each subinterval
to estimate the volatility level in each subinterval and finally aggregate the resulting estimates to
estimate the integrated volatility.

Specifically, we consider the following Heston model:

t t t
‘&=1+/m¢mmu+dg W:9+/Pde—%ﬁh+§/\ﬁ@ﬂg t € Ry,
0 0 0

where (W)icr, and (Bj)ier, are two independent standard Brownian motions and (J;)cgr, is
a CGMY Lévy process independent of (W;)icr, and (B)ier,. The parameters of the volatility
specification are set as

k=5, £=056=0.16.

The values of xk and £ above are borrowed from [23]. In the simulation, we experiment with values
of Y =15 and Y = 1.7, and compute the estimated integrated volatility for one day under two
different estimators.

We consider 5-second observations over a one-year (252 days) time horizon with 6.5 trading
hours per day. We set k, = 160, which corresponds to 30 blocks per day. As mentioned above,
we treat the stochastic volatility as a constant volatility in each block, so that we can estimate
the integrated volatility for each block by computing our estimator (%)% with all the estimation
parameters specified as in Subsection 5.2. We then add the integrated volatilities for the 30 blocks to
compute our daily estimator of the integrated volatility fttH/ 252 Vsds for that day. For the estimator
of [13], we use both equations (4.2) and (5.3) therein with k,, = 160 (number of observation in each
block), ¢ = 1.5, and wu, = 0.05(—1Inh,)"'/30/v/BV, where BV is the bipower variation of the
previous day. To assess the accuracy of the different methods, we compute the Median Absolute

Deviation (MAD) around the true value, t+1/252

. Vsds, over 200 simulation paths.
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Mean of SD of

Sample Mean Sample SD Relative Error Relative Error MSE

0(2) 0.042889 0.000460 0.072221 0.011491 8.5567E-06
872%1 0.039098 0.001497 -0.022549 0.037431 3.0552E-06
Cni 0.006717 0.004401 -0.760116 0.157188 4.7235E-04
Yoi 1.620586 0.059843 0.200434 0.044328 7.6798E-02
Enl 0.004171 0.000238 -0.013883 0.056241 6.0045E-08
8%72 0.039907 0.000981 -0.002313 0.024514 9.7007E-07
Chpo 0.049001 0.031537 0.750027 1.126331 1.4356E-03
Y2 1.285035 0.105981 -0.048123 0.078504 1.5452E-02

Ex 0.004374 0.000181 0.034146 0.042847 5.3710E-08
(87*1)2 0.040596 0.000718 0.014911 0.017949 .7122E-07
8%7” 0.040842 0.000634 0.021061 0.015858 1.1121E-06
(’0}*1)2 0.040789 0.000389 0.019736 0.009719 7.7435E-07
(03)2 0.040235 0.000378 0.005870 0.009440 1.9770E-07

Table 3: Estimation based on simulated 5-minute observations of 2000 paths over a one-year time horizon.
The parameters are C = 0.028, Y = 1.35, and o = 0.2. We take o} = 3,21702. In this case, we compute
er = 0.00423 and £ = 0.004421.

Mean of SD of
Sample Mean Sample SD Relative Error Relative Error MSE

03 0.233102 0.003657 0.456887 0.022855 5.3573E-03
372171 0.164513 0.003573 0.028205 0.022332 3.3133E-05
Cn 0.044023 0.010945 0.572264 0.390893 3.7654E-04
Y1 1.641484 0.029400 -0.034421 0.017294 4.2884E-03
En 0.007081 0.000133 0.004358 0.018910 1.8717E-08
8%’2 0.162042 0.003665 0.012764 0.022907 1.7603E-05
Chpo 0.051271 0.009833 0.831099 0.351195 6.3823E-04
Y2 1.619172 0.022776 -0.047546 0.013397 7.0519E-03

Ex 0.007028 0.000167 -0.003155 0.023635 2.8259E-08
(8;)2 0.160897 0.004536 0.005605 0.028350 2.1380E-05
372%” 0.177376 0.017487 0.108603 0.109294 6.0774E-04
(5;;)2 0.159377 0.001432 -0.003894 0.008947 2.4375E-06
(02)2 0.161471 0.001461 0.009193 0.009133 4.2992E-06

Table 4: Estimation based on simulated 5-minute observations of 2000 paths over a one-year time horizon.
The parameters are C = 0.028, Y = 1.7, and 0 = 0.4. We take o5 = G, ,. In this case, we compute
ey = 0.00705 and € = 0.006954.

