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ABSTRACT
The increased memory demands of workloads are putting high
pressure on Last Level Caches (LLCs). In general, there is limited
opportunity to increase the capacity of LLCs due to the area and
power requirements of the underlying SRAM technology. Interest-
ingly, emerging Non-Volatile Memory (NVM) technologies promise
a feasible alternative to SRAM for LLCs due to their higher area
density. However, NVMs have substantially higher read and write
latencies, which offset their density benefit. Although researchers
have proposed methods to tolerate NVM’s higher write latency,
little emphasis has been placed on the critical NVM read latency.

To address this problem, this paper proposes Cloak. Cloak ex-
ploits page-level data reuse in the LLC, to hide NVM read latency.
Specifically, on certain L1DTLBmisses, Cloak transfers LLC-resident
data belonging to the TLB-missing page from the LLC NVM array
to a set of small SRAM Page Buffers that will service subsequent
requests to this page. Further, to enable the high-bandwidth, low-
latency transfer of lines of a page to the page buffers, Cloak uses
an LLC layout that accelerates the discovery of LLC-resident cache
lines from the page. We evaluate Cloak with full-system simulations
of a 4-core processor across 14 workloads. We find that, on average,
a machine with Cloak is faster than one with an SRAM LLC by
23.8% and one with an NVM-only LLC by 8.9%—in both cases, with
negligible change in area. Further, Cloak reduces the ED2 metric
relative to these designs by 39.9% and 17.5%, respectively.

CCS CONCEPTS
• Hardware → Non-volatile memory.

KEYWORDS
Non-volatile memory, STT-RAM, Last level cache, Cache hierarchy

∗Work performed while at the University of Illinois Urbana-Champaign.
†Work performedwhile at AMD. AMD, the AMDArrow logo and combinations thereof
are trademarks of Advanced Micro Devices, Inc.

ICS ’22, June 28–30, 2022, Virtual Event, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 2022 International
Conference on Supercomputing (ICS ’22), June 28–30, 2022, Virtual Event, USA, https:
//doi.org/10.1145/3524059.3532381.

ACM Reference Format:
Apostolos Kokolis, Namrata Mantri, Shrikanth Ganapathy, Josep Torrellas,
and John Kalamatianos. 2022. Cloak: Tolerating Non-Volatile Cache Read
Latency. In 2022 International Conference on Supercomputing (ICS ’22), June
28–30, 2022, Virtual Event, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3524059.3532381

1 INTRODUCTION
The popularity of data intensive workloads, such as HPC appli-
cations and databases, has intensified capacity pressure on Last-
Level Caches (LLCs). While much larger LLCs are desired, SRAM
technology suffers from a high area overhead (exacerbated by the
increasing manufacturing costs at leading-edge technologies [2, 4]),
substantial leakage power, and scalability problems [14].

Researchers have examined alternative memory technologies,
such as eDRAM and Non-Volatile Memory (NVM). In particular,
NVM technologies such as STT-RAM [10] are promising candi-
dates to replace SRAM in LLCs. Compared to SRAM, STT-RAM
offers higher density and lower leakage power [33]. Compared to
eDRAM, STT-RAM offers lower complexity (no refresh, activate, or
precharge operations), comparable read access time, and improved
power-efficiency due to its low leakage power [14]. Moreover, STT-
RAM is not volatile.

However, NVMs have twomain shortcomings over SRAM, namely,
higher latency for both read and write operations, and a higher
dynamic energy consumption per access. Moreover, read and write
latencies in NVMs change based on the targeted lifetime endurance
(wear-out) of the device. Therefore, replacing an SRAM LLCwith an
NVM one becomes a trade-off between latency, capacity, reliability
and energy consumption. In this paper, we focus on mitigating the
longer NVM read latency for highly-reliable NVM caches.

