
Estimation of Tempered Stable Lévy Models of Infinite Variation

José E. Figueroa-López∗ Ruoting Gong† Yuchen Han‡

February 24, 2022

Abstract

Truncated realized quadratic variations (TRQV) are among the most widely used high-

frequency-based nonparametric methods to estimate the volatility of a process in the presence of

jumps. Nevertheless, the truncation level is known to critically affect its performance, especially

in the presence of infinite variation jumps. In this paper, we study the optimal truncation

level, in the mean-square error sense, for a semiparametric tempered stable Lévy model. We

obtain a novel closed-form 2nd-order approximation of the optimal threshold in a high-frequency

setting. As an application, we propose a new estimation method, which combines iteratively an

approximate semiparametric method of moment estimator and TRQVs with the newly found

small-time approximation for the optimal threshold. The method is tested via simulations to

estimate the volatility and the Blumenthal-Getoor index of a generalized CGMY model and,

via a localization technique, to estimate the integrated volatility of a Heston type model with

CGMY jumps. Our method is found to outperform other alternatives proposed in the literature

when working with a Lévy process (i.e., the volatility is constant), or when the index of jump

intensity Y is larger than 3/2 in the presence of stochastic volatility.

MSC 2000 subject classifications: 60G51, 62M09.

Keywords and phrases: Threshold estimator, high-frequency estimation, Lévy models, method

of moment estimators, optimal parameter tuning.

1 Introduction

Lévy processes have experienced a revival in the past 20 years, propelled by the need for more real-

istic modeling of irregular behavior in many phenomena of nature and society. These fundamental

building blocks of stochastic modeling have been widely applied in many fields, including statistical

physics, meteorology, seismology, insurance, finance, and telecommunication. While, in principle,

Lévy models offer ideal conditions for estimation purposes, two main bottlenecks complicate their

estimation. Firstly, their marginal distributions often lack tractable or closed-form representations.

In those situations, the marginal distributions must be approximated by Fourier, Monte Carlo, or

other numerical methods, which makes the estimation slower and noisier. The second issue comes

from the need to handle high-frequency sampling data of the process. This type of data has been
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widely available in finance during the last 15 years and is increasingly more common in other fields.

The two just-mentioned issues have rendered traditional statistical methods such as likelihood and

Bayesian estimation unfeasible. We refer the reader to [6] for more information about Lévy pro-

cesses and their application in finance, [16] for a survey on frequentist parametric estimation of

Lévy process, and [22] for more information about Bayesian estimation methods.

In this paper, we study a new method for the estimation of the parameters of a Lévy model. A

semiparametric model is considered in which the jump component is assumed to exhibit small jumps

that behave like those of a Y -stable Lévy process. Specifically, the class of tempered stable processes

introduced in [8]1 and [11] is considered. We focus on models of infinite variation (i.e., Y ∈ (1, 2)),

which are arguably the most relevant for financial applications (see [1], [3], and [7]). The estimation

of semiparametric Lévy models of infinite jump variation under high-frequency data is not well

developed. Jacod and Todorov [13] were the first to introduce an efficient estimator of the integrated

volatility of an Itô semimartingale model in the presence of a Lévy jump model of infinite variation

with Blumenthal-Getoor index β ∈ (1, 3/2) or when the jump component is symmetric. Their

estimator is based on locally estimating the volatility from the empirical characteristic function of

the increments of the process over time blocks of decreasing length. Recently, Mies [17] proposed

an efficient estimation method for Lévy models based on a type of approximate semiparametric

method of moments with scaling. Specifically, for some suitable moment functions f1, f2, . . . , fm
and a scaling factor un → ∞, [17] proposed to look for the parameters θ̂ = (θ̂1, . . . , θ̂m) such that

1

n

n∑

i=1

fj
(
un∆

n
i X
)
− E

θ̂

(
fj
(
un∆

n
i Z̃
))

= 0, j = 1, . . . ,m, (1.1)

where Z̃ is the superposition of a Brownian motion and independent stable Lévy processes closely

approximating X in a certain sense. The distribution measure Pθ of Z̃ depends on some parameters

θ, including the volatility σ of X, and Eθ(·) denotes the expectation with respect to Pθ. Above,

∆n
i L := Lti −Lti−1 is the i-th increment of a generic process (Lt)t≥0 given n evenly spaced random

samples Lt0 , . . . , Ltn over a fixed time interval [0, T ] (i.e., ti = ihn with hn = T/n). If X were

assumed to follow a parametric Lévy model and we replaced E
θ̂
(fj(un∆

n
i Z̃)) with E

θ̂
(fj(un∆

n
i X))

in (1.1), we will recover a standard Method of Moment Estimator (MME). However, we are assuming

that X is semiparametric and that it can be approximated closely enough by a parametric Lévy

model Z̃. The scaling un, which is taken to converge to ∞ at the order of 1/
√
ln(n)/n, is also a

new feature of this method compare to the standard MME.

The moment functions f1, . . . , fm and the scaling factor un in (1.1) critically affect the perfor-

mance of the estimators. To determine an appropriate scaling un, we connect it to the threshold

parameter εn of a Truncated Realized Quadratic Variation (TRQV),

TRQVn(εn) =
n∑

i=1

(
∆n

i X
)2
1{|∆n

i X|≤εn}, (1.2)

which is known to be a consistent estimator for the integrated volatility of a general semimartingale

model. Again, above ∆n
i X = Xti − Xti−1 and we are assuming regular sampling observations

Xt1 , . . . , Xtn with ti = ihn and hn = T/n. Next, note that by taking f1(x) = x21{|x|≤1} in (1.1),

1The term “tempered stable” is understood here in a more general sense than in several classical sources of financial

mathematics (e.g., [2], [6], [15]) and even more general than in [19]. In fact, such class of Lévy processes is called the

tempered-stable-like Lévy processes in [8].

2



we recover the TRQV (1.2), which suggests the relationship un = 1/εn. That is, 1/un plays the

same role as the threshold in TRQV.

Recently, [10] studied the problem of optimal thresholding of TRQV (1.2) under the mean-square

error. Specifically, in the case of a Lévy process with volatility σ, it is shown that the threshold

ε = ε?n that minimizes the mean-square error, E((TRQVn(ε)− σ2T )2), solves the equation:

ε2 + 2(n− 1)E
(
b1,hn(ε)

)
− 2Tσ2 = 0,

where b1,hn(ε) := X2
hn
1{|Xhn |≤ε}. By analyzing the small-time asymptotic behavior of E(b1,hn(ε))

(i.e., when n → ∞ so that hn → 0), [10] proved that the optimal threshold ε?n for a Lévy process

with a Y -stable jump component behaves like

ε?n ∼
√
(2− Y )σ2hn ln(1/hn), n→ ∞, (1.3)

where hn = T/n is the time span between observations and, as usual, an ∼ bn means an/bn → 1 as

n→ ∞. The proportionality constant
√
2− Y roughly tells us that the higher the jump activity is,

the lower the optimal threshold has to be if we want to discard the higher noise represented by the

small jumps. This fact opens the door to an iterative method to estimate σ2. We can first estimate

Y and σ2 using, for instance, the method of moments (1.1). We can then use the TRQV with the

threshold ε̂ ?n =

√
(2− Ŷ )σ̂2hn ln(1/hn).

In this paper, we first extend the result of [10] to allow for a general tempered stable Lévy

process. Furthermore, we propose a new approximation for ε?n of the form:

ε̃ ?n :=

√
(2− Y )σ2hn ln

( 1

hn

)
+ 2σ2hn ln

(
(2− α)σ

C

)
, (1.4)

where C controls the overall intensity of jumps. The approximation (1.4) says that if C is small

(relative to σ) then the threshold can be loosened up (in fact, ε̃ ?n ↗ ∞ as C ↘ 0 as it should be).

In practice C is small compare to σ and (1.4) provides a significant correction compare to (1.3).

We then proceed to devise a new method to estimate the volatility, the index of jump activity Y ,

and C by combining a variation of the approximate semiparametric method of moments in [17],

TRQVs, and the approximate optimal threshold (1.4). Compared to [17] we introduce simpler

moment functions f1, . . . , fm, and a systematic and objective method to tune the scaling factor un
in (1.1). The performance of the proposed procedure is superior to the efficient methods of [13]

and [17]. Finally, as in [13], we use a localization technique to estimate the integrated volatility of

an Itô semimartingale. Specifically, the idea is to split the time horizon into small blocks where the

process is approximately Lévy and, hence, its volatility level can be estimated using our method.

For values of Y ≥ 1.5, our method outperforms the method proposed by [13].

The rest of this paper is organized as follows. Section 2 provides the framework and assumptions

as well as some known preliminary results from the literature. Section 3 obtains the asymptotic

behavior of E(b1,hn(ε)) and derives (1.3). The second-order approximation (1.4) is derived in Section

4 as well as a numerical assessment of the approximations in the case of a CGMY jump component.

The new method to estimate the parameters of a tempered stable Lévy model is presented in

Section 5 together with an analysis of its performance via Monte Carlo simulations. The proofs are

deferred to an appendix section.
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2 The Model and Some Preliminary Results

Throughout, R+ := [0,∞) and R0 := R\{0}, and we let (Ω,F ,F,P) be a complete filtered proba-

bility space on which all stochastic processes are defined, where F := (Ft)t∈R+ satisfies the usual

conditions. We consider a Lévy process X := (Xt)t∈R+ of the form

Xt = σWt + Jt, t ∈ R+, (2.1)

whereW := (Wt)t∈R+ is a Wiener process and J := (Jt)t∈R+ is an independent pure-jump tempered

stable Lévy process with Lévy triplet (b, 0, ν). The Lévy measure ν is assumed to be absolutely

continuous with a density s : R0 → R+ of the form

s(x) :=
ν(dx)

dx
:=
(
C+1(0,∞)(x) + C−1(−∞,0)(x)

)
q(x) |x|−1−Y , x ∈ R0. (2.2)

Here, C± > 0, Y ∈ (1, 2), and q : R0 → R+ is a bounded Borel-measurable function. Concretely,

we make the following assumptions on q.

Assumption 2.1.

(i) q(x) → 1, as x→ 0;

(ii) There exist α± 6= 0 such that

∫

(0,1]

∣∣q(x)− 1− α+x
∣∣x−Y−1dx+

∫

[−1,0)

∣∣q(x)− 1− α−x
∣∣|x|−Y−1dx <∞;

(iii) lim sup
|x|→∞

| ln q(x)|
|x| <∞;

(iv) For any ε > 0, inf
|x|<ε

q(x) > 0;

(v)

∫

|x|>1
q(x)2|x|−1−Y dx <∞.

Remark 2.2. The class of Lévy processes considered above is sometimes termed tempered stable

processes (or tempered-stable-like processes as in [8]) and includes a wide range of models appearing

in finance. Roughly, the conditions above amount to say that the small jumps of X behave like

those of a Y -stable Lévy process. We refer the reader to [12] for further background about this class.

The parameter Y is called the index of jump activity and coincides with the Blumenthal-Getoor

index, which controls the jump activity of X in that
∑

s∈(0,t] |∆Xs|γ <∞ for all γ > Y and t > 0,

where ∆Xs := Xs − Xs− is the jump of X at time s. The range of Y considered here (namely,

Y ∈ (1, 2)) is the most relevant for financial applications based on several econometric studies of

high-frequency financial data (cf. [1] and [7]) and short-term option pricing data (cf. [12]).

Using a density transformation technique in [20, Section 6.33], we can change the probability

measure from P to another locally absolutely continuous measure P̃, under which J is a Y -stable

Lévy process and W is a standard Brownian motion independent of J . Concretely, let

ν̃(dx) :=
(
C+1(0,∞)(x) + C−1(−∞,0)(x)

)
|x|−Y−1dx, b̃ := b+

∫

0<|x|≤1
x(ν̃ − ν)(dx).
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Note that ν̃ is the Lévy measure of a Y -stable Lévy process and, also,

ν̃(dx) = eϕ(x) ν(dx), with ϕ(x) := − ln q(x).

Next, define P̃ such that, for any t ∈ R+,

ln

(
dP̃
∣∣
Ft

dP
∣∣
Ft

)
= Ut := lim

ε→0


 ∑

s∈(0,t]:|∆Js|>ε

ϕ(∆Js) + t

∫

|x|>ε

(
e−ϕ(x) − 1

)
ν̃(dx)


 . (2.3)

By virtue of [20, Theorem 33.1], a necessary and sufficient condition for the measure transformation

from P to P̃ to be well defined is given by
∫

R0

(
eϕ(x)/2 − 1

)2
ν(dx) <∞,

which can be shown to follow from Assumption 2.1−(i) & (ii) (cf. [12, Lemma 2.1]). Under P̃,

J is a Lévy process with Lévy triplet (̃b, 0, ν̃), and W is a standard Brownian motion which is

independent of J . In particular, under P̃, the centered process Z := (Zt)t∈R+ , given by

Zt := Jt − tγ̃, γ̃ := Ẽ(J1) = b̃+

∫

|x|>1
x ν̃(dx),

is a strictly Y -stable process with its skewness, scale, and location parameters given by (C+ −
C−)/(C++C−), {(C+ + C−)Γ(−Y )| cos(πY/2)|}1/Y , and 0, respectively. Let pZ denote the marginal

density of Z1 under P̃. It is well known (cf. [20, (14.37)] and references therein) that

pZ(z) ∼ C±|z|−Y−1, as z → ±∞, respectively,

so that

P̃
(
±Z1 > z

)
=
C±
Y

z−Y +O
(
z−2Y

)
, z → ∞.

