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Abstract

Total variation distance (TV distance) is a fundamental notion of distance between
probability distributions. In this work, we introduce and study the problem of computing
the TV distance of two product distributions over the domain {0, 1}n. In particular, we
establish the following results.

1. The problem of exactly computing the TV distance of two product distributions is #P-
complete. This is in stark contrast with other distance measures such as KL, Chi-square,
and Hellinger which tensorize over the marginals leading to efficient algorithms.

2. There is a fully polynomial-time deterministic approximation scheme (FPTAS) for
computing the TV distance of two product distributions P and Q where Q is the
uniform distribution. This result is extended to the case where Q has a constant
number of distinct marginals. In contrast, we show that when P and Q are Bayes net
distributions, the relative approximation of their TV distance is NP-hard.

1 Introduction

An overarching theme in modern machine learning is the use of probability distributions to
describe data. Datasets are often modeled by high-dimensional distributions with additional
structures reŕecting correlations among the features. In this context, a basic problem is distance
computation: Given two distributions P and Q, compute ρ(P,Q) for a distance measure ρ. For
example, P and Q could be the outputs of two unsupervised learning algorithms, and one could
ask how much they differ. As another example, a key component of generative adversarial
networks [GPAM+14, ACB17] is the discriminant which approximates the distance between the
model and the true distributions.

Given two distributions P and Q over a őnite domain D, their total variation (TV) distance
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or statistical difference dTV(P,Q) is deőned as

dTV(P,Q) = max
S⊆D

(P (S)−Q(S)) =
1

2

∑

x∈D

|P (x)−Q(x)|

which is also equal to
∑

x∈D max(0, P (x)−Q(x)). The total variation distance satisőes certain
fundamental properties. First, it has a physical interpretation: The TV distance between two
distributions is the maximum bias of any event with respect to the two distributions. Second,
it satisőes many mathematically desirable properties: It is bounded, it is a metric, and it is
invariant with respect to bijections. Because of these reasons, the total variation distance is
one of the main distance measures employed in a wide range of areas including probability and
statistics, machine learning, information theory, and pseudorandomness.

In this work, we study the total variation distance from a computational perspective. Given
two distributions P and Q over a őnite domain D, how hard is it to compute dTV(P,Q)? If P
and Q are explicitly speciőed by the probabilities of all of the points of the (discrete) domain D,
summing up the absolute values of the differences in probabilities at all points leads to a simple
linear time algorithm. However, in many applications, the distributions of interest are of a high
dimension with succinct representations. In these scenarios, since the size of the domain D is
very large, an O(|D|) algorithm is highly impractical. Therefore, a fundamental computational
question is:

Can we design efficient algorithms (with running time polynomial in the size of
the representation) for computing the TV distance between two high-dimensional
distributions with succinct representations?

The simplest model for a high-dimensional distribution is the product distribution, which is a
product of independent Bernoulli trials. More precisely, a product distribution P over D = {0, 1}n

is succinctly described by n parameters p1, . . . , pn where each pi ∈ [0, 1] is independently the
probability that the i-th coordinate equals 1. Product distributions serve as a great testing ground
for various intuitions regarding computational statistics, due to their ubiquity and simplicity.
Despite their simplicity, surprisingly little is known about the complexity of computing the
TV distance between product distributions. A very recent result shows the existence of a fully
polynomial-time randomized approximation scheme (FPRAS) to relatively approximate the TV
distance between two product distributions [FGJW23]. However, this result does not shed
light on the complexity of the exact computation of TV distance as well as the existence of
deterministic approximation schemes (FPTAS). Understanding the computational landscape of
the total variation distance of product distributions is an important question. The present work
makes signiőcant progress towards this research goal.

1.1 Our Contributions

Our contributions are the following:

1. We show that the exact computation of the total variation distance between
two product distributions P and Q is #P-complete (Theorem 4). This hardness
result holds even when the distribution Q has at most 3 distinct one-dimensional marginals.
Hence it is unlikely that there is an efficient algorithm for this computational problem, as
an efficient algorithm for this problem would lead to efficient algorithms for many hard
counting problems, including that of computing the number of satisfying assignments of a
Boolean formula and all of the problems in the Polynomial-time Hierarchy [Sto76, Tod91].
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This is a surprising result, given that for many other distance measures such as Hellinger,
Chi-square, and KL, there are efficient algorithms for computing the distance between
two product distributions. This is so, as these distances tensorize over their marginals
(folklore; see also [BGKV21]), in the sense that they are easily expressible in terms of their
one-dimensional marginals.

2. We design a fully polynomial-time deterministic approximation scheme (FPTAS)
that computes a relative approximation of the TV distance between two product
distributions P and Q where Q is the uniform distribution (Theorem 10). Building
on the techniques developed, we design an FPTAS for the case when Q has a constant
number of distinct one-dimensional marginals (Theorem 13; Theorem 12). This, combined
with the earlier-mentioned hardness result, completely characterizes the complexity of TV
distance computation for product distributions when one of the distributions has a constant
number of one-dimensional marginals.

3. We investigate the complexity of the problem when the distributions P and Q are slightly
more general than product distributions. In particular, we show that it is NP-hard
to relatively approximate the TV distance between two sparse Bayesian net-

works [Pea89] (see Theorem 9).

In summary, our study showcases the rich complexity landscape of the problem of total variation
distance computation, even for simple distributions.

1.2 Organization

The rest of the paper is organized as follows: We present preliminaries in Section 2 and discuss
related work in Section 3. We then present, in Section 4, the #P-hardness of the TV distance
computation between product distributions. In Section 5 we present our polynomial-time
deterministic approximation schemes for the estimation of TV distance between some special
cases of product distributions. We conclude in Section 6. Finally, in Appendix A, we present the
deferred proof of Lemma 3.

2 Preliminaries

We use [n] to denote the ordered set {1, . . . , n}. We will use log to denote log2 and U to denote
the uniform distribution over the sample space. Throughout the paper, we shall assume that all
probabilities are represented as rational numbers of the form a/b.

A Bernoulli distribution with parameter p is denoted by Bern(p). A product distribution is
a product of independent Bernoulli distributions. A product distribution P over {0, 1}n can
be described by n parameters p1, . . . , pn where each pi ∈ [0, 1] is the probability that the i-th
coordinate equals 1 (such a P is usually denoted by

⊗n
i=1 Bern(pi)). For any x ∈ {0, 1}n, the

probability of x with respect to the distribution P is given by P (x) =
∏

i∈S pi
∏

i∈[n]\S (1− pi) ∈
[0, 1], where S ⊆ [n] is such that i ∈ S if and only if the i-th coordinate of x is 1, independently.