Table 1 compares the characteristics of SRAM and STT-RAM
cells. We can see that STT-RAM cells are ∼4x smaller in area, while
their read and write latencies are 10–30x and 25–100x higher, re-
spectively, than SRAM’s. The table does not include the energy and
power numbers because the literature provides wide ranges of val-
ues, dependent on implementation and manufacturing technology
[8, 61, 63, 65, 69]. Specifically, STT-RAM’s leakage power is 0.15–
0.48x that of SRAM’s, and its dynamic access energy is 0.8–2.5x
higher than SRAM’s for reads and 1.5–15x higher for writes.

https://doi.org/10.1145/3524059.3532381
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Characteristic SRAM STT-RAM
[7, 31, 56, 58] [16, 32, 44, 47, 54]
[34, 49, 55] [23, 24, 41, 46, 48]

Area (F 2) 70-150 15-40
Read Latency (ns) 0.3 3 - 10
Write Latency (ns) 0.3 8 - 30

Table 1: Comparing SRAM and STT-RAM characteristics.

Prior work has tried to overcome NVM’s problems of higher
latency—primarily write latency—and dynamic power using solu-
tions spanning the device, circuit, and architecture levels. At the
device and circuit levels, the write access latency (primarily) can
be reduced by sacrificing the retention time and non-volatility of
the STT-RAM cells [29, 30, 57, 60]. Also, the transistor size can be
adjusted for faster write operation [44] at the cost of higher power,
lower density, and lower reliability [33]. Such approaches limit the
full potential of NVM caches and do not solve the increased read
latency problem. Indeed, degrading NVM characteristics to reduce
the write latency introduces the need for periodic refresh, which
increases design complexity and energy consumption, and hinders
non-volatility [36, 50]. Additionally, adjusting the NVM cell size to
reduce write latency limits NVM capacity and introduces higher
error rates [19, 33].

At the architecture level, the most popular solutions to address
NVM’s higher latency and dynamic power involve hybrid caches
that combine SRAM and NVM storage [15, 59, 63, 65]. However,
these solutions focus mostly on write latency (not the focus of this
paper) or use inclusive caches (not so popular today). In addition,
they use a considerable amount of SRAM storage, plus complex
logic to decide which cache lines to swap between SRAM and NVM.
As a result, they limit the area savings from NVM and increase the
energy consumption.

In terms of access latencies, several proposals mitigate the per-
formance impact of long NVM write latencies [8, 17, 37, 61, 67, 68].
However, little emphasis has been placed on mitigating the NVM
read latency, based on the common assumption that the SRAM
and NVM read latencies are similar. However, measurements on
fabricated STT-RAM caches and observations by industry vendors
show a significant difference in read latency between STT-RAM [16,
23, 24, 32, 41, 44, 46–48, 65, 66, 69] and SRAM [7, 31, 34, 49, 55, 58].
Specifically, as shown in Table 1, FinFET-based 6T SRAM arrays
perform read operations with a 300ps latency, while the fastest
STT-RAMs can only attain 3ns latencies at best.

To take advantage of NVM for LLCs, we need a low-cost architec-
tural solution that can tolerate the higher read latency of STT-RAM
without sacrificing capacity, reliability, or non-volatility. This paper
proposes such an architectural solution, which we call Cloak. Cloak
exploits page-level data reuse in the LLC to hide NVM read latency.
Specifically, on certain L1 DTLB misses, the hardware transfers
LLC-resident lines of the TLB-missing page from the LLC NVM
array to a set of small SRAM page buffers. Such buffers will service
future requests to this page. To enable the low latency detection
and high-bandwidth transfer of lines of a page from the LLC NVM
array to the SRAM page buffers, Cloak uses an LLC layout that
accelerates the discovery of LLC-resident cache lines from the page.
Further, we develop an adaptive replacement policy for the page

buffers to increase their utilization and achieve better performance
and lower energy consumption.

We evaluate Cloak with full-system simulations of a four-core
processor running 14 workloads. On average, a machine with Cloak
is faster than one with an SRAM LLC by 23.8% and one with an
NVM-only LLC by 8.9%—in both cases, with negligible change in
area. Further, Cloak reduces the ED2 metric relative to these designs
by 39.9% and 17.5%, respectively.

2 BACKGROUND
2.1 STT-RAM Limitations and Opportunities
STT-RAM has emerged as a promising candidate to replace SRAM
in LLCs [37, 45, 66] because it provides higher density and lower
leakage than SRAM. However, as indicated before, the viability of
STT-RAM is inhibited by higher read and write access latencies,
and by higher dynamic energy than SRAM.

