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Abstract— Linear-quadratic-Gaussian (LQG) control is a
classical optimal control problem where the disturbance in
the system dynamics is traditionally treated as random noise.
Motivated by the possibility of forecasting future disturbance
in some relevant works for linear-quadratic regulator (LQR)
systems where the disturbance distribution is arbitrary, we
introduce a time-varying disturbance forecast model in the
LQG problem. Our model characterizes the Gaussianity of the
disturbances and thus enables us to give theoretical results in-
cluding optimal average cost even though the forecast error can
be unbounded. Numerical examples are provided to illustrate
the theoretical results.

I. INTRODUCTION

In the control community, the linear-quadratic-Gaussian
(LQG) control problem is a classical and fundamental control
problem governed by z;11 = Axy + Buy + wy, where zy,
u; and wy represent state, control and Gaussian disturbance,
respectively. Under the assumption that w; follows Gaussian
distribution, it is well-known that the optimal control law is
a combination of Kalman filter and linear-quadratic regulator
(LQR) according to the separation principle.

Traditionally, the disturbance w; in LQG is treated as a
non-predictable system noise. On the other hand, recently,
there have been a variety of relevant works making as-
sumptions on the predictability of the future disturbance
wy and targeting at designing an optimal or near-optimal
control for an LQR system, with the assumption of arbitrary
disturbance distribution. For example, references [1] and [2]
give the optimal open-loop control and the optimal feedback
control when all the future disturbances are perfectly known,
respectively; And reference [3] presents the optimal feedback
control when only the future disturbances within a lookahead
window can be perfectly predicted. However, these works all
assume perfect forecast, while in reality a forecast is usually
imperfect and even time-varying. It is common that more
relevant information becomes available during the passage
of time, making it possible to reduce the forecast inaccuracy
when the far future becomes closer. For example, in electric
power load forecasting, the next-day load forecast may
achieve an inaccuracy level of less than 3%, while the same
accuracy is not achievable for the next-year load forecast due
to the unavailability of accurate long-term weather forecast
[4]. Some other references [5]-[7] characterize the forecast
error of the future disturbance, yet only upper bounds of
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the associated optimal cost as unbounded functions of the
maximum forecast error are provided, due to the assumption
of arbitrary disturbance distribution. On the other hand, in
the LQG problem, the assumption of Gaussian disturbance
implies that the forecast error can also be unbounded but the
computation of optimal average cost is possible.

In this paper, we introduce a time-varying disturbance
forecast model in the LQG problem, which considers the
Gaussianity of the disturbances and hence is more concrete
compared to [5]-[7]. Moreover, Gaussianity in LQG makes it
possible for us to give the optimal average cost even though
the forecast error can be unbounded. The rest of this paper is
organized as follows: In Sec. II we briefly review the classical
LQG problem; In Sec. III we present the main theoretical
results including optimal state estimate, optimal control law
and optimal average cost associated with the proposed time-
varying disturbance forecast model; Sec. IV illustrates the
theoretical results through two numerical examples, and Sec.
V concludes the paper.

II. CLASSICAL LQG PROBLEM

In this section we introduce the classical LQG problem
with partial state observation [8], [9]. Consider a discrete-
time stochastic linear system over finite horizon 7"

Ter1 = Az + Bup +wy, t=0,--- T -1 (1)

where x; € R"™ is the state, u; € R™ is the control, w; € R"
is the disturbance, and A € R"*™ and B € R"*™ are fixed
matrices. Moreover, at time t, we have a disturbed partial
observation of state x;, given by:

ytzcxt_'_vt? t:O7)T (2)

where y; € R” is the observation, v; € R¥ is the disturbance,
and C € R¥*™ is a fixed matrix. In LQG we assume
g ~ N(O,X), we ~ N(O,Wt),Vt and VU ~ N(O, Vt),Vt
are all independent Gaussian random vectors, where A/ (p, )
denotes a multivariate Gaussian distribution with mean p
and covariance Y. The overall objective is to determine the
optimal control u; at each time ¢, such that the cost

T-1

J = (z] Q¢ + u) Ruy) + 27.Qup 3)

t

is minimized, where Q € R™*™ = 0 and R € R™*™ = 0
are fixed matrices.