Figure 4 shows the estimated integrated volatility for each day computed by our MME (solid
black line) and the JT estimator in [13] (dotted blue line) (see Eq. (5.3) therein), and the true daily
integrated volatility (dashed red) for 1 simulation path. When Y = 1.7, the JT estimator tends to
jitter around the true value, while our MME exhibits better performance. This behavior is further
corroborated by Table 7, which shows the MADs of both our MME and JT estimator for 6 different
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Mean of SD of

Sample Mean Sample SD Relative Error Relative Error MSE

0(2) 0.184729 0.002771 0.154558 0.017316 6.1921E-04
872%1 0.150140 0.005615 -0.061628 0.035094 1.2876E-04
Cni 0.010208 0.004122 -0.635430 0.147228 3.3355E-04
Yoi 1.750480 0.033385 0.166986 0.022257 6.3855E-02
Enl 0.007357 0.000442 -0.124190 0.052650 1.2838E-06
8%72 0.150856 0.004893 -0.057151 0.030584 1.0756E-04
Chpo 0.021081 0.004636 -0.247106 0.165562 6.9362E-05
Y2 1.635476 0.038174 0.090317 0.025449 1.9811E-02

Ex 0.007556 0.000369 -0.100445 0.043904 8.4791E-07
(87*1)2 0.153194 0.004645 -0.042537 0.029031 6.7897E-05
8%7” 0.161593 0.008238 0.009958 0.051485 7.0396E-05
(’0}*1)2 0.161458 0.001550 0.009112 0.009684 4.5267E-06
(Uz)2 0.161165 0.001548 0.007280 0.009678 3.7547E-06

Table 5: Estimation based on simulated 5-minute observations of 2000 paths over a one-year time horizon.
The parameters are C = 0.028, Y = 1.5, and 0 = 0.4. We take 0(2) = 32701. In this case, we compute
er = 0.0084 and £} = 0.008444.

Mean of SD of
Sample Mean Sample SD Relative Error Relative Error MSE

03 0.172473 0.002347 0.077956 0.014667 1.6108E-04
372171 0.154598 0.007496 -0.033763 0.046851 8.5376E-05
C'\n,l 0.003444 0.002236 -0.877006 0.079863 6.0801E-04
)A/ml 1.762248 0.118304 0.305369 0.087633 1.8394E-01
En 0.008141 0.000684 -0.120849 0.073887 1.7204E-06
33’2 0.154037 0.004898 -0.037268 0.030615 5.9550E-05
C‘n,g 0.016458 0.010854 -0.412220 0.387637 2.5103E-04
}Afn,g 1.523080 0.171764 0.128208 0.127233 5.9460E-02

Ex 0.007751 0.002270 -0.162936 0.245181 7.4310E-06
(o%)? 0.156800 0.005165 -0.020002 0.032280 3.6916E-05
372%” 0.158787 0.009349 -0.007584 0.058430 8.8874E-05
(5;;)2 0.160665 0.001567 0.004155 0.009797 2.8988E-06
(o%)? 0.160439 0.001562 0.002746 0.009763 2.6332E-06

Table 6: Estimation performance based on simulated 5-minute observations of 2000 paths over a one-year
time horizon. The parameters are C = 0.028, Y = 1.35, and o = 0.4. We take 0§ = G, ;. In this case, we
compute £, = 0.00926 and £ = 0.009338.

days based on 200 simulated paths. However, when Y = 1.5, the JT estimator outperforms our
MME, as shown in the right panel of Figure 4 and Table 7. Now, it is important to point out that
the daily estimate (5.3) of [13] is based on more data than that used in our estimates. Indeed,
the estimator (5.3) in [13] employs a debiasing procedure, whose debiasing term consists of two
components: one that can be computed using the data in each day and another term, depending
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only on Y, that is computed using the data during the whole time horizon (in this case, one year
worth of data). To explore the performance of the estimator using only contemporary data, we
also analyze the performance of the estimator (4.2) in [13], which can be computed using only the
data collected in each day. When Y = 1.7 (left panel of Figure 5), the daily estimated integrated
volatility (4.2) in [13] overestimates the true integrated volatility, and produces extremely large or
small estimates at some points. We also observe this behavior when Y = 1.5 (right panel of Figure
5), but the estimate is much more stable and outperforms our MME most of the time, as shown in
Table 7. To summarize, when Y > 1.5 is large, our approach performs fairly well for the stochastic
volatility model.

Y=1.7 Y=1.5

v

0e+00 2e-04 4e-04 6e-04 8e-04 1e-03
v

0e+00 2e-04 4e-04 6e-04 8e-04 1e-03

0 50 100 150 200 250 0 50 100 150 200 250
Day Day

Figure 4: Graphs of the daily integrated volatility estimates for Y = 1.7 (left panel) and ¥ = 1.5
(right panel), respectively. The dashed red line is the true daily integrated volatility, while the solid black
(respectively, dotted blue) line shows the daily estimates using our MME (respectively, (5.3) in [13]).

Y=1.7 Y=1.5
©
o
S
o] o
o
S |
b5
<
o
> > S
= - o
<
8 i
S S
S|
o
o WW%MW o
o - = o
S 1 , S
° 0 50 100 150 200 250 © 0 50 100 150 200 250
Day Day

Figure 5: Graphs of the daily integrated volatility estimates for Y = 1.7 (left panel) and ¥ = 1.5
(right panel), respectively. The dashed red line is the true daily integrated volatility, while the solid black
(respectively, dotted blue) line shows the daily estimates using our MME (respectively, (4.2) in [13]).
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Method

Day 2

Day 52

Day 102

Day 152

Day 202

Day 252

1.7

MAD.MME

MAD.JT (4.2)
MAD.JT (5.3)

