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Abstract
We study symmetry breaking in the mean field solutions to the electronic structure
problem for the 2 electron hydrogen molecule within the Kohn Sham (KS) local spin
density functional theory with Dirac exchange (the XLDA model). This simplified
model shows behavior related to that of the (KS) spin density functional theory (SDFT)
predictions in condensed matter and molecular systems. The KS solutions to the con-
strained SDFT variation problem undergo spontaneous symmetry breaking leading to
the formation of spin ordered states as the relative strength of the non-convex exchange
term increases. Numerically, we observe that with increases in the internuclear bond
length, the molecular ground state changes from a paramagnetic state (spin delocal-
ized) to an antiferromagnetic (spin localized) ground state and a symmetric delocalized
(spin delocalized) excited state. We further characterize the limiting behavior of the
minimizerwhen the strength of the exchange term goes to infinity both analytically and
numerically. This leads to further bifurcations and highly localized states with varying
character. Finite element numerical results provide support for the formal conjectures.
Various solution classes are found to be numerically stable. However, for changes in
the R parameter, numerical Hessian calculations demonstrate that these are stationary
but not stable solutions.
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1 Introduction

In this paper, we report studies of the properties of density functional theory (DFT)
energy minimizers within the context of the hydrogen molecule, H2. The (DFT) min-
imizers discussed are related to those of the Kohn–Sham spin density functional
method. The exchange correlation function (Robert 1989) is simplified by includ-
ing only Dirac spin density exchange without correlation (Robert 1989) . We will
show that for fixed electron mass, the structure of the minimizing Kohn–Sham solu-
tions changes character with the variation in parameters related to the relative strength
of the exchange-correlation component of the functional. In particular, the changes of
these parameters lead to bifurcations from globally stable delocalized product states
with no spin localization to product states with electron spin localized on atomic sites
(antiferromagnetic states). This behavior is similar to the formation of spin ordered
states in the DFT analysis of highly correlated materials (Chen et al. 2016; Cox 1992;
Peng and Perdew 2017; Rollmann et al. 2004).

Similar studies varying the molecular bond length have been undertaken using
robust finite element methods for Hartree–Fock and SLDA functionals in Hu (2014)
and for Hartree–Fock using a maximum overlap method in Barca et al. (2014). The
precise electron configurations that occur in the ground states of such problems are
important for further developing density functional theory (see, e.g., Cohen et al. 2008,
2012) as well as directly in the application of density functional theory (DFT) to highly
correlated condensed materials (Chen et al. 2016; Cox 1992; Peng and Perdew 2017;
Rollmann et al. 2004) and in spin ordered molecular systems. In addition, unique-
ness and symmetry breaking in other quantum mechanical models have recently been
studied widely in for instance the works (Frank et al. 2010, 2011) for polaron mod-
els, (Gontier et al. 2018; Gontier and Lewin 2018; Griesemer and Hantsch 2012) for
Hartree–Fock models of atoms, and many others. A similar strategy to that undertaken
here in one of our limits was explored for the periodic Thomas–Fermi–Dirac–von
Weizsäcker model in Ricaud (2017) and Ricaud (2018).

We consider a neutral hydrogen molecule H2 with nuclei placed 2R apart. The
external potential is given by (after a possible coordinate change)

VR(x) = − 1
∣
∣x − Re1

∣
∣

− 1
∣
∣x + Re1

∣
∣
, (1)

where e1 is the (1, 0, 0) vector in R3. The two-electron Schrödinger operator is given
by

H2 = −1

2
�x1 − 1

2
�x2 + VR(x1) + VR(x2) + 1

∣
∣x1 − x2

∣
∣
, (2)

where x1 and x2 denote the position of the two electrons in the system. Atomic units
are used throughout.

In this work, we will consider the spin-polarized density functional theory with
the exchange energy taken to be Dirac exchange and without correlation energy. In
the literature, the spin free version of this model is sometimes referred as the XLDA
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model. We are interested in the spin paired ground state of the system with spin-up
ψ+ and spin-down ψ− spatial wave functions. We would like to study the impact
of the exchange term on the electronic structure. Therefore, we introduce a strength
parameter α ≥ 0 for the exchange energy functional. The DFT energy functional is
hence given by

Eα(ψ+, ψ−) = 1

2

∫
∣
∣∇ψ+

∣
∣2 dx + 1

2

∫
∣
∣∇ψ−

∣
∣2 dx +

∫

VR(x)ρ(x) dx

+1

2

∫∫
ρ(x)ρ(y)
∣
∣x − y

∣
∣

dx dy − α

∫ (∣
∣ψ+

∣
∣8/3 + ∣

∣ψ−
∣
∣8/3

)

dx, (3)

where the electron density of the system is given by

ρ(x) = ∣
∣ψ+(x)

∣
∣2 + ∣

∣ψ−(x)
∣
∣2. (4)

Note in particular in (3) the Dirac exchange term is spin-polarized: let ρ± = ∣
∣ψ±

∣
∣2

be the spin-polarized densities, the exchange term is given by

− α

∫
(

ρ
4/3
+ + ρ

4/3
−

)

dx (5)

as the exchange effect originating fromPauli’s exclusion principle only occurs between
electrons with same spin polarization (Oliver and Perdew 1979; Robert 1989).

The potential VR defined in (1) corresponds to the H2 molecule having reflection
symmetry. We are interested in the symmetry (delocalization) (or lack of symmetry,
localization) ofψ+ andψ−. In particular, when a solution inherits the symmetry of the
potential VR , the electronwave functionswill be even split across both atoms, hencewe
refer to that state as a delocalized state. Otherwise, each electron wave function will be
supported on one particular atom in the molecule, in which case we call the electrons
localized. We note here that we are considering only the breaking of spatial symmetry
of thewave functions among neutral spinminimizers (i.e., spin singlet configurations).
We call the minimizer with the symmetry constraint, ψ+ = ψ− = ψR , a restricted
minimizer to the energy functional, denoted as ψR . Thus,

ψR = argmin Eα(ψ,ψ)

s.t.
∫

∣
∣ψ

∣
∣2 = 1.

(6)

The unrestricted minimization on the other hand considers all possible ψ+ and ψ−
with the normalization constraints. To distinguish, we denote the minimizers as ψ±.

(ψ+, ψ−) = argmin Eα(ψ+, ψ−)

s.t.
∫

∣
∣ψ+

∣
∣
2 =

∫
∣
∣ψ−

∣
∣
2 = 1.

(7)
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Our goal in thiswork is to understand the symmetry breaking, i.e., the questionwhether
ψ+ = ψ− = ψR . The following result gives the existence of minimizers to both (6)
and (7).

Proposition 1.1 For all α ≥ 0, there exist solutions (φ+, φ−) ∈ H1 × H1 with
∫ |φ±|2 dx = 1 such that

Eα(φ+, φ−) = min
ψ±∈H1;∫ |ψ±|2dx=1

Eα(ψ+, ψ−).

For a proof of this proposition, we refer the reader to the concentration compactness
tools employed in Anantharaman and Cancès (2009, Theorem 1) or specifically for
LDA models the recent work of Gontier (2015), where a general existence theory is
addressed for LDA models of this type with neutral or positive charge.

For the energy functional (3), we have two parameters R and α in the functional.
We expect the following behavior of theminimizers for different ranges of parameters:

1. For α = 0 and any R > 0, the minimizer has the symmetry ψ+ = ψ− = ψR .
2. Fix R ≥ 0, when we increase α from 0: The minimizer is initially symmetric

(hence, it is continuous at α = 0), the symmetry is broken for larger α (ψ+ �=
ψ−). The critical parameter α for the transition from symmetric to asymmetric
minimizer depends on R.

3. Fix α > 0, for R sufficiently large, the minimizer is asymmetric.

Therefore, this suggests a two-dimensional phase diagram where the axes are R and
α with a phase transition from symmetric to asymmetric minimizers. In the current
manuscript, we will fix R and vary the parameter α in our analysis in order to prove
that symmetry breaking occurs in the α parameter as predicted. However, we will
demonstrate the (α, R) phase diagram numerically and hence lend numerical support
to the conjectured behaviors in R. Some technical difficulties arise in the analysis
when varying R in particular when taking R → ∞, which we comment on in Sect. 5
and plan to address in future work. We make our statements precise in the following
theorems.

Theorem 1 Fix R > 0, denote ψR the minimizer of (6) and ψ± the minimizer of (7),
we have ψ± = ψR for α � 1, and ψ+ �= ψ− for α 	 1.

In other words, as we increase α, the symmetry ψ+ = ψ− is broken. In fact, we
can give a more precise characterization of the minimizer ψ± as α → ∞.

Theorem 2 Fix R > 0, as α → ∞, up to symmetries of the equation, the rescaled
and translated minimizer of (7)

α− 3
2 ψ±(α−1(x ∓ Re1)) (8)

converges to φ in H1, where φ is the unique positive, radial solution to the equation

− 1

2
�φ − 4

3
|φ| 23 φ + Eφ = 0, with

∫

|φ|2dx = 1. (9)
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This can also be seen as the constrained minimizer of the Lagrangian

Es(φ) = 1

2

∫
∣
∣∇φ

∣
∣2 dx −

∫
∣
∣φ

∣
∣8/3 dx, (10)

with mass
∫ ∣

∣φ
∣
∣2 dx = 1. In other words, as α → ∞, each electron becomes concen-

trated over a different nucleus.

Our results in the smallα setting rely heavily on the results of Lieb, Lions and others
relating to the concentration compactness phenomenon for constructingminimizers of
constrained Lagrangians at α = 0, then an application of the implicit function theorem
for smallα. Our result for largeα on the other hand follows from essentially comparing
the variational problem to a scale-invariant semilinear problem, which in turn relies
strongly on the orbital stability of solitons for the unperturbed Dirac nonlinearity in

three dimensions, |u| 23 u.
The proof for the small α regime is presented in Sect. 2, while the large α regime

is treated in Sect. 3. We present the analysis in detail for fixed R > 0 and varying
α throughout the proof. Without loss of generality, for our analysis, we will assume
R = 1 and denote V = VR . Detailed numerical studies of the (α, R) phase diagram
and in particular the transition between small and large α for fixed R are discussed
in Sect. 4. Concluding remarks and a discussion of the analysis in the case of varying
R are included in Sect. 5. The numerical methods are presented in Appendix A using
a finite element package developed by the group of the first author and implemented
in the thesis of the second author to study variational problems in electronic structure
theory.