The processes U := (Ut)t∈R+ and Z can be expressed in terms of the jump-measure N(dt, dx)

of the process J and its compensator Ñ(dt, dx) := N(dt, dx)− ν̃(dx)dt (under P̃), as follows:

Ut = Ũt + ηt :=

∫ t

0

∫

R0

ϕ(x)Ñ(ds, dx) + tη, (2.4)

Jt = Zt + tγ̃ := Z+
t + Z−

t + tγ̃, (2.5)

where

Z+
t :=

∫ t

0

∫

(0,∞)
xÑ(dt, dx), Z−

t :=

∫ t

0

∫

(−∞,0)
xÑ(dt, dx), η :=

∫

R0

(
e−ϕ(x) − 1 + ϕ(x)

)
ν̃(dx).

The existence of the integral defining η follows from Assumption 2.1−(i) & (ii). Clearly, Z+ :=

(Z+
t )t∈R+ and −Z− := (−Z−

t )t∈R+ are independent one-sided Y -stable processes with scale, skew-

ness, and location parameters given by (C±|Γ(−Y ) cos(πY/2)|)1/Y , 1, and 0, respectively, so that

P̃
(
±Z±

1 > z
)
=
C±
Y

z−Y +O
(
z−2Y

)
, z → ∞,

Ẽ

(
e∓Z±

t

)
= exp

(
C±Γ(−Y ) cos

(
πY

2

)
sgn(1− Y )t

)
<∞.
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Moreover, it can be shown that (cf. [9, Lemma 2.1]) there exists a universal constant K ∈ (0,∞),

such that for any z > 0,

P̃
(
±Z±

1 > z
)
≤ Kz−Y . (2.6)

Combining (2.5) and (2.6), we deduce that there exists a constant K̃ ∈ (0,∞) such that, for any

z > 0,

P̃
(
±Z1 > z

)
≤ K̃z−Y . (2.7)

Furthermore, using (14.34) in [20] and an argument similar to that in the proof of [9, Lemma 2.1],

we can show that:

pZ(±z) ≤ K̃ z−Y−1, (2.8)
∣∣∣pZ(±z)− C±z

−Y−1
∣∣∣ ≤ K̃

(
z−Y−1 ∧ z−2Y−1

)
, (2.9)

where above, without loss of generality, we use the same constant K̃ as in (2.7).

3 Main Result

The TRQV, defined as

σ̂2n(ε) =
1

T

n∑

i=1

(
∆n

i X
)2
1{|∆n

i X|≤ε}, (3.1)

is one of the most commonly used estimators for the integrated volatility of an Itô semimartingale.

Above, ∆n
i X := Xti −Xti−1 for i = 1, . . . , n, where Xt0 , Xt1 , . . . , Xtn are evenly spaced observations

of X over a fixed time horizon [0, T ], so that ti = ti,n = ihn for i = 0, 1, . . . , n, with hn := T/n. One

of its drawbacks is the necessity of tuning the threshold ε up, which strongly affects the performance

of the estimator. It is shown in [10] that, for a Lévy process X with volatility σ > 0, there exists a

unique threshold ε = ε?n, which minimizes the mean-square error, E((σ̂2n(ε) − σ2)2). Furthermore,

the minimizer ε?n is such that

ε?n → 0,
ε?n√
hn

→ ∞, as n→ ∞, (3.2)

and solves the equation

ε2 + 2(n− 1)E
(
b1,hn(ε)

)
− 2Tσ2 = 0, (3.3)

where b1,hn(ε) := X2
hn
1{|Xhn |≤ε}. Therefore, in order to determine the asymptotic behavior of the

optimal threshold ε?n, we need to study the asymptotic behavior of E(b1,h(ε)) as both h → 0+

and ε = ε(h) → 0+ in such a way that ε(h)/
√
h → ∞, as h → 0. Our main theoretical result

accomplishes this for the tempered stable Lévy processes of Section 2, and its proof is deferred to

Appendix A.

Theorem 3.1. Under Assumption 2.1, we have

E
(
b1,h(ε)

)
=σ2h−σε

√
2h√
π

e−ε2/(2σ2h)+
C++C−
2− Y

hε2−Y +O
(
he−ε2/(2σ2h)

)
+O

(
hε2−Y/2

)
+O

(
h2−Y/2

)
,

as h→ 0+ and ε = ε(h) → 0+, with ε/
√
h→ ∞.
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The following result gives the asymptotic behavior of the optimal threshold ε?n. Its proof is

similar to that of [10, Proposition 2] and is outline below for completeness and also to motivate

some approximation methods proposed below.

Corollary 3.2. Under Assumption 2.1, the optimal threshold ε?n is such that

ε?n ∼
√
(2− Y )σ2hn ln

1

hn
, as n→ ∞. (3.4)

Furthermore, setting C = (C+ + C−)/2, we have, as n→ ∞,

ε?n=

√
σ2hn

[
(2−Y ) ln

1

hn
+(Y −1) ln ln

1

hn
+(Y −1) ln

(
(2−Y )σ2

)
+2 ln

(
(2−Y )σ

C
√
2π

)
+o(1)

]
. (3.5)

Proof. For simplicity, we take T = 1 so that hn = 1/n. With C = (C+ + C−)/2 and using the

asymptotic behavior of E(b1,hn(ε
?
n)) described in Theorem 3.1, we can write (3.3) as

(ε?n)
2 + 2(n− 1)

(
σ2hn −

√
2σ√
π
ε?n
√
hne

−(ε∗n)
2/(2σ2hn) +

2C

2− Y
hn(ε

?
n)

2−Y + h.o.t.

)
− 2nhnσ

2 = 0,

where h.o.t. means “higher-order terms” as n→ ∞. In view of (3.2) and since Y ∈ (1, 2), we have

2C

2− Y
(ε?n)

2−Y −
√
2σ√
π

ε?n√
hn

e−(ε∗n)
2/(2σ2hn) + o

(
ε?n√
hn

e−(ε∗n)
2/(2σ2hn)

)
+ o
(
(ε∗n)

2−Y
)
= 0.

Dividing by ε∗n, rearranging the terms, and taking logarithms of both sides, we deduce that

(1− Y ) ln ε∗n + o(1) = − (ε?n)
2

2σ2hn
− 1

2
lnhn + ln

(√
2σ(2− Y )

2C
√
π

)
+ o(1),

which can be written as

(ε?n)
2

σ2hn
+ (1− Y ) ln

(
(ε?n)

2

σ2hn

)
+ (1− Y ) ln

(
σ2
)
+ (2− Y ) lnhn − 2 ln

(
σ(2− Y )

C
√
2π

)
= o(1). (3.6)

Dividing by (ε∗n)
2/(σ2hn) and using (3.2), we obtain the first result (3.4). For the second asymp-

totics, note that (3.4) implies that

ln

(
(ε?n)

2

σ2hn

)
= ln

(
(2− Y ) ln

1

hn

)
+ o(1).

Finally, plugging the above in (3.6) and solving for ε?n gives the desired asymptotics.

The proportionality constant
√
2− Y of the previous result is intuitive and roughly tells us that

the higher the jump activity is, the lower the optimal threshold has to be if we want to discard the

higher noise represented by the jumps and to catch information about the Brownian component.
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4 Other Approximations and Illustration for a CGMY Model

In this section, we introduce other approximations to the optimal threshold derived from the for-

mulas in Theorem 3.1 and the proof of Corollary 3.2. We then illustrate their performance in the

case of a Lévy process with a CGMY jump component J (cf. [5]). The CGMY model is considered

a prototypical jump process of infinite activity in finance. In the notation of the Lévy density (2.2),

a CGMY model is given by

q(x) = e−Mx1(0,∞)(x) + eGx1(−∞,0)(x) and C+ = C− = C.

Thus, the conditions of Assumption 2.1 are satisfied with α+ = −M and α− = G. We adopt the

parameter setting

C = 0.028, G = 2.318, M = 4.025, Y = 1.35. (4.1)

These values are similar to those used in [12]2, who themselves took them from an empirical study

in [14]. We take T = 1 year and n = 252(6.5)(60), which corresponds to a frequency of 1 minute

(assuming 252 trading days and 6.5 trading hours per day).

To compute E(b1,h(ε)), we use Monte Carlo and the change of probability measure (2.3). Con-

cretely, under P̃, we have the following representation:

E
(
b1,h(ε)

)
= Ẽ

(
e−Uh

(
σWh + Jh

)2
1{|σWh+Jh|≤ε}

)

= Ẽ

(
e−MZ+

h +GZ−
h −ηh

(
σWh + Z+

h + Z−
h + γ̃h

)2
1{|σWh+Z+

h +Z−
h +γ̃h|≤ε}

)
,

where Z+
h and −Z−

h are independent one-sided Y -stable random variables with common scale,

skewness, and location parameters given by C|Γ(−Y ) cos(πY/2)|h1/Y , 1, and 0, respectively. Such

a distribution can be simulated efficiently3.

We consider two different approximations of the equation (3.3) defining the optimal threshold

ε?n. For the first approximation, we replace E(b1(ε, hn)) (where hn = 1/n) in (3.3) with its leading

order terms as given by Theorem 3.1, namely,

ε2 + 2(n− 1)

(
−
√
2σ√
π
ε
√
hne

−ε2/(2σ2hn) +
2C

2− Y
hnε

2−Y

)
− 2σ2hn = 0. (4.2)

For the second approximation, we take a simplified version of (3.5), only keeping those terms that

are found to be significant:

ε̃ ?n :=

√
(2− Y )σ2hn ln

( 1

hn

)
+ 2σ2hn ln

(
(2− Y )σ

C

)
. (4.3)

Interestingly, as C → 0, we have ε̃ ?n → ∞, which makes sense. The approximation (4.3) says that

if C is small (relative to σ) then the threshold can be loosened up.

Figure 1 shows the graphs of the left-hand expressions of (3.3) (solid blue) and the approximation

(4.2) (dashed red) against ε for three different values of σ: 0.1, 0.2, and 0.4. The solid blue vertical

2[12] considers the asymmetric case ν(dx) = C(x/|x|)q̄(x)|x|−1−Y dx with C(1) = 0.015 and C(−1) = 0.041. Here,

we take C = (C(1) +C(−1))/2 in order to simplify the simulation of the model. Our values of G, M , and Y are the

same as in [12].
3In our code, we use the R package stabledist to generate them.
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line is the “true” optimum threshold ε = ε?n, the dotted brown vertical line shows ε = ε̃ ?n with ε̃ ?n
given as in approximation (4.3), and the dotted/dashed vertical green line is the approximation

ε = εn :=
√
(2− Y )σ2hn ln(1/hn) derived in (3.4) of Corollary 3.2. We also show the vertical line

passing at the root of (4.2) (vertical dashed red). It is evident that for the considered values of Y

and σ, the root of (4.2) and ε̃ ?n are reasonably good approximations of ε?n. However, we cannot say

the same about εn =
√

(2− Y )σ2hn ln(1/hn), which is a good approximation of ε?n only for small

values of σ and, otherwise, it underestimates ε?n.
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Figure 1: Graphs of the respective left-hand expressions of (3.3) (solid blue) and (4.2) (dashed red)

against ε for σ = 0.1 (left panel), σ = 0.2 (center panel), and σ = 0.4 (right panel), respectively. We

also show the vertical lines ε = ε?
n
(solid blue), ε = the root of (4.2) (dashed red), ε = ε̃ ?

n
(dotted brown),

and ε =
√
(2− Y )σ2hn ln(1/hn) (dotted/dashed green). The parameters for the CGMY model are set as

C = 0.028, G = 2.318, M = 4.025, and Y = 1.35.

Next, we consider the value of Y = 1.5, while all the other CGMY parameter values remain

unchanged. Figure 2 below shows the graphs of the left-hand expressions of (3.3) (solid blue)

and (4.2) (dashed red), against ε for three different values of σ: 0.1, 0.2, and 0.4. The Equation

(4.2) derived from Theorem 3.1 is a relatively accurate approximation of (3.3), especially for larger

values of σ. As before, the approximation (3.4) established in Corollary 3.2 is accurate for small

and medium values of σ but not for larger values. The approximation (4.3) is reasonably accurate

for all considered values of σ.