2.4498E-05
1.0087E-04
5.0516E-05

3.7819E-05
9.6535E-05
4.6288E-05

3.4568E-05
1.1127E-04
4.7421E-05

3.7059E-05
1.0820E-04
4.9100E-05

3.7501E-05
1.0253E-04
9.2230E-05

2.7117E-05
1.0623E-04
4.3879E-05

1.5

MAD.MME

MAD.JT (4.2)

6.8551E-05
1.9978E-05
1.3410E-05

6.6529E-05
1.9429E-05
1.1542E-05

5.6600E-05
1.8714E-05
1.0880E-05

6.4519E-05
1.7270E-05
9.5053E-06

6.3395E-05
2.0778E-05
1.6174E-05

6.2592E-05
2.2255E-05
1.4615E-05

MAD.JT (5.3)

Table 7: The MADs for our MME and the estimators in [13] for 6 arbitrary sampled days. The results
are based on simulated 5-second observations of 200 paths over a one-year time horizon with Y = 1.7 and
Y = 1.5, respectively.
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A Proof of Theorem 3.1

We start with the decomposition:

2
E(b1()) = E((6Wa + 1) Low 1,1<5))
= 0 E(W7 Low, sspi<2 ) TE (T Low, s e ) 20 E(WaduLow, sapi<s) ) (A1)
The asymptotic behavior of each of the terms above is obtained in three steps.

Step 1. We first analyze the behavior of the first term in (A.1) as h — 0. By (2.3) and (2.4), we
first decompose it as

E<W§ 1{\UW;L+J,L|§5}> =h— E(Wf 1{‘JW;L+Jh|>E}> =h— E<6_Uh_77h W2 1{|O'Wh+Jh|>E}>
=h—he " E(W1 1{|m/EW1+Jh,\>6})

— he—”hﬁ((e_ﬁh - 1) wi 1{|o—\/EW1+JhI>€}>

—=: h— he ™I, (h) — he ™M Iy(h). (A.2)

In what follows, we will analyze the asymptotic behavior of I;(h) and I5(h), as h — 0, respectively,
in two sub-steps.

Step 1.1. Clearly, by (2.5) and the symmetry of W1,

L) = (WP L vimnssoey) +E(WE L pumunossn) = I () + 10 (R). (A3)
Denote by
6() = ™2 F(z) = /oo p(z)de, zeR
B V2T ’ o z ’ '
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By conditioning on Jj, and using the fact that E(Wfl{wl>z}) = z¢(x) + ®(z), for all x € R, we

have that
fod Jh £ Jh — 9 Jh
Iih=E<< < ) ( T >+<1><:F>). Ad
v (h) O‘\/E ovh ovh  ovh ovh = ovh (#4)
Let pi ;, be the density of .Jj, under I@, and recall the Fourier transform and its inverse transform
defined by

(Fg)(z) : \ﬁ/ e dz, (Flg)(x): \/ﬂ/ e dz.

In what follows, we set

o (g o= o)

h e 2 1
= © / d(w “’fwx dw \/\25 exp (is:c - 202x2h>. (A.5)
T

Then, we deduce that

E (¢<M . U";ﬁ)) = [ FOEwTE &= [ v e d,

cos (T )F el (1 =G G tan (st

=: \/12?exp <01|ulyh+i02\u|yh sgn(u) $iu§h>, (A.6)
with ¢; := (C4++ C_) cos(nY/2)['(=Y) and ¢z := (C_ — Cy)sin(7Y/2)I'(—=Y). Hence, we have
~ 1
E <¢< 4 Jh)) = 02\/5/ exp <cl|u|yh + ico|ul|¥ hsgn(u) — 502u2h + iu(s:l:?h)) du (A.7)
T JRr

ovh  ovh
h [ 1 —
= i / exp (cluyh — 202u2h> cos (czuyh + u(e + 7h)>du
T Jo
1 [ thlfY/Q w2 thlfY/Q €:|:§h
:7'('/0 eXp(Cl‘O_Y—2>COS<CQ‘O_Y+(J)'U\/E>CZW
1 [ thlfY/Q w2 thlfY/2 E:l:/’yh g
_7T/0 eXP<C1'GY—2> COS<CQ'O_Y> COS(W' gﬂ) w
1 [ thlfY/2 w2 ) thlfY/Z . €:|:/’\)7h p
_77/0 exp(cl-ay—2> 51n<02-ay> sm(w- 0\/E> w.

=Y Y p1-Y/2)

where

e wuyh
(F)w = e ~(Cht )

By expanding the Taylor series for exp(cio™" |w|¥ h1=Y/2), as well as for cos(coo and
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sin(coo ™Y wY h1=Y/?), we deduce that
~ 3 Jh
E + —
((mt )
1 [ + Fh 1 : RS j
- / cos<w-€ 7 >e—w2/2dw+ Yo (Wafy = S (F1dfy, o (h)
m™Jo ovh ™o 27, T 2541,
(k7])€Z+' (kvj)i(ovo) k’j_o
1 (e £7h)? 1 , 1 & ;
Ve P <_22h)> T > (=1 aics0(h) = — D (=1 diy10(h), (A8)
T o T T
(k.j)eZ%: (k,5)7#(0,0) k,j=0

where, for m,n € Z and r € Ry,

m en p(m+n)(1-Y/2)  poo L3
Uy (B) = “a 02, )Y / wm TV o5 (w : M) e’ /2 du, (A.9)
m:n.o 0 U\/E