2 Proof in the Small˛ Regime

2.1 The Restricted Hartree Model: Case˛ = 0

When α = 0, the energy functional we consider becomes

E0(ψ+, ψ−) = 1

2

∫
∣
∣∇ψ+

∣
∣2 dx + 1

2

∫
∣
∣∇ψ−

∣
∣2 dx +

∫

V (x)ρ(x) dx

+1

2

∫∫
ρ(x)ρ(y)
∣
∣x − y

∣
∣

dx dy. (11)

Without the exchange-correlation energy, the minimizer is always symmetric.
Indeed, fixing any density ρ with

∫

ρ = 2, we have

E0(
√

ρ/
√
2,

√
ρ/

√
2) = inf

{

E0(ψ+, ψ−) | ∣
∣ψ+

∣
∣2 + ∣

∣ψ−
∣
∣2 = ρ

}

. (12)
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Define ρ+ = ∣
∣ψ+

∣
∣
2 and ρ− = ∣

∣ψ−
∣
∣
2, the above follows from the convexity

2
∫

∣
∣∇√

(ρ+ + ρ−)/2
∣
∣2 dx ≤

∫
∣
∣∇√

ρ+
∣
∣2 dx +

∫
∣
∣∇√

ρ−
∣
∣2 dx, (13)

and the equality holds if and only if ρ+ = ρ− (see Lieb and Loss 2001, Page 177,
Theorem 7.8). Thus, we may denote the common orbital function as φ = ψ+ = ψ−,
which minimizes the functional

E0(φ) =
∫

∣
∣∇φ

∣
∣2 dx + 2

∫

V (x)
∣
∣φ

∣
∣2 dx

+2
∫∫ ∣

∣φ(x)
∣
∣
2∣
∣φ(y)

∣
∣
2

∣
∣x − y

∣
∣

dx dy. (14)

Note that, this functional has the same form as the restricted Hartree model treated in
Lions (1987, Theorem II.2), which guarantees the existence of a minimizer. Moreover,
the minimizer is non-negative without loss of generality and satisfies the Euler–
Lagrange equation

− 1

2
�φ + E0φ + Vφ + 2

(

vc ∗ ∣
∣φ

∣
∣2

)

φ = 0 (15)

where vc(x) = ∣
∣x

∣
∣−1 denotes the Coulomb kernel and E0 ≥ 0 is the Lagrange

multiplier. We now show that E0 must be strictly positive. Suppose E0 = 0, define
W := V + 2vc ∗ ∣

∣φ
∣
∣2, we have

− 1

2
�φ + Wφ = 0. (16)

Using Newton’s theorem, the spherical average of W , denoted by �W , is non-positive
outside the ball BR (since the ball contains all the nuclei charge). Thus, we get trivially
that the positive part of �W+ = max{ �W , 0} ∈ L3/2(Bc

R). This implies that φ /∈ L2(Bc
R)

by Lieb (1981, Lemma 7.18) which is clearly a contradiction, since
∫ ∣

∣φ
∣
∣2 = 1.

Therefore, E0 > 0. This implies that the nuclear potential is properly binding in a
similar sense to that explored in Ruskai and Stillinger (1984).

For a purpose that will be clear later, we also consider the variational problem (14)
with more general mass constraints and denote the minimum as IM :

IM := inf
{

E0(φ) |
∫

∣
∣φ

∣
∣2 = M/2

}

= inf
{

E0(φ) |
∫

∣
∣φ

∣
∣2 ≤ M/2

}

= inf
{

E0(
√

ρ/
√
2) |

∫

ρ ≤ M
}

,

(17)
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where the second equality follows from the fact that IM is monotonically decreasing in
M aswe can always put some excessive charge far away from the nucleiwith negligible
contribution to the energy. Furthermore, IM is strictly convex for M ∈ [0, Mc) for
some Mc ≥ 2, which follows the standard convexity argument applies to E0(

√
ρ/

√
2)

as in the proof of parts (iii) and (iv) of Lions (1987, Corollary II.1) (see also the proof
of convexity of the energy of the related Thomas–Fermi–von Weizsäcker theory in
Benguria et al. 1981). We also have the relation

∂ IM
∂M

∣
∣
∣
M=2

= −E0 < 0, (18)

since E0 is the Lagrange multiplier corresponding to the constraint
∫ ∣

∣φ
∣
∣2 = M/2.

This in turn guarantees that Mc > Z , as in Part (i) of Lions (1987, Corollary II.1).
Therefore, denote E0(M) the corresponding Lagrange multiplier for IM , we arrive at

− ∂E0(M)

∂M

∣
∣
∣
M=2

= ∂2 IM
∂M2

∣
∣
∣
M=2

> 0. (19)

Following the analysis of Lieb and Simon (1977, Theorem3.1) using elliptic estimates,
one observes that if φ ∈ H1 is a solution to (15), then φ ∈ H2.

2.2 Implicit Function Theorem Analysis for Small˛

We consider (3) for α small. First of all, by restricting to the class of solutions symmet-
ric with respect to reflection in x , we know there exists a delocalized solution obeying
the correct symmetry properties. For α = 0, (3) is a convex functional and there exists
a unique delocalized solution ψ+ = ψ− = φ such that ‖φ‖L2 = 1. The following
result extends the uniqueness to small α. This result is similar to one proved in Le Bris
(1993) for the Thomas–Fermi–Dirac–von Weizsäcker model.

Proposition 2.1 For α ≥ 0 sufficiently small, there exists a unique, delocalized min-
imizer to (3) such that ψ+ = ψ− = φ with ‖φ‖L2 = 1. The dependence upon α is
C1.

The remainder of this section is devoted to the proof of Proposition 2.1. The idea is
to construct a symmetric solution branch stemming from the unique solution at α = 0
that comes from the convexity of the energy functional in that limit. While the positive
α perturbation is non-convex, the Euler–Lagrange equations can be solved using a
Lyapunov-Schmidt reduction. In fact, we will see that we can construct an implicit
function theorem argument using the convexity at α = 0 and in doing so, that locally
only the symmetric branch will be possible. First, we will allow the branch to vary
with respect to mass, then we will fix the Lagrange multipliers E+ and E− (in most
cases we will observe E+ = E−) as a function of α to guarantee the mass 1 electron
branch.

123



89 Page 8 of 40 Journal of Nonlinear Science (2022) 32 :89

TheEuler–Lagrange equations forEα can bewritten as the followingwith F defined
as a function on (H2)2 × R

3

F(ψ+, ψ−; α, E+, E−)

:=
⎛

⎝
− 1

2�ψ+ + E+ψ+ + Vψ+ + (

vc ∗ (
∣
∣ψ+

∣
∣2 + ∣

∣ψ−
∣
∣2)

)

ψ+ − 4
3α

∣
∣ψ+

∣
∣
2
3 ψ+

− 1
2�ψ− + E−ψ− + Vψ− + (

vc ∗ (
∣
∣ψ+

∣
∣2 + ∣

∣ψ−
∣
∣2)

)

ψ− − 4
3α

∣
∣ψ−

∣
∣
2
3 ψ−

⎞

⎠ = 0.

(20)

To apply the Lyapunov-Schmidt reduction, we need to address the kernel of the Jaco-
bianwith respect toψ± for the Euler–Lagrange equations. This is given by the operator

Dψ F(ψ+, ψ−;α, E+, E−)

(

f+
f−

)

=
(

L+ f+ + 2ψ+vc ∗ (ψ− f−)

L− f− + 2ψ−vc ∗ (ψ+ f+)

)

(21)

for

L+(ψ±; α, E+) f+

:=
(

−1

2
� + E+ + V + vc ∗ (

∣
∣ψ+

∣
∣2 + ∣

∣ψ−
∣
∣2) − 20

9
α
∣
∣ψ+

∣
∣
2
3
)

f+ + 2ψ+vc ∗ (ψ+ f+);
L−(ψ±; α, E−) f−

:=
(

−1

2
� + E− + V + vc ∗ (

∣
∣ψ+

∣
∣2 + ∣

∣ψ−
∣
∣2) − 20

9
α
∣
∣ψ−

∣
∣
2
3
)

f− + 2ψ−vc ∗ (ψ− f−).

For ψ+ = ψ− = φ, the unique solution at α = 0 with resulting Lagrange multiplier
E0 stemming from the convexity of E0, we have

Dψ F(φ, φ; 0, E0, E0)

(

f+
f−

)

=
(

Lφ,E0 f+ + 2φvc ∗ (φ f−)

Lφ,E0 f− + 2φvc ∗ (φ f+)

)

for

Lφ,E0 f =
(

−1

2
� + E0 + V + 2vc ∗ ∣

∣φ
∣
∣2

)

f + 2φvc ∗ (φ f ).

In the class of symmetric solutions, the problem reduces to solving a scalar equation
instead of a system of equations.

2.3 Analysis of the Linearized Operators for˛ = 0

We prove here that at α = 0,ψ+ = ψ− = φ, E = E0, then the linearized operator has
a kernel, but it can only lead to solutions where ψ+ and ψ− take on different masses.
This is a key step in applying the implicit function theorem in α locally. To see this,
we linearize (15) to get the operator

L̃φ,E0 f =
(

−1

2
� + E0 + V + 2vc ∗ ∣

∣φ
∣
∣2

)

f + 4φvc ∗ (φ f ). (22)
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We observe that the operator L̃φ,E0 can be written in the form

L̃φ,E0 = −1

2
� + E0 + V + Vφ + Wφ,

where

Vφ := 2vc ∗ ∣
∣φ

∣
∣2

is a potential with 1/|x | decay and

Wφ f := 4φvc ∗ (φ �f )

is a self-adjoint convolutionoperator,wherewenote that the functionφ is exponentially
decaying.

Since V + Vφ + Wφ is a relatively compact perturbation, we observe that the
continuous spectrum of L̃φ,E0 is the interval [E0,∞) by applying Weyl’s Theorem,
see (Lieb and Loss 2001; Reed and Simon 1978) for instance, or (Lenzmann 2009)
where the functional analysis of Hartree-style equations is discussed in some detail.

Lemma 2.2 The operator L̃φ,E0 has only trivial kernel.

Proof Let us assume to the contrary there exists f ∈ H2 such that

L̃φ,E0 f = 0.

Then, we observe that

0 = 〈

(− 1
2� + E0 + V + Vφ) f , f

〉 + 〈

Wφ f , f
〉

.

Given the structure of Wφ and the nature of the state φ, we have that

〈Wφ f , f 〉 > 0 for f �= 0,

since the Coulomb kernel is strictly positive, which is easily seen from the Fourier
representation.

Taking the orthogonal decomposition f = cφ + φ⊥ and using that φ is the unique
kernel of the operator L− = − 1

2� + E0 + V + Vφ , where the notation L− here is
chosen tomatch that of the semilinear literature for linearizedoperators about nonlinear
states, see for instance (Lenzmann 2009). Hence, if φ⊥ �= 0, we have a contradiction
immediately from the coercivity of the operator L−. Thus, it remains the possibility
that f = cφ. However if c �= 0, we have

〈

Wφ f , f
〉

> 0, and therefore, f = 0. ��
Remark 2.1 This is a similar strategy to that of standard semilinear problems, however,
in such a case, the perturbation of the L− operator is negative in total and hence the
spectral theory of the linearized operator must be understood in much greater detail.
Here, the perturbation is actually positive, so the arguments are greatly simplified.
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Also, we have a potential V here, which has broken the translation invariance and
hence we do not need to consider a 1-parameter family of functions, but just a single
φ in the kernel of L−.