Finally, we consider the value of Y = 1.7. All the other CGMY parameter values remain the

same. The approximations are shown in Figure 3. We deduce that for such a large value of Y , the

approximation (4.2) derived from Theorem 3.1 is not accurate anymore, though it improves as σ

gets larger. On the other hand, the other suggested approximation (4.3) is still relatively accurate

to approximate the optimal threshold ε?n (the root of (3.3)). We again have that for small and

medium values of σ, the approximation (3.4) is good, which is not the case for large values of σ.

To summarize, while for values of Y ≤ 1.5, the approximation (4.2) may be the most accurate,

this is not the case anymore for larger values of Y . On the other hand, the approximation (4.3) is

reasonably good for a large range of values of Y . Due to this reason, in our simulations of Section

5, we use (4.3) to assess the finite sample performance of the proposed estimation method below.

9



0.000 0.001 0.002 0.003 0.004

-
0
.
0
0
4

-
0
.
0
0
1

0
.
0
0
2

Threshold, ε

0.000 0.001 0.002 0.003 0.004

-
0
.
0
1
5

-
0
.
0
0
5

Threshold, ε

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007

-
0
.
0
6

-
0
.
0
4

-
0
.
0
2

0
.
0
0

Threshold, ε

Figure 2: Graphs of the respective left-hand expressions of (3.3) (solid blue) and (4.2) (dashed red)

against ε for σ = 0.1 (left panel), σ = 0.2 (center panel), and σ = 0.4 (right panel), respectively. We

also show the vertical lines ε = ε?
n
(solid blue), ε = the root of (4.2) (dashed red), ε = ε̃ ?

n
(dotted brown),

and ε =
√
(2− Y )σ2hn ln(1/hn) (dotted/dashed green). The parameters for the CGMY model are set as

C = 0.028, G = 2.318, M = 4.025, and Y = 1.5.

5 A New Method To Estimate The Volatility

In this section, we propose a new method for estimating the volatility σ2 and other parameters

of a tempered-stable Lévy process using the TRQV (3.1) and the approximations of the optimal

threshold derived in Section 3. Then, we illustrate the method in the case of a CGMY Lévy

process. Finally, using a localization technique, we adapt our method to estimate the integrated

variance under a Heston stochastic volatility model with CGMY jumps and compare it to the

method proposed by [13], which is known to be efficient when Y ≤ 1.5.

5.1 Estimation of Stable-Like Lévy Measures

As shown by (3.3) and the asymptotic expansion of Theorem 3.1, the optimal threshold ε?n depends

on the volatility, and vice versa. It is then natural to consider an iterative method to estimate

ε?n. But before this, we need to estimate C± and Y . Several methods have been proposed in the

literature for this purpose (see, e.g., [1], [4], and [18]). Mies [17] recently proposed an efficient

method using the method of moments. In this part, we adapt and modify this method and apply

it in combination with the approximations of Theorem 3.1 to estimate the optimal threshold ε?n of

the TRQV and subsequently the other parameters σ, Y , and C±.
Consider a Lévy process X := (Xt)t∈R+ with characteristic triplet (µ, σ2, ν). The approach of

[17] builds on the assumption that ν can be well approximated by the superposition of stable Lévy

measures in the sense that

∣∣ν
(
[x,∞)

)
− ν̃
(
[x,∞)

)∣∣ ≤ L|x|−ρ, x ∈ (0, 1], (5.1)∣∣ν
(
(−∞, x]

)
− ν̃
(
(−∞, x]

)∣∣ ≤ L|x|−ρ, x ∈ [−1, 0), (5.2)

for some L, ρ ∈ (0,∞), where ν̃ is given by

ν̃(dz) =

N∑

m=1

αm

|z|1+αm

(
r+m1{x>0} + r−m1{x<0}

)
dz, (5.3)
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Figure 3: Graphs of the respective left-hand expressions of (3.3) (solid blue) and (4.2) (dashed red)

against ε for σ = 0.1 (left panel), σ = 0.2 (center panel), and σ = 0.4 (right panel), respectively. We

also show the vertical lines ε = ε?
n
(solid blue), ε = the root of (4.2) (dashed red), ε = ε̃ ?

n
(dotted brown),

and ε =
√
(2− Y )σ2hn ln(1/hn) (dotted/dashed green). The parameters of the CGMY model are set as

C = 0.028, G = 2.318, M = 4.025, and Y = 1.7.

for some N ∈ N, α = (α1, . . . , αN ) ∈ (0, 2)N , and r = (r+1 , r
−
1 , . . . , r

+
N , r

−
N ) ∈ R

2N
+ such that

α1 > α2 > · · · > αN >
α0

2
, αN > ρ, r+m + r−m > 0, m = 1, . . . , N,

for some α0 ∈ (0,∞). We want to estimate θ := (σ2, r,α) given n observations, Xt1 , Xt2 , . . . , Xtn ,

of the process X at known times 0 = t0 < t1 < · · · < tn = T . As before, we assume the sampling

times are evenly spaced and we done the time step between observations as hn := T/n. Conditions

(5.1), (5.2), and (5.3) essentially say that we can approximate X by a fully specified Lévy process

Z̃ := (Z̃t)t∈R+ with characteristic triplet (0, σ2, ν̃) and, hence, with the decomposition

Z̃t = σWt +

N∑

m=1

Sm
t , t ∈ R+,

where W := (Wt)t∈R+ is a standard Brownian motion and Sm := (Sm
t )t∈R+ , m = 1, . . . , N , are in-

dependent αm-stable processes, independent ofW , each with Lévy density αm|z|−1−αm(r+m1{x>0}+
r−m1{x<0}), respectively.

Mies [17] proposed to estimate the parameters, θ = (σ2, r,α), of the approximating process Z̃

using the method of moments. We now proceed to briefly review her method. The first step is

to choose 3N + 1 moment functions f = (f1, . . . , f3N+1)
T, one for each parameters of Z̃, and a

suitable scaling factor un ∝ 1/
√
hn ln(1/hn), where “∝” hereafter means “proportional to”. Next,

define the MME θ̂n to be a solution of the following equation

Fn(θ) :=
1

n

n∑

i=1

f
(
un∆

n
i X
)
− Eθ

(
f
(
unZ̃hn

))
= 0, (5.4)

where 0 = (0, . . . , 0)T ∈ R
3N+1 and Eθ(f(unZ̃hn)) denotes the expectation such that Z̃hn is deter-

mined by the parameter vector θ. Since Z̃hn is fully specified and, thus, its characteristic function

is available, Eθ(f(unZ̃hn)) can be computed by, e.g., Fourier methods.

Our idea is to combine a version of Mies’ method with our results in Section 3 to improve our

estimation of σ2 and Y . Concretely, we propose to first find the roots of Fn(θ) and plug them into
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a suitable approximation of Equation (3.3) to obtain an estimate of the optimal threshold ε?n. This

can in turn be used to estimate the volatility via thresholding. To solve the 3N +1 equations (5.4),

we propose to solve an optimization problem with objective function of the form

Vn(θ;f) := FT
n (θ)Λ−1

n (θ)Λ−1
n (θ)Fn(θ), (5.5)

where

Λn(θ) := diag
(
hnu

2
n, hnu

α1
n , hnu

α1
n , hnu

α1
n , . . . , hnu

αN
n , hnu

αN
n , hnu

αN
n

)
.

This particular weights are motivated by the scaling of the Central Limit Theorem for Fn(θ)

established in [17, Lemma 5.4].

For simplicity, suppose we only want to estimate α = α1, r
±
1 , and σ

2 (the method can easily be

adapted to estimate more parameters of ν̃). We then propose the following procedure:

1. Start with some initial values θ0 := (σ20, r0,α0) and a suitable scaling factor un (to be specified

later on).

2. Find the roots of Fn(θ), which we call θ̂n,1 := (σ̂2n,1, r̂n,1, α̂n,1), by minimizing the objective

function Vn(θ;f) in (5.5).

3. Using θ̂n,1, we solve a suitable approximation of (3.3) (e.g., (4.2) or (4.3)) to get an estimation

of the optimal threshold ε?n, denoted by ε̂n,1. This estimate is then used to compute an

estimate of σ2 as

σ̂2n,2 :=
1

T

n∑

i=1

(
∆n

i X
)2
1{|∆n

i X|≤ε̂n,1}.

4. Fix σ̂2n,2 and use 3N moment functions g := (g1, . . . , g3N )T to find (r̂n,2, α̂n,2) by solving

Gn

(
r,α; σ̂2n,2

)
:=

1

n

n∑

i=1

g
(
un∆

n
i X
)
− E(σ̂2

n,2,r,α)

(
g
(
unZ̃hn

))
= 0, (5.6)

or minimizing

Vn(r,α; σ̂2n,2, g) := GT
n

(
r,α; σ̂2n,2

)
Gn

(
r,α; σ̂2n,2

)
. (5.7)

5. Using (σ̂2n,2, r̂n,2, α̂n,2) and solving the same approximating equation as in Step 3, we obtain

a new estimation of ε?n, denoted by ε̂ ?n , and update σ̂2n,2 by

(
σ̂?n
)2

:=
1

T

n∑

i=1

(
∆n

i X
)2
1{|∆n

i X|≤ε̂ ?
n}.

Remark 5.1. We could stop right after Step 3 and make σ̂2n,2 our final estimate of the volatility.

However, our simulation results show that Step 4 significantly improves our estimates of (r,α)

when Y ≤ 1.5. We could also follow the Steps 1−5 and repeat Steps 4 and 5 iteratively by letting

σ̂2n,2 = (σ̂?n)
2 until the sequence of estimates (σ̂?n)

2 stabilizes. This approach, however, tends to

increase the sample error of the estimators. In the steps 2 and 4 above, there is no guarantee that

the roots therein exist in a finite sample setting. This is another reason to use the minimum (or

local minimum) of Vn(θ;f) and Gn

(
r,α; σ̂2n,2

)
instead of solving (5.4) and (5.6), respectively.
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5.2 Estimation of a Lévy Process with CGMY Jump Component

In this subsection, we apply the method introduced in the previous subsection to the case of a

CGMY jump component and compare it to the estimators of Mies [17] and Jacod and Todorov

[13]. Specifically, we work with simulated data from the model (2.1) where J , is a pure-jump

CGMY Lévy process, independent of the Brownian motion W , with Lévy measure

νCGMY (dx) := νCGMY (x)dx :=
C

|x|1+Y

(
e−Mx1{x>0} + eGx1{x<0}

)
dx.

We use the same values of C, G, andM as in (4.1), but with different values of σ and Y . We consider

observations of a 5 minutes frequency over a one-year (252 days) time horizon with a trading time

of 6.5 hours per day (so that n = 252× 6.5× 12 = 19656). It should be clarified that we are indeed

in the same setting as that of Subsection 5.1 since, as x → 0, νCGMY (x) = C|x|−1−Y + O(|x|−Y ).

This suggests us to take N = 1 in (5.3) and to use a Y -stable process to approximate the CGMY

process because only the parameters σ2, C, and Y are of primary interest. Then Assumptions

(5.1)−(5.3) are satisfied with ρ = Y and Z̃t = σWt + St, t ∈ R+, where (St)t∈R+ is a Y -stable

process with Lévy measure ν̃(dx) := C|x|−1−Y dx. The parameters of the approximating model are

θ = (σ2, C, Y ).

Next, we choose the 3 moment functions f = (f1, f2, f3)
T as

f1(x) := e−|x|, f2(x) := e−
√

|x|, f3(x) := x21{|x|<1}, x ∈ R, (5.8)

and a suitable scaling factor un to be specified below. These functions are simpler than the ones

proposed in [17, Section 4] and were chosen because of their superior performance. Even though

the moment functions (5.8) do not meet the strict constraints imposed in [17] (see Assumptions

(F1)−(F2) therein), we believe that most of the assumptions therein are not needed for the validity

of the asymptotic theory in [17]. This will be investigated in a future work together with an

objective and systematic method to calibrate the moment functions.

To determine a suitable scaling factor un, we will connect it to the threshold parameter ε of the

TRQV estimator (3.1). The key observation is to analyze the moment equation corresponding to

the function f3, namely,

1

n

n∑

i=1

f3
(
un∆

n
i X
)
− Eθ

(
f3
(
unZ̃hn

))
= 0,

which, after some trivial simplifications, can be written as

1

n

n∑

i=1

(
∆n

i X
)2
1{|∆n

i X|≤1/un} − Eθ

(
Z̃2
hn
1{|Z̃hn |≤1/un}

)
= 0.