+ L Can Cg h(m+n)(17Y/2) S )Y 4 - gi;yh W2/
i (B) = ol o (mtm)Y ; WMWY+ i (. Th e~ 2 du. (A.10)

By applying the formula for the integrals of w*¥ cos(Bw) and w*¥ sin(Bw) with respect to e
on Ry, as well as the asymptotics for the Kummer’s function M(a,b, z), as h — 0, we deduce that

—w?/2

@t (h) = o ¢y hmrmU=Y/2) L o((mAn)Y+r-1)/2 (m+n)Y +r+1
e m! n! g(m+n)Y 2

M (m+n)Y +r+11 _(Ei:?h)Q
2 2’ 202h

_ae p(mn)(1=Y72) o((mim)Y+r—1)/2 < (m+n)Y +r+ 1>

m!n! gm+n)Y 5
I'(1/2) g2\ ~((m+n)Y4r+1)/2
AT (= ((m+n)Y +71)/2) <2U2h>
'(1/2) e—€>/(20°h) < 2 )((m+n)Y+r)/2
T(((m+n)Y +r+1)/2) \ 20%h )
and that
i (h) = & g hOmE(=Y/D) ¢ 4 F o(menyy+ry2p( (mA0Y +r 1
o m!n! g(m+n)Y ovh 5
~11\2
tnYtr 3 (e£5h)
M< 2 h 2’ 202h
m n m4+n)(1-Y/2
o cp RO/ _o((mim)Y+r)/2 w+1
m!n! g(m+n)Y ovh 5
I'(3/2) £2 N\ ~((m+n)Y+r)/2-1
AT((=(m+n)Y —r)/2) <2a2h)

F(3/2) 6762/(2‘72}0 82 ((m+n)Y+T—1)/2
F((M+H)Y+T)/2+1) ' <202h> .
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In the asymptotic formulas for the Kummers function in the expression of an m.r(h) above, the first
term vanishes if I'(—((m + n)Y + r)/2) are infinity. This happens when —((m +n)Y +71)/21is a
nonpositive integer. Similarly, in the asymptotic formulas for the Kummers function in dm nr(R),
the first term vanishes if (1 — (m +n)Y —r)/2 is a nonpositive integer. Hence, for m,n € Zy and
reRy,as h — 0,

L pmAn+ (r+1)/2 c (m+n) Y+r —e2/(20%h) hm+n+(r+1)/2
Uy () = < (m+n)Y +r+1 > + O< p(m+n) (Y =1)+r/2 ) - O<5(m+n)Y+r+1)’ (A.11)
n pmAn+(r+1)/2 e(min)Y+4r,—e 2/(20%h) pmAn+(r+1)/2
dmnr(h) - O<5(m+n Y+r+1 >+O< h(m+n)(Y=1)+r/2 > - O<5(m+n)Y+r+1) (A'12)
(

Therefore, by combining (A.8), (A.11), and (A.12), we obtain that

IE( < e . JIn )> e—c2/(20%h) o132 vy A (A13)
— ) | =——+ e ), — 0. :
¢ ovh  ovh V2T ( o

Next, we note that

B (n0( -2 ) = [FOE5 ) = [0 (o) 0 du
where by (A.6),

. d 1 . .
f(zpfh(z))(u) = Z%(]:pih)(u) = N exp <c1|u]Yh + icolu)Y hsgn(u) T zu'yh)

. <01Y|u]Y_1 sgn(u)h +icoY|ul¥ th T ﬁh)

Together with (A.5), we obtain that

(oo o))

. Yh3/2 2u2h ~
= 20102/ sgn(u)|ul” ! exp <c1!u\yh +icalul" hsgn(u) — +iu(e + 'Yh))d“
@ R
Y }3/2 2u’h ~
_ CQU/ lul* "t exp <c1\U|Yh +icalul" hsgn(u) — T +iu(e + ’Yh))d“
s R 2
=~ h3/2 2u2h ~
702 / exp <01|u|yh + ico|u|Y hsgn(u) — gun ., iu(e + ’yh))du (A.14)
T Jr

The asymptotics of the last term above follows from (A.7) and (A.13), namely

Foh3/? 2,2

5 / exp <01|u|Yh+i62]u\Yhsgn(u) - +iu(£i7h)>du
T JR

= 0(he /M) LO(R2%71Y), s h— 0. (A.15)