DtvProduct is the following computational problem: Given two product distributions
P and Q over the sample space {0, 1}n, compute dTV(P,Q). When the distribution Q is the
uniform distribution over {0, 1}n, we denote the above problem by DtvProductUnif.

A Bayes net is speciőed by a directed acyclic graph (DAG) and a sequence of conditional
probability tables (CPTs), one for each of its nodes (and for each setting of the parents of each
node). In this way, one may deőne a probability distribution over the nodes of a Bayes net. We
will also consider the problem of computing dTV(P,Q) where P and Q are Bayes net distributions,
which we denote by DtvBayesNet.
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A function f from {0, 1}∗ to non-negative integers is in the class #P if there is a polynomial
time non-deterministic Turing machine M so that for any x, f(x) is equal to the number of
accepting paths of M(x). Our hardness result will make use of the known #P-complete problem
#SubsetProd which is a counting version of the NP-complete problem SubsetProd (see
[GJ79]; the proof is attributed to Yao). #SubsetProd is the following problem: Given integers
a1, . . . , an, and a target number T , compute the number of sets S ⊆ [n] such that

∏

i∈S ai = T .
We also require a counting version of the Knapsack problem, #Knapsack which is deőned

as follows: Given weights a1, . . . , an and capacity b, compute the number of sets S ⊆ [n] such
that

∑

i∈S ai ≤ b. It is known that #Knapsack is #P-complete.
The following notion of an approximation algorithm is important in this work.

Deőnition 1. A function f : {0, 1}∗ → R admits a fully polynomial-time approximation scheme
(FPTAS) if there is a deterministic algorithm A such that for every input x (of length n) and
ϵ > 0, A on inputs x and ε outputs a (1 + ε)-relative approximation of f(x), i.e., a value v that
lies in the interval [f(x)/(1+ ε), (1+ ε)f(x)]. The running time of A is polynomial in n, and 1/ε.

We require the following result from [GKM10].

Lemma 2 ([GKM10]). There is an FPTAS for #Knapsack.

In our work, we shall also use the following adaptation of the framework that was introduced
by [GKM10]. We őx some terminology őrst. For a set S ⊆ [n] its Hamming weight (or cardinality)
|S| is the number of 1’s in its characteristic vector in {0, 1}n. Given a vector v in {0, 1}n and a
set S = {i1, . . . , ik} ⊆ [n], the projection of v at S is the string vi1 · · · vik .

Lemma 3 (Following [GKM10]; proof in Appendix A). There is a deterministic algorithm that,
given a #Knapsack instance (a1, . . . , an, b) of total weight W =

∑

i ai + b, δ > 0, a k-size
partition S1, . . . , Sk of [n] for some constant k, and r1, . . . , rk ∈ [n] such that ri ≤ |Si|, outputs a
(1+δ)-relative approximation of the number of Knapsack solutions such that their projections at
sets S1, . . . , Sk have Hamming weights r1, . . . , rk, respectively. The running time of this algorithm
is polynomial in n, logW , and 1/δ.

3 Related Work

Most of the earlier works on computing the TV distance of succinctly represented high dimensional
distributions are about the complexity and feasibility of additive approximations. Sahai and
Vadhan [SV03] established in a seminal work that additively approximating the TV distance
between two distributions that are samplable by Boolean circuits is hard for the complexity class
SZK (Statistical Zero Knowledge). The complexity class SZK is fundamental to cryptography
and is believed to be computationally hard. Subsequent works captured variations of this
theme [GSV99, Mal15, DGPV20]: For example, [GSV99] showed that the problem of deciding
whether a distribution samplable by a Boolean circuit is close or far from the uniform distribution
is complete for the complexity class NISZK (Non-Interactive Statistical Zero Knowledge). Another
line of work focuses on őnding the complexity of computing the TV distance between two hidden
Markov models culminating in the results that it is undecidable whether the TV distance is
greater than a threshold or not, and that it is #P-hard to additively approximate it [CMR07,
LP02, Kie18].

Complementing the above hardness results, [BGMV20] designed efficient algorithms to
additively approximate the TV distance of distributions that are efficiently samplable and also
efficiently computable (meaning that their probability mass function is efficiently computable).
In particular, they designed efficient algorithms for additively approximating the TV distance
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of structured high dimensional distributions such as Bayesian networks, Ising models, and
multivariate Gaussians. In a similar vein, [PM21] studied a related property testing variant of
TV distance, for distributions encoded by circuits.

Relative approximation of TV distance has received less attention compared to additive
approximation. Very recently, [FGJW23] designed an FPRAS for relatively approximating the
TV distance between two product distributions. The current work, in addition to showing that
the exact computation of the TV distance between two product distributions is #P-complete,
also presents deterministic approximation algorithms for a certain class of product distributions.

The work of [FGJW23] relies on coupling techniques from probability theory (which ap-
pear inherently randomized), whereas we design deterministic algorithms via a reduction to
#Knapsack for which deterministic approximation schemes exist (see Section 5): [DFK+93]
gave a subexponential-time approximation algorithm for #Knapsack. Later, [MS04] designed
an FPRAS for it. Subsequently, [Dye03] presented an FPRAS for #Knapsack using simpler
techniques. Later independent works of Stefankovic, Vempala, and Vigoda [SVV12] and Gopalan,
Klivans, and Meka [GKM10] gave FPTAS for #Knapsack. Our work relies on the algorithms
presented in [GKM10].

Finally, a work that highlights some interesting aspects of product distributions is [SRG17],
whereby they show that computing r-th order statistics for product distributions is NP-hard.

4 The Hardness of Computing TV Distance

In this section, we establish hardness results. We őrst show that DtvProduct is #P-complete.
Then we show that it is NP-hard to approximate the TV-distance between distributions that are
slightly more general than product distributions. More speciőcally, we show that it is NP-hard
to design an approximation algorithm for DtvBayesNet, even when the underlying Bayes nets
are of in-degree two.

4.1 #P-Completeness of DtvProduct

We establish that following result.

Theorem 4. DtvProduct is #P-complete. This holds even when one of the distributions has
at most 3 distinct one-dimensional marginals.

Proof overview: We show the hardness in two steps. In the őrst step, we introduce a problem
called #PMFEquals and show that it is #P-hard by a reduction from #SubsetProd.

#PMFEquals is the following problem: Given a probability vector (p1, . . . , pn) where
pi ∈ [0, 1] and a number v, compute the number of x ∈ {0, 1}n such that P (x) = v, where P is
the product distribution described by (p1, . . . , pn).