This suggests that 1/un has a similar role to that of the threshold ε in the TRQV estimator; namely,

the choice of un should ensure that
∑n

i=1 f3(un∆
n
i X) is dominated by the Brownian component

or, equivalently, to eliminate the increments in which the jump component J of X dominates the

Brownian component. Hence, in what follows, we will fix un as 1/εn, where εn =
√

2σ20hn ln(1/hn)

and σ20 is a suitable initial estimate of σ2. We consider the following initial values for σ2:

σ̂2n,01:=
1

T

n∑

i=1

(
∆n

i X
)2
1{|∆n

i X|≤
√

hnln(1/hn)}, σ̂2n,02 :=
1

T

n∑

i=1

(
∆n

i X
)2
1{|∆n

i X|≤
√

2σ̂2
n,00hnln(1/hn)}

,(5.9)
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where

σ̂2n,00 :=
1

T

n∑

i=1

(
∆n

i X
)2
1{|∆n

i X|≤
√

2σ̂2
n,RVhn ln(1/hn)}

, σ̂2n,RV :=
1

T

n∑

i=1

(
∆n

i X
)2
.

Broadly, we recommend to use the loose estimator σ̂2n,01 as our initial value σ20 if the volatility is

“large” (say, 0.4 or larger), and, otherwise, use the tighter estimator σ̂2n,02.

For the moment functions g := (g1, g2)
T in Step 4 of the algorithm in Subsection 5.1 (the ones

used to correct estimates of r and α while fixing that of σ2), we choose

g1(x) :=
(
1− |x|

)
1{|x|<1}, g2(x) :=

(
1− x2

)
1{|x|<1}, x ∈ R. (5.10)

Finally, we use the approximation (4.3) in Steps 3 and 5 of the algorithm outlined in Subsection

5.1. For clarity and easy reference, we outline below the precise estimation procedure for the case

of the CGMY model.

1. Start with some initial guesses (σ20, C0, Y0). Here we take C0 = 0.1, Y0 = 1.3, and σ20 = σ̂2n,01
when σ = 0.4 or σ20 = σ̂2n,02 when σ = 0.2, as defined in (5.9). Given σ20, we fix the scaling

factor un = 1/
√
2σ20hn ln(1/hn).

2. Find the roots of Fn(θ) with the moment functions f in (5.8), which we call (σ̂2n,1, Ĉn,1, Ŷn,1),

by minimizing the objective function Vn(θ;f) in (5.5).

3. Using (σ̂2n,1, Ĉn,1, Ŷn,1), we apply the second-order approximation (4.3) to get an estimate of

ε?n, denoted by ε̂n,1, and compute its corresponding TRQV estimator σ̂2n,2.

4. Fix σ̂2n,2 and then use the moment functions g in (5.10) with un = 1/
√
2σ̂2n,2hn ln(1/hn) to

get the estimates (Ĉn,2, Ŷn,2) by solving the roots of Gn(C, Y ; σ̂2n,2) in (5.6) or minimizing

Vn(C, Y ; σ̂2n,2, g) in (5.7)4

5. Using (σ̂2n,2, Ĉn,2, Ŷn,2), we again apply (4.3) to get a new estimate of ε?n, denoted by ε̂ ?n . This

threshold is plugged into the TRQV estimator to compute a final estimation of σ2, denoted

by (σ̂?n)
2.

We compare the simulated performance of our estimator (σ̂?n)
2 to the estimator σ̂2n,1 (which

could be considered the plain estimator proposed by [17]) and the estimator σ̂2n,JT in [13]. In the

latter one, we use the equation (5.3) therein with ζ = 1.5 and kn = 252×6.5×12 = 19656, which is

reasonable since the volatility is constant and there is no need to localize the estimator (so we only

need one block). We take the scaling factor un = (ln(1/hn))
−1/30, as proposed in the simulation

portion of [17], and ūn = (8/3)un for the term Sn
T of equation (5.3) in [13]. [13] suggests to use

un = (ln(1/hn))
−1/30/

√
BV and ūn = 0.3un, where BV is the bipower variation, which we also

tried in our simulation, but obtained worst results. In fact, we tried different parameters settings

for ζ, kn, un, and ūn, and select the values with the best performance. In each simulation, we

divided the one-year data into 12 months and compute the estimate of σ2 for each month, and then

take the average of these 12 monthly estimators as σ̂2n,JT.

4In Steps 2 and 4, we choose the minimization method. We use the R function nloptr from the package nloptr

with the algorithm NLOPT LD LBFGS.
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The results are summarized in Tables 1−6 for different parameter settings. The tables report

the sample means, standard deviations (SDs), sample mean and SD of relative errors, and MSEs

for different parameter settings based on 2000 simulations. We also report the TRQV estimator,

denoted by (σ̃?n)
2, using the threshold ε̃ ?n given in (4.3) with the true values of σ2, C, and Y . Finally,

we also report the TRQV estimator, denoted by (σ?n)
2, corresponding to the true optimal threshold

ε?n obtained by solving (3.3) after finding E(b1(ε)) via a large scale Monte Carlo experiment.

Tables 1−3 show that, when σ = 0.2, the MSEs of σ20 = σ̂2n,02, σ̂
2
n,1, σ̂

2
n,2, and (σ̂?n)

2 are getting

smaller in each step. The MSE of (σ̂?n)
2 is about 81.8%, 71.8%, and 56.8% lower than the MSE of

σ̂2n,1, for Y = 1.7, 1.5, 1.35, respectively, while this is 98.5%, 23.4%, and 21.7% lower than the MSE

of σ̂2n,JT, for Y = 1.7, 1.5, 1.35, respectively. Similarly, as shown in Tables 4−6, when σ = 0.4, the

MSEs of σ20 = σ̂2n,02, σ̂
2
n,1, σ̂

2
n,2, and (σ̂?n)

2 are also getting smaller in each step. The MSE of (σ̂?n)
2

is about 35.3%, 47.3%, and 56.8% lower than the MSE of σ̂2n,1, for Y = 1.7, 1.5, 1.35, respectively.

The MSE of (σ̂?n)
2 are 96.5%, 3.5%, and 58.5% lower than the MSE of σ̂2n,JT, for Y = 1.7, 1.5, 1.35,

respectively. So the iterative method has a good performance and significantly improves the MSEs

of the estimators σ̂2n,1 and σ̂2n,JT. Regarding the estimates of Y and C, we notice that the second

step estimates Ŷn,2 and Ĉn,2 (obtained from fixing σ̂2n,2 and then applying (5.6)) are significantly

better than the first step estimates Ŷn,1 and Ĉn,1 when Y ≤ 1.5. When Y = 1.7, there is no

significant improvement.

Sample Mean Sample SD
Mean of

Relative Error

SD of

Relative Error
MSE

σ20 0.083128 0.001101 1.078190 0.027526 1.8612E-03

σ̂2n,1 0.045788 0.001450 0.144696 0.036257 3.5602E-05

Ĉn,1 0.038116 0.008910 0.361281 0.318223 1.8172E-04

Ŷn,1 1.649710 0.028049 -0.029582 0.016499 3.3158E-03

ε̂n,1 0.003361 0.000105 0.053750 0.032827 4.0365E-08

σ̂2n,2 0.043465 0.002063 0.086634 0.051572 1.6264E-05

Ĉn,2 0.039492 0.009402 0.410411 0.335795 2.2046E-04

Ŷn,2 1.649803 0.030043 -0.029528 0.017672 3.4224E-03

ε̂ ?n 0.003219 0.000122 0.009143 0.038203 1.5703E-08

(σ̂?n)
2 0.040622 0.002467 0.015561 0.061681 6.4747E-06

σ̂2n,JT 0.060648 0.003161 0.516191 0.079013 4.3631E-04

(σ̃?n)
2 0.037780 0.000326 -0.055490 0.008160 5.0331E-06

(σ?n)
2 0.040061 0.000350 0.001528 0.008747 1.2615E-07

Table 1: Estimation based on simulated 5-minute observations of 2000 paths over a one-year time horizon.

The parameters are C = 0.028, Y = 1.7, and σ = 0.2. We take σ2

0
= σ̂2

n,02
. In this case, we compute

ε?
n
= 0.00319 and ε̃ ?

n
= 0.003080.

5.3 Integrated Variance Estimation for a Stochastic Volatility Model with Jumps

In this subsection, we apply the method in the previous subsection to estimate the integrated

variance under a stochastic volatility model with a CGMY jump component. We also examine the

finite sample performance of the resulting estimator and compare it with the estimator of Jacod

and Todorov [13]. The basic idea is to split the time-period [0, T ] into smaller subintervals so
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Sample Mean Sample SD
Mean of

Relative Error

SD of

Relative Error
MSE

σ20 0.048487 0.000569 0.212166 0.014213 7.2347E-05

σ̂2n,1 0.034272 0.001892 -0.143197 0.047310 3.6390E-05

Ĉn,1 0.009674 0.004040 -0.654512 0.144291 3.5218E-04

Ŷn,1 1.718718 0.052867 0.145812 0.035245 5.0632E-02

ε̂n,1 0.003300 0.000184 -0.122242 0.048974 2.4517E-07

σ̂2n,2 0.036122 0.002019 -0.096961 0.050470 1.9118E-05

Ĉn,2 0.018535 0.009119 -0.338043 0.325676 1.7275E-04

Ŷn,2 1.618217 0.071105 0.078811 0.047403 1.9031E-02

ε̂ ?n 0.003470 0.000206 -0.077027 0.054674 1.2614E-07

(σ̂?n)
2 0.037833 0.001989 -0.054178 0.049722 8.6521E-06

σ̂2n,JT 0.043206 0.001006 0.080159 0.025152 1.1293E-05

(σ̃?n)
2 0.041920 0.000393 0.048008 0.009837 3.8424E-06

(σ?n)
2 0.040460 0.000371 0.011491 0.009284 3.4918E-07

Table 2: Estimation based on simulated 5-minute observations of 2000 paths over a one-year time horizon.

The parameters are C = 0.028, Y = 1.5, and σ = 0.2. We take σ2

0
= σ̂2

n,02
. In this case, we compute

ε?
n
= 0.00376 and ε̃ ?

n
= 0.003974.

that σ would be approximately constant in each subinterval and, hence, X is approximately Lévy

within that interval. We then apply the method developed in Subsection 5.1 to each subinterval

to estimate the volatility level in each subinterval and finally aggregate the resulting estimates to

estimate the integrated volatility.

Specifically, we consider the following Heston model:

Xt = 1 +

∫ t

0

√
Vs dWs + Jt, Vt = θ +

∫ t

0
κ
(
θ − Vs

)
ds+ ξ

∫ t

0

√
Vs dBs, t ∈ R+,

where (Wt)t∈R+ and (Bt)t∈R+ are two independent standard Brownian motions and (Jt)t∈R+ is

a CGMY Lévy process independent of (Wt)t∈R+ and (Bt)t∈R+ . The parameters of the volatility

specification are set as

κ = 5, ξ = 0.5, θ = 0.16.

The values of κ and ξ above are borrowed from [23]. In the simulation, we experiment with values

of Y = 1.5 and Y = 1.7, and compute the estimated integrated volatility for one day under two

different estimators.

We consider 5-second observations over a one-year (252 days) time horizon with 6.5 trading

hours per day. We set kn = 160, which corresponds to 30 blocks per day. As mentioned above,

we treat the stochastic volatility as a constant volatility in each block, so that we can estimate

the integrated volatility for each block by computing our estimator (σ̂?n)
2 with all the estimation

parameters specified as in Subsection 5.2. We then add the integrated volatilities for the 30 blocks to

compute our daily estimator of the integrated volatility
∫ t+1/252
t Vsds for that day. For the estimator

of [13], we use both equations (4.2) and (5.3) therein with kn = 160 (number of observation in each

block), ξ = 1.5, and un = 0.05(− lnhn)
−1/30/

√
BV , where BV is the bipower variation of the

previous day. To assess the accuracy of the different methods, we compute the Median Absolute

Deviation (MAD) around the true value,
∫ t+1/252
t Vsds, over 200 simulation paths.
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Sample Mean Sample SD
Mean of

Relative Error

SD of

Relative Error
MSE

σ20 0.042889 0.000460 0.072221 0.011491 8.5567E-06

σ̂2n,1 0.039098 0.001497 -0.022549 0.037431 3.0552E-06

Ĉn,1 0.006717 0.004401 -0.760116 0.157188 4.7235E-04

Ŷn,1 1.620586 0.059843 0.200434 0.044328 7.6798E-02

ε̂n,1 0.004171 0.000238 -0.013883 0.056241 6.0045E-08

σ̂2n,2 0.039907 0.000981 -0.002313 0.024514 9.7007E-07

Ĉn,2 0.049001 0.031537 0.750027 1.126331 1.4356E-03

Ŷn,2 1.285035 0.105981 -0.048123 0.078504 1.5452E-02

ε̂ ?n 0.004374 0.000181 0.034146 0.042847 5.3710E-08

(σ̂?n)
2 0.040596 0.000718 0.014911 0.017949 8.7122E-07

σ̂2n,JT 0.040842 0.000634 0.021061 0.015858 1.1121E-06

(σ̃?n)
2 0.040789 0.000389 0.019736 0.009719 7.7435E-07

(σ?n)
2 0.040235 0.000378 0.005870 0.009440 1.9770E-07

Table 3: Estimation based on simulated 5-minute observations of 2000 paths over a one-year time horizon.