Solution. The classical LQG problem has known solution

according to separation principle, which dictates that the
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optimal feedback control law has the following form:

t:()’...?T_l (4)

where K; € R™*™ is a feedback matrix depends only
on A, B,Q, R; and #; = E[z¢|yo] is the minimum mean
squared error (MMSE) state estimate depends only on
A, B,C, X, Wy.t_1,Vy.s. For K;, we have

* A
ui = K2,

K;,=—(R+B"P,,B)"'B"P A, (5)

where P, € R™*" is determined recursively by algebraic
Riccati equation

P,_1=A"TPA+Q—-ATP,B(R+BTP,B)"'BT P, A,
(6)

with terminal value Pr = Q. For Z;, we have the following
recursive equations according to Kalman filtering algorithms

)
®)

with initial estimate &g = Loyo, and L, € R™*F is the
Kalman gain. If we use X; to denote the covariance matrix
of current state estimate error x; — E[x¢|yo.¢], and ¥4y
to denote the covariance matrix of next state estimate error
2411 — E[xi41|yo.¢], then we have recursive equations

Ty41 = AZ¢ + Bug + Lipiei41,
ett1 = Yey1 — C(AZ, + Buy),

Y =ypp—1 — Et|t—1CT(CEt|t—1CT + V;f)_lcztht—h
9

Seiaje = ADAT + W, (10)

with initial value ¥o—_; = X, and Kalman gain L is given
by

L= Etlt—lc—r(cztlt—lc—r + V)l (11)

The optimal average cost J* corresponding to the optimal
control law has the following form:

T
T =Te(PoX) + Y Tr(PW, 1) +

t=1

12)

J]qr
T T

S OTr((Q — PSy) + Y Tr(PAN, 1 AT)

t=0 t=1

Jest

where Jig is the optimal cost for LQR in which the obser-
vation y, = x; is perfect; and J. is the additional cost due
to imperfect state estimation Z;.

III. MAIN RESULTS

In this section, we present the main theoretical results.
In Sec. III-A, we introduce the time-varying disturbance
forecast model in the classical LQG problem. In Sec. III-
B, we discuss the associated MMSE state estimate. And in
Sec. III-C, we give corresponding optimal control law and
optimal average cost.
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A. Time-varying Disturbance Forecast

Suppose the disturbance w; in the system dynamics Eq.
(1) can be partially forecast, and the forecast can be updated
at any time 7 < ¢t. More specifically, we assume

’wt:’lj}t-f-’lj}t, tZO,,T—l (13)
t

= ), t=0,,T—1 (14)
7=0

where w; ~ N (0, Wt) is a portion of w; that we can fully
forecast at time ¢, w; ~ N(0, ;) is the remaining portion
that we cannot forecast, and th) ~ N(0, Wt(T)) is a portion
of w; whose value is revealed at time 7. Moreover, we
assume zi)t(T),Vu 7 and wy, Vt are all independent, and hence
W, = Wt—&—Wt = Z::,o Wt(T)+V~Vt,Vt. For convenience, we
also define ;) = Ztr:o u?,gT), which is the MMSE estimate
of w; at any time ¢’ < t.