For the first term in (A.14), by expanding the Taylor series for exp(cio™Y |w|Y h1=Y/2), as well as
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for cos(cao ™Y w¥ h1=Y/?) and sin(coo ™Y w¥ h'=Y/2) below, and using (A.9) and (A.10), we have

icioY h3/2
2T

o2u2h
2

/ sgn(u)|ul¥ ~texp <clu|Yh + ico|ul¥ hsgn(u) — +iu(e + ﬁh))du
R

yR3/2 o 2,2
— _WL/ UY_l exp <c1uyh g ; h) sin <62uYh + u(s ﬂ:?h))du
0

T
01Yh(3_y)/2 00 Vo1 c thl—Y/Q w2 ) o thl—Y/Q e+ A’th
:—W w exXp T_E Sin T—l—w O-\/E dw
1 YhB=Y)/2 oo v_1 ctwYRY2 WA\ (eawY RITY/? et ~vh
=7 w exp| ———— — & |sin| ——— ) cos |w- dw
oY ~lg o 2 o ovh
_ 617Yh(3_Y)/2 /oo w e awh W hI Y — uﬁ cos (2¥ 0T Wl WY sin [w- & +7h dw
oY —1r Xp oY 2 oY O'\/E
e YRB-Y)/2 [ . s . 3
T oI > Wiy M)+ D0 (=D diy;y 5 (h) | = O(R¥27Y), (A16)
k,j=0 k,j=0

as h — 0, where we have used the asymptotic formulas (A.11) and (A.12) in the last equality. Fi-
nally, for the second term in (A.14), again by expanding the Taylor series for exp(cio" |w|¥ h1=Y/2),
cos(cao ™Y WY R1=Y/2) and sin(coo ™Y w¥ A1 7Y/2) below, and using (A.9), (A.10), (A.11), and (A.12),
we deduce that

Y h3/2 2,2h,
% / lul¥ =1 exp <cl\ulyh + ico|u|¥ hsgn(u) — 7 ; + iu(e £+ Wl))du
™ R

Yh3/2 o 2 2h ~
= I e (e T o (e e 90
0

s
CQYh(3_Y)/2 0o Vo1 1 thl—Y/2 w2 Cs thl—Y/Q e+ ﬁh
_7mY—1/0 w exp<0Y—2>cos< o +w - U\/E>dw
CQYh(37Y)/2 0o Vo1 1 thlfY/2 w2 Cs thlfY/Q c+ ih
:7rUY_1/0 w exp((jy—2>cos<ay>cos<w' o )dw
C2Yh(3fY)/2 0o Vo1 c1 thlfY/Q w2 ' o thlfY/Q ) e+ ;?h
—7my_1/0 w exp<JY—2>sm(UY>sm<w- o )dw
3-Y)/2 0 00
_ 62}:;_1)/ S (CWaky ()= S (—1dE () | =0@m2Y), (A7)
k,j=0 k,j=0

as h — 0. Therefore, by combining (A.14), (A.15), (A.16), and (A.17), we obtain that

~ € J, 2 /(952 _
E :ti — E/(QO’ h) 3/2 Y . Al
(q:thﬁ(m/E m;)) 0(he )+ O, as hs0. (AL

It remains to analyze the asymptotic behavior of E(®((e & .J,)/(cv/h))). We first note that
there exists a universal constant K > 0, such that

_ J _ J

SUENEE I, P
—o(E e 1 V) 2 of e /2,-1-Y
_O<E<¢<J\/Eim/ﬁ>)> = 0(e7/@) £ O(W¥2TY), as h >0, (A.19)
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where the last inequality above follows from (A.13). Moreover, by (2.7), as h — 0,

@<¢<5i%)1{€ﬂhgo}> /¢> aijh<afu aiJh<0)du

ovh  ovh
¢ iZh —& F7h du+/ o(u (iZh<a\Fu—5:nyh>d
0
1~ —& F~h ovhu — e T Fh
1~ —eF7h Kh ovhE3h \ 7V v
Therefore, by combining (A.19) and (A.20), we obtain that
~ [_ J, 2 2
E —_—t — O(e=s/2"M) L O(he™), as h— 0. A21
(*(m*v)) -ole) +ote) (a2
Finally, by combining (A.3), (A.4), (A.13), (A.18), and (A.21), we conclude that
\/5 € 2 2 2 2
Li(h) = = —=e /7N L 0=/ M) L O(he™™ h — 0. A22
1( ) O_ﬁ \/Ee + (6 )+ ( € )7 as — ( )

Step 1.2. We now study the asymptotic behavior of Io(h), defined in (A.2), as h — 0. Let us first
consider the following decomposition

o~ 76 ~ ~ ~
Iy(h) = E<<€ Pl Uh) Wt 1{|a\/EW1+Jh|>s}) - E(thlz 1{|m/EW1+Jh\>e}>
= Igl(h) - IQQ(h) (A23)

The first term I51(h) can be bounded as follows: as h — 0,
0< (k) <E(e7Th—140),) = exp (h / (e -1+ ¢<x>)ﬁ<dw>) ~1=0(h). (A.24)
Ro
To deal with Iss, for any ¢t € R, we further decompose ﬁt as

~ t ~ ~
U, = / / ) + Qsgn(z)T )N(ds,dx) —/ / Qgn(2) TN (ds, dz) =: UtBv —ayZf —a 77,
Ro 0 JRg

where the first integral is well-defined in light of Assumption 2.1-(i) & (ii), so that

(77 BV 112 ™ 2
Ion(h) = E(Uh W 1{|G\/EW1+Jh|>€}) - a+E(Zh+W1 1{‘gﬁwl+Jh|>a}>
- a_IE(Zng 1{|UﬁW1+Jh‘>€}> = IBY(h) — oy Iy (h) — a_Ip(h).
For the first term I3 (h), note that
0

where the last integral is finite since in a neighborhood of the origin,

).