In the second step, we reduce #PMFEquals to the problem of computing the TV distance
of two product distributions. For this, given a product distribution P , we construct product
distributions P̂ , Q̂, P ′, Q′ such that #PMFEquals is a polynomial-time computable function of

dTV(P
′, Q′) and dTV

(

P̂ , Q̂
)

. In particular, we establish that for the case where v < 2−n it is

the case that |{x | P (x) = v}| is equal to

dTV(P
′, Q′)− dTV

(

P̂ , Q̂
)

2βv
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for an appropriately chosen β (similarly for the case where v ≥ 2−n). Thus if there is an
efficient algorithm for DtvProduct, then that algorithm can be used to efficiently solve the
#P-complete problem #SubsetProd.

Detailed proof: We begin with the #P-hardness of #PMFEquals.

Lemma 5. #PMFEquals is #P-hard.

Proof. We will reduce #SubsetProd to #PMFEquals. The result will then follow from the
fact that #SubsetProd is #P-hard. Let a1, . . . , an, and T be the numbers of an arbitrary
#SubsetProd instance, namely IS . We will create a #PMFEquals instance IP that has the
same number of solutions as IS .

Let pi :=
ai

1+ai
for every i and v := T

∏

i∈[n](1− pi), and observe that ai =
pi

1−pi
. For any set

S ⊆ [n], we have the following equivalences:

∏

i∈S

ai = T ⇔
∏

i∈S

pi
1− pi

=
v

∏

i∈[n](1− pi)
⇔
∏

i∈S

pi
∏

i/∈S

(1− pi) = v ⇔ P (x) = v,

where x is such that xi = 1 if and only if i ∈ S. This completes the proof.

We now turn to Theorem 4.

Proof of Theorem 4. We separately prove membership in #P and #P-hardness.

Membership in #P: Let P and Q be two product distributions, speciőed by parameters
p1, . . . , pn and q1, . . . , qn, respectively. Without loss of generality we shall assume that these
parameters are fractions (as we only have some őnite precision available). The goal is to design a
nondeterministic machine N that takes p1, . . . , pn and q1, . . . , qn as inputs and is such that the
number of its accepting paths (normalized by an appropriate quantity; see [dCSW20]) equals
dTV(P,Q).

Let M be the product of the denominators of all parameters p1, . . . , pn, q1, . . . , qn and their
complements 1− p1, . . . , 1− pn, 1− q1, . . . , 1− qn. The non-deterministic machine N őrst guesses
an element i ∈ {0, 1}n in the sample space of P and Q, computes |P (i) − Q(i)| by using the
parameters p1, . . . , pn, q1, . . . , qn, then guesses an integer 0 ≤ z ≤ M , and őnally accepts if and
only if 1 ≤ z ≤ M |P (i)−Q(i)|. (Note that M |P (i)−Q(i)| = |M · P (i)−M ·Q(i)| is an integer.)

It follows that

dTV(P,Q) =
1

2

∑

i∈{0,1}n

|P (i)−Q(i)| =
number of accepting paths of N

2M

since the number of accepting paths of N is

∑

i∈{0,1}n

(M |P (i)−Q(i)|) = M
∑

i∈{0,1}n

|P (i)−Q(i)| = M · 2dTV(P,Q).

#P-hardness: For establishing hardness, we will reduce #PMFEquals to DtvProduct.
The theorem will then follow from Lemma 5.

Let p1, . . . , pn and v be the numbers in an arbitrary instance of #PMFEquals where each
pi is represented as an m-bit binary fraction. With this, P (x) can be represented as an nm-bit
binary fraction. Thus without loss of generality, we can assume that v is also an nm-bit fraction.
We distinguish between two cases depending on whether v < 2−n or v ≥ 2−n.
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Case A: v < 2−n. First, we construct two distributions P̂ = Bern(p̂1)⊗ · · · ⊗ Bern(p̂n+1)
and Q̂ = Bern(q̂1)⊗ · · ·⊗Bern(q̂n+1) over {0, 1}n+1 as follows: p̂i := pi for i ∈ [n] and p̂n+1 := 1;

q̂i := 1/2 for i ∈ [n] and q̂n+1 := v2n. We have that dTV

(

P̂ , Q̂
)

is equal to

∑

x∈{0,1}n+1

max
(

0, P̂ (x)− Q̂(x)
)

=
∑

x

max

(

0, P (x)−
1

2n
v2n
)

=
∑

x∈{0,1}n

max(0, P (x)− v)

=
∑

x:P (x)>v

(P (x)− v) . (1)

We now deőne two more distributions P ′ and Q′ over {0, 1}n+2, by making use of the following
claim.

Claim 6. There exists a β ∈ (0, 1) such that the following hold for all x: If P (x) < v, then
P (x)

(

1
2 + β

)

< v
(

1
2 − β

)

; if P (x) > v, then P (x)
(

1
2 − β

)

> v
(

1
2 + β

)

. In particular, we can
take β to be equal to 1

23nm .

Proof. For Claim 6 to hold, observe that we want β to be at most |v−P (x)|
v+P (x) for every x, so that

P (x) ̸= v. Since both v and P (x) have nm-bit representations, both |v − P (x))| and v + P (x)

have nm-bit representations. Thus |v−P (x)|
v+P (x) can be represented as a 2nm-bit fraction. Since this

fraction is not zero, and the smallest 2nm-bit fraction is 1
22nm , choosing β := 1

23nm suffices.

We now deőne two new distributions P ′ and Q′ as follows: p′i := pi for i ∈ [n], p′n+1 := 1,
and p′n+2 :=

1
2 + β; q′i :=

1
2 for i ∈ [n], q′n+1 := v2n, and q′n+2 :=

1
2 − β where β is as in Claim 6.

We establish the following claim.

Claim 7. It is the case that |{x | P (x) = v}| equals

dTV(P
′, Q′)− dTV

(

P̂ , Q̂
)

2βv
.

Proof. We have that dTV(P
′, Q′) is equal to

∑

x∈{0,1}n+2

max
(

0, P ′(x)−Q′(x)
)

=
∑

x∈{0,1}n

max

(

0, P (x)

(

1

2
+ β

)

−
1

2n
v2n

(

1

2
− β

))

+
∑

x∈{0,1}n

max

(

0, P (x)

(

1

2
− β

)

−
1

2n
v2n

(

1

2
+ β

))

=
∑

x

max

(

0, P (x)

(

1

2
+ β

)

− v

(

1

2
− β

))

+
∑

x

max

(

0, P (x)

(

1

2
− β

)

− v

(

1

2
+ β

))

=
∑

x:P (x)≥v

P (x)

(

1

2
+ β

)

− v

(

1

2
− β

)

+
∑

x:P (x)>v

P (x)

(

1

2
− β

)

− v

(

1

2
+ β

)
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=
∑

x:P (x)=v

P (x)

(

1

2
+ β

)

− v

(

1

2
− β

)

+
∑

x:P (x)>v

P (x)

(

1

2
+ β

)

− v

(

1

2
− β

)

+
∑

x:P (x)>v

P (x)

(

1

2
− β

)

− v

(

1

2
+ β

)

= 2βv |{x | P (x) = v}|+
∑

x:P (x)>v

(P (x)− v) .