Past research has exploited a trade-off that exists between re-
tention time and write access latency, to design STT-RAM cells
whose write access latency is tolerable for practical on-chip inte-
gration [29, 30, 57, 60]. STT-RAM write latency is constrained by
bit-level error guarantees to ensure reliable operation across the
lifetime of the chip. In our case, with 16MB of STT-RAM per LLC
slice (Table 2), the Bit Error Rate (BER) of the STT-RAM cell needs
to be lower than 10−10 to ensure a 99.99999% yield with SECDED
ECC. This is based on the assumption that a cache line is fetched
from a single STT-RAM array block of 2MB.

Based on results from prototype devices [9, 24, 44], STT-RAMs
with such error rate guarantees can achieve a bitcell write latency
of ≈8ns and a read latency of ≈3.2ns. Furthermore, recent inno-
vations in the quality of magnesium oxide (MgO), which acts as
the dielectric material, pave the way for high endurance STT-RAM
cells in future designs [62]. As a result, the literature reports that
STT-RAM is a competitive alternative to SRAM for LLC caches. It
can have an endurance in the order of 1012 to 1013 write cycles
[15, 37, 62, 67], especially under normal temperature environments
as the one we target [18].

An important consideration is that the access latency to an STT-
RAM array cannot be pipelined. During a cell access, the STT-RAM
array is blocked from servicing other requests. In contrast, SRAM
array accesses are pipelined, and data can move to/from the cache
array every cycle, achieving higher throughput than STT-RAM.

2.2 NVM Cache as an SRAM Replacement
Prior work on NVM caches [8, 17, 37, 61, 67, 68] has focused on
mitigating the effect of long-latency write operations rather than
read operations. The work can be categorized into three groups:
methods to reduce, stall or bypass writes to NVM caches, NVM cell
optimizations, and hybrid SRAM/NVM caches.

Solutions in the first group identify write contention in the NVM
cache that can stall latency-critical reads, and try to take writes off
the critical path of subsequent reads [8, 37, 61, 68]. These techniques
assume the same read access latency for NVM and SRAMs.

Proposals that optimize NVM cells improve NVM cache write
performance at the expense of retention time and area [29, 44,
57, 60]. These optimizations are not trivial, given the trade-offs
between access latency, area, and retention time of NVMs [10, 19,
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66]. In addition, decreasing the retention time of NVMs introduces
refreshes, similar to DRAM, which increase energy consumption
and complicate the design. Moreover, it limits the capacity of NVMs
and introduces higher error rates. Importantly, it does not address
the problem of the non-pipelined and higher read latency.

Hybrid cache proposals [15, 59, 63, 65] split a cache into an NVM
and an SRAM portion, typically by partitioning a cache set into
SRAM and NVM ways. These proposals monitor address reuse
[59, 63, 65] and migrate frequently-used data to the SRAM portion
of the cache, and rarely-used data to the NVM portion. However,
these techniques have several shortcomings. First, they only target
inclusive caches, which are not widely used nowadays. Second,
they dedicate a large portion of cache capacity to SRAM, therefore
reducing the density benefit of NVM and increasing leakage power.
The area overhead of the SRAM portion is 25–100%, assuming a
4:1 density between NVM and SRAM [59, 63, 65]. Third, they need
large structures of several KBs to accurately monitor cache line
activity. Fourth, they must migrate data between SRAM and NVM,
which further increases the number of writes to NVM, the energy
consumption, and the area overhead. Fifth, in exclusive and victim
LLCs, it is hard to monitor the reuse of individual addresses because
LLC hits result in the removal of lines from the LLC; as a result, the
overhead and complexity of recording data reuse increases. Finally,
these techniques do not consider that the non-pipelined nature of
NVM accesses introduces higher overhead to line migration.

Given that past work has focused on mitigating the effect of high
write latency, a pressing problem now is to mitigate the impact of
the high read latency of large NVM LLCs. This is the goal of this
paper.

3 MOTIVATION
To increase the cache capacity in multi-cores, one can architect
the LLC as a victim cache. In this environment, we propose using
NVM in the LLC, to enable a higher LLC capacity for the same area.
To improve on this design, in this paper, we observe that an L1
DTLB miss on a page that has already been referenced in the past
is a good hint that some LLC-resident cache lines of the page will
be re-referenced soon. Consequently, we identify such DTLB refills
and bring likely-to-reuse lines from the LLC into a small SRAM
structure next to the LLC. After that, the processor can read lines
from this small SRAM structure with low latency.