2.4 Construction of Solutions Near˛ = 0

Proposition 2.3 The Jacobian Dψ F(φ, φ; 0, E0, E0) as defined in (21) has kernel
given by span{(φ,−φ)}. As a result, there exists a unique C1 path of solutions in
(α, E+, E−) for equation (20) with fixed constraint ‖ψ±‖L2 = 1 in H2 × H2. More-
over, the unique solution satisfies the symmetry ψ+ = ψ−.

Proof We must study the invertibility of Dψ F at α = 0. In the restricted space,
ψ+ = ψ−, the invertibility is established in Lemma 2.2 through the invertibility of
L̃φ,E0 . More generally, let us consider ( f1, f2) that solves Dψ F( f1, f2)T = 0, then
L̃φ,E0( f1 + f2) = 0. Hence, either f1 + f2 is a non-trivial kernel function of L̃φ,E0

(which is excluded by Lemma 2.2) or f1 = − f2 = f and f is a non-trivial kernel
function for a modified operator

Lφ,E0 f =
(

−1

2
� + E0 + V + 2vc ∗ ∣

∣φ
∣
∣2

)

f ,

which through the equation satisfies Lφ,E0φ = 0. Since φ > 0, it is the ground state
and simple. Therefore, the kernel of Dψ F(φ, φ; 0, E0, E0) is one dimensional and
described completely as span{(φ,−φ)}.

The remaining proof relies on varying E± using the standard Lyapunov-Schmidt
construction ofψ±(E, α) solving the Euler–Lagrange equation, see (Kirr 2011, Propo-
sition 1) for a general discussion of the method. We write

(ψ+, ψ−) = (φ, φ) + c0(φ,−φ) + (η+,−η−),

for c0 ∼ √
α and

∫

(η+ + η−)φ dx = 0. We claim that

‖η±(c0, E± − E0, α)‖H2 � c20, |E± − E0| � c20,

where the dependence of η± upon our bifurcating parameters has been made explicit
and in particular we have shifted the dependence upon E± to that E± − E0 such that
η(0, 0, 0) = 0 for simplicity. Indeed, expanding (20) about (φ, φ) in this fashion, we
have

F(φ, φ; 0, E0, E0) + Dψ F(φ, φ; 0, E±)

(

η+
η−

)

+ R(η, c0, α, E± − E0, φ) =
(

0
0

)

,

(23)

where the remainder termR(η, c0, α, E±−E0, φ)will be specified belowand satisfies

|R| ≤ C(|η|2 + c20 + α + (E± − E0)).
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Wenote here that the linearization is Dψ F(φ, φ; 0, E±) andnotDψ F(φ, φ; 0, E0, E0).
Using the properties of Dψ F , φ and E0, we then observe that we can first rewrite the
equation for

(η+, η−) = (η+, η−)(c0, E± − E0, α)

as
(

η+
η−

)

= (P⊥Dψ F(φ, φ; 0, E±)P⊥)−1P⊥R(η, c0, α, E± − E0), (24)

where P⊥ �f = �f − 〈 �f , (φ,−φ)T
〉

(φ,−φ)T for �f = ( f1, f2)T projects to the orthog-
onal complement of the kernel of Dψ F(φ, φ, 0, E0, E0). This implies that (23) can
be written as

(

−1

2
� + E± + V

)

η±

= (E± − E0)φ + c0(E± − E0)φ − α|φ(1 ± c0)

+ η±| 23 (φ(1 ± c0) + η±)

+ vc ∗
[

2c20φ
2 + 2(1 + c0)φη+ + 2(1 − c0)φη− + η2+ + η2−

]

φ

± c0vc ∗
[

2c20φ
2 + 2(1 + c0)φη+ + 2(1 − c0)φη− + η2+ + η2−

]

φ

+ vc ∗
[

2φ2 + 2c20φ
2 + 2(1 + c0)φη+ + 2(1 − c0)φη− + η2+ + η2−

]

η±.

As we are taking |E± − E0| small, P⊥Dψ F(φ, φ; 0, E±)P⊥ is invertible since
P⊥Dψ F(φ, φ; 0, E0)P⊥ is invertible. We observe that by the implicit function the-
orem, there exists a solution �η = (η−, η+) such that

‖�η‖H2 ≤ C
(

c20 + α + |E+ − E0| + |E− − E0|
)

. (25)

Projecting (23) onto (φ,−φ), we compute directly that1

(E+ − E0) − (E− − E0) + c0[(E+ − E0) + (E− − E0)]
+O

(

‖�η‖2L2 + c30 + α
(

c0 + ‖�η‖
2
3
L2

)) = 0, (26)

where we have implicitly used uniform Sobolev bounds on φ and the smallness of c0,
α and E± − E0. This allows us to use the implicit function theorem once again to
solve for E+ given E− and observe that

1 Here, we use the following bound pointed out to the authors by N. Visciglia: Let α > 0 be given. Then,
for every a, b ∈ C, we have the following inequality:

∣
∣(a + b)|a + b|α − a|a|α − b|b|α∣

∣ � (|a||b|α + |b||a|α).
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|E+ − E0| ≤ C
(

c30 + αc0 + α
5
3 + |E− − E0|

)

,

wherewe have plugged in the bound on ‖η‖L2 from (25). Now, using the two constraint
equations for the mass, we have

∫

(2c0φ + c20φ
2 + 2(1 + c0)φη+ + η2+)dx = 0 (27)

and
∫

(−2c0φ + c20φ
2 + 2(1 − c0)φη− + η2−)dx = 0. (28)

Using the linear combination (27)+ (28) and the orthogonality of (η+, η−) to (φ, φ) as
constructed, we first observe by plugging the resulting implicit bound on ‖�η‖L2 ≤ Cc20
in (26) that

|E− − E0| ≤ C(α + c20),

which implies for the linear combination (27) − (28), we can observe that

c20 ≤ Cα.

Once the overall dependence upon α has been determined, we realize that on the
branch described above in (27) and (28), everything is indeed higher order to theO(c0)
term. Thus, c0 = 0 lest we move off the mass 1 branch. Therefore, we have ψ+ = ψ−
for sufficiently small α. ��
Remark 2.2 We note that the nature of the kernel of Dψ F is not so surprising at
α = 0, as a major symmetry of E0 would be to multiply (ψ+, ψ−) by a rotation
matrix, which is an invariant of the Lagrangian. However, given that at α = 0, we
haveψ+ = ψ− = φ, this symmetry generates no new solutions except the onewe have
found in the kernel. Using the convexity of E0, we have uniqueness of the symmetric
solution φ as a minimizer having fixed mass ‖φ‖L2 = 1.

Remark 2.3 From the sign changes (27) and (28), we expect that with no mass con-
straint the branch construction stemming from the kernel of Dψ F to leading order
leads to E+ = −E−. If we were allowed to make such a symmetric reduction, the
arguments above can be simplified.

2.5 Construction of the Local Branch Under the Symmetry Assumption

In Proposition 2.3 above, we established that the bifurcation of α = 0 occurs in the
symmetry class such that ψ+ = ψ−. Within this symmetry class, we demonstrate in
this section that one may construct a unique local branch of solutions that preserves
the mass of the electronic states as 1. We could have absorbed this constraint above in
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a modification of the application of the implicit function theorem, but for simplicity
of exposition, we have split the two arguments apart.

Using that the linearization preserves the symmetry of solutions proven in Proposi-
tion 2.3, let us limit ourselves to solutions of the simplified Euler–Lagrange equation
for φ(E, α) given by

−1

2
�φ(x) + Eφ(x) − V (x)φ(x) + 2

∫ |φ|2(y)
|x − y|dyφ(x) − α|φ(x)| 23 φ(x) = 0.

Denote the mass of φ by

M(E, α) :=
∫

|φ(E, α)|2dx .

By construction, M(E0, 0) = 1. To find mass 1 states, using that φ = φ(E, α), we
wish to find E(α) solving

M(E, α) =
∫

|φ(E(α), α)|2dx − 1 = 0.

Hence, we apply the Implicit Function Theorem once more, which guarantees the
solvability of E(α) provided

∂M

∂E

∣
∣
∣
E=E0,α=0

�= 0.

However, atα = 0, this follows directly from (19). Using the implicit function theorem
for a small range of α, there is an E = E(α) satisfying the mass constraint. Thus, the
proof of Proposition 2.1 is complete.

3 Localization and Symmetry Breaking for Large˛

In this section, we prove Theorem 2 by classifying the large α behavior of the mini-
mizer.

3.1 A Priori Energy Estimate

We consider a variational problem with only the kinetic and exchange terms:

min
ϕ:∫

∣
∣ϕ

∣
∣
2=1

F (ϕ) = 1

2

∫
∣
∣∇ϕ

∣
∣
2 −

∫
∣
∣ϕ

∣
∣8/3. (29)

It is now classical in the theory of nonlinear Schrödinger equations that the minimizer
of (29) exists. In fact, there is a unique radial minimizer, and all minimizers are
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translated versions of it, see for instance (Sulem and Sulem 1999). Denote ϕ the radial
minimizer of (29) centered at zero, it satisfies

− 1

2
�ϕ − 4

3

∣
∣ϕ

∣
∣
2/3

ϕ + Eϕ = 0 (30)

with E being a strictly positive Lagrangemultiplier.Moreover, ϕ decays exponentially
as

∣
∣x

∣
∣ → ∞.

We consider dilation operator Dα for α > 0 that preserves the L2 norm

(Dα f )(x) = α3/2 f (αx). (31)

Let x+ and x− minimize

min
(∥
∥∇ψ± − ∇(Dαϕ)(· − x±)

∥
∥2
L2 + E

∥
∥ψ± − (Dαϕ)(· − x±)

∥
∥2
L2

)

. (32)

We write the remainder as

ψ± = (

Dα(ϕ + w±)
)

(· − x±). (33)

ϕ = D−1
α τ−1

x± (ψ±) − w±, to simplify notation, we denote

ψ̃± = D−1
α τ−1

x± ψ± = α−3/2ψ±
( x + x±

α

)

. (34)

As {ψ±} minimize Eα , we have

0 ≤ Eα

(

(Dαϕ)(· − x+), (Dαϕ)(· − x−)
) − Eα(ψ+, ψ−)

= α2(2F (ϕ) − F (ψ̃+) − F (ψ̃−)
) +

∫

V (ρϕ − ρψ)

+ 1

2

∫∫
ρϕ(x)ρϕ(y)

∣
∣x − y

∣
∣

dx dy − 1

2

∫∫
ρψ(x)ρψ(y)

∣
∣x − y

∣
∣

dx dy, (35)

where we have set

ρϕ(x) = ∣
∣(Dαϕ)(x − x+)

∣
∣
2 + ∣

∣(Dαϕ)(x − x−)
∣
∣
2
. (36)

Note that, 1
2

∫∫ ρψ(x)ρψ (y)
∣
∣x−y

∣
∣

dx dy ≥ 0 and
∫

Vρϕ ≤ 0, rearranging the terms, we

obtain

F
(

ψ̃+
) + F

(

ψ̃−
) − 2F (ϕ) ≤ 1

α2

1

2

∫∫
ρϕ(x)ρϕ(y)

∣
∣x − y

∣
∣

dx dy − 1

α2

∫

Vρψ dx .