The result now follows from Equation (1). The őrst equality follows from the deőnitions of P ′ and
Q′ (since p′n+1 = 1). Note that when for every x with P (x) < v, by Claim 6, P (x)(12+β) < v(12−β)
and if P (x) ≥ v, then P (x)(12 + β) ≥ v(12 − β). Also when P (x) ≤ v, P (x)(12 + β) is at most
v(12 − β) and when P (x) > v, by Claim 6, we have P (x)(12 − β) > v(12 + β). These imply the
third equality. The rest of the equalities holds by algebraic manipulations.

For that matter |{x | P (x) = v}| can be computed by computing dTV(P
′, Q′) and dTV(P̂ , Q̂).

Thus the proof in this case follows by Lemma 5.

Case B: v ≥ 2−n. First, let us deőne distributions P̂ = Bern(p̂1) ⊗ · · · ⊗ Bern(p̂n) and
Q̂ = Bern(q̂1) ⊗ · · · ⊗ Bern(q̂n) as follows: p̂i := pi for i ∈ [n], p̂n+1 := 1

v2n ; q̂i :=
1
2 for i ∈ [n],

and q̂n+1 := 1.

We now have that dTV

(

P̂ , Q̂
)

is equal to 1
2

∑

x

∣

∣

∣P̂ (x)− Q̂(x)
∣

∣

∣ or

∑

x

max
(

0, P̂ (x)− Q̂(x)
)

=
∑

x

max

(

0, P (x)
1

v2n
−

1

2n

)

+
∑

x

max

(

0, P (x)

(

1−
1

v2n

))

=
∑

x

max

(

0, P (x)
1

v2n
−

1

2n

)

+ 1−
1

v2n
.

As earlier, we deőne two more distributions P ′ and Q′, by making use of Claim 6. The new
distributions P ′ and Q′ are such that p′i := pi for i ∈ [n], p′n+1 := 1

v2n , and p′n+2 := 1
2 + β;

q′i := 1/2 for i ∈ [n], q′n+1 := 1, and q′n+2 :=
1
2 − β.

We establish the following claim.

Claim 8. We have that |{x | P (x) = v}| is equal to

2n−1

β

(

dTV

(

P ′, Q′
)

− dTV

(

P̂ , Q̂
))

.

Proof. By our previous discussion we know that dTV(P
′, Q′) is equal to

∑

x

max
(

0, P ′(x)−Q′(x)
)

=
∑

x

max

(

0, P (x)
1

v2n

(

1

2
+ β

)

−
1

2n

(

1

2
− β

))

+
∑

x

max

(

0, P (x)
1

v2n

(

1

2
− β

)

−
1

2n

(

1

2
+ β

))

+
∑

x

max

(

0, P (x)

(

1−
1

v2n

)(

1

2
+ β

))

+
∑

x

max

(

0, P (x)

(

1−
1

v2n

)(

1

2
− β

))
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=
∑

x

max

(

0, P (x)
1

v2n

(

1

2
+ β

)

−
1

2n

(

1

2
− β

))

+
∑

x

max

(

0, P (x)
1

v2n

(

1

2
− β

)

−
1

2n

(

1

2
+ β

))

+
∑

x

max

(

0, P (x)

(

1−
1

v2n

))

=
∑

x:P (x)≥v

max

(

0, P (x)
1

v2n

(

1

2
+ β

)

−
1

2n

(

1

2
− β

))

+
∑

x:P (x)>v

max

(

0, P (x)
1

v2n

(

1

2
− β

)

−
1

2n

(

1

2
+ β

))

+ 1−
1

v2n
,

by Claim 6, or

∑

x

max
(

0, P ′(x)−Q′(x)
)

=
∑

x:P (x)=v

max

(

0, P (x)
1

v2n

(

1

2
+ β

)

−
1

2n

(

1

2
− β

))

+
∑

x:P (x)>v

max

(

0, P (x)
1

v2n

(

1

2
+ β

)

−
1

2n

(

1

2
− β

))

+
∑

x:P (x)>v

max

(

0, P (x)
1

v2n

(

1

2
− β

)

−
1

2n

(

1

2
+ β

))

+ 1−
1

v2n

= 2β
1

2n
|{x | P (x) = v}|+

∑

x

max

(

0, P (x)
1

v2n
−

1

2n

)

+ 1−
1

v2n

=
β

2n−1
|{x | P (x) = v}|+ dTV

(

P̂ , Q̂
)

by Claim 8. That is, |{x | P (x) = v}| is equal to

2n−1
(

dTV(P
′, Q′)− dTV

(

P̂ , Q̂
))

β
.

Thus also in this case the proof follows by Lemma 5. Finally, note that in either case the
distribution Q̂ has 2 distinct one-dimensional marginals and Q′ has 3 distinct one-dimensional
marginals.

4.2 Hardness of Approximating DtvBayesNet

In this section, we prove the following.

Theorem 9. Given two probability distributions P and Q that are deőned by Bayes nets of
in-degree at least two, it is NP-complete to decide whether dTV(P,Q) ̸= 0 or not. Hence the
problem of relatively approximating DtvBayesNet is NP-hard.

Proof. The proof gives a reduction from the satisőability problem for CNF formulas (which
is NP-hard [Coo71]) to deciding whether the total variation distance between two Bayes nets

9



distributions is non-zero or not. Let F be a CNF formula viewed as a Boolean circuit. Assume F
has n input variables x1, . . . , xn and m gates Γ = {y1, . . . , ym}, where Γ is topologically sorted
with ym being the output gate. We will deőne two Bayes net distributions on the same directed
acyclic graph G which, intuitively, is the graph of F . (By a graph of a formula we mean the
directed acyclic graph that captures the circuit structure of F , whereby the nodes are either
AND, OR, NOT, or variable gates, and the edges correspond to wires connecting the gates.)

The vertex set of G is split into two sets X and Y, and a node Z. The set X = {Xi}
n
i=1

contains n nodes with node Xi corresponding to variable xi and the set Y = {Yi}
m
i=1 contains m

nodes with each node Yi corresponding to gate yi. So totally there are n+m+1 nodes. There is
directed edge from node Vi to node Vj if the gate/variable corresponding to Vi is an input to Vj .