The parameters are C = 0.028, Y = 1.35, and σ = 0.2. We take σ2

0
= σ̂2

n,02
. In this case, we compute

ε?
n
= 0.00423 and ε̃ ?

n
= 0.004421.

Sample Mean Sample SD
Mean of

Relative Error

SD of

Relative Error
MSE

σ20 0.233102 0.003657 0.456887 0.022855 5.3573E-03

σ̂2n,1 0.164513 0.003573 0.028205 0.022332 3.3133E-05

Ĉn,1 0.044023 0.010945 0.572264 0.390893 3.7654E-04

Ŷn,1 1.641484 0.029400 -0.034421 0.017294 4.2884E-03

ε̂n,1 0.007081 0.000133 0.004358 0.018910 1.8717E-08

σ̂2n,2 0.162042 0.003665 0.012764 0.022907 1.7603E-05

Ĉn,2 0.051271 0.009833 0.831099 0.351195 6.3823E-04

Ŷn,2 1.619172 0.022776 -0.047546 0.013397 7.0519E-03

ε̂ ?n 0.007028 0.000167 -0.003155 0.023635 2.8259E-08

(σ̂?n)
2 0.160897 0.004536 0.005605 0.028350 2.1380E-05

σ̂2n,JT 0.177376 0.017487 0.108603 0.109294 6.0774E-04

(σ̃?n)
2 0.159377 0.001432 -0.003894 0.008947 2.4375E-06

(σ?n)
2 0.161471 0.001461 0.009193 0.009133 4.2992E-06

Table 4: Estimation based on simulated 5-minute observations of 2000 paths over a one-year time horizon.

The parameters are C = 0.028, Y = 1.7, and σ = 0.4. We take σ2

0
= σ̂2

n,01
. In this case, we compute

ε?
n
= 0.00705 and ε̃ ?

n
= 0.006954.

Figure 4 shows the estimated integrated volatility for each day computed by our MME (solid

black line) and the JT estimator in [13] (dotted blue line) (see Eq. (5.3) therein), and the true daily

integrated volatility (dashed red) for 1 simulation path. When Y = 1.7, the JT estimator tends to

jitter around the true value, while our MME exhibits better performance. This behavior is further

corroborated by Table 7, which shows the MADs of both our MME and JT estimator for 6 different
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Sample Mean Sample SD
Mean of

Relative Error

SD of

Relative Error
MSE

σ20 0.184729 0.002771 0.154558 0.017316 6.1921E-04

σ̂2n,1 0.150140 0.005615 -0.061628 0.035094 1.2876E-04

Ĉn,1 0.010208 0.004122 -0.635430 0.147228 3.3355E-04

Ŷn,1 1.750480 0.033385 0.166986 0.022257 6.3855E-02

ε̂n,1 0.007357 0.000442 -0.124190 0.052650 1.2838E-06

σ̂2n,2 0.150856 0.004893 -0.057151 0.030584 1.0756E-04

Ĉn,2 0.021081 0.004636 -0.247106 0.165562 6.9362E-05

Ŷn,2 1.635476 0.038174 0.090317 0.025449 1.9811E-02

ε̂ ?n 0.007556 0.000369 -0.100445 0.043904 8.4791E-07

(σ̂?n)
2 0.153194 0.004645 -0.042537 0.029031 6.7897E-05

σ̂2n,JT 0.161593 0.008238 0.009958 0.051485 7.0396E-05

(σ̃?n)
2 0.161458 0.001550 0.009112 0.009684 4.5267E-06

(σ?n)
2 0.161165 0.001548 0.007280 0.009678 3.7547E-06

Table 5: Estimation based on simulated 5-minute observations of 2000 paths over a one-year time horizon.

The parameters are C = 0.028, Y = 1.5, and σ = 0.4. We take σ2

0
= σ̂2

n,01
. In this case, we compute

ε?
n
= 0.0084 and ε̃ ?

n
= 0.008444.

Sample Mean Sample SD
Mean of

Relative Error

SD of

Relative Error
MSE

σ20 0.172473 0.002347 0.077956 0.014667 1.6108E-04

σ̂2n,1 0.154598 0.007496 -0.033763 0.046851 8.5376E-05

Ĉn,1 0.003444 0.002236 -0.877006 0.079863 6.0801E-04

Ŷn,1 1.762248 0.118304 0.305369 0.087633 1.8394E-01

ε̂n,1 0.008141 0.000684 -0.120849 0.073887 1.7204E-06

σ̂2n,2 0.154037 0.004898 -0.037268 0.030615 5.9550E-05

Ĉn,2 0.016458 0.010854 -0.412220 0.387637 2.5103E-04

Ŷn,2 1.523080 0.171764 0.128208 0.127233 5.9460E-02

ε̂ ?n 0.007751 0.002270 -0.162936 0.245181 7.4310E-06

(σ̂?n)
2 0.156800 0.005165 -0.020002 0.032280 3.6916E-05

σ̂2n,JT 0.158787 0.009349 -0.007584 0.058430 8.8874E-05

(σ̃?n)
2 0.160665 0.001567 0.004155 0.009797 2.8988E-06

(σ?n)
2 0.160439 0.001562 0.002746 0.009763 2.6332E-06

Table 6: Estimation performance based on simulated 5-minute observations of 2000 paths over a one-year

time horizon. The parameters are C = 0.028, Y = 1.35, and σ = 0.4. We take σ2

0
= σ̂2

n,01
. In this case, we

compute ε?
n
= 0.00926 and ε̃ ?

n
= 0.009338.

days based on 200 simulated paths. However, when Y = 1.5, the JT estimator outperforms our

MME, as shown in the right panel of Figure 4 and Table 7. Now, it is important to point out that

the daily estimate (5.3) of [13] is based on more data than that used in our estimates. Indeed,

the estimator (5.3) in [13] employs a debiasing procedure, whose debiasing term consists of two

components: one that can be computed using the data in each day and another term, depending
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only on Y , that is computed using the data during the whole time horizon (in this case, one year

worth of data). To explore the performance of the estimator using only contemporary data, we

also analyze the performance of the estimator (4.2) in [13], which can be computed using only the

data collected in each day. When Y = 1.7 (left panel of Figure 5), the daily estimated integrated

volatility (4.2) in [13] overestimates the true integrated volatility, and produces extremely large or

small estimates at some points. We also observe this behavior when Y = 1.5 (right panel of Figure

5), but the estimate is much more stable and outperforms our MME most of the time, as shown in

Table 7. To summarize, when Y > 1.5 is large, our approach performs fairly well for the stochastic

volatility model.
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Figure 4: Graphs of the daily integrated volatility estimates for Y = 1.7 (left panel) and Y = 1.5

(right panel), respectively. The dashed red line is the true daily integrated volatility, while the solid black

(respectively, dotted blue) line shows the daily estimates using our MME (respectively, (5.3) in [13]).
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Figure 5: Graphs of the daily integrated volatility estimates for Y = 1.7 (left panel) and Y = 1.5

(right panel), respectively. The dashed red line is the true daily integrated volatility, while the solid black

(respectively, dotted blue) line shows the daily estimates using our MME (respectively, (4.2) in [13]).

19



Y Method Day 2 Day 52 Day 102 Day 152 Day 202 Day 252

1.7

MAD.MME 2.4498E-05 3.7819E-05 3.4568E-05 3.7059E-05 3.7501E-05 2.7117E-05

MAD.JT (4.2) 1.0087E-04 9.6535E-05 1.1127E-04 1.0820E-04 1.0253E-04 1.0623E-04

MAD.JT (5.3) 5.0516E-05 4.6288E-05 4.7421E-05 4.9100E-05 5.2230E-05 4.3879E-05

1.5

MAD.MME 6.8551E-05 6.6529E-05 5.6600E-05 6.4519E-05 6.3395E-05 6.2592E-05

MAD.JT (4.2) 1.9978E-05 1.9429E-05 1.8714E-05 1.7270E-05 2.0778E-05 2.2255E-05

MAD.JT (5.3) 1.3410E-05 1.1542E-05 1.0880E-05 9.5053E-06 1.6174E-05 1.4615E-05

Table 7: The MADs for our MME and the estimators in [13] for 6 arbitrary sampled days. The results

are based on simulated 5-second observations of 200 paths over a one-year time horizon with Y = 1.7 and

Y = 1.5, respectively.
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A Proof of Theorem 3.1

We start with the decomposition:

E
(
b1(ε)

)
= E

((
σWh + Jh

)2
1{|σWh+Jh|≤ε}

)

= σ2 E
(
W 2

h 1{|σWh+Jh|≤ε}
)
+E

(
J2
h 1{|σWh+Jh|≤ε}

)
+2σ E

(
WhJh1{|σWh+Jh|≤ε}

)
. (A.1)

The asymptotic behavior of each of the terms above is obtained in three steps.

Step 1. We first analyze the behavior of the first term in (A.1) as h → 0. By (2.3) and (2.4), we

first decompose it as

E

(
W 2

h 1{|σWh+Jh|≤ε}
)
= h− E

(
W 2

h 1{|σWh+Jh|>ε}
)
= h− Ẽ

(
e−Ũh−ηhW 2

h 1{|σWh+Jh|>ε}
)

= h− he−ηh
Ẽ

(
W 2

1 1{|σ
√
hW1+Jh|>ε}

)

− he−ηh
Ẽ

((
e−Ũh − 1

)
W 2

1 1{|σ
√
hW1+Jh|>ε}

)

=: h− he−ηhI1(h)− he−ηhI2(h). (A.2)

In what follows, we will analyze the asymptotic behavior of I1(h) and I2(h), as h→ 0, respectively,

in two sub-steps.

Step 1.1. Clearly, by (2.5) and the symmetry of W1,

I1(h) = Ẽ

(
W 2

1 1{σ
√
hW1+Jh>ε}

)
+ Ẽ

(
W 2

1 1{σ
√
hW1−Jh>ε}

)
=: I+1 (h) + I−1 (h). (A.3)

Denote by

φ(x) :=
1√
2π
e−x2/2, Φ(x) :=

∫ ∞

x
φ(x) dx, x ∈ R.
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By conditioning on Jh and using the fact that Ẽ(W 2
1 1{W1>x}) = xφ(x) + Φ(x), for all x ∈ R, we

have that

I±1 (h) = Ẽ

((
ε

σ
√
h
∓ Jh

σ
√
h

)
φ

(
ε

σ
√
h
∓ Jh

σ
√
h

)
+Φ

(
ε

σ
√
h
∓ Jh

σ
√
h

))
. (A.4)

Let p±J,h be the density of ±Jh under P̃, and recall the Fourier transform and its inverse transform

defined by

(Fg)(z) := 1√
2π

∫

R

g(x)e−izx dx,
(
F−1g

)
(x) :=

1√
2π

∫

R

g(z)eizx dz.

In what follows, we set

ψ(x) :=

(
F−1φ

( ·
σ
√
h
− ε

σ
√
h

))
(x) =

1√
2π

∫

R

φ

(
z

σ
√
h
− ε

σ
√
h

)
eizx dz

=
σ
√
h eiεx√
2π

∫

R

φ(ω)eiσ
√
hωx dω =

σ
√
h√

2π
exp

(
iεx− 1

2
σ2x2h

)
. (A.5)

Then, we deduce that

Ẽ

(
φ

(
ε

σ
√
h
± Jh

σ
√
h

))
=

∫

R

(
Fψ
)
(z)p∓J,h(z) dz =

∫

R

ψ(u)
(
Fp∓J,h

)
(u) du,

where

(
Fp±J,h

)
(u) =

e∓iuγ̃h

√
2π

exp

(
−(C++ C−)

∣∣∣∣cos
(
πY

2

)∣∣∣∣Γ(−Y )|u|Y h
(
1− i

C+− C−
C++ C−

tan

(
πY

2

)
sgn(u)

))

=:
1√
2π

exp
(
c1|u|Y h+ ic2|u|Y h sgn(u)∓ iuγ̃h

)
, (A.6)

with c1 := (C++ C−) cos(πY/2)Γ(−Y ) and c2 := (C− − C+) sin(πY/2)Γ(−Y ). Hence, we have

Ẽ

(
φ

(
ε

σ
√
h
± Jh

σ
√
h

))
=
σ
√
h

2π

∫

R

exp

(
c1|u|Y h+ ic2|u|Y h sgn(u)−

1

2
σ2u2h+ iu

(
ε±γ̃h

))
du (A.7)

=
σ
√
h

π

∫ ∞

0
exp

(
c1u

Y h− 1

2
σ2u2h

)
cos
(
c2u

Y h+ u
(
ε± γ̃h

))
du

=
1

π

∫ ∞

0
exp

(
c1 ·

ωY h1−Y/2

σY
− ω2

2

)
cos

(
c2 ·

ωY h1−Y/2

σY
+ ω · ε±γ̃h

σ
√
h

)
dω

=
1

π

∫ ∞

0
exp

(
c1 ·

ωY h1−Y/2

σY
−ω2

2

)
cos

(
c2 ·

ωY h1−Y/2

σY

)
cos

(
ω · ε±γ̃h

σ
√
h

)
dω

− 1

π

∫ ∞

0
exp

(
c1 ·

ωY h1−Y/2

σY
−ω2

2

)
sin

(
c2 ·

ωY h1−Y/2

σY

)
sin

(
ω · ε±γ̃h

σ
√
h

)
dω.