(37)
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For the first term on the right hand side, we have by the definition of ρϕ in (36) that

1

2

∫∫
ρϕ(x)ρϕ(y)

∣
∣x − y

∣
∣

= 1

2

∫∫ (∣
∣(Dαϕ)(x − x+)

∣
∣2 + ∣

∣(Dαϕ)(x − x−)
∣
∣2

)(∣
∣(Dαϕ)(y − x+)

∣
∣2 + ∣

∣(Dαϕ)(y − x−)
∣
∣2

)

∣
∣x − y

∣
∣

≤
∫∫ ∣

∣(Dαϕ)(x − x+)
∣
∣
2∣
∣(Dαϕ)(y − x+)

∣
∣
2

∣
∣x − y

∣
∣

+
∫∫ ∣

∣(Dαϕ)(x − x−)
∣
∣
2∣
∣(Dαϕ)(y − x−)

∣
∣
2

∣
∣x − y

∣
∣

= 2
∫∫ ∣

∣(Dαϕ)(x)
∣
∣
2∣
∣(Dαϕ)(y)

∣
∣
2

∣
∣x − y

∣
∣

= 2α
∫∫ ∣

∣ϕ(x)
∣
∣2

∣
∣ϕ(y)

∣
∣2

∣
∣x − y

∣
∣

, (38)

wherewehave used the scaling relation of Dα and change of variablesαx �→ x, αy �→
y in the last equality. To control the second term on the right hand side of (37), recall
that by Hardy’s uncertainty principle, we have for any X ∈ R

3 and f ∈ H1

∫
1

∣
∣x − X

∣
∣

∣
∣ f (x)

∣
∣2 dx ≤ 4

∥
∥ f

∥
∥
∥
∥∇ f

∥
∥. (39)

Therefore, since
∥
∥ψ±

∥
∥ = 1, we have

−
∫

Vρψ dx =
∫

1
∣
∣x − e1

∣
∣

(∣
∣ψ+

∣
∣2 + ∣

∣ψ−
∣
∣2) dx +

∫
1

∣
∣x + e1

∣
∣

(∣
∣ψ+

∣
∣2 + ∣

∣ψ−
∣
∣2) dx

≤ C
(∥
∥∇ψ−

∥
∥ + ∥

∥∇ψ+
∥
∥
)

. (40)

Thus, we arrive at

F
(

ψ̃+
) + F

(

ψ̃−
) − 2F (ϕ) ≤ C

α
+ C

α2

(∥
∥∇ψ+

∥
∥ + ∥

∥∇ψ−
∥
∥
)

≤ C

α
+ C

α2

(∥
∥∇Dα(ϕ + w+)

∥
∥ + ∥

∥∇Dα(ϕ + w−)
∥
∥
)

≤ C

α
+ C

α

(∥
∥∇w+

∥
∥ + ∥

∥∇w−
∥
∥
)

≤ C

α
+ C

α

(∥
∥∇w+

∥
∥
2 + ∥

∥∇w−
∥
∥
2)

.

(41)

Using the result in Weinstein (1986) for the semilinear functional (29), the left hand
side of (41) is bounded from below as

F
(

ψ̃+
) + F

(

ψ̃−
) − 2F (ϕ) ≥ g

(∥
∥w+

∥
∥
H1

) + g
(∥
∥w−

∥
∥
H1

)

, (42)

where

g(t) = ct2(1 − atθ − bt4) with a, b, c, θ > 0. (43)
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Combining (41) and (42), we conclude that

lim
α→∞

∥
∥w±

∥
∥
H1 = lim

α→∞
∥
∥ψ̃± − ϕ

∥
∥
H1 = 0. (44)

In other words, up to translation and dilation, the minimizer of (7) is close to the mini-
mizer of the semilinear problem (29) for α large. This establishes the H1 convergence
stated in Theorem 2. We now proceed to establish the exact structure of the minimizer
as stated in (8).

3.2 Location Optimization

We further determine the translation vectors x±. We claim that as α → ∞, the trans-
lation vectors x± → ±e1 (up to swapping x+ and x−, recall that swapping ψ+ and
ψ− does not change the energy). The key observation is that the kinetic and exchange
energy terms are invariant with respect to translation, and hence, x± are determined
by the potential and Coulomb repulsion terms, which are higher-order terms when α

is large.
For this, we consider shifted minimizers

ψ̂+ = ψ+(· + e1 + x+) and ψ̂− = ψ−(· − e1 + x−). (45)

By (33), we have

ψ̂± = (Dαϕ)(· ± e1) + (Dαw±)(· ± e1). (46)

Due to minimality, we have

0 ≤ Eα(ψ̂+, ψ̂−) − Eα(ψ+, ψ−)

=
∫

V (ρψ̂ − ρψ) + 1

2

∫∫
ρψ̂ (x)ρψ̂ (y)

∣
∣x − y

∣
∣

dx dy − 1

2

∫∫
ρψ(x)ρψ(y)

∣
∣x − y

∣
∣

dx dy.

(47)

Recall ρϕ and similarly define ρϕ̂ as

ρϕ(x) = ∣
∣(Dαϕ)(x − x+)

∣
∣
2 + ∣

∣(Dαϕ)(x − x−)
∣
∣
2;

ρϕ̂(x) = ∣
∣(Dαϕ)(x + e1)

∣
∣2 + ∣

∣(Dαϕ)(x − e1)
∣
∣2.

Denoting

δVC(ρ1, ρ2) =
∫

V (ρ1 − ρ2) + 1

2

∫∫
ρ1(x)ρ1(y)

∣
∣x − y

∣
∣

dx dy

−1

2

∫∫
ρ2(x)ρ2(y)

∣
∣x − y

∣
∣

dx dy, (48)
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we rewrite (47) as

δVC(ρψ̂ , ρψ) = δVC(ρψ̂ , ρϕ̂) + δVC(ρϕ̂, ρϕ) + δVC(ρϕ, ρψ) ≥ 0. (49)

Let us estimate δVC(ρϕ, ρψ) first. For the potential term, using (39) for f = ∣
∣ρϕ −

ρψ

∣
∣1/2,

∫
∣
∣V (ρϕ − ρψ)

∣
∣ ≤ C

∥
∥
∣
∣ρϕ − ρψ

∣
∣1/2

∥
∥
L2

∥
∥∇∣

∣ρϕ − ρψ

∣
∣1/2

∥
∥
L2

≤ C
∥
∥∇∣

∣ρϕ − ρψ

∣
∣1/2

∥
∥
L2 . (50)

For the difference in Coulomb energy,

∣
∣
∣
∣
∣

1

2

∫∫
ρϕ(x)ρϕ(y)

∣
∣x − y

∣
∣

dx dy − 1

2

∫∫
ρψ(x)ρψ(y)

∣
∣x − y

∣
∣

dx dy

∣
∣
∣
∣
∣

≤
∫∫ ∣

∣ρϕ − ρψ

∣
∣(x)ρϕ(y)

∣
∣x − y

∣
∣

dx dy + 1

2

∫∫
(ρϕ − ρψ)(x)(ρϕ − ρψ)(y)

∣
∣x − y

∣
∣

dx dy

≤ C
∥
∥ρϕ − ρψ

∥
∥
L3/2

∥
∥ρϕ

∥
∥
L1 + C

∥
∥ρϕ − ρψ

∥
∥
2
L6/5 , (51)

where the last line uses the Hardy–Littlewood–Sobolev inequality. Observe that using
interpolation and Gagliardo–Nirenberg–Sobolev inequality, we have

∥
∥ f

∥
∥
L6/5 ≤ ∥

∥ f
∥
∥3/4
L1

∥
∥ f

∥
∥1/4
L3 ≤ C

∥
∥ f

∥
∥3/4
L1

∥
∥∇√

f
∥
∥1/2
L2 , (52)

∥
∥ f

∥
∥
L3/2 ≤ ∥

∥ f
∥
∥1/2
L1

∥
∥ f

∥
∥1/2
L3 ≤ C

∥
∥ f

∥
∥1/2
L1

∥
∥∇√

f
∥
∥
L2 . (53)

Combined with the above three inequalities, we get

∣
∣
∣
∣
∣

1

2

∫∫
ρϕ(x)ρϕ(y)

∣
∣x − y

∣
∣

dx dy − 1

2

∫∫
ρψ(x)ρψ(y)

∣
∣x − y

∣
∣

dx dy

∣
∣
∣
∣
∣
≤ C

∥
∥∇∣

∣ρϕ − ρψ

∣
∣1/2

∥
∥
L2 .

(54)

To estimate the right hand side of (50) and (54), by definition

∥
∥∇∣

∣ρϕ − ρψ

∣
∣
1/2∥

∥
L2

≤ ∥
∥∇(

2
∣
∣Dαϕ

∣
∣
∣
∣Dαw+

∣
∣ + 2

∣
∣Dαϕ

∣
∣
∣
∣Dαw−

∣
∣ + ∣

∣Dαw+
∣
∣2 + ∣

∣Dαw−
∣
∣2

)1/2∥∥
L2

≤ C

(
∥
∥∇(∣

∣Dαϕ
∣
∣
∣
∣Dαw+

∣
∣
)1/2∥∥

L2 + ∥
∥∇(∣

∣Dαϕ
∣
∣
∣
∣Dαw−

∣
∣
)1/2∥∥

L2

+ ∥
∥∇∣

∣Dαw+
∣
∣
∥
∥
L2 + ∥

∥∇∣
∣Dαw−

∣
∣
∥
∥
L2

)

≤ Cα
(∥
∥w+

∥
∥
H1 + ∥

∥w−
∥
∥
H1

)

,

(55)
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where we have used the convexity of
∣
∣∇√

ρ
∣
∣
2 and the Cauchy–Schwarz inequality.