The distributions P and Q on G are given by CPTs deőned as follows. Each Xi is a uniformly
random bit. For each Yi, its conditional probability table (CPT) is deterministic: For each of the
setting of the parents Yj , Yk the variable Yi takes the value of the gate yi for that setting of its
inputs yj , yk. Finally, in the distribution P the variable Z is a random bit and in the distribution
Q the variable Z is deőned by the value of Ym OR-ed with a random bit.

Note that the formula F computes a Boolean function on the input variables. Let f :
{0, 1}n → {0, 1} be this function. We extend f to {0, 1}m (i.e., f : {0, 1}n → {0, 1}m) to also
include the values of the intermediate gates.

With this notation for any binary string XY Z of length n+m+ 1, both P and Q have a
probability 0 if Y ̸= f(X). (In the derivation of TV distance that follows, we shall assume that
Y = f(X).) Let A := {x | F (x) = 1} and R := {x | F (x) = 0}. Thus 2dTV(P,Q) can be written
as

∑

X,f(X),Z

|P −Q| =
∑

X∈A,Z

|P −Q|+
∑

X∈R,Z

|P −Q|

where we have abused the notation P and Q to denote the probabilities P (X, f(X) , Z) and
Q(X, f(X) , Z), respectively.

We will now compute each sum separately. First, we have that
∑

X∈A,Z |P −Q| is equal to
∑

X∈A,Z=0 |P −Q|+
∑

X∈A,Z=1 |P −Q| (taking cases for the value of Z) or

∑

X∈A,Z=0

∣

∣

∣

∣

1

2n+1
− 0

∣

∣

∣

∣

+
∑

X∈A,Z=1

∣

∣

∣

∣

1

2n+1
−

1

2n

∣

∣

∣

∣

which is equal to |A|
2n ; then, we have that the quantity

∑

X∈R,Z |P −Q| is equal to
∑

X∈R,Z=0 |P −
Q|+

∑

X∈R,Z=1 |P −Q| (taking cases for the value of Z) or

∑

X∈R,Z=0

∣

∣

∣

∣

1

2n+1
−

1

2n+1

∣

∣

∣

∣

+
∑

X∈R,Z=1

∣

∣

∣

∣

1

2n+1
−

1

2n+1

∣

∣

∣

∣

which is equal to 0.
Therefore dTV(P,Q) = |A|/2n+1. The membership in NP follows because dTV(P,Q) ̸= 0 if

and only if there is an X so that P (X) ̸= Q(X); this can be checked in polynomial time for
Bayes distributions over őnite alphabets. The NP-hardness follows because the arbitarry CNF
formula F is satisőable if and only if |A| ≠ 0 if and only if dTV(P,Q) ̸= 0.

The NP-hardness of relative approximation of DtvBayesNet follows as a relative approxi-
mation dTV(P,Q) is non-zero if and only if dTV(P,Q) ̸= 0.
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5 Deterministic Approximation Schemes

It is an open problem to design an FPTAS for DtvProduct. In this section, we report progress
on this by designing deterministic approximation algorithms for a few interesting subcases. In
particular, we őrst provide an FPTAS for computing the total variation distance between an
arbitrary product distribution P and the uniform distribution U, and then extend to the case
where Q has O(1) distinct q′is.

5.1 Algorithm for DtvProductUnif

We establish the following theorem.

Theorem 10. There is an FPTAS for dTV(P,U) where P = Bern(p1)⊗ · · · ⊗ Bern(pn).

Proof overview: The idea is to reduce an instance of DtvProductUnif to several instances
of #Knapsack. Since the latter problem has an FPTAS (Lemma 2), the theorem follows.

For every subset S ⊆ [n], we assign a non-negative weight YS and show that a łnormalizedž
dTV(P,U) is equal to

∑

S YS . We express the problem of computing this summation as multiple
#Knapsack instances.

For this, we őrst show that each non-zero YS lies in the range [1, V ) (for an appropriate V
that depends on the granularity of our precision). We divide the interval [1, V ) into subintervals
of the form

[

(1 + ε)i−1, (1 + ε)i
)

for various (yet polynomially many) values of i. Let ki be the
number of sets S for which YS lies in the i-th interval. Then

∑

i∈[poly(n)] ki(1 + ε)i yields an
(1 + ε) approximation of the normalized dTV(P,U). However, computing each ki exactly is also
#P-hard. Thus we seek an approximation of each ki.

We use a re-organization trick of summations and additional techniques to express this as
several #Knapsack instances. Setting the approximation parameter for #Knapsack to ε, this
leads to a (1+ε2)-approximation algorithm. By setting ε := δ/2, we get an (1+δ)-approximation
algorithm.

Detailed proof: We now give detailed technical proof. First we assume, without loss of
generality, that no pi is equal to 1/2 since otherwise we can ignore these coordinates i. Moreover,
again without loss of generality, we assume that pi > 1/2 for all i, since otherwise we can ŕip 0
and 1 in the i-th coordinate of both P and U.

Let M be the set of indices i ∈ [n] such that pi = 1. Let A :=
∏

i/∈M (1 − pi) and W :=
1
2n
∏

i/∈M
1

1−pi
be constants, and WS :=

∏

i∈S\M
pi

1−pi
, W∅ := 1.

Claim 11. It is the case that dTV(P,U) is equal to A ·
∑

S⊆[n]:M⊆S max (0,WS −W ).

Proof. We have that dTV(P,U) equals
∑

x∈{0,1}n max(0, P (x)− U(x)) or

∑

S⊆[n]

max

(

0,
∏

i∈S

pi
∏

i/∈S

(1− pi)−
1

2n

)

=
∑

S⊆[n]:M⊆S

max

(

0,
∏

i∈S

pi
∏

i/∈S

(1− pi)−
1

2n

)

=
∏

i/∈M

(1− pi) ·
∑

S⊆[n]:M⊆S

max



0,
∏

i∈S\M

pi
1− pi

−
1

2n

∏

i/∈M

1

1− pi




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= A
∑

S⊆[n]:M⊆S

max (0,WS −W ) .

The second equality holds by the deőnition of M . The third equality holds as
∏

i∈S pi =
∏

i∈S\M pi
∏

i∈S ∩M pi =
∏

i∈S\M pi.