‘gp(l’) =+ asgn(z)x‘ = ‘ - IHQ(CC) + asgn(z)w| = O<|1 - Q(w) + Osgn(z)L
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which is integrable with respect to 7(dz) in view of Assumption 2.1-(ii). As for the terms I3,
due to the self-similarity of Z; and the fact that eh~'/Y — oo (since Y € (1,2)), the monotone
convergence theorem implies that I35(h) = o(h'/Y), as h — 0. Hence, we obtain that

Ino(h) = o(h"Y), as h— 0. (A.25)
By combining (A.23), (A.24), and (A.25), we conclude that

Iy(h) = o(hYY), as h — 0. (A.26)
Finally, from (A.2), (A.22), and (A.26), we obtain that

2h
E(W}%l{\O'Wh-i-JHSE}) —h— i;€_a2/(202h)—|—O<h€_52/(202h)> —i—O(hZa_Y) +0(/’L1+1/Y), (A27)

as h — 0, which completes the analysis in Step 1.

Step 2. In this step, we will study the asymptotic behavior of the second term in (A.1), as h — 0.
By (2.3), (2.4), and (2.5), we first have

E( R o +nizer) = B R ow, 4120y
= B (e 0 2R w1 2y smiser ) + 2he " B (U ZuL s, 45m15 )
+ F2h2eh E(tfﬁh 1{|Wh+Zh+§h\§e}>
= e " Iy(h) + 27he " Iy (h) + 72hZe " E(e‘ﬁh 1{\wh+zh+%|s€})- (A.28)
Clearly,
§2h26—77hfé<6—[7h 1{|Wh+Zh+Wh\S6}> =O0(h?), as h—0. (A.29)

It remains to analyze the asymptotic behavior of the first two terms in (A.28).

Step 2.1. We begin with the analysis of I3(h). Clearly,

I3(h) = E(%% 1{|0Wh+Zh+7/h|§€}) + E((e_Uh - 1)2;% 1{|awh+zh+ah|ss})

2/ YT 2 = -U 2
=: W2 Y I31(h) + Iso(h). (A.30)

By the symmetry of Wi, we note that

= (72 =( 72
E(Zl 1{75§o\/EW1+h1/YZ1+ﬁh§O}) = E<Zl l{oga\/ﬁwrhl/Yzlﬁhgs})'

In what follows, we let A > 0 small enough so that ¢ — [y]h > 0.
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To study the asymptotic behavior of I31(h), as h — 0, let us first consider

eFAh eFyh—ovhz

4+ = 2 N nl/Y 2
By (h) = E(Zl L{o<ov/mW £11/Y 2, 4730<e, W1 >0, :tZlZO}> _/0 (/0 b pz(iu)d“)qj(x)dx

(FFh) (1-w)

e FAh 1(/ WY ) <€:F'7Vh >
= U +u) du w |dw
0_\[ pZ( ) ¢ O'\/E
(eFAM (1-w)
C h 5
(e F7 )/ </ wl/Y ul—ydu>¢<€$7hw>d¢u
ovh 0 0 ovh
(cFAW(1-w)

eFvh Wi/ 9 -y eFh
+ T o </0 u (pz(:l:u)—C’iu )du)qb( ; w)dw. (A.31)

For the first term in (A.31), we have

L, e ~ U N
WY 1y eFAh _ (eFN) v, [(eTFAR
(eF7n)°" ~oVh
22—V ZF5h

For the second term in (A.31), since Y € (1,2), we first observe that, for any z > 0,

/Z uQ(U_Y—l/\u—QY—l)du — ﬂl 01 (Z) + ﬂl 1 (Z) < # (A33)
0 2—y O 2(Y —1) LV = oy —1)(2-Y)

Hence, we deduce from (2.9) that

(eFAh) (1—w)

1 Leryh)—w)
L[ et - coutau)o 2 i
0 0

KY L rexAh
SQ(Yl)(QY)/Od)< a\/ﬁw>d =0(Vhe™), as h—0.

Therefore, we obtain that

Cy

Ef(h)zm

A2V 27Y L 0(1), as h— 0. (A.34)

Using the same argument as above and since € > h, we also obtain that, when +5 > 0, as h — 0,

+y 2
Ey(h) = E(Zl 1{0§a\/EW1ih1/Yzlﬁh§a,W1§07 :i:Z1§O}>

(72 3-Y-2/Y
- E<Zl Lo<ovawint/v 2, <¥5n,wi<o, :tZlSO}) =O(h / )+0(1).  (A.35)

Next, we consider

+pN o T 2
E3(h) = E(Zl 1{0§m/EW1ih1/Yzlﬂhgs,leo,izlgo})

eF7h 0

0o eFAh—ovha
_/Gﬁ </ u2pz(:|:u)du>qﬁ(x)dx+/ - </ i u2pz(:|:u)du> ¢(z)dz. (A.36)
0 _ovhe eFvh _ovha
nl/Y ovh nl/Y
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(2.8), the first term in (A.36) is such that