Note that, the α pre-factor on the right hand side is natural from the scaling, since
the characteristic length scale of ρϕ is order 1/α due to the construction by dilation.
Therefore, to sum up,

∣
∣δVC(ρϕ, ρψ)

∣
∣ ≤ Cα

(∥
∥w+

∥
∥
H1 + ∥

∥w−
∥
∥
H1

)

. (56)

It is easy to check that the same upper bound also holds for δVC(ρϕ̂, ρψ̂ ). Thus,

δVC(ρϕ̂, ρϕ) ≥ −Cα
(∥
∥w+

∥
∥
H1 + ∥

∥w−
∥
∥
H1

)

. (57)

We now turn the above estimate of the Coulomb energy difference into an estimate
of the translation vectors x±. For this, we calculate more explicitly δVC(ρϕ̂, ρϕ) (recall
that ϕ is the unique radial minimizer to the semilinear functional (29)). We have

δVC(ρϕ, ρϕ̂) =
∫

V (ρϕ − ρϕ̂) +
∫∫ ∣

∣Dαϕ
∣
∣2(x − x+)

∣
∣Dαϕ

∣
∣2(y − x−)

∣
∣x − y

∣
∣

dx dy

−
∫∫ ∣

∣Dαϕ
∣
∣2(x − x+)

∣
∣Dαϕ

∣
∣2(y − x−)

∣
∣x − y

∣
∣

dx dy. (58)

As ϕ decays exponentially, we have

∫∫ ∣
∣Dαϕ

∣
∣2(x − x+)

∣
∣Dαϕ

∣
∣2(y − x−)

∣
∣x − y

∣
∣

dx dy � 1

α
, (59)

and therefore

∫

V (ρϕ − ρϕ̂) +
∫∫ ∣

∣Dαϕ
∣
∣
2
(x − x+)

∣
∣Dαϕ

∣
∣
2
(y − x−)

∣
∣x − y

∣
∣

dx dy

≤ Cα
(∥
∥w+

∥
∥
H1 + ∥

∥w−
∥
∥
H1

) + O(α−1). (60)

This implies

lim
α→∞

1

α

∫

V (ρϕ − ρϕ̂) = lim
α→∞ − 1

α

∫ ( 1
∣
∣x − e1

∣
∣

+ 1
∣
∣x + e1

∣
∣

)

(∣
∣Dαϕ

∣
∣2(x − x+) − ∣

∣Dαϕ
∣
∣2(x − e1)

)

dx

+ lim
α→∞ − 1

α

∫ ( 1
∣
∣x − e1

∣
∣

+ 1
∣
∣x + e1

∣
∣

)

(∣
∣Dαϕ

∣
∣
2
(x − x−) − ∣

∣Dαϕ
∣
∣
2
(x + e1)

)

dx = 0,

(61)
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since the second term on the left hand side of (60) is non-negative. Note that, the two
limits in the middle of the above equation are both non-negative. We have

lim
α→∞ − 1

α

∫ ( 1
∣
∣x − e1

∣
∣

+ 1
∣
∣x + e1

∣
∣

)(∣
∣Dαϕ

∣
∣2(x − x+) − ∣

∣Dαϕ
∣
∣2(x − e1)

)

dx = 0.

(62)

This implies that min{∣∣x+ − e1
∣
∣,

∣
∣x+ + e1

∣
∣} converges to zero, and similarly for x−.

Thus, as α → ∞, x± approaches {e1,−e1}. They cannot converge to the same point,
as otherwise the Coulomb interaction is obviously higher. Therefore, we arrive at the
conclusion of Theorem 2.

4 Numerical Solution to Kohn–Sham SDFT (KS-SDFT) Equations for
Ã+ andÃ− as a Function of˛

The variation in the energy functional given in Eq. (3) with normalization constraints
leads to Euler–Lagrange equations defining the spin-up, ψ+, and the spin-down, ψ−,
KS-SDFT orbital solutions as a function of exchange strength α and the internuclear
bond length, 2R. In this section, we outline the finite element methods (FEM) (Braess
2001; Brenner and Ridgway 2008; Hu 2014) we used to produce numerical solutions
to these equations and determine their stability. These solutions, characterized by the
symmetry of the orbital functions and their localization within the molecular frame-
work, were used to explore the transitions between the regions of stability identified
by the theorems in Sects. 2 and 3. In the process of generating numerically stable
solutions to the Euler Lagrange equations, several new classes of solutions were iden-
tified. These may have important consequences for the application of Kohn–Sham
methods but were not analyzed in Sects. 2 and 3. The stability and stationary character
of the solutions generated with variation in the R parameter are validated via Hessian
analysis (see the Appendix).

An important feature of the FEM approach we used is that the expansions of ψ−
and ψ+ in the FEM basis (Logg et al. 2012) are not constrained by any preconceived
notion as to the nature of the solution as is implicit in the atomic orbital expansion
basis of quantum chemistry software (Foresman and Frisch 1996; Robert 1972; Szabo
and Ostlund 1989). This is particularly important in our application because of the
form of the KS solutions to (3) as a function of α (e.g., for large α) is unknown. The
numerical problem and the FEM method we developed for its solution are described
in more detail in the Appendix. A novel feature of the numerical method we have used
is that its time to solution scales linearly with the size of the basis (Hu 2014).

4.1 Overview of Numerical Method (FEM)

Our numerical implementations are based on application of the Python FEniCS finite
element (FEM) package (Logg et al. 2012; Hu 2014), which is a collection of free
software with an extensive list of features for automated, efficient, finite element
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Fig. 1 A representation of the
finite element grid used in
calculation. Each triangle
represents a tetrahedron in the
real calculation. Note that, the
density of the mesh is
significantly increased near the
two atomic nuclei (see Appendix
for further discussion as to how
this mesh is generated).

solution methods for differential equations. The source codes implementing the linear
scaling finite element solver described below can be found at the FEniCS project
homepage.2 More details specific to our calculation are given in the Appendix.

The FEMcalculation domain used here is a fixed square box of dimension 50×50×
50 atomic units which easily contains theH2 molecule (size≈ 2 atomic units). Because
the bound state molecular orbitals decay exponentially away from the positions of
the nucleus, we apply zero boundary conditions at the domain edges for the wave
functions. The Coulomb potentials required in the calculation are calculated from
Poisson’s equation using free space boundary conditions. The singularities of the
attractive nuclear potentials, (1), are numerically removed by adding a small positive
constant in the denominator (Hu 2014).

To accommodate the more rapid variation in the ψ functions near the atomic
nucleus, the finite element grid is adapted within the domain, see Fig. 1. This is an
essential feature of atomic and molecular electronic structure calculations (Bylaska
et al. 2009, 1995; Kohn et al. 1997) that do not introduce pseudopotentials (Chen et al.
2016).

In these FEM calculations, each molecular orbital (ψ+ or ψ−) is written as an
expansion in a finite element basis, ηi , with local support centered on the grid points
in Fig. 1, see Braess (2001), Bylaska et al. (2009) and Logg et al. (2012), giving,

ψ± =
M

∑

j=1

c±, jη j . (63)

2 https://fenicsproject.org.
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There are M basis functions, where M is the total number of points in the grid and ηi
the finite element basis functions (piecewise linear elements with local support) (see
Appendix and Bylaska et al. 2009 for more detail).
The variation in the functional (3) expanded in the basis as in (63) leads to generalized
eigenvalue problems which must be solved in a self-consistent fashion. These may be
written as

(

−1

2
� − ε±

)

ψ±,i (x) = Veff,±[ρ±]ψ±(x), (64)

where the spin electron density is ρ± = |ψ±|2 and Veff,±[ρ±] denotes the effective
(spin)-potential corresponding to ρ±. Only the lowest spin-up and spin-down states
are occupied and only these states are found in the solution method (Appendix), thus
we only need the lowest eigenfunction in (64). The eigenvalue problems, (64), are
solved using an iterative process in which for step k the ψ± on right hand side of (64)
and the orbital energies, εk±, at step k are assigned the values and functionality from
the k − 1 step (see Appendix and Hu 2014).

(64) is solved using the FEniCS software package (see Appendix and Hu 2014
for more detail). This package implements a conjugate gradient solver (generalized
minimal residual method, GMRES Saad and Schultz 1986) after preconditioning
with an algebraic multigrid preconditioner (AMG, BoomerAMG from the Hypre
Library (Briggs et al. 2000; Gene 1996; Tatebe 1993; Van Emden and Yang
2002; https://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-
methods). The application of the AMG solver leads to a linear in basis set size to
solution time numerical method (Hu 2014).

Initial guesses for the molecular orbitals (MOs) for the FEM solutions are neces-
sary to start the iteration. Here, we used the H atom Slater Type Orbitals (STO-3G)
generated from the NWChem data base (Valiev et al. 2010; Aprà et al. 2020) to form
molecular orbitals for all α. Given two STO-3G functions centered on the atom centers
and designated as φ1 and φ2, the initial unnormalized MOs for symmetric delocalized
solutions are (φ1 +φ2)/2. When localized solutions are expected, the initial functions
are taken to be the STO-3G functions φ1 and φ2 localized on the different atomic
centers, see Foresman and Frisch (1996) and Hehre et al. (1969).

When α is very small (weak exchange), the final solutions are always the param-
agnetic delocalized states that converge to the same spatial dependence for spin-up
and spin-down states (i.e., ψ+ = ψ−, where these are the lowest energy solutions for
each spin). For very large α, the lowest energy states may be strongly localized (i.e.,
the spin-up and spin-down single electron states are localized on different atomic cen-
ters). These localized solutions may not be well approximated by the STO-3G initial
functions. However, we have not had problems with convergence of the method used
and described in the Appendix.

In summary, in our FEM formalism, the forms of the spatial parts of the orbital
wave functions are completely independent and the symmetry of the total density is
not constrained. However, for most of the stationary solutions that we have found,
the total electron density retains the symmetry of the H2 molecule. We have shown
above this to be true for the ρ calculated from the lowest energy solutions of (3) in
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both the large α and small α limits. However, for the lowest energy product state, the
symmetry of the spatial parts of the individual spin orbitals may be broken in a way
that preserves the symmetry of the total density of the molecule leading to localization
of the electron spin. Additional higher energy numerical solutions have been identified
which do not preserve the symmetry of the molecule (see Fig. 4). In applications of
DFT to large molecules or condensed materials, this spin localization is interpreted in
termof the observed spin states of lattices (ormolecules) (e.g., antiferromagnetic states
in condensed materialsCox 1992; Peng and Perdew 2017; Rollmann et al. 2004).

4.1.1 Bifurcation in the R Dimension

The optimized total energy as the H2 molecular bond, 2R, is lengthened at fixed
α = 0.93 (see 3 similar to the value used in the application of SDFT to molecular and
condensed matter problems) is shown in Fig. 2. The accuracies of the total energies
calculated are within 0.02 au for the H2 molecule in our calculations reported here,
see Hu (2014). Remarkably, for a given α and sufficiently small R, the independent
solutions for orbital wave functions ψ+ and ψ− converge to the same function even
under full variation with no symmetry restriction. (That is to say, there is NO sym-
metry breaking in the molecular orbitals.) This is consistent with the fixed R, small
α analysis in Sect. 2. In this region, the restricted DFT (RDFT) solution in which
ψ+ and ψ− are taken to be the same function (double filling) is the lowest energy
solution to the optimization problem posed in (3) even when each orbital function is
varied independently without constraint. Similar behavior is observed in the Hartree or
Hartree–Fock model of electronic structure for the two-electron system. These solu-
tions are important because such doubly filled restricted DFT solutions are widely
assumed and used in quantum chemistry applications (Foresman and Frisch 1996;
Szabo and Ostlund 1989).