To evaluate the potential of this idea, we use simulations. We
model a conventional 3-level cache hierarchy with a 16MB LLC
and 4KB pages, and run a set of workloads that will be discussed in
Section 6.2. Figure 1 shows the percentage of LLC hits that originate
from accesses to pages that were re-filled into the L1 DTLB. The
figure shows that, on average, 94.9% of LLC hits originate from
these accesses. This data implies that, upon an L1 DTLB page re-fill,
there should be a significant number of LLC-resident lines from
this page that will be re-referenced.

We also measure the number of LLC-resident cache lines belong-
ing to a 4KB page at the point when the page is re-filled into the L1
DTLB. We use 4MB and 16MB LLCs. Figure 2 shows the frequency
of the number of such lines. Even though it is common to have 0–3
resident lines, there is a long tail of up to 60-64 resident lines, which
increases with larger LLC size (16MB). Therefore, we conclude that
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Figure 1: Percentage of LLC hits that originate from accesses
to pages that were re-filled into the L1 DTLB.

the number of requests hitting in the LLC and originating from
an L1 DTLB-refilled page is likely to be sizable, and increase with
LLC size. Cloak builds on these observations to architect a solution
that hides the increased read latency of NVM caches and increases
overall request throughput.
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Figure 2: Frequency of the number of LLC-resident cache
lines from a 4KB page that is re-filled into the L1 DTLB. The
figure shows data for 4MB and 16MB LLCs.

4 DESIGN OVERVIEW OF CLOAK
4.1 Main Idea
Cloak is a hardware mechanism that takes advantage of certain L1
DTLB misses to exploit data re-use in large NVM LLC caches, and
hide NVM’s higher non-pipelined read latency. The NVM LLC is
augmented with small SRAM buffers, which we call Page Buffers
(PB). PBs hold data transferred from the NVM LLC. Each PB can
hold a copy of LLC-resident cache lines originating from a given
page. To trigger the copy of lines into a PB, Cloak leverages the
L1 DTLBs. When a miss in the L1 DTLB occurs for a previously-
accessed page, the hardware passes this information to the LLC,
which finds and copies the LLC-resident lines of this page to a PB.

Previously-accessed lines from the page have a high chance of
being accessed again when the page translation is re-filled in the
L1 DTLB—due to temporal locality. To facilitate the retrieval of
a page’s cache lines from the LLC, we introduce a new LLC data
layout that places the lines of a given page in the same physical
cache row.

Figure 3 shows the architecture of Cloak, where the new or mod-
ified hardware structures are colored, and the added connections
between the L1 DTLBs and the L3 Controllers are shown in color.
In this section, we describe the overall operation of Cloak to fetch
data to the PBs and service memory requests. Subsequently, Section
5 discusses the architectural details of the Cloak design.
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Figure 3: Cloak architecture, with the new or modified hard-
ware structures and connections colored.

4.2 Cloak Overview
The core operations of Cloak consist of data movement from the
NVM LLC data array to the PBs on a DTLB signal, and potentially
servicing subsequent processor requests to the LLC from the PBs.
Figure 4 shows the control flow diagrams of these actions.
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Figure 4: Control flow diagrams: (a) promotion of lines of a
page to a PB, and (b) servicing a read request from the LLC.

4.2.1 TLB-triggered Page Buffer Transfer. PBs are small SRAM-
based cache structures which act as fast access buffers to the NVM
LLC. Each PB can hold a set of NVM-resident cache lines of a given
page. Promoting NVM-resident lines of a page into a PB can reduce
the read latency of future LLC accesses: thanks to intra-page spatial
locality [21], it is likely that a number of future accesses will be
intercepted by the PB and not need to access the NVM data array.