Remarks. A few remarks are in order. First, our formula-
tion is based on the assumption that the Gaussian disturbance
wy 18 intrinsically the summation of multiple independent
Gaussian random variables with smaller covariances. Those
can be forecast at a time 7 < ¢ constitute 711157), and those
cannot be forecast constitute w;. Second, the mean-squared
error Ef||dye — wil3) = S7_, ., Ti(WE™) + Te(W,) s
monotonically decreasing in ', which means 1, becomes
more accurate on average when time ¢ is getting closer.
Third, when only a finite lookahead window H of the
disturbances are predictable, which is a common setting in
model predictive control, we will have ng) =0,Vr <t—H,
which means one cannot get a meaningful forecast of w; at
or before time ¢ — H. And last, our model differs from the
models in [5]-[7], which characterize the maximum value
of the forecast error rather than its distribution, and the
model in [10], which characterize the forecast of observation
disturbance v; rather than dynamics disturbance w;.

B. MMSE state estimate

In this subsection we determine the MMSE estimate I;
when the disturbance forecast is given. It is clear that we
can still obtain z; by Kalman filtering algorithms with some
minor changes. Since at time ¢, the value of w; is known
while w; remains an unknown Gaussian random variable,
the MMSE estimate of the next state Z;;; should include
the knowledge of w;. That is, we replace Eq. (7), (8) by

5)
(16)

Te41 = AZ¢ + Buy + Wy + Liyree41,
et+1 = Y1 — C(AZy + Buy + wy).

Moreover, for the computation of Kalman gain L;, Eq. (10)
is replaced by

Yipipe = AS AT + Wy, )

while Eq. (9) and (11) remain unchanged. From Eq. (15)
and (16), we notice that &; depends only on w; and is
independent of the distribution of u?t(T)’s, i.e., the MMSE
state estimate only depends on how much can be eventually
forecast instead of how the forecast varies across the time.
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22

t<r<i<T—1,

t<r'<i/<T—1,
T'>1or i’ >i

where M, ; = {

K2

Nt+1(uA}z(T))7

and 7] =— (R+B'P1B) ' BT (Pry1 ARy + Pyt + Y Ml 1y,

DTN (w6 Y

PiyA— P, B(R+B"P,,1B)"'BTP A,
M;441A—M; . 1B(R+B"P,1B) 'B P A, i>t
Py — PoyiB(R+ B Py B) "B Py,
N(@7) = Npsr (007) = My 1 B(R+ BT Py B) ' BT My, i>t,7 <t

T—1 T
b+ 3 TPt (S — Bin) + Y TH(QE),

1=t i=t

i =1

(19)

1=t,7<1

(20)
1>t T >t17<1

T-1

(21)
i=t+1
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T-1

=2 (Q+ AT Pryy Ay + 20 Py Ay + ] Pryytdy +2 Y )] My g1 (Ady + 1)+

S a7 N (07l + 2

t4+1<7<i<T—1

i=t+1
3 TN (07, ) 4
t1<7<i<T—1,

t+1<7'<i' <T—1,
7'>T or i’ >

T-1 T
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T-1 i

(23)

i=t+1
T-1

T=t+1

B(R+ B P 1B) "B - Py Ady + Prytr + | My i)

C. Optimal control law and optimal average cost

Since disturbance forecast {wt(T)} brings new knowledge,
we can expect that a control law that relies on the new
information is able to make the average cost lower. On the
other hand, at time ¢, the control u, shall be independent of
the unrevealed information {uA))E,T ) |7 >t} (V' €{0,--- , T—
1}). Hence, we have

u = m(2, {07 <t}), t=0,---, T—1 (24

where 7, is a control law whose inputs include not only
MMSE estimate &, but also revealed forecast {miﬁ | <t}

We define the optimal expected cost-to-go at time ¢ with
given state estimate Z; and disturbance forecast {wt(f)}
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1=t+1

as J;(2;) (for convenience, here {UAJE,T )} is not explicitly
included as an argument). That is,
Ji (21) 2E

xt‘itaﬁ)ﬁ:T—l[

Vg p1iT [ mln1 E

ut:T

T-1
Z(%TQ% +u Ru;) + 24 Qzy]].
i=t

The following theorem shows that J; is essentially a
quadratic function of &; and {”LZ)S—)‘T < t}, and it also
determines the optimal control law 7.