As the H2 bond length is extended as illustrated in Fig. 2 (2R � 2.45 au), the solu-
tion bifurcates creating two two-electron product (singlet determinant Robert 1989;
Szabo and Ostlund 1989) solutions. In the lowest energy state (lower branch, green
line), one symmetry broken electron orbital (say the spin-up state) is localized around
one site and the other orbital function state (spin-down) is localized around the second
nuclear site (see the green density distribution cartoon in the bottom right Fig. 2). The
product wave function (total density) for this branch leads to a spin localized density
distribution (spin-up and spin-down electrons localized on different atomic sites with
total spin zero and preserving the symmetry of the molecule). This spin distribution
is consistent with an antiferromagnetic state for the H2 molecule. Since spin ordered
condensed systems are common targets forDFT prediction, this is an important dimen-
sion for variation in designing DFT representations of such systems (Cox 1992; Peng
and Perdew 2017; Rollmann et al. 2004).

The upper energy branch in Fig. 2 is a continuation of the restricted solution inwhich
the spin-up and spin-down orbitals have the same spatial dependence (no localization,
blue density distribution bottom right Fig. 2). We note that this solution continues as a
stationary solution even for large R. To better illustrate the structure of the solution as
R goes from the restricted region to the antiferromagnetic region, we plot the spin-up
density weight of ψ+ defined as
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Fig. 2 Bifurcation of LSDA for H2 in the R dimension with α = 0.93. The bifurcation point is in the region
2R = 2.40 to 2.50 au. The energy difference between the two states in the region 2R = 2.40 to 2.50au is
of the order of 10−5au

Fig. 3 Spin-up density weight, w+ (defined in 65) as a function of bond length

w+ =
∫

x1≥0

∣
∣ψ+(x)

∣
∣
2 dx, (65)

where the integration is on the right half domain corresponding to regions closer to one
of the nuclei. This is the proportion of the mass of ψ+ localized near one of the nuclei
(and w+ = 1/2 if no localization happens). Here, we have identified ψ+ as the spin
functionwhich after the bifurcation ismore localized in the positive x1 region.We note
the smooth behavior of the variation in w+ as the bond length enters the bifurcated
region, observed in Fig. 3. The plot further confirms the symmetry bifurcation as R
increases. Note that, the symmetry of total electron density is preserved in both the
upper and lower states as in insert in Fig. 2.
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Table 1 Eigenvalues for the Hessian matrix, α = 0.93 for various bond lengths

Bond length Solution Result Details

2.0 a.u. Delocalized Local minimizer All eigenvalues on the constraint manifold > 0

3.5+ a.u. Delocalized Saddle point 1 Eigenvalue on the constraint manifold < 0

3.5+ a.u. Localized Local minimizer All eigenvalues on the constraint manifold > 0

4.1.2 Hessian of Bifurcated Solutions for R Variation

After the bifurcation with increasing R, Fig. 2, there are two antisymmetric solutions
to the electron mean field problem (one spin localized/antiferromagnetic (green line)
and one restricted (no localized spin, blue line)). This is similar to the application of
DFT methods to real systems (e.g., magnetic materials) in which several solutions
(spin orderings) may be found as stationary (Chen et al. 2016; Peng and Perdew 2017;
Rollmann et al. 2004). These states are frequently interpreted in terms of the relative
spin ordering of phases of different structure with apparent reliability. These calcu-
lations produce results which correlate well with experimental observations in Chen
et al. (2016), Peng and Perdew (2017) and Rollmann et al. (2004). However, in a real-
istically sized calculation, it can be difficult to identify the minimum energy structure
on the basis of currently used optimization methods (Chen et al. 2016; Rollmann et al.
2004). (For a brief overviewof how spin is controlled in condensedmatter calculations,
see reference (Chen et al. 2016).)

The stability/metastability of the solutions to theH2 problemalong the two branches
in Fig. 2 can be determined by analyzing the eigenvalues of the Hessian associated
with the optimization problem (3) (see the Appendix). For stationary solutions, the
gradient of the total energy (constrained to have the proper normalization) must be
zero for any dissent direction. For stable stationary solutions, all eigenvalues of the
Hessian (see the Appendix) must be positive. If a solution is unstable, there will be at
least one negative eigenvalue of the Hessian. At the bifurcation point, there will be a
zero eigenvalue.

Numerical estimates of the eigenvalues of the Hessian the optimization problem
(3) (also calculated via the FEM see appendix) are reported in Table 1. These show
there is one negative eigenvalue for the delocalized RDFT solution (green line Fig. 2)
beyond the bifurcation point. The combination of the zero gradient and the presence
of the single negative eigenvalue show that this is a metastable point in the energy
surface.

4.1.3 Bifurcation in the˛ Dimension

We demonstrate here the numerical verification of the results in Theorems 1 and 2.
Adjustment of parameters such as the strength of exchange, α, in (3) in the density
functional formalism is sometimes used to improve DFT model performance for spin
ordered systems (Pozun and Henkelman 2011; Rollmann et al. 2004). In the H2 prob-
lem discussed here, the parameters 2R and α control the bifurcation. For a given R,
the strength of the exchange term determines the bifurcation point. Figure4 shows the

123



Journal of Nonlinear Science (2022) 32 :89 Page 25 of 40 89

symmetry breaking bifurcation points for LSDA solutions of (3) with strength of the
exchange contribution for fixed bond lengths 2R = 2.0 au.

In the small α setting, there are two identical degenerate spatial solutions (for spin-
up and spin-down). These solutions (delocalized solutions) have peaks at the two atom
centers, spread over the whole molecule and have the symmetry of the molecule. In
this region, if numerical solutions are initiated with broken symmetry, the ψ+ and ψ−
solutions evolve to have the same spatial dependence, i.e.,ψ+ =ψ−. These solution are
equivalent to the single orbital solution of the restricted or doubly filled DFT product
function.

See the analysis in Sect. 2 for the demonstration of this result, but the underlying
reason is that the Coulomb repulsion is somewhat insensitive to the localization of the
total density and the kinetic energy dominates over the exchange potential contribu-
tion in (3). Beyond the bifurcation point (as illustrated in Fig. 2, the broken symmetry
solutions with excess spin concentrate on each atom (localized solutions) appears and
the product solution with equivalent spin localization on each site is the global mini-
mizer. The total density still has the symmetry of themolecule. The restricted solutions
with higher energy are still stationary along the upper branch of the bifurcation curve.
These solutions have not been discussed in our analysis.

As α is further increased (at constant R), a variety of new bifurcations appear.
The exchange potential contributes much more than the Coulomb potential so the
solution tends to be localized instead of delocalized.Wenote that the antiferromagnetic
solution (blue line) is the global energy minimizing solution for all large α. This is an
important result since this is the solution generally associated with magnetic behavior
in real materials. The spin symmetric (and spatially symmetric) delocalized solution
(dark green and light green lines in Fig. 4) is the highest energy. For very high α, the
maximum density moves to the middle of the bond as can be seen by representative
state on the light green line in Fig. 4. For α > 6, the high energy delocalized spin
symmetric solutions break spatial symmetry and form two stable lower energy two-
electron solutions centered on the atom centers (red line in Fig. 4).

For applications to real materials, the bifurcation in R for a fixed α is taken as the
onset of magnetic behavior. The bond length corresponding to beginning of antifer-
romagnetic behavior (spin localization) occurs after the first bifurcation. In Fig. 5, we
show the variation in the first R bifurcation point for different α. For α in the region
commonly used, the bond length for bifurcation is quite sensitive to the strength of
exchange.

5 Discussion and FutureWorks

A similar analysis to the large α case gives that the ground state Euler–Lagrange
equation for large R can be transformed to an equation of the form

−�ψ±(x) + R2E(R)ψ±(x) − RV1(x)ψ±(x)

+R
∫ |ψ+|2(y) + |ψ−|2(y)

|x − y| dyψ±(x) + Rα|ψ±(x)| 23 ψ±(x) = 0, (66)
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Fig. 4 Several numerically constructed branches of the bifurcation of LSDA for H2 in the α parameter with
2R = 2.0au showing the relevant ψ± profiles

Fig. 5 The first symmetry breaking bifurcation of LSDA for H2 as a phase diagram in R and α. Below the
line, only delocalized states are present, while above the line, there are both delocalized and localized states

taking ψ±(x) = R
3
2 ψ±(Rx). For R 	 1, this is related to a new problem with large

Coulomb repulsion, large but unit distance apart nuclear masses Z = R, and a strong
exchange-correlation nonlinearity Rα. Thus, themain issue is to study the nature of the
stable curve for a large nuclearmasswith strong exchange-correlation nonlinearity and
observewhat the nature of the Lagrangemultiplier R2E(R) should be as R → ∞. The
intuition is that this scales the problem to be localized since moving along the stable
branch of states from low electron mass (small Lagrange multiplier) for the potential
V1 to large electron mass (large Lagrange multiplier) eventually concentrates onto
localized states over each well. This suggests that we consider a modified Lagrangian
with critical points given by
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−ε2�ψ±(x) + ψ± − V1ψ± +
∫ |ψ+|2(y) + |ψ−|2(y)

|x − y| dyψ±(x)

+α|ψ±(x)| 23 ψ±(x) = 0, (67)

where the small parameter ε = 1/
√
R. This looks like a Ginzburg-Landau type

singular-perturbation. As a result, this motivates the following question for a (strange)
Hydrogenmodel (it is strange since a Coulomb self-repulsion and an exchange energy
for a single electron are included): Is the minimizer of

EH (u) = 1

2

∫
∣
∣∇u

∣
∣
2 dx −

∫
Z

|x | |u|2(x) dx

+1

2

∫∫ |u|2(x)|u|2(y)
∣
∣x − y

∣
∣

dx dy −
∫

|u|8/3dx (68)

such that ‖u‖L2 = 1 orbitally stable? This has been answered in some sense when
Z = 0 in Ruiz (2010) when the mass is that of the absolute minimizer. A related
question is comparing the energy of H− with the energy of 2H . Understanding what
occurs for the natural electronic mass 1 requires further investigation of this model
and will be a topic of future work.
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A Appendix

We recall here the basics of the finite element methods we use in this work to numer-
ically find the critical points of the XLDA Lagrangian. The numerical algorithms are
implemented using a python implementation of the FENICS finite element package,
(Dupont et al. 2003). Many of the tools we use here are discussed in more detail in the
references (Bylaska et al. 2009; Hu 2014). For complete discussions of finite element
methods, see the books of Axelsson andAlan Barker (2001), Bank andDupont (1981),
Braess (2001) and Brenner and Ridgway (2008). The method we develop here takes
advantage of the sparsity of the FEM representation of the eigenvalue problem leading
to an algorithm that scales linearly with number of basis functions. For resources on
large-scale computing in computational chemistry, seeKendall et al. (2000) andValiev
et al. (2010).