By expanding the Taylor series for exp(c1σ
−Y |ω|Y h1−Y/2), as well as for cos(c2σ

−Y ωY h1−Y/2) and
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sin(c2σ
−Y ωY h1−Y/2), we deduce that

Ẽ

(
φ

(
ε

σ
√
h
± Jh

σ
√
h

))

=
1

π

∫ ∞

0
cos

(
ω · ε± γ̃h

σ
√
h

)
e−ω2/2dω+

1

π

∑

(k,j)∈Z2
+: (k,j) 6=(0,0)

(−1)ja±k,2j,0(h)−
1

π

∞∑

k,j=0

(−1)jd±k,2j+1,0(h)

=
1√
2π

exp

(
− (ε± γ̃h)2

2σ2h

)
+

1

π

∑

(k,j)∈Z2
+: (k,j) 6=(0,0)

(−1)ja±k,2j,0(h)−
1

π

∞∑

k,j=0

(−1)jd±k,2j+1,0(h),(A.8)

where, for m,n ∈ Z+ and r ∈ R+,

a±m,n,r(h) :=
cm1 c

n
2 h

(m+n)(1−Y/2)

m!n!σ(m+n)Y

∫ ∞

0
ω(m+n)Y+r cos

(
ω · ε± γ̃h

σ
√
h

)
e−ω2/2 dω, (A.9)

d±m,n,r(h) :=
cm1 c

n
2 h

(m+n)(1−Y/2)

m!n!σ(m+n)Y

∫ ∞

0
ω(m+n)Y+r sin

(
ω · ε± γ̃h

σ
√
h

)
e−ω2/2 dω. (A.10)

By applying the formula for the integrals of ωkY cos(βω) and ωkY sin(βω) with respect to e−ω2/2

on R+, as well as the asymptotics for the Kummer’s function M(a, b, z), as h→ 0, we deduce that

a±m,n,r(h) =
cm1 c

n
2 h

(m+n)(1−Y/2)

m!n!σ(m+n)Y
· 2((m+n)Y+r−1)/2 Γ

(
(m+ n)Y + r + 1

2

)

·M
(
(m+ n)Y + r + 1

2
,
1

2
,−
(
ε± γ̃h

)2

2σ2h

)

∼ cm1 c
n
2 h

(m+n)(1−Y/2)

m!n!σ(m+n)Y
· 2((m+n)Y+r−1)/2 Γ

(
(m+ n)Y + r + 1

2

)

·
(

Γ(1/2)

Γ
(
− ((m+ n)Y + r)/2

)
(

ε2

2σ2h

)−((m+n)Y+r+1)/2

+
Γ(1/2) e−ε2/(2σ2h)

Γ
(
((m+ n)Y + r + 1)/2

)
(

ε2

2σ2h

)((m+n)Y+r)/2
)
,

and that

d±m,n,r(h) =
cm1 c

n
2 h

(m+n)(1−Y/2)

m!n!σ(m+n)Y
· ε± γ̃h

σ
√
h

· 2((m+n)Y+r)/2 Γ

(
(m+ n)Y + r

2
+ 1

)

·M
(
(m+ n)Y + r

2
+ 1,

3

2
,−
(
ε± γ̃h

)2

2σ2h

)

∼ cm1 c
n
2 h

(m+n)(1−Y/2)

m!n!σ(m+n)Y
· ε

σ
√
h
· 2((m+n)Y+r)/2 Γ

(
(m+ n)Y + r

2
+ 1

)

·
(

Γ(3/2)

Γ
(
(1− (m+ n)Y − r)/2

) ·
(

ε2

2σ2h

)−((m+n)Y+r)/2−1

+
Γ(3/2) e−ε2/(2σ2h)

Γ
(
(m+ n)Y + r)/2 + 1

) ·
(

ε2

2σ2h

)((m+n)Y+r−1)/2
)
.
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In the asymptotic formulas for the Kummers function in the expression of a±n,m,r(h) above, the first

term vanishes if Γ(−((m + n)Y + r)/2) are infinity. This happens when −((m + n)Y + r)/2 is a

nonpositive integer. Similarly, in the asymptotic formulas for the Kummers function in d±m,n,r(h),

the first term vanishes if (1− (m+ n)Y − r)/2 is a nonpositive integer. Hence, for m,n ∈ Z+ and

r ∈ R+, as h→ 0,

a±m,n,r(h) = O

(
hm+n+(r+1)/2

ε(m+n)Y+r+1

)
+O

(
ε(m+n)Y+re−ε2/(2σ2h)

h(m+n)(Y−1)+r/2

)
= O

(
hm+n+(r+1)/2

ε(m+n)Y+r+1

)
, (A.11)

d±m,n,r(h) = O

(
hm+n+(r+1)/2

ε(m+n)Y+r+1

)
+O

(
ε(m+n)Y+re−ε2/(2σ2h)

h(m+n)(Y−1)+r/2

)
= O

(
hm+n+(r+1)/2

ε(m+n)Y+r+1

)
. (A.12)

Therefore, by combining (A.8), (A.11), and (A.12), we obtain that

Ẽ

(
φ

(
ε

σ
√
h
± Jh

σ
√
h

))
=
e−ε2/(2σ2h)

√
2π

+O
(
h3/2ε−1−Y

)
, as h→ 0. (A.13)

Next, we note that

Ẽ

(
∓Jh φ

(
ε

σ
√
h
± Jh

σ
√
h

))
=

∫

R

(Fψ)(z)zp∓J,h(z) dz =
∫

R

ψ(u)F
(
zp∓J,h(z)

)
(u) du,

where by (A.6),

F
(
zp±J,h(z)

)
(u) = i

d

du

(
Fp±J,h

)
(u) =

i√
2π

exp
(
c1|u|Y h+ ic2|u|Y h sgn(u)∓ iuγ̃h

)

·
(
c1Y |u|Y−1 sgn(u)h+ ic2Y |u|Y−1h∓ iγ̃h

)
.

Together with (A.5), we obtain that

Ẽ

(
∓Jh φ

(
ε

σ
√
h
± Jh

σ
√
h

))

=
ic1σY h

3/2

2π

∫

R

sgn(u)|u|Y−1 exp

(
c1|u|Y h+ ic2|u|Y h sgn(u)−

σ2u2h

2
+ iu

(
ε± γ̃h

))
du

− c2σY h
3/2

2π

∫

R

|u|Y−1 exp

(
c1|u|Y h+ ic2|u|Y h sgn(u)−

σ2u2h

2
+ iu

(
ε± γ̃h

))
du

∓ γ̃σh3/2

2π

∫

R

exp

(
c1|u|Y h+ ic2|u|Y h sgn(u)−

σ2u2h

2
+ iu

(
ε± γ̃h

))
du (A.14)

The asymptotics of the last term above follows from (A.7) and (A.13), namely

γ̃σh3/2

2π

∫

R

exp

(
c1|u|Y h+ ic2|u|Y h sgn(u)−

σ2u2h

2
+ iu

(
ε± γ̃h

))
du

= O
(
h e−ε2/(2σ2h)

)
+O

(
h5/2ε−1−Y

)
, as h→ 0. (A.15)

For the first term in (A.14), by expanding the Taylor series for exp(c1σ
−Y |ω|Y h1−Y/2), as well as
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for cos(c2σ
−Y ωY h1−Y/2) and sin(c2σ

−Y ωY h1−Y/2) below, and using (A.9) and (A.10), we have

ic1σY h
3/2

2π

∫

R

sgn(u)|u|Y−1 exp

(
c1|u|Y h+ ic2|u|Y h sgn(u)−

σ2u2h

2
+ iu

(
ε± γ̃h

))
du

= −c1σY h
3/2

π

∫ ∞

0
uY−1 exp

(
c1u

Y h− σ2u2h

2

)
sin
(
c2u

Y h+ u
(
ε± γ̃h

))
du

= −c1Y h
(3−Y )/2

σY−1π

∫ ∞

0
ωY−1 exp

(
c1 ω

Y h1−Y/2

σY
− ω2

2

)
sin

(
c2 ω

Y h1−Y/2

σY
+ ω · ε± γ̃h

σ
√
h

)
dω

= −c1Y h
(3−Y )/2

σY−1π

∫ ∞

0
ωY−1 exp

(
c1 ω

Y h1−Y/2

σY
− ω2

2

)
sin

(
c2 ω

Y h1−Y/2

σY

)
cos

(
ω · ε± γ̃h

σ
√
h

)
dω

− c1Y h
(3−Y )/2

σY−1π

∫ ∞

0
ωY−1 exp

(
c1 ω

Y h1−Y/2

σY
− ω2

2

)
cos

(
c2 ω

Y h1−Y/2

σY

)
sin

(
ω · ε± γ̃h

σ
√
h

)
dω

= −c1Y h
(3−Y )/2

σY−1π




∞∑

k,j=0

(−1)ja±k,2j+1,Y−1(h) +

∞∑

k,j=0

(−1)jd±k,2j,Y−1(h)


 = O

(
h3/2ε−Y

)
, (A.16)

as h → 0, where we have used the asymptotic formulas (A.11) and (A.12) in the last equality. Fi-

nally, for the second term in (A.14), again by expanding the Taylor series for exp(c1σ
−Y |ω|Y h1−Y/2),

cos(c2σ
−Y ωY h1−Y/2), and sin(c2σ

−Y ωY h1−Y/2) below, and using (A.9), (A.10), (A.11), and (A.12),

we deduce that

c2σY h
3/2

2π

∫

R

|u|Y−1 exp

(
c1|u|Y h+ ic2|u|Y h sgn(u)−

σ2u2h

2
+ iu

(
ε± γ̃h

))
du

=
c2σY h

3/2

π

∫ ∞

0
uY−1 exp

(
c1u

Y h− σ2u2h

2

)
cos
(
c2u

Y h+ u
(
ε± γ̃h

))
du

=
c2Y h

(3−Y )/2

πσY−1

∫ ∞

0
ωY−1 exp

(
c1 ω

Y h1−Y/2

σY
− ω2

2

)
cos

(
c2 ω

Y h1−Y/2

σY
+ ω · ε± γ̃h

σ
√
h

)
dω

=
c2Y h

(3−Y )/2

πσY−1

∫ ∞

0
ωY−1 exp

(
c1 ω

Y h1−Y/2

σY
− ω2

2

)
cos

(
c2 ω

Y h1−Y/2

σY

)
cos

(
ω · ε± γ̃h

σ
√
h

)
dω

− c2Y h
(3−Y )/2

πσY−1

∫ ∞

0
ωY−1 exp

(
c1 ω

Y h1−Y/2

σY
− ω2

2

)
sin

(
c2 ω

Y h1−Y/2

σY

)
sin

(
ω · ε± γ̃h

σ
√
h

)
dω

=
c2Y h

(3−Y )/2

πσY−1




∞∑

k,j=0

(−1)ja±k,2j,Y−1(h)−
∞∑

k,j=0

(−1)jd±k,2j+1,Y−1(h)


 = O

(
h3/2ε−Y

)
, (A.17)

as h→ 0. Therefore, by combining (A.14), (A.15), (A.16), and (A.17), we obtain that

Ẽ

(
∓Jhφ

(
ε

σ
√
h
± Jh

σ
√
h

))
= O

(
he−ε2/(2σ2h)

)
+O

(
h3/2ε−Y

)
, as h→ 0. (A.18)

It remains to analyze the asymptotic behavior of E(Φ((ε ± Jh)/(σ
√
h))). We first note that

there exists a universal constant K > 0, such that

Ẽ

(
Φ

(
ε

σ
√
h
± Jh

σ
√
h

)
1{ε±Jh≥0}

)
≤ K Ẽ

(
φ

(
ε

σ
√
h
± Jh

σ
√
h

)
1{ε±Jh≥0}

)

= O

(
Ẽ

(
φ

(
ε

σ
√
h
± Jh

σ
√
h

)))
= O

(
e−ε2/(2σ2h)

)
+O

(
h3/2ε−1−Y

)
, as h→ 0, (A.19)
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where the last inequality above follows from (A.13). Moreover, by (2.7), as h→ 0,