For notational simplicity, we assume that each pi is represented using ℓ := poly(n) bits. Thus
each non-zero term max(0, P (x)− U(x)) of dTV(P,U) contributes at least m0 := 2−ℓ = 2−poly(n)

to dTV(P,U). Hence for any S for which max (0,WS −W ) > 0, its value is at least mmin :=
m0/A ≥ 2−poly(n). Moreover, max (0,WS −W ) is at most mmax, deőned as

WS =
∏

i∈S\M

pi
1− pi

≤
∏

i∈S\M

1− 2−poly(n)

2−poly(n)
≤ 2poly(n)

by the facts that pi ≤ 1− 2−poly(n) for i /∈ M (since we use some őnite precision of poly(n) bits),
(1− x) /x is non-decreasing in x, and (1− x) /x ≤ 1/x for all x. Therefore mmax ≤ 2poly(n).

Consider now YS := max (0,WS −W ) /mmin which lies in [1, V ) for some V ≤ mmax/mmin ≤
2poly(n), and let

[1, V ) =
u−1
⋃

i=0

[

(1 + ε)i, (1 + ε)i+1
)

be a set of subintervals for integers 0 ≤ i ≤ u− 1 = ⌈log1+ε V ⌉ − 1 ≤ poly(n)− 1 ≤ poly(n) and
some 0 < ε < 1 that we will őx later (as a function of δ).

Let the number of sets S such that YS is in
[

1, (1 + ε)i
)

be ni. Let the average contribution
in the range

[

(1 + ε)i−1, (1 + ε)i
)

be Bi. We have the following equation:

dTV(P,U)

A ·mmin
= n1B1 + (n2 − n1)B2 + (n3 − n2)B3 + · · ·+ (nu − nu−1)Bu. (2)

Since (1 + ε)i−1 ≤ Bi < (1 + ε)i, the following estimate d is a (1 + ε)-approximation of the RHS:

d := n1(1 + ε) + (n2 − n1)(1 + ε)2 + (n3 − n2)(1 + ε)3 + · · ·+ (nu − nu−1)(1 + ε)u. (3)

We use a reorganization trick similar to [dCM19]; see Figure 1.

. . .

. . .

...

n1 n2 n3 nu−3

nu−2

nu−1

nu

(1 + ε)

(1 + ε)2
(1 + ε)3

(1 + ε)u−3

(1 + ε)u−2

(1 + ε)u−1

(1 + ε)u

...

. . .

...

n1 n2 n3 nu−3

nu−2

nu−1

nu

(1 + ε)

(1 + ε)2
(1 + ε)3

(1 + ε)u−3

(1 + ε)u−2

(1 + ε)u−1

(1 + ε)u

Figure 1: Reorganization trick: The area below the thick curve is calculated in two different ways.
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By using the reorganization trick we have, by Equation (3),

d =
(

(1 + ε)u − (1 + ε)u−1
)

(nu − nu−1)

+
(

(1 + ε)u−1 − (1 + ε)u−2
)

(nu − nu−2) + · · ·+ (1 + ε)nu. (4)

Therefore it suffices to estimate nu − nj for every 1 ≤ j ≤ u− 1. We know that nu = 2n−|M |. By
deőnition, tj := nu − nj counts the sets S such that YS ≥ (1 + ε)j . Let Y :=

∏

[n]\M Y{i} and

observe that YS ≥ (1 + ε)j if and only if Y([n]\M)\S ≤ Y/(1 + ε)j . Due to this bijection, tj also
counts the number of sets S such that YS ≤ Y/(1 + ε)j .

For every j, if Y/(1+ ε)j < 1 we deőne tj := 0. Otherwise, we introduce logarithms to reduce
the problem of estimating the number of sets S ⊆ [n] such that max (0,WS −W ) /mmin = YS ≤
Y/(1 + ε)j to a #Knapsack instance

logWS ≤ log
(

mmin · Y/(1 + ε)j +W
)

which can be more commonly written as
∑

i∈S\M logwi ≤ B for wi := pi/ (1− pi) (by the

deőnition of WS) and B := log
(

mmin · Y/(1 + ε)j +W
)

. (Note that the latter problem can be
reformulated as counting the number of sets S ⊆ [n] \M such that

∑

i∈S wi ≤ B.)
Using Lemma 2 and Equation (4) we can estimate tj up to a (1 + ε)-approximation in

deterministic polynomial time, which in turn would give us a (1 + ε)-approximation for d and for
that matter a (1 + ε)2-approximation for dTV(P,U) by Equation (2). Finally, we set ε := Ω(δ/2)
so that (1 + ε)2 ≤ (1 + δ) in order to get an approximation ratio of (1 + δ).

The running time is polynomial in n and 1/δ because we ran a polynomial-time approximation
algorithm for #Knapsack polynomially many times.

5.2 Algorithm for DtvProduct Where Q Has O(1) Parameters

We will now extend to the case where Q has at most k distinct parameters. Observe that U can
be viewed as having k = 1 distinct parameters (equal to 1/2). Without loss of generality, let
Q =

⊗

i Bern(qi) = Bern(a1)
z1 ⊗ · · · ⊗ Bern(ak)

zk such that z1 + · · ·+ zk = n. The main result
of this section is the following.

Theorem 12. There is an FPTAS for dTV(P,Q) where P is an arbitrary product distribution
and Q =

⊗

i Bern(qi) = Bern(a1)
z1 ⊗ · · · ⊗ Bern(ak)

zk such that z1 + · · ·+ zk = n.

For simplicity of exposition, we will show őrst the result for the simpler case when Q =
Bern(a)n.

Theorem 13. There is an FPTAS for estimating dTV(P,Q) where P is an arbitrary product
distribution and Q = Bern(a)n for an 0 ≤ a ≤ 1.

Our approach is to reduce this problem to #Knapsack with őxed Hamming weights. If
pi ≥ 1/2 for all i, then the latter problem admits an FPTAS due to Lemma 3. In the scenario
where there is an i such that pi < 1/2 (in this case the respective Knapsack weight wi is negative;
see our discussion below), we can switch 0 and 1 in such coordinates to obtain Bern(1− pi) and
Bern(1− a), respectively. This transformation does not change the distance. We show that such
instances can be reduced to #Knapsack with two őxed Hamming weights.

Proof of Theorem 13. Let M be the set of indices i ∈ [n] such that pi = 1. We have that
dTV(P,Q) is equal to

∑

xmax (0, P (x)−Q(x)) or

∑

S⊆[n]:M⊆S

max

(

0,
∏

i∈S

pi
∏

i/∈S

(1− pi)− a|S|(1− a)n−|S|

)
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=
∏

i/∈M

(1− pi)
∑

S⊆[n]:M⊆S

max



0,
∏

i∈S\M

(

pi
1− pi

)

−
1

∏

i/∈M (1− pi)
(1− a)n

(

a

1− a

)|S|




= A
∑

S⊆[n]:M⊆S

max



0,
∏

i∈S\M

wi −B

(

a

1− a

)|S|




for A :=
∏

i/∈M (1− pi), wi := pi/ (1− pi), and B := (1− a)n /
∏

i/∈M (1− pi).
An argument similar to that of Theorem 10 (based again on the fact that we use őnite

precision) can be used to show that a normalized version of dTV(P,Q) lies in some interval [1, V )
for V ≤ 2poly(n) which again we perceive as [1, V ) =

⋃u
i=1[(1+ε)i, (1+ε)i+1) for u ≤ poly(n). This

enables us to use the same approach as in the proof of Theorem 10. Speciőcally, we approximate
dTV(P,Q) as A ·mmin · d where d is deőned as in Equation (3). We then approximate d as in the
proof of Theorem 10, with a notable difference being that now we have to use Lemma 3 instead
of Lemma 2 for the #Knapsack instances to which we reduce the estimation of dTV(P,Q).