I. The Finite Element Setup

We assume that the solution, ψ±, exists in a bounded domain � ∈ R3 that can be
divided into a set of L non-overlapping tetrahedral elements, {el}Ll=1 (Axelsson and
Alan Barker 2001; Braess 2001; Brenner and Ridgway 2008; Bylaska et al. 2009),
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Fig. 6 Finite element
tetrahedron defining FEM
elements and nodes. The L
tetrahedral elements are
identified by el . The global node
are indexes by (m). For each
element el a, there is global node
at each corner. Generally, local
nodes belonging to individual
tetrahedra are also defined. See
Axelsson and Alan Barker
(2001), Braess (2001), Brenner
and Ridgway (2008) and
Bylaska et al. (2009). These are
not shown and are managed
transparently by the Dolfin
software (Logg et al. 2010)

see Figs. 6 and 1. For the electronic structure problems, we are concerned with the
atomic potentials represented by V (x) in the Hamiltonian below, (74), are singular.
This leads to rapid variation in the solution to the eigenvalue problem in this region.
In order to obtain accuracy, the FEM grid in this region must have a finer resolution as
illustrated in Fig. 1 and discussed in Bylaska et al. (2009), Bylaska et al. (1995) and
Kohn et al. (1997).

To construct the grid used in the calculation, we
1. Use BoxMesh (Logg et al. 2012) to generate a coarse mesh in a 50 × 50 × 50

domain. The initial number of cells in each direction is 2. So the total number of
tetrahedra will be 48 and the total number of vertices will be 27 in the coarse mesh.

2. Find the closest mesh grids to the nuclei and set the parameter cell_marker (Logg
et al. 2012) true that tells the code to refine the mesh. If cell_marker = false, it means
this mesh will NOT be refined.

3. Refine the whole grid for three cycles.
Generally, FEM nodes are located at corners, along boundaries or in the centers of
tetrahedral regions (Axelsson and Alan Barker 2001; Braess 2001; Brenner and Ridg-
way 2008; http://hplgit.github.io). For the calculations, here, the nodes are located
only at the corners of the tetrahedra. These nodes are shared by adjacent tetrahedra
as in Fig. 6. Each tetrahedron l has four corner nodes. A global index identifies a
node as in Fig. 6 (global node numbers in brackets). There are M global nodes in
the construction. In actual calculations, a local node index identifying a corner global
node with a basis function inside a particular tetrahedral is also defined in Dolfin
(Axelsson and Alan Barker 2001; Braess 2001; Brenner and Ridgway 2008; Bylaska
et al. 2009; http://hplgit.github.io) to identify variation associated with a node within
a particular tetrahedron (Axelsson and Alan Barker 2001; Braess 2001; Brenner and
Ridgway 2008; http://hplgit.github.io). The somewhat difficult book keeping problem
of keeping track of the global variation in the basis functions consistent with their
local behavior is taken care of nicely in the FEniCS software, see Logg et al. (2012).
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For each node (with global index m and local index i) in a tetrahedral element, l,
a finite element basis functions {χel

i } is defined. In these calculations, the {χel
i } are

linear functions centered on local nodes i in element el (Axelsson and Alan Barker
2001; Braess 2001; Brenner and Ridgway 2008; Bylaska et al. 2009; http://hplgit.
github.io). For each global node m, the linear basis function {χel

i } is 1 on global node
i and zero on all other nodes contained in the tetrahedral elements containing global
node m. For a particular tetrahedron, the linear basis associated with local node i of
tetrahedral el , {χel

i }, has value only in tetrahedra el . Illustrations of how this works are
given in [1]. The local node functions {χel

i } can be assembled in functions centered
around the global nodes with index m as the global basis functions ηm(x).

A piecewise continuous function (here the approximated ψ±(x)) can now be
expanded as in Bylaska et al. (2009),

ψ±(x) =
M

∑

m=1

c±,mηm(x). (69)

Here, M is the dimension of space of global nodes and c±,m is the coefficient of basis
element ηm . The value of the ψ± on node m is c±,m .

II. The Generalized Eigenvalue Problem

With the above formulation, solving the Kohn–Shamminimization problem related to
(3) leads to the generalized eigenvalue problem (inmany of the following equations the
± (+ spin-up, − spin-down) notation has been suppressed to keep notation simple),

Hc = εSc, (70)

or

∑

n

Hmncn,k = εk
∑

n

Smncn,k (71)

where k identifies the kth eigenfunction,

Smn =
∫

�

dxηm(x)ηn(x), (72)

and

Hmn = 1

2

∫

�

dx∇ηm(x)∇ηn(x) +
∫

�

dxηm(x)Veffηn(x) (73)
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with Veff given by

Veff = Vext(x) + Vee(ρ) + Vex(ρ, α) = Vext(x) +
∫

ρ(x ′)
|x − x ′|dx

′ + Vex(ρ±, α).

(74)

Here, ρ(x) is the total electron density, and ρ± is the spin density, and Vex,±(ρ±, α)

is given by the scaled Dirac form

Vex,±(ρ, α) = αρ
1/3
± . (75)

Note that, in the spin DFT, the exchange potential depends on the spin component,
and thus, the effective Hamiltonian for the spin-up and spin-down orbitals is different;
while the structure of the problem is the same, and hence, we keep the notation (e.g.,
forH and S) independent of spin component. Thematrix Hmn , (73), the overlapmatrix
Smn , (72) and integrals over V (x) in (74) can be obtained from the FEniCS software
(Logg et al. 2012). The calculation of these matrix is also carefully discussed for
the electronic structure problem in Bylaska et al. (2009) and in general in Axelsson
and Alan Barker (2001), Braess (2001) and Brenner and Ridgway (2008). The full
potential Veff given by (74) is a function of the density requiring that the eigenvalue
problem, (70), be solved iteratively until self-consistency is achieved. We are only
interested in the lowest ± energy solutions, though the methods can be modified to
higher energy states as well.

III. Solution to the Generalized Eigenvalue Problem and the Associate Coulomb
Problem

The objective of the calculation is the solution of the generalized eigenvalue problem,
(70). However, this requires the input of a current estimate of the Classical potential
Vee required in Veff, (74). This may be found as the solution to the Poisson equation

�Vee = −4πρ = −4π
[∣
∣ψ+

∣
∣
2 + ∣

∣ψ−
∣
∣
2
]

(76)

To solve this PDE, Vee is also expanded in the finite element basis as

Vee(x) =
M

∑

m=1

vmηm(x). (77)

(76) is then represented by a system of linear equations giving the {vm}. Given a
solution to the Coulomb problem, (76), based on a current density for the iteration,
the generalized eigenvalue problem, (70), is also solved in the {ηm}Mm=1 finite element
basis functions. Each molecular orbital is represented as
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ψ± =
M

∑

α=1

c±,mηm . (78)

Note, for this problem, there is only one filled molecular orbital for each spin. The
finite element discretization of the one-electron equation for the current iteration is
given as, for i = ±,

(Ti − εi )ci = vi . (79)

ci = {ci1, . . . , cim} are the coefficients of molecular orbital in the expansions of finite
element basis. The elements of the operator (Ti − εi ) are

(Ti − εi )mn =
∫

�

{
1

2
∇ηm∇ηn − εiηmηn

}

dx . (80)

The elements of vi are given by

(vi )m =
∫

ηm(x)Veff,i (x)ψi (x)dx (81)

and are calculated in an iterative process in which Veff,i (x) is defined for step k from
the results of the self-consistent solver in the prior iteration.

Details of the FEniCS Solver

The AMG solver is based on a V-cycle (Briggs et al. 2000; Hu 2014) with a maximum
number of multi grid levels of 25. For each fine to course grid transfer, a single pre-
smoothing step is taken. For each course to fine transfer, a single post-smoothing step
is taken. These smoothing steps use a symmetric-SOR/Jacobi method. On the coarsest
level, the course FEM equation is relaxed by Gaussian elimination. In the iteration, an
energy correction step is applied to update new eigenvalues after the Helmholtz equa-
tion is solved for a set of ε(k) from the prior AMGCG cycle. The self-consistent solver
convergeswhen the total energy difference in two consecutive iterations is smaller than
a selected tolerance. These are solved via the FEniCs code using the GMRES (Saad
and Schultz 1986) and BOOMER AMG (Algebraic Multigrid (Briggs et al. 2000))
packages. The solution to this problem is of order M (Hu 2014). To improve the con-
vergence of the solution, a preconditioning based on the algebraic multigrid method
is used (Tatebe 1993; Van Emden and Yang 2002). For an introduction to multigrid
methods and their application to problems in electronic structure, see Bramble (1993),
Bramble and Pasciak (1987), Brandt (1986), Brandt et al. (1985), Briggs et al. (2000),
Bylaska et al. (1995), Hackbusch (1985), Harrison et al. (2004), Kohn et al. (1997)
and McCormick (1987).
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IV. TheWavefunction and Orbital Energy Update and Iteration

IV.i: Some Preliminaries

The eigenvalue problem, (79), is solved using an iterative process in which for step k,
the ψ± on right hand side of (79) and the orbital energies, ε(k)

± , at step k are assigned
the values and functionality from the k − 1 step. The iteration is developed with the
intention of producing linear scaling in the number of FEM basis functions, M . This
is achieved by developing a solver strategy that emphasizes the use of the operator
[(∇2 − k2)]−1 which is efficiently implemented in multigrid schemes.

The density functional equations leading to the values of εki andψk
i for the k values

(update from ψ
(k−1)
i to ψk

i ) are written as

[

−1

2
∇2
x − ε

(k−1)
i

]

ψk
i (x)

=
[

V (k−1)
ext (x) + V (k−1)

ee (ρ(k−1)(x)) + V (k−1)
ex (ρ(k−1)(x))

]

ψ
(k−1)
i (x) (82)

where Vext is the external potential from (1). The electron-electron Coulomb potential
(calculated from FeniCS as above) is given by

∇2V (k−1)
ee (x) = −4πρ(k−1)(x) = −4π

[∣
∣ψ

(k−1)
+

∣
∣
2 + ∣

∣ψ
(k−1)
−

∣
∣
2
]

. (83)

The exchange potential is given by

V (k−1)
ex (x) = αρ(k−1)(x)

1
3 . (84)

This is now a linear PDE of the form

[

−1

2
∇2 − ε

(k−1)
i

]

ψk
i (x) = f (k−1)

i (x). (85)

Note that, all the potential terms in (82) have been collected in the function f (k−1)
i .

We calculate the solution to (85) using an efficient multigrid method. Because of the
complexity of the grid, we use the AMGCG implemented in the FEniCS software
(Logg et al. 2012).