Theorem 3.1: For any time t, J; (&) has the form of Eq.
(18), where matrix P; is the same matrix given by Eq. (6),
matrix M;; couples w; and Z; and is determined recursively
by Eq. (19), matrix N,(!™)) couples ﬁ)ET)

i

itself and is

Authorized licensed use limited to: Cornell University Library. Downloaded on August 27,2023 at 00:14:02 UTC from IEEE Xplore. Restrictions apply.



T =E, 0 1o (o)) (25)
T T

= Y TWo@ )W)+ S THQS) + Y TH(P(Sim1 — B0))
0<r<t<T—1 t=0 t=0
T ~ T T
=Te(PoX)+ > Te(No(@ D)W )+ 3" Te(PWiea) + 3 Tr((Q — P)Se) + Y Tr(P AR, 1 AT)
0<r<t<T-1 t=1 t=0 t=1
e e
determined recursively by Eq. (20), matrix! N ({7, %) IV. EVALUATION

couples uA)ET) and 1215,7 " which are different. The associated

optimal control law 7} is given by Eq. (21).
Proof: We will prove this theorem by induction.

In this section, we illustrate our theoretical results through
two numerical examples. In Sec. IV-A, we consider a simple
control system where all the random variables are scalars,

First, for ¢t = T, we have z7|#7 ~ N(2r,r), hence making it easier for us to compare the coefficients in Eq.
Jr(@r) = @;QCET + Tr(Q%7) has the form of Eq. (18). (25) since they degenerate into scalars as well. In Sec. IV-

Next, for t < T', suppose J;, | (#;11) already has the given B, we consider a widely-used two-dimensional robot control
form. Then we express .J; () as in Eq. (22), where the last  system [5], [6], [11], with small modifications.
the equation is obtained by expanding J;*, ; (Ax;+Bu;+w+
Liyi1e1+1) and applying x¢|@; ~ N (&¢,%:) and epy1|8: ~  A. Simple Control System with Scalars
N(0, CEt+1‘tCT + Vit1). Next, we need to determine the
value of the last term, which is denoted by §2 for convenience.
Since we can only choose u; from m; in Eq. (24), and with
the knowledge of ﬁ)t(,T ) , V7 > t is a Gaussian random variable
with mean zero, we will have u; = 7/ in Eq. (21) is the
minimizer associated with €2. Hence () has the expression in
Eq. (23). Plug it into Eq. (22) we can verify .J;(Z;) also has
the form of Eq. (18).

Hence Eq. (18) holds for any ¢. [ ]

We can therefore compute the optimal average cost J* by
considering the expectation of Ji(Zo), as illustrated in Eq.
(25). By comparing it against Eq. (12), we are able to explain
why disturbance forecast can reduce the optimal average cost
from three angles:

1) Forecast w; makes the cost of imperfect state estimation
Jest smaller. Though Jei in Eq. (25) has the same form as in
Eq. (12), W, instead of W is used in the recursive equation
Eq. (17). Since Wt =< W, Vt, meaning the state estimation
z; will be more accurate when forecast w; is available, one
can expect Jei in Eq. (25) is smaller than the corresponding
value in Eq. (12).

2) Forecast w; makes the cost for LQR Jjg, smaller.
The coefficients of T, and W, are No(&\")) and P,y
respectively. According to Eq. (20), we have No(ﬁ)gﬂ) =<
P,1,Vr < t, which demonstrates the benefit of forecasting
Wy in reducing Jig.

3) Earlier forecast can further reduce Ji. According
to Eq. (20), we have No(u?y*l)) = T_l(uvﬁl)) <
N, ™) = No@™) = No(!),vo < 7 < ¢,
which demonstrates the benefit of having a earlier forecast

In this example, we have n = m = k = 1, T = 20,
A=B=C=Q=1X=1and W, =V, = 1,Vt.
Since all the random variables are scalars, we can hence
plot coefficients No(w?)) and P; as functions of (¢,7) and
t, respectively.