Therefore, following Theorem 10, it would suffice to estimate d. According to Equation (4),
we shall approximate the quantities tj := nu − nj (ni’s as in the proof of Theorem 10), which
here count the sets S ⊆ [n] such that

∏

i∈S\M

wi ≤ B

(

a

1− a

)|S|

+ C =: D (5)

for C = C(j) = mmin · Y/(1 + ε)j and the corresponding values of mmin and Y (see the proof
of Theorem 10 for deőnitions). Notice how the cardinality |S| of S comes up in the RHS of
Equation (5). Since this quantity is not known beforehand, we shall consider cases |S| = 1, . . . , n
in the #Knapsack instances that we will solve. This is the reason we use Lemma 3 instead of
Lemma 2.

First assume that wi ≥ 1 for every i (meaning that pi ≥ 1/2 or logwi ≥ 0 for all i); we take
logarithms (as in Theorem 10) to reduce this to a #Knapsack instance (i.e.,

∑

i∈S\M logwi ≤
logD) for every őxed |S| = 1, . . . , n. The latter problems can be then solved by the algorithm of
Lemma 3 for k = 1 (in the notation of Lemma 3). Finally, we take the sum of all these counts
over the possible values of |S| as our estimate of tj . Then our estimate for d will come from
Equation (4) for nu = 2n−|M |.

Now, if for some i we have wi < 1 (meaning that pi < 1/2 or logwi < 0 for some i), then we
switch 0 and 1 in those coordinates to get Bern(1− pi) and Bern(1− a), respectively. Then, in
Q, the őrst z coin biases are a and the last n− z coin biases are 1− a without loss of generality.
In that case, as before, dTV(P,Q) is

A
∑

S⊆[n]:M⊆S

max



0,
∏

i∈S\M

wi −B
∏

i∈S

vi



 ,

where wi ≥ 1 for every i and vi :=
qi

1−qi
whereby qi is equal to a or 1− a depending on whether

wi was originally ≥ 1 or < 1, respectively.
In this case, for every S, its Hamming weight (if we identify a set S ⊆ [n] with its characteristic

vector in {0, 1}n) in its őrst z coordinates is s1 and in its last n− z coordinates is s2. Therefore,
it suffices to solve a #Knapsack instance whereby the quantity

∏

i∈S\M wi − C is at most

B

(

a

1− a

)s1(1− a

a

)z−s1(1− a

a

)s2( a

1− a

)n−z−s2
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for C = C(j) = mmin · Y/(1 + ε)j as before (see the proof of Theorem 10). Note that Lemma 3
gives an algorithm for the above #Knapsack problem as well.

We then sum over the counts corresponding to all possible disjoint possibilities of s1 and s2
such that s1 + s2 = |S|, for all possible values of |S|, to get our estimate of tj . Then, as earlier,
our estimate for d will come from Equation (4) for nu = 2n−|M |.

We now turn to Theorem 12.

Proof of Theorem 12. Let M be the set of indices i ∈ [n] such that pi = 1. First, assume that
pi ≥ 1/2 for all i. We have that dTV(P,Q) is

∑

S⊆[n]:M⊆S

max

(

0,
∏

i∈S

pi
∏

i/∈S

(1− pi)− az111 (1− a1)
z10 · · · azk1k (1− ak)

zk0

)

,

where zi = zi0+zi1 and zi0 and zi1 denote the counts of 0’s and 1’s respectively in the characteristic
vector of S that correspond to the ai parameter.

Continuing our manipulation, we see that dTV(P,Q) is equal to

∏

i/∈M

(1− pi)
∑

S⊆[n]:M⊆S

max



0,
∏

i∈S\M

(

pi
1− pi

)

−
az111 (1− a1)

z10 · · · azk1k (1− ak)
zk0

∏

i/∈M (1− pi)





= A
∑

S⊆[n]:M⊆S

max



0,
∏

i∈S\M

wi −B ·
k
∏

i=1

azi1i (1− ai)
zi0





for A :=
∏

i/∈M (1− pi), wi := pi/ (1− pi), and B := 1/
∏

i/∈M (1− pi).
An argument similar to that of Theorem 10 (based again on the fact that we use őnite

precision) can be used to show that a normalized version of dTV(P,Q) lies in some interval [1, V )
for V ≤ 2poly(n) which again we perceive as [1, V ) =

⋃u
i=1[(1+ε)i, (1+ε)i+1) for u ≤ poly(n). This

enables us to use the same approach as in the proof of Theorem 10. Speciőcally, we approximate
dTV(P,Q) as A ·mmin · d where d is deőned as in Equation (3). We then approximate d as in the
proof of Theorem 10, with a notable difference being that now we have to use Lemma 3 instead
of Lemma 2 for the #Knapsack instances to which we reduce the estimation of dTV(P,Q).

Therefore, following Theorem 10, it would suffice to estimate d. According to Equation (4),
we shall approximate the quantities tj := nu − nj (ni’s as in the proof of Theorem 10), which
here count the sets S ⊆ [n] such that

∏

i∈S\M

wi ≤ B

k
∏

i=1

azi1i (1− ai)
zi0 + C =: D (6)

for C = C(j) = mmin · Y/(1 + ε)j , for the corresponding values of mmin and Y (see the proof of
Theorem 10).

We perform this counting as follows. We partition the 2n values of S ⊆ [n] into subsets
corresponding to every possibility of zi1’s and zi0’s between 0 and zi, so that |S| =

∑k
i=1 zi1.

Hence there are at most
∏k

i=1 (zi + 1) ≤ (n+ 1)k many parts. For each such part, we solve a
#Knapsack instance with the following constraints:

(a) Each zi1 and zi0 correspond to a őxed possibility determined by S.