IV.ii: Update of the Wavefunction, fromÃ(k−1)(x) toÃk(x)

To initiate the kth iteration (ψ(k−1)
i to ψk

i ), we assume we have solutions ψ
(k−1)
i (x)

and ε
(k−1)
i . The update of the wavefunction proceeds directly from (85) as

ψk
i (x) =

[

−1

2
∇2
x − ε

(k−1)
i

]−1

f (k−1)
i (x). (86)
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All the functions in this equation are defined from the solution that we obtain from
AMGCG.

To complete the iteration cycle, we also need an update of the orbital energy ε
(k−1)
i

to εki .

IV.iii: Update of the Orbital Energy

We assumewe haveψ
(k−1)
i (x) and ε

(k−1)
i and begin by defining twoGreens functions:

The (k − 1)th Green’s function, G(k−1)
i , with energy ε(k−1),

G(k−1)
i =

{

−1

2
∇2 − ε

(k−1)
i

}−1

(87)

and a Green’s function, Gcon
i with the converged DFT orbital energy (from converged

solution to DFT equations), εconi . This is given by

Gcon
i =

{

−1

2
∇2 − εconi

}−1

. (88)

In the iteration, the updated εki given by

εki = ε
(k−1)
i + δεki (89)

is taken to be a good approximation to εcon. Using this in (88), we have

Gcon
i =

{

−1

2
∇2 − εconi

}−1

=
{
1

2
∇2 − (ε

(k−1)
i + δεki )

}−1

(90)

the objective is to calculate an orbital energy correction from these equations using
ψ

(k−1)
i .
The function ψcon

i satisfies the orbital PDE,

ψcon
i (x) =

{

−1

2
∇2 − εconi

}−1

f coni (x). (91)

In this equation, εconi is the converged orbital energy.

We assume that ψ
(k−1)
i is a good approximation to ψcon

i , i.e., that it approximately
satisfies

ψ
(k−1)
i (x) =

{

−1

2
∇2 − εconi

}−1

f (k−1)
i (x)

=
{

−1

2
∇2 − (ε

(k−1)
i + δεki )

}−1

f (k−1)
i (x). (92)
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Nowwe expand the full Green’s function (RHS) in the energy correction δεki to obtain

an equation that will update the orbital energy (find a correction to ε
(k−1)
i ).

We use the operator identity,

1

(1 + a + b)
= 1

(1 + a)
− 1

(1 + a)
b

1

(1 + a + b)
, (93)

to obtain

{

−1

2
∇2 − ε

(k−1)
i − δεki

}−1

=
{

−1

2
∇2 − ε

(k−1)
i

}−1

−
[{

−1

2
∇2 − ε

(k−1)
i

}−1

{

−δεki

}{

−1

2
∇2 − ε

(k−1)
i − δεki

}−1]

.

(94)

Iteration of this equation leads to an expression for the propagator to first order in δεki
as

{

−1

2
∇2 − ε

(k−1)
i − δεki

}−1

=
{

−1

2
∇2 − ε

(k−1)
i

}−1

−
[{

−1

2
∇2 − ε

(k−1)
i

}−1

×
{

δεki

}{

−1

2
∇2 − ε

(k−1)
i

}−1]

.

(95)

We can use this result in (92) to give

ψ
(k−1)
i (x) =

{

−1

2
∇2 − ε

(k−1)
i

}−1

f (k−1)
i (x)

−
{

−1

2
∇2 − ε

(k−1)
i

}−1

δεki

{

−1

2
∇2 − ε

(k−1)
i

}−1

f (k−1)
i (x).

(96)

This is more conveniently written in vector notation (Cohen-Tannoudji et al. 1991) as

∣
∣
∣ψ

(k−1)
i

〉

=
{

−1

2
∇2 − ε

(k−1)
i

}−1 ∣
∣
∣ f

(k−1)
i

〉

−
{

−1

2
∇2 − ε

(k−1)
i

}−1

δεki

{

−1

2
∇2 − ε

(k−1)
i

}−1∣
∣ f (k−1)

i

〉

(97)

or

0 = −
∣
∣
∣ψ

(k−1)
i

〉

+
{

−1

2
∇2 − ε

(k−1)
i

}−1∣
∣ f (k−1)

i

〉

−
{

−1

2
∇2 − ε

(k−1)
i

}−1

δεki

{

−1

2
∇2 − ε

(k−1)
i

}−1∣
∣ f (k−1)

i

〉

.

(98)
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Closing this equation on the left with
〈

f (k−1)
∣
∣ gives a linear expression for δεki which

may be in terms of the ψk
i , (86) , as

0 = −
〈

f (k−1)
i

∣
∣
∣
∣
ψ

(k−1)
i

〉

+
〈

f (k−1)
i

∣
∣
∣
∣
ψk
i

〉

− δεki

〈

ψk
i |ψk

i

〉

.

(99)

This may be solved for δεki to obtain

δεki =
−

〈

f (k−1)
i

∣
∣
∣
∣
ψ

(k−1)
i

〉

+
〈

f (k−1)
i

∣
∣
∣
∣
ψk
i

〉

〈

ψk
i

∣
∣
∣
∣
ψk
i

〉 . (100)

This gives the update to ε
(k−1)
i via (89) to complete the kth iteration.

V. The Self-Consistent Iteration

Algorithm 1 summarizes the process followed by the self-consistent solver. An initial
guess (c0i , ε

0
i ), i = 1, . . . , n is given to start the self-consistent iterations. The solver

stops when the total energy difference in two consecutive iterations is smaller than the
tolerance TOL.

Algorithm 1 The Self-consistent Iteration
Input (c0i , ε

0
i ), i = 1, . . . , n, TOL;

while ‖εktotal − ε
(k−1)
total ‖ >TOL do

Evaluate potentials V k
i j , i, j = 1, . . . , n ;

Evaluate vki , i = 1, . . . , n ;

Solve the Helmholtz equation, and get updated {c(k+1)
i , i = 1, . . . , n};

energy correction step, and get updated {ε(k+1)
i , i = 1, . . . , n};

k++;
Output (ci , εi ), i = 1, . . . , n.

VI. Hessian Analysis

The model we investigate in this work is the local spin density approximation (LDA)
(without correlation energy contributions). As above, the ground singlet state spin
unrestricted density functional theory for this two-electron system defines two orbital
wave functions (ψ+, ψ−). The total energy functional is E(ψ) is
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Eα(ψ+, ψ−)

= 1

2

∫
∣
∣∇ψ+

∣
∣
2 dx + 1

2

∫
∣
∣∇ψ−

∣
∣
2 dx +

∫

VR(x)
(∣
∣ψ+(x)

∣
∣
2 + ∣

∣ψ−(x)
∣
∣
2
)

dx

+1

2

∫∫

(∣
∣ψ+(x)

∣
∣
2 + ∣

∣ψ−(x)
∣
∣
2
) (∣

∣ψ+(y)
∣
∣
2 + ∣

∣ψ−(y)
∣
∣
2
)

∣
∣x − y

∣
∣

dx dy

−α

∫ (∣
∣ψ+(x)

∣
∣8/3 + ∣

∣ψ−(x)
∣
∣8/3

)

dx, (101)

where VR(x) is the nuclear potential. The constraints on (ψ+, ψ−) are

∫
∣
∣ψi (x)

∣
∣2 dx = 1, i = +,−. (102)

We define the Lagrangian as

L(ψ+, ψ−, ε+, ε−)

= 1

2

∫
∣
∣∇ψ+

∣
∣2 dx + 1

2

∫
∣
∣∇ψ−

∣
∣2 dx

+
∫

VR(x)
(∣
∣ψ+(x)

∣
∣
2 + ∣

∣ψ−(x)
∣
∣
2
)

dx

+1

2

∫∫

(∣
∣ψ+(x)

∣
∣
2 + ∣

∣ψ−(x)
∣
∣
2
) (∣

∣ψ+(y)
∣
∣
2 + ∣

∣ψ−(y)
∣
∣
2
)

∣
∣x − y

∣
∣

dx dy

−α

∫ (∣
∣ψ+(x)

∣
∣8/3 + ∣

∣ψ−(x)
∣
∣8/3

)

dx

−ε+
(∫

∣
∣ψ+(x)

∣
∣2 dx − 1

)

− ε−
(∫

∣
∣ψ−(x)

∣
∣2 dx − 1

)

, (103)

where (ε+, ε−) are Lagrange multipliers.
Finding the stationary variation in (103) with respect to the functions ψ+ and ψ−

leads to effective one-electron eigenvalue equations.

δL

δψi
= 0 ⇒

⎛

⎝−1

2
∇2 + VR(x) +

∫

(∣
∣ψ+(y)

∣
∣2 + ∣

∣ψ−(y)
∣
∣2

)

∣
∣x − y

∣
∣

dy − 4

3
α
∣
∣ψi (x)

∣
∣2/3

⎞

⎠

ψi (x) = εiψi (x), i = ±, (104)

where (ψ+, ψ−) and (ε+, ε−) satisfy normalization constraints.
In order to determine whether the stationary extremum of L(ψ+, ψ−, ε+, ε−) with

respect to functional variation are a maximum, a minimum or a saddle point, the
second-order functional derivative (the Hessian matrix) may be analyzed (Hu 2014).
In the following, the stationary solutions (ψ+, ψ−) and their eigenvalues (ε+, ε−)

satisfy (104) and (102). (λi , wi ) are eigenvalues and eigenvectors of the Hessian
Matrix, Hess, defined as the solutions to the eigenvalue problem,
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Hess wi (y) =
∫

δ2L(ψ, ε)

δψi (x)δψ j (y)
wi (y) dy

∣
∣
∣
∣
(ψ,ε)=(φ,ε)

= λiwi (x), i = ±,

(105)

where the Hessian matrix is defined as

Hess =

⎛

⎜
⎜
⎜
⎝

H11
∫ 2ψ−(y)

∣
∣x − y

∣
∣
dyψ+(x)

∫ 2ψ+(y)
∣
∣x − y

∣
∣
dyψ−(x) H22

⎞

⎟
⎟
⎟
⎠

(106)

where

H11 = − 1
2∇2 + VR + ∫

∣
∣ψ−(y)

∣
∣2

∣
∣x − y

∣
∣
dy − 20

9 α
∣
∣ψ+(x)

∣
∣
2/3 − ε+,

H22 = − 1
2∇2 + VR + ∫

∣
∣ψ+(y)

∣
∣
2

∣
∣x − y

∣
∣
dy − 20

9 α(
∣
∣ψ−(x)

∣
∣2/3 − ε−.

(107)

In addition, the eigenfunctions wi (x) satisfy the orthogonality relations

∫

ψi (x)wi (x) dx = 0, i = +,−. (108)

If all the eigenvalues of Hess are positive, then there is no descent direction in
the function space. Negative eigenvalues imply that there is a descent direction. To
carry out this calculation, the integrals of the Coulomb potential required in (106) are
obtained by solving the Poisson equation as in (83), and performing the numerical
integrals. The calculated eigenvalues are shown in Table 1.
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