Ẽ

(
Φ

(
ε

σ
√
h
± Jh

σ
√
h

)
1{ε±Jh≤0}

)
=

∫

R

φ(u) P̃
(
ε± Jh ≤ σ

√
hu, ε± Jh ≤ 0

)
du

=

∫ ∞

0
φ(u) P̃

(
± Zh ≤ −ε∓ γ̃h

)
du+

∫ 0

−∞
φ(u) P̃

(
± Zh ≤ σ

√
hu− ε∓ γ̃h

)
du

=
1

2
P̃

(
± Z1 ≤

−ε∓ γ̃h

h1/Y

)
+

∫ 0

−∞
φ(u) P̃

(
± Z1 ≤

σ
√
hu− ε∓ γ̃h

h1/Y

)
du

≤ 1

2
P̃

(
± Z1 ≤

−ε∓ γ̃h

h1/Y

)
+
K̃h

εY

∫ 0

−∞
φ(u)

(
1− σ

√
h± γ̃h

ε
u

)−Y

du = O
(
hε−Y

)
. (A.20)

Therefore, by combining (A.19) and (A.20), we obtain that

Ẽ

(
Φ

(
ε

σ
√
h
± Jh

σ
√
h

))
= O

(
e−ε2/(2σ2h)

)
+O

(
hε−Y

)
, as h→ 0. (A.21)

Finally, by combining (A.3), (A.4), (A.13), (A.18), and (A.21), we conclude that

I1(h) =

√
2

σ
√
π
· ε√

h
e−ε2/(2σ2h) +O

(
e−ε2/(2σ2h)

)
+O

(
hε−Y

)
, as h→ 0. (A.22)

Step 1.2. We now study the asymptotic behavior of I2(h), defined in (A.2), as h→ 0. Let us first

consider the following decomposition

I2(h) = Ẽ

((
e−Ũh − 1 + Ũh

)
W 2

1 1{|σ
√
hW1+Jh|>ε}

)
− Ẽ

(
ŨhW

2
1 1{|σ

√
hW1+Jh|>ε}

)

=: I21(h)− I22(h). (A.23)

The first term I21(h) can be bounded as follows: as h→ 0,

0 ≤ I21(h) ≤ Ẽ

(
e−Ũh− 1 + Ũh

)
= exp

(
h

∫

R0

(
e−φ(x)− 1 + φ(x)

)
ν̃(dx)

)
− 1 = O(h). (A.24)

To deal with I22, for any t ∈ R+, we further decompose Ũt as

Ũt =

∫ t

0

∫

R0

(
ϕ(x) + αsgn(x)x

)
Ñ(ds, dx)−

∫ t

0

∫

R0

αsgn(x)xÑ(ds, dx) =: ŨBV
t − α+Z

+
t − α−Z

−
t ,

where the first integral is well-defined in light of Assumption 2.1-(i) & (ii), so that

I22(h) = Ẽ

(
ŨBV
h W 2

1 1{|σ
√
hW1+Jh|>ε}

)
− α+Ẽ

(
Z+
h W

2
1 1{|σ

√
hW1+Jh|>ε}

)

− α−Ẽ
(
Z−
h W

2
1 1{|σ

√
hW1+Jh|>ε}

)
=: IBV

22 (h)− α+I
+
22(h)− α−I

−
22(h).

For the first term IBV
22 (h), note that

∣∣IBV
22 (h)

∣∣ ≤ Ẽ

(∣∣ŨBV
h

∣∣
)
≤ 2h

∫

R0

∣∣ϕ(x) + αsgn(x)x
∣∣ ν̃(dx),

where the last integral is finite since in a neighborhood of the origin,

∣∣ϕ(x) + αsgn(x)x
∣∣ =

∣∣− ln q(x) + αsgn(x)x
∣∣ = O

(∣∣1− q(x) + αsgn(x)x
∣∣
)
,
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which is integrable with respect to ν̃(dx) in view of Assumption 2.1-(ii). As for the terms I±22,
due to the self-similarity of Z±

t and the fact that εh−1/Y → ∞ (since Y ∈ (1, 2)), the monotone

convergence theorem implies that I±22(h) = o(h1/Y ), as h→ 0. Hence, we obtain that

I22(h) = o
(
h1/Y

)
, as h→ 0. (A.25)

By combining (A.23), (A.24), and (A.25), we conclude that

I2(h) = o
(
h1/Y

)
, as h→ 0. (A.26)

Finally, from (A.2), (A.22), and (A.26), we obtain that

E

(
W 2

h1{|σWh+Jh|≤ε}
)
=h−

√
2h ε

σ
√
π
e−ε2/(2σ2h)+O

(
he−ε2/(2σ2h)

)
+O

(
h2ε−Y

)
+o
(
h1+1/Y

)
, (A.27)

as h→ 0, which completes the analysis in Step 1.

Step 2. In this step, we will study the asymptotic behavior of the second term in (A.1), as h→ 0.

By (2.3), (2.4), and (2.5), we first have

E

(
J2
h 1{|σWh+Jh|≤ε}

)
= Ẽ

(
e−Ũh−ηh J2

h 1{|σWh+Jh|≤ε}
)

= e−ηh
Ẽ

(
e−ŨhZ2

h1{|Wh+Zh+γ̃h|≤ε}
)
+ 2γ̃he−ηh

Ẽ

(
e−ŨhZh1{|Wh+Zh+γ̃h|≤ε}

)

+ γ̃2h2e−ηh
Ẽ

(
e−Ũh 1{|Wh+Zh+γ̃h|≤ε}

)

=: e−ηhI3(h) + 2γ̃he−ηhI4(h) + γ̃2h2e−ηh
Ẽ

(
e−Ũh 1{|Wh+Zh+γ̃h|≤ε}

)
. (A.28)

Clearly,

γ̃2h2e−ηh
Ẽ

(
e−Ũh 1{|Wh+Zh+γ̃h|≤ε}

)
= O

(
h2
)
, as h→ 0. (A.29)

It remains to analyze the asymptotic behavior of the first two terms in (A.28).

Step 2.1. We begin with the analysis of I3(h). Clearly,

I3(h) = Ẽ

(
Z2
h 1{|σWh+Zh+γ̃h|≤ε}

)
+ Ẽ

((
e−Ũh − 1

)
Z2
h 1{|σWh+Zh+γ̃h|≤ε}

)

= h2/Y Ẽ
(
Z2
1 1{|σ

√
hW1+h1/YZ1+γ̃h|≤ε}

)
+ Ẽ

((
e−Ũh − 1

)
Z2
h 1{|σWh+Zh+γ̃h|≤ε}

)

=: h2/Y I31(h) + I32(h). (A.30)

By the symmetry of W1, we note that

Ẽ

(
Z2
1 1{−ε≤σ

√
hW1+h1/YZ1+γ̃h≤0}

)
= Ẽ

(
Z2
1 1{0≤σ

√
hW1−h1/YZ1−γ̃h≤ε}

)
.

In what follows, we let h > 0 small enough so that ε− |γ̃|h > 0.
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To study the asymptotic behavior of I31(h), as h→ 0, let us first consider

E±
1 (h) := Ẽ

(
Z2
1 1{0≤σ

√
hW1±h1/Y Z1±γ̃h≤ε,W1≥0,±Z1≥0}

)
=

∫ ε∓γ̃h

σ
√

h

0

(∫ ε∓γ̃h−σ
√

hx

h1/Y

0
u2pZ(±u)du

)
φ(x)dx

=
ε∓ γ̃h

σ
√
h

∫ 1

0

(∫ (ε∓γ̃h)(1−ω)

h1/Y

0
u2pZ(±u) du

)
φ

(
ε∓ γ̃h

σ
√
h
ω

)
dω

=
C±
(
ε∓ γ̃h

)

σ
√
h

∫ 1

0

(∫ (ε∓γ̃h)(1−ω)

h1/Y

0
u1−Y du

)
φ

(
ε∓ γ̃h

σ
√
h
ω

)
dω

+
ε∓ γ̃h

σ
√
h

∫ 1

0

(∫ (ε∓γ̃h)(1−ω)

h1/Y

0
u2
(
pZ(±u)− C±u

−1−Y
)
du

)
φ

(
ε∓ γ̃h

σ
√
h
ω

)
dω. (A.31)

For the first term in (A.31), we have

∫ 1

0

(∫ (ε∓γ̃h)(1−ω)

h1/Y

0
u1−Y du

)
φ

(
ε∓ γ̃h

σ
√
h
ω

)
dω =

(
ε∓ γ̃h

)2−Y

(2− Y )h(2−Y )/Y

∫ 1

0
(1− ω)2−Y φ

(
ε∓ γ̃h

σ
√
h
ω

)
dω

∼
(
ε∓ γ̃h

)2−Y

2(2− Y )h(2−Y )/Y
· σ

√
h

ε∓ γ̃h
, as h→ 0. (A.32)

For the second term in (A.31), since Y ∈ (1, 2), we first observe that, for any z > 0,

∫ z

0
u2
(
u−Y−1∧ u−2Y−1

)
du =

z2−Y

2−Y 1(0,1](z) +
1−z2−2Y

2(Y −1)
1(1,∞)(z) ≤

Y

2(Y −1)(2−Y )
. (A.33)

Hence, we deduce from (2.9) that

∫ 1

0

(∫ (ε∓γ̃h)(1−ω)

h1/Y

0
u2
∣∣pZ(±u)− C±u

−1−Y
∣∣du
)
φ

(
ε∓ γ̃h

σ
√
h
ω

)
dω

≤ K̃Y

2(Y − 1)(2− Y )

∫ 1

0
φ

(
ε∓ γ̃h

σ
√
h
ω

)
dω = O

(√
h ε−1

)
, as h→ 0.

Therefore, we obtain that

E±
1 (h) =

C±
2(2− Y )

h1−2/Y ε2−Y +O(1), as h→ 0. (A.34)

Using the same argument as above and since ε� h, we also obtain that, when ±γ̃ > 0, as h→ 0,

E±
2 (h) := Ẽ

(
Z2
1 1{0≤σ

√
hW1±h1/Y Z1±γ̃h≤ε,W1≤0,±Z1≤0}

)

= Ẽ

(
Z2
1 1{0≤σ

√
hW1±h1/Y Z1≤∓γ̃h,W1≤0,±Z1≤0}

)
= O

(
h3−Y−2/Y

)
+O(1). (A.35)

Next, we consider

E±
3 (h) := Ẽ

(
Z2
1 1{0≤σ

√
hW1±h1/Y Z1±γ̃h≤ε,W1≥0,±Z1≤0}

)

=

∫ ε∓γ̃h

σ
√
h

0

(∫ 0

−σ
√
hx

h1/Y

u2pZ(±u)du
)
φ(x)dx+

∫ ∞

ε∓γ̃h

σ
√

h

(∫ ε∓γ̃h−σ
√

hx

h1/Y

−σ
√
hx

h1/Y

u2pZ(±u)du
)
φ(x)dx. (A.36)
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By (2.8), the first term in (A.36) is such that

∫ ε∓γ̃h

σ
√
h

0

(∫ 0

−σ
√
hx

h1/Y

u2pZ(±u) du
)
φ(x) dx ≤ K̃

∫ ε∓γ̃h

σ
√
h

0

(∫ σ
√
hx

h1/Y

0
u1−Y du

)
φ(x) dx

=
K̃σ2−Y h2−Y/2−2/Y

2− Y

∫ ε∓γ̃h

σ
√
h

0
x2−Y φ(x) dx = O

(
h2−Y/2−2/Y

)
, as h→ 0.

Similarly, the second term in (A.36) can be estimated as follows:

∫ ∞

ε∓γ̃h

σ
√

h

(∫ ε∓γ̃h−σ
√
hx

h1/Y

−σ
√
hx

h1/Y

u2pZ(±u) du
)
φ(x) dx ≤ K̃

∫ ∞

ε∓γ̃h

σ
√

h

(∫ σ
√
hx

h1/Y

σ
√

hx−(ε∓γ̃h)

h1/Y

u1−Y du

)
φ(x) dx

≤ K̃σ2−Y h2−2/Y−Y/2

2− Y

∫ ∞

ε∓γ̃h

σ
√
h

x2−Y φ(x) dx = o
(
h2−2/Y−Y/2

)
, as h→ 0.