(b) It is the case that
∏

i∈S\M wi ≤ D for some D determined by j and the zi1’s and zi0’s as
in Equation (6).
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Therefore for each part the number of corresponding Knapsack solutions can be approximately
counted in polynomial time by the algorithm of Lemma 3. Our estimate for tj then is the sum
of all of these estimates, which will still be (1 + ε)-approximate. Then (as in Theorem 10 and
Theorem 13) our őnal estimate for d will come from Equation (4) for nu = 2n−|M |.

Now, if there is any pi < 1/2, then we work with (1 − pi) and (1 − qi) at that particular
coordinate and repeat the argument outlined above; this effectively doubles the number of
parameters to 2k and the resulting algorithm would still run in polynomial time for the case
where k = O(1).

6 Conclusion

We initiated a systematic study of the computational nature of the TV distance, a widely used
notion of distance between probability distributions. Our őndings are twofold: On the one
hand, we establish hardness results for exactly computing (or approximating) the TV distance
(Theorem 4; Theorem 9). On the other hand, we present efficient deterministic approximation
algorithms (Theorem 10; Theorem 12; Theorem 13) for its estimation in some special cases of
product distributions.

To conclude, the main open questions that arise from our work are:

1. Does there exist an FPTAS for approximating the TV distance between two product
distributions?

2. For what other classes of probabilistic models do there exist TV distance approximation
schemes?

3. What about other notions of distance or similarity between probabilistic models?
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A Proof of Lemma 3

The proof of Lemma 3 follows by adapting the work of [GKM10]. We őrst őx some notation and
terminology.

A (W,n)-branching program is a branching program of width W over n Boolean input
variables. A read-once branching program (ROBP) is a branching program whereby each input
variable is accessed only once. A monotone (W,n)-ROBP is a (W,n)-ROBP such that in each of
its layers L the nodes of L are totally ordered under some relation ≺, and whenever u ≺ v for
some nodes u and v it is the case that the set of partial accepting paths that start u are a subset
of the the set of partial accepting paths that start at v.

Given a branching program M and a string z, the notation M(z) denotes the output
(łacceptž/łrejectž) of M on input z.

An implicit description of a monotone ROBP is a description according to which one can
efficiently check the relative order of two nodes under ≺ (within any layer), and given a node u
one can efficiently compute its neighbors.

The following notion of small-space sources was introduced by [KRVZ06].
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Deőnition 14 ([KRVZ06]). A width-w small-space source is described by a (w, n)-branching
program D with an additional probability distribution pv on the outgoing edges associated with
vertices v ∈ D. Samples from the source are generated by taking a random walk on D according
to the pv’s and outputting the labels of the edges traversed.

We require the following useful lemmas from [GKM10].

Lemma 15 ([GKM10]). Given a ROBP M of width at most W and a small-space source D of
width at most S, Prx∼D[M(x) = 1] can be computed exactly in time O(nSW ).

Lemma 16 ([GKM10]). Given a (W,n)-ROBP M , the uniform distribution over M ’s accepting
inputs, {x | M(x) = 1} is a width W small-space source.

We further require the following result from [GKM10].

Lemma 17 ([GKM10]). Given a monotone (W,n)-ROBP M , δ > 0, and a small-space source
D over {0, 1}n of width at most S, there exists an (O(n2S/δ), n)-monotone ROBP M0 such that
for all z, M(z) ≤ M0(z) and

Pr
z∼D

[M(z) = 1] ≤ Pr
z∼D

[M0(z) = 1] ≤ (1 + δ) Pr
z∼D

[M(z) = 1] .

Moreover, given an implicit description of M and a description of D, M0 can be constructed in
deterministic time O(n3S(S + logW ) log(n/δ)/δ).

The main take-away of Lemma 17 is that the number of accepting paths of M0 (under the
distribution D) approximates the number of accepting paths of M (under the distribution D),
and moreover M0 has small width.

We now turn to the proof of Lemma 3.

Proof of Lemma 3. Take M in Lemma 17 to be a ROBP for Knapsack. In particular, M
decides the validity of the inequality

∑

i∈S ai ≤ b, which may be also written as
∑

i∈[n] aixi ≤ b
if we let xi = 1 if and only if i ∈ S. The ROBP M has n+ 1 layers; layer 0 has a single start
node. Every other layer i has a node for each partial sum

∑

j≤i aixi. For a node v in layer i− 1
and xi ∈ {0, 1}, the xi-th neighbor of v is v + aixi. Naturally, the nodes in the last layer are
either rejecting (if their label is more than b) or accepting (otherwise).

Note that M may have width W (at most) exponential in n; this makes it prohibitive in terms
of running time to directly use Lemma 15 in order to count Knapsack solutions. Therefore,
Lemma 17 comes handy here.

To apply Lemma 17, let us őrst note that M is monotone. Indeed, we can deőne a total node
ordering ≺ within each layer of M as follows: Given two nodes u, v that both belong to some
layer of M , we deőne u ≺ v if and only if u > v. This satisőes the requirements of a ROBP
being monotone as in this case the partial solutions that start at u are a subset of the partial
solutions that start at v, since the smaller partial sum v allows for more ŕexibility with respect
to the items that we can add to its associated solution.

So by Lemma 17 we can construct in time O(n3S(S + logW ) log(n/δ)/δ) some ROBP M0

which has width W0 = O(n2S/δ) and is such that the probability that M0 is accepting under
the distribution D approximates the probability that M is accepting under the distribution D.

By Lemma 16, the Hamming weight constraints of Lemma 3 can be sampled by some small
space source of width at most S ≤ poly(n), since there is some ROBP of width

∏k
i=1 (|Si|+ 1) ≤

(n+ 1)k = poly(n) that only accepts the set of strings that satisfy the Hamming weight constraints
of Lemma 3.
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This means that the width of M0, namely W0, is at most O(poly(n) /δ), and that M0 can be
constructed in time O(poly(n) /δ) (since logW = O(poly(n))). By Lemma 15, we can compute
the probability that M0 is accepting under the distribution D in time O(nSW0) = O(poly(n) /δ).
Let p denote this probability. As a last step, we multiply p by

k
∏

i=1

(

|Si|

ri

)

,

which is the number of strings in the support of D (i.e., the set of strings that have non-zero
probability to be sampled by D), to get the number of accepting paths of M0.

Since p = Prz∼D[M0(z) = 1] (1 + δ)-approximates Prz∼D[M0(z) = 1], we get that the num-
ber of accepting paths of M0 (1 + δ)-approximates the number of accepting paths of M .

The result now follows from the fact that M is a ROBP for Knapsack, so the number of
accepting paths of M0 (1 + δ)-approximates the number of Knapsack solutions.

Finally the running time of this procedure is polynomial in n, logW , and 1/δ, which is
polynomial in n and 1/δ since the width of M is logW = poly(n).
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