[ u2pz(iu)du>¢()dx<K/U ([
0 _ ovha 0

/Y

Ko2-Yp2-Y/2—2/y <k

avh Y ~Y/2-2/Y
N 2-Y /0 7 gx) dw = O(R*/=74),

as h — 0.
Similarly, the second term in (A.36) can be estimated as follows:
eFyh—oVhx ovhz ovhz
Ty o ar < K [ (07 i)t a
e i u“pz(fu)du |¢(z) dr < T Y S u |¢(z) dx

R1/Y ovh R1/Y

Ko2-Yp2-2/Y-Y/2 oy o 2y v/
5y /Eﬁhw ¢(z)dz = o(h / /), as h — 0.

ovh
Therefore, we obtain that
Ef(h) = O(h*7Y22Y) | as h — 0. (A.37)
To complete the analysis for I3(h), it remains to study
0 s}’yh;/c;\/ﬁz
h 2
Ep(h) = E<Zl {0<ovVhW1h!/Y Z1 +5h<e, W1 <0 iZl>0}> / </ Y — u pZ(iU)du> ¢(z)dx
ni/Y
0 Efvh17c;/\/ﬁz
= C’i/ < " ul_Ydu>¢(:U) dx
00 70'\/E1}'yh
1/Y
0 EIF'yh—o'\/Ez
h1/Y 9
+/ </ u (pz(:lzu) —Ciu )du> () dx (A.38)

—oVhaFFh

o0 1Y

For the first term in (A.38), we have

0 eFYh—oVhx
hl/Y 1-Y
Cy uw N du | ¢(x) dx
— 00 —oVhaFFh
W1/ Y

e () )

€
Cy h1_2/Y€2_Y
h . A.
2=v) as h — 0 (A.39)
For the second term in (A.38), we deduce from (A.33) that

0 s¥§hlf/§/ hx
h —1—
/ </—a\mx¢:,h UZ‘pZ(j:u) — Cyu? Y’du)¢(:c) dx
—oo \J Zo/fiagah
Therefore, we obtain that

Ef(h) = =

1-2/Y 2-Y 1
2(2—Y)h +0(1), as h—0.

(A.40)

28



By combining (A.34), (A.35), (A.37), and (A.40), we conclude that

4
Ii(h) = > (Ef (h)+E; (b)) = %hkyyg%y FO(RTYYYY D as h— 0. (A41)
=1

Next, we will study the asymptotic behavior of~ Is2(h), as h — 0. Clearly, by Cauchy-Schwarz
inequality and self-similarity of Z; and W}, under P, we have that

_ N NN 1/2 1/2
I32(h) S h2/Y <E ((e_Uh — 1) >> <E (Zi1 1{|U\/ﬁW1+h1/Y21+§h|§€})> . (A42)

By Assumption 2.1-(v) and denoting C; = fRo (e_&o(‘”) — 1+ Lo(x))i(dz), £ = 1,2, we first have
~ ~ 2 ~ ~ ~ ~
E<<e—Uh -1) ) — oM _9eCh 1~ (Cy —2C1)h, as h— 0. (A.43)

The analysis of the asymptotic behavior, as h — 0, of the second factor in (A.42) is similar to that
of I31(h). More precisely, we first consider

+ w4
Fl (h) T E<Z1 1{0§a\/ﬁwlih1/yzlﬂh§a, leo,izlzo})
(EFFh) (1—w)

_ Ci(ex7n) /1 (/hw ug_ydu>¢(5¢ﬁhw>dw
ovh 0 0 ov'h
eFyh (! (Eﬂ}l%i_w eFh
h 4 —-1-Y
+ U t+u) — Cru du) < w)dw.
(] () = Cou Jau o1
A similar argument as in (A.32) shows that
~ (eFFh)(1-w) ~
Cy (e F7h) /1 (/ Wi/Y u3—Ydu)¢<€]F7hw>dw~ Cr 1wy ay . op
ovh  Jo \Jo ovh 2(4-Y) ’ 7
and by (2.9),
_ (cFIR) (1—w) -
RN - e ads(S78)
U u) — Cu du w | dw
i U Pz (u) |du )¢ T
- ~ . \4-2Y ~
eTyh  K(e F7h) /1 a—2y , [ EFTh 2-4/Y _4-2Y
. 1-— ——w |dw=0(h h — 0.
= ovh 2(2 _ Y)h(4_2y)/y 0 ( w) (b J\/E w oy ( 9 )7 as
Hence, we obtain that
FE(h) _Cx vy O(R>=4/Y e =2Y) | as h — 0. (A.44)

T 24-Y)

Using the same argument as above and since € > h, we also obtain that, when +7 > 0, as h — 0,

4
{0<oVRW£h1/Y Z1 +7h<e, W1<0, £ 74 go})

4 6-4/Y -2V
= E(Zl 1{oga\/EW1ih1/YZ1§ﬁh,leo,izlgo}> = O )- (A.45)
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Moreover, using arguments similar to those for E5 (h), we deduce that

+ T 4 _ 3—4/Y-Y/2
Fy(h) = E(Zl 1{oga\/ﬁwlih1/Yzlﬂhge,leo,izlgo}> = O(h*YY7Y%), as h— 0. (A.46)