Fig. 1 shows the numerical results for two different control
costt R = 1 (top) and R = 100 (bottom). In Fig. 1(a)
and Fig. 1(b), we observe No(i!”)) < 0.62,¥r < ¢ and
P, > 1,Vt, which demonstrate the benefit of forecasting a
portion of w; in reducing Jig;. Moreover, we also observe
that for a fixed ¢ and different 7’s, the value of No(w@)
doesn’t differ too much when 7 < ¢ — 1. This means that
knowing the forecast too early brings nearly zero additional
advantage under the given setting, and a lookahead forecast
window H equals 1 or 2 is already good enough. On the
other hand, with a much larger control cost R = 100, Fig.
1(c) illustrates a different shape of the plot of No(wt(T)).
We observe obvious difference between No(wt(T_l)) and
No(u?y)) for most neighboring (¢,7 — 1) and (¢, 7), which
demonstrates the importance of knowing the forecast as early
as possible due to the high penalty of inaccurate control.

B. Two-dimensional Robot Control System

In this example, we consider a two-dimensional robot
control system with n = 4, m = 2, k = 4, T = 50. The
first and last 2 dimensions of variable x represent the location
and the velocity of robot in a 2-d plane, respectively; and the
control u represents the acceleration. We assign the following
values to the matrices:

in reducing Jig. 1 0 02 O 0 0
T N I A A
'ts explicit value is not of our interest in this paper, and later we will ’
0 0 O 1 0 0.2

’
show the optimal average cost J* does not depend on Ny (1@57), 1?)1(,7 )).
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Fig. 1. Numerical results of the simple control system. The upper and lower figures has control cost R = 1 and R = 100 respectively. The left and right
figures plot the values of No(zf;t(T)) and Py, respectively.
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Fig. 2. Numerical results of two-dimensional robot control system. The right and left figures plot the values of J* and Jey respectively.

1000 and C, X, V;, V¢ are all identity matrices. Moreover, we re-
Q= 0100 R = [O'Ol 0 } , (27)  strict our attention to a family of forecasts with the following
0000 0 001 expression: 1) there’s a lookahead forecast window H = b5;
0000 2) we have W, = yW,,Vt, where € [0,1] is a coefficient
[1 05 02 0.2 that controls the percentage of wy that is predictable; and 3)
W, [05 1 02 02 (g Welet W = oW Vmax{0,t —H+1} <7 <t—1,
02 02 1 05|’ where « € (0, 00) is an another coefficient that controls the

102 02 05 1 allocation of T, among T™’s.
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Fig. 2 shows the numerical results. In Fig. 2(a), we
compare the value of J* for different v’s and «’s. For
fixed «, a larger v allows a higher percentage of predictable
portion; and for fixed 7, a larger « allows a higher percentage
of those earlier forecasts. Therefore, larger v and larger «
both lead to a lower J*. In Fig. 2(b), we compare the cost
of imperfect state estimation Jey for different v’s (which is
an invariant of the distribution of Wt(T)’s). It demonstrates
that a higher percentage of predictable portion can make Jg
significantly lower.

V. CONCLUSION

In this paper, we introduced a time-varying disturbance
forecast model for the LQG problem. We then derived
optimal state estimation, optimal control law, and optimal
average cost under this formulation. Numerical examples are
provided to illustrate the theoretical results.

One line of future work includes further characterization
of the cost of obtaining a disturbance forecast timely and
accurately, which stems from the fact that many data are not
free in practice and may demand human labor or equipment
utilization. In particular, inspired by works on rate-cost
tradeoff in control [12], [13], where the adopted control is
constrained by the bitrate of a communication channel, we
plan to investigate the tradeoff between two different costs
in a control system: the optimal average cost J* and the cost
for computing disturbance forecast.
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