Therefore, we obtain that

E±
3 (h) = O

(
h2−Y/2−2/Y

)
, as h→ 0. (A.37)

To complete the analysis for I3(h), it remains to study

E±
4 (h) := Ẽ

(
Z2
1 1{0≤σ

√
hW1±h1/Y Z1±γ̃h≤ε,W1≤0,±Z1≥0}

)
=

∫ 0

−∞

(∫ ε∓γ̃h−σ
√
hx

h1/Y

−σ
√
hx∓γ̃h

h1/Y

u2pZ(±u)du
)
φ(x)dx

= C±

∫ 0

−∞

(∫ ε∓γ̃h−σ
√
hx

h1/Y

−σ
√

hx∓γ̃h

h1/Y

u1−Y du

)
φ(x) dx

+

∫ 0

−∞

(∫ ε∓γ̃h−σ
√
hx

h1/Y

−σ
√
hx∓γ̃h

h1/Y

u2
(
pZ(±u)− C±u

−1−Y
)
du

)
φ(x) dx. (A.38)

For the first term in (A.38), we have

C±

∫ 0

−∞

(∫ ε∓γ̃h−σ
√
hx

h1/Y

−σ
√
hx∓γ̃h

h1/Y

u1−Y du

)
φ(x) dx

=
C± ε2−Y

(2− Y )h2/Y−1

∫ 0

−∞

((
1− σ

√
hx± γ̃h

ε

)2−Y

−
(
− σ

√
hx± γ̃h

ε

)2−Y
)
φ(x) dx

∼ C± h1−2/Y ε2−Y

2(2− Y )
, as h→ 0. (A.39)

For the second term in (A.38), we deduce from (A.33) that

∫ 0

−∞

(∫ ε∓γ̃h−σ
√
hx

h1/Y

−σ
√
hx∓γ̃h

h1/Y

u2
∣∣∣pZ(±u)− C±u

−1−Y
∣∣∣du
)
φ(x) dx = O(1), h→ 0.

Therefore, we obtain that

E±
4 (h) =

C±
2(2− Y )

h1−2/Y ε2−Y +O(1), as h→ 0. (A.40)
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By combining (A.34), (A.35), (A.37), and (A.40), we conclude that

I31(h) =
4∑

i=1

(
E+

i (h)+E
−
i (h)

)
=
C++C−
2− Y

h1−2/Y ε2−Y +O
(
h2−Y/2−2/Y

)
, as h→ 0. (A.41)

Next, we will study the asymptotic behavior of I32(h), as h → 0. Clearly, by Cauchy-Schwarz

inequality and self-similarity of Zh and Wh under P̃, we have that

I32(h) ≤ h2/Y
(
Ẽ

((
e−Ũh − 1

)2))1/2(
Ẽ

(
Z4
1 1{|σ

√
hW1+h1/YZ1+γ̃h|≤ε}

))1/2

. (A.42)

By Assumption 2.1-(v) and denoting C̃` =
∫
R0

(
e−`ϕ(x) − 1 + `ϕ(x)

)
ν̃(dx), ` = 1, 2, we first have

Ẽ

((
e−Ũh − 1

)2)
= eC̃2h − 2eC̃1h + 1 ∼

(
C̃2 − 2C̃1

)
h, as h→ 0. (A.43)

The analysis of the asymptotic behavior, as h→ 0, of the second factor in (A.42) is similar to that

of I31(h). More precisely, we first consider

F±
1 (h) := Ẽ

(
Z4
1 1{0≤σ

√
hW1±h1/Y Z1±γ̃h≤ε,W1≥0,±Z1≥0}

)

=
C±
(
ε∓ γ̃h

)

σ
√
h

∫ 1

0

(∫ (ε∓γ̃h)(1−ω)

h1/Y

0
u3−Y du

)
φ

(
ε∓ γ̃h

σ
√
h
ω

)
dω

+
ε∓ γ̃h

σ
√
h

∫ 1

0

(∫ (ε∓γ̃h)(1−ω)

h1/Y

0
u4
(
pZ(±u)− C±u

−1−Y
)
du

)
φ

(
ε∓ γ̃h

σ
√
h
ω

)
dω.

A similar argument as in (A.32) shows that

C±
(
ε∓ γ̃h

)

σ
√
h

∫ 1

0

(∫ (ε∓γ̃h)(1−ω)

h1/Y

0
u3−Y du

)
φ

(
ε∓ γ̃h

σ
√
h
ω

)
dω ∼ C±

2(4− Y )
h1−4/Y ε4−Y , as h→ 0,

and by (2.9),

ε∓ γ̃h

σ
√
h

∫ 1

0

(∫ (ε∓γ̃h)(1−ω)

h1/Y

0
u4
∣∣pZ(u)− Cu−1−Y

∣∣du
)
φ

(
ε∓ γ̃h

σ
√
h
ω

)
dω

≤ ε∓γ̃h
σ
√
h

· K̃
(
ε∓ γ̃h

)4−2Y

2(2− Y )h(4−2Y )/Y

∫ 1

0
(1− ω)4−2Y φ

(
ε∓γ̃h
σ
√
h
ω

)
dω = O

(
h2−4/Y ε4−2Y

)
, as h→ 0.

Hence, we obtain that

F±
1 (h) =

C±
2(4− Y )

h1−4/Y ε4−Y +O
(
h2−4/Y ε4−2Y

)
, as h→ 0. (A.44)

Using the same argument as above and since ε� h, we also obtain that, when ±γ̃ > 0, as h→ 0,

F±
2 (h) := Ẽ

(
Z4
1 1{0≤σ

√
hW1±h1/Y Z1±γ̃h≤ε,W1≤0,±Z1≤0}

)

= Ẽ

(
Z4
1 1{0≤σ

√
hW1±h1/Y Z1≤∓γ̃h,W1≥0,±Z1≤0}

)
= O

(
h6−4/Y−2Y

)
. (A.45)
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Moreover, using arguments similar to those for E±
3 (h), we deduce that

F±
3 (h) := Ẽ

(
Z4
1 1{0≤σ

√
hW1±h1/Y Z1±γ̃h≤ε,W1≥0,±Z1≤0}

)
= O

(
h3−4/Y−Y/2

)
, as h→ 0. (A.46)

Finally, we consider

F±
4 (h) := Ẽ

(
Z4
1 1{0≤σ

√
hW1±h1/Y Z1±γ̃h≤ε,W1≤0,±Z1≥0}

)
=

∫ 0

−∞

(∫ ε∓γ̃h−σ
√
hx

h1/Y

−σ
√

hx∓γ̃h

h1/Y

u4pZ(±u)du
)
φ(x)dx

= C±

∫ 0

−∞

(∫ ε∓γ̃h−σ
√

hx

h1/Y

−σ
√
hx∓γ̃h

h1/Y

u3−Ydu

)
φ(x)dx+

∫ 0

−∞



∫ ε∓γ̃h−σ

√
hx

h1/Y

−σ
√
hx∓γ̃h

h1/Y

u4
(
pZ(±u)−

C±
u1+Y

)
du


φ(x)dx.

A similar argument as in (A.39) shows that

C±

∫ 0

−∞

(∫ ε∓γ̃h−σ
√
hx

h1/Y

−σ
√
hx∓γ̃h

h1/Y

u3−Y du

)
φ(x) dx ∼ C±

2(4− Y )
h1−4/Y ε4−Y , as h→ 0,

and by (2.9),

∫ 0

−∞

(∫ ε∓γ̃h−σ
√
hx

h1/Y

−σ
√
hx∓γ̃h

h1/Y

u4
∣∣∣pZ(±u)− C±u

−1−Y
∣∣∣du
)
φ(x) dx ≤ K̃

∫ 0

−∞

(∫ ε∓γ̃h−σ
√
hx

h1/Y

−σ
√
hx∓γ̃h

h1/Y

u3−2Y du

)
φ(x) dx

=
K̃ε4−2Y

2(2−Y )h4/Y−2

∫ 0

−∞

((
1−σ

√
hx±γ̃h
ε

)4−2Y

−
(
−σ

√
hx±γ̃h
ε

)4−2Y
)
φ(x) dx = O

(
ε4−2Y

h4/Y−2

)
.

Hence, we obtain that

F±
4 (h) =

C±
2(4− Y )

h1−4/Y ε4−Y +O
(
h2−4/Y ε4−2Y

)
, as h→ 0. (A.47)

Combining (A.44), (A.45), (A.46), and (A.47), leads to

Ẽ

(
Z4
1 1{|σ

√
hW1+h1/YZ1+γ̃h|≤ε}

)
=

4∑

i=1

(
F+
i (h) + F−

i (h)
)

=

(
C+ + C−

)
h1−4/Y ε4−Y

4− Y
+O

(
h2−4/Y ε4−2Y

)
+O

(
h3−4/Y−Y/2

)
, as h→ 0. (A.48)

Therefore, by combining (A.42), (A.43), and (A.48), we have

I32(h) = O
(
h ε2−Y/2

)
+O

(
h3/2ε2−Y

)
+O

(
h2−Y/4

)
, as h→ 0. (A.49)

Finally, by combining (A.30), (A.41), and (A.49), we obtain that

I3(h) =
C+ + C−
2− Y

hε2−Y +O
(
hε2−Y/2

)
+O

(
h2−Y/2

)
, as h→ 0. (A.50)

Step 2.2. In this step, we will investigate the asymptotic behavior of I4(h), as h→ 0. Note that

I4(h) = h1/Y Ẽ
(
Z11{|σ

√
hW1+h1/YZ1+γ̃h|≤ε}

)
+ Ẽ

((
e−Ũh− 1

)
Zh1{|σWh+Zh+γ̃h|≤ε}

)

≤ h1/Y
(
Ẽ

(
Z2
1 1{|σ

√
hW1+h1/YZ1+γ̃h|≤ε}

))1/2
(
1 +

(
Ẽ

((
e−Ũh − 1

)2))1/2
)

= O

(
h1/Y

(
Ẽ

(
Z2
1 1{|σ

√
hW1+h1/YZ1+γ̃h|≤ε}

))1/2
)
, h→ 0,
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where the second inequality above follows from Cauchy-Schwarz inequality. Therefore, by (A.30)

and (A.41), we obtain that

I4(h) = O
(√
h ε1−Y/2

)
+O

(
h1−Y/4

)
, as h→ 0. (A.51)

Finally, by combining (A.28), (A.29), (A.50), and (A.51), we conclude that

E

(
J2
h 1{|σWh+Jh|≤ε}

)
=
C+ + C−
2− Y

hε2−Y +O
(
hε2−Y/2

)
+O

(
h2−Y/2

)
, as h→ 0, (A.52)

which completes the analysis of Step 2.

Step 3. In this last step, we will study the asymptotic behavior of the third term in (A.1), as

h→ 0. By (2.3) and (2.4), we first decompose it as

E

(
WhJh1{|σWh+Jh|≤ε}

)
= Ẽ

(
e−Ũh−ηhWhJh1{|σWh+Jh|≤ε}

)

=
√
h e−ηh

Ẽ

(
W1Jh1{|σ

√
hW1+Jh|≤ε}

)
+
√
h e−ηh

Ẽ

((
e−Ũh − 1

)
W1Jh1{|σ

√
hW1+Jh|≤ε}

)

=: e−ηh
√
h I5(h) + e−ηh

√
h I6(h). (A.53)

For I5(h), by conditioning on Jh, and using the fact that, for any x1, x2 ∈ R with x1 < x2,

Ẽ

(
W11{W1∈[x1,x2]}

)
= φ(x1)− φ(x2),

we obtain from (A.18) that, as h→ 0,

I5(h) = Ẽ

(
Jh

(
φ

(
ε+ Jh

σ
√
h

)
− φ

(
ε− Jh

σ
√
h

)))
= O

(
h e−ε2/(2σ2h)

)
+O

(
h3/2ε−Y

)
. (A.54)

As for I6(h), by Cauchy-Schwarz inequality, (2.5), (A.30), (A.41), and (A.43), we obtain that

∣∣I6(h)
∣∣ ≤

(
Ẽ

((
e−Ũh − 1

)2))1/2(
Ẽ

(
J2
h 1{|σ

√
hW1+Jh|≤ε}

))1/2

≤
(
Ẽ

((
e−Ũh − 1

)2))1/2(
Ẽ

(
2
(
Z2
h + γ̃2h2

)
1{|σ

√
hW1+Jh|≤ε}

))1/2

= O
(
hε1−Y/2

)
, as h→ 0. (A.55)

Therefore, by combining (A.53), (A.54), and (A.55), we obtain that, as h→ 0,

E

(
WhJh1{|σWh+Jh|≤ε}

)
= O

(
h3/2e−ε2/(2σ2h)

)
+O

(
h2ε−Y

)
+O

(
h3/2ε1−Y/2

)
, (A.56)

which completes the analysis in Step 3.

Finally, by combining (A.1), (A.27), (A.52), and (A.56), we conclude that, as h→ 0,

E
(
b1(ε)

)
=σ2h−σε

√
2h√
π

e−ε2/(2σ2h)+
C++C−
2− Y

hε2−Y+O
(
he−ε2/(2σ2h)

)
+O

(
hε2−Y/2

)
+O

(
h2−Y/2

)
,

which completes the proof of the theorem.
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[12] J. E. Figueroa-López and S. Ólafsson. Short-Time Asymptotics for the Implied Volatility Skew
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