Finally, we consider

0 E$'yhl—/§/\/ﬁx
R _ h 4
Fy(h) = E(Zl Li0<o VAW, £h1/Y 2, +5h<e, Wy <0, iZ120}> / (/—J\/ﬁx$f~yh u PZ(iU)dU) ¢(x)dw
—o0 \J Z2/fiagan
0 a}ﬁhlf/a}'/\/ﬁz 0 a}ﬁhlf/a}'/\/ﬁz C
_ h 3-Y h 4 -
= Ci/—oo< o u du> ¢(x)dm+/_oo o u <pz(j:u) u1+Y>du o(x)dx.
h h
A similar argument as in (A.39) shows that
0 €$§h—a\/ﬁz
/Y Ct
C’i/ </ " - u3_Ydu><Z>(x) dx ~ 7h1 YVAY a5 h— 0,
— oo —Gﬁz}}’yh ( — Y)
and by (2.9),
eFih—ovha eFAh—oVhz

/0 ( hl/i u4)pz(ﬂ:u) - Ciu_l_y‘du> )dx < K/ < I 3_2Ydu> ¢(x) dz

— 00 7o'\/lﬁ/ccyfvh 70\/71}’#7,
h

_ K€4—2Y /0 1_0'\/EI':|:”\YJ}L 472Y_ _O_fx:l:’yh 4— 2Y ¢( )d _0 54—2Y
To- vz ) e e PE=Y\ a2 )

Hence, we obtain that
C
FE(h) = ﬁh1_4/ys4_y +O(RTVY ) as h— 0. (A.A4T)
Combining (A.44), (A.45), (A.46), and (A.47), leads to

4
E(ZH i cnr s anizey) = D (B (1) + F (1)
=1

C O \p1-4/Y A=Y
_ (i +0) O L OB YY) as h— 0. (A48)

4-Y
Therefore, by combining (A.42), (A.43), and (A.48), we have
Isp(h) = O(he*™ /) + O(R*2*Y) + O(K*Y/1), as h — 0. (A.49)
Finally, by combining (A.30), (A.41), and (A.49), we obtain that
I3(h) = % he?™Y + 0 (he®™Y/2) + O(h*7Y/?), as h— 0. (A.50)

Step 2.2. In this step, we will investigate the asymptotic behavior of I4(h), as h — 0. Note that

1Y ~(( 5
Ly(h) = h"/ E(le{\a\/EWﬁhl/Yleh\ga}) +E((€ " 1>Zh1{|aWh+Zh+%|§a}>

~ 1/2 _ _ o\ \ 1/2
1/Y 2 —U,
=n <E<Z1 1{IU\/5W1+WY21+%ISE}>> <1 " <E<<e o 1> >> )
1/2
1Y [ @ 2
=0 (h / <E(Zl 1{0\/Ew1+h1/Yzl+whse})) ) » R0,
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where the second inequality above follows from Cauchy-Schwarz inequality. Therefore, by (A.30)
and (A.41), we obtain that

Li(h) = O(Vhe' ™Y £ O(h'=Y), as h— 0. (A.51)

Finally, by combining (A.28), (A.29), (A.50), and (A.51), we conclude that

E(J,f L{jow+ MS&},) = % he’™Y + O (he* Y2 + O(h*Y/?), as h—0, (A.52)

which completes the analysis of Step 2.

Step 3. In this last step, we will study the asymptotic behavior of the third term in (A.1), as
h — 0. By (2.3) and (2.4), we first decompose it as

E(Wth1{|0Wh+Jh|S5}> = INE<€_Uh_nh Wth1{|UWh+Jh|§€})

—nh —nh & —Up,
= VR E(Wih L,y i<ey) + VI E((¢77 = )Ty )
=: """V I5(h) + e "Vh Is(h). (A.53)

For I5(h), by conditioning on Jj, and using the fact that, for any z1, 29 € R with z1 < o,
I’E(I/Vl1{W1€[9c1,902]}) = ¢(‘T1) - (;5(%2),

we obtain from (A.18) that, as h — 0,

Is(h) = E (Jh <¢<EU+\/‘%"> - cb(ga_\/‘g"‘))) = o(he—€2/<202h>> O, (A54)

As for Ig(h), by Cauchy-Schwarz inequality, (2.5), (A.30), (A.41), and (A.43), we obtain that

Is(n)] < (E((e—ﬁh . 1)2>>1/2 <f@(,],3 ! {Mwlwq}))
< <1E< (e - 1)2>>”2 (@(2(2,3 SR, ﬁW1+Jh|SS})>

=O0(he'™¥/?), as h—0. (A.55)

1/2

1/2

Therefore, by combining (A.53), (A.54), and (A.55), we obtain that, as h — 0,
E(Widnlgow, s<e) ) = O(h/2e7/C7 ) 4 0(n2e7Y) + O(n¥261Y72), (A.56)
which completes the analysis in Step 3.

Finally, by combining (A.1), (A.27), (A.52), and (A.56), we conclude that, as h — 0,

E(b1 (8)) =o’h— Uiﬁheg/@”zh) + 7C;++f; he?~ Y40 (he*EQ/(Q"QhU —l—O(h&?Q*Y/Q) +O(h27Y/2)7
P _

which completes the proof of the theorem.
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