The algorithm to promote a page’s cache lines to one of the PBs
is depicted in Figure 4a. When an L1 DTLB miss occurs, the PTE
for the page is fetched and Cloak determines whether this page

was previously referenced. To determine whether the page was
referenced in the past, Cloak checks if the page is in the L2 DTLB
or, if it is not, if either the Accessed or Dirty bits of its PTE [5] is set.
A set Accessed bit indicates that the page was accessed in the past.
This bit is set by hardware when the page is first read or written,
and is only reset by the OS to track the frequency of accesses to the
page. A set Dirty bit indicates that the page was written, and hence,
was referenced before. The Dirty bit is set by the processor the first
time that the page is written to, and is only cleared by software.

If Cloak concludes that the page was used in the past, it sends a
signal to the controller of the LLC slice that contains the physical
address of the request that caused the DTLB refill. The LLC con-
troller checks if the local PBs contain lines from this page. If they do
not, Cloak decides whether to copy the lines of the page to a PB and,
if so, which PB to use. To decide whether to copy the page’s lines,
Cloak checks the tags of the LLC slice to calculate the population
of NVM-resident lines from this page. A copy to a PB occurs only
if the population size exceeds a programmable threshold, so that
the cost of fetching the lines to a PB can be amortized across the
expected number of future PB hits. In this case, Cloak selects an
available PB to copy the page’s cache lines according to the PB
replacement policy (Section 5.4).

4.2.2 Servicing Requests to the LLC. In Cloak, a hit in the LLC can
obtain the data from the NVM data array or from a PB. Figure 4b
shows the algorithm to service a read request to the LLC. The LLC
controller checks in parallel the LLC SRAM tags and the PB Tags,
to determine if there is a hit or a miss. If the LLC tag check misses,
the request is forwarded to main memory. If the LLC tag check hits
and the PB tag check misses, the request is serviced from the NVM
data array. Finally, if both the LLC tag check and the PB tag check
hit, the request is serviced from the PB.

The PB contents are kept coherent with the NVM data array.
Specifically, writes to the LLC (e.g., due to an L2 eviction) also check
the PBs and, on a hit, update both the NVM data array and the PB.
Completion of write requests is signaled to L2 when the request is
buffered in the LLC queues. It does not wait until when the write
updates the NVM data array and PB.

A hit in the LLC NVM data array can be serviced in parallel with
a PB hit to a different address. As a result, in-flight read accesses
to the slow, non-pipelined NVM data array do not block younger
reads to the PBs.

5 CLOAK IMPLEMENTATION
5.1 Data Layout
Copying the lines of a page from the LLC to a PB requires finding all
NVM-resident lines of that page. To avoid massive LLC tag lookups
and NVM cache read operations, we introduce a new data layout
for the LLC. The proposed layout forces all the lines of a given page
to be mapped to a single physical row of the LLC. A physical row
contains multiple cache sets, each with multiple cache lines. Each
physical row may contain lines from multiple pages.

For the Cloak LLC, we assume a physically distributed, logically
shared LLC cache that acts as a victim of private L2 caches. While
we evaluate this specific design point, the design of Cloak itself does
not preclude other potential organizations of the cache hierarchy.
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The LLC is split into equally-sized slices. Each slice has its own
controller and can independently service any type of request. We
use STT-RAM for the data array and SRAM for the tag array for
two reasons. First, the tag array is much smaller than the data array
and so the area overhead of using SRAM is small. Second, LLCs are
typically highly set-associative, and tags are often accessed before
data to minimize the dynamic energy of the data array access.
Having NVM tags would add significant latency to LLC accesses.

The LLC tag array supports both conventional accesses (e.g., trig-
gered by L2 misses) and page-level data copies to the PBs triggered
by L1 DTLB fills. We distinguish the two by referring to the former
as Cache Line Requests (CLR) and to the latter as Page Transfer
Requests (PTR).

We map all the lines of a given page to the same LLC physical
row. To do so, we alter the LLC cache indexing as presented in
Figure 5. To pick the physical row, we use some bits of the Physical
Page Number (PPN) called Row Index. Once the row is selected, we
use a subset of the Physical Page Offset (PPO) bits called Set Index
to select a set within the physical row. Then, some of the PPN bits
(Tag-High) and of the PPO bits (Tag-Low) are used as tag. Finally,
the remaining PPO bits are used as block offset (Figure 5).

Different within a page. 
Physical Page Offset (PPO)

Same within a page. 
Physical Page Number (PPN)

OffsetTag-Low

Set index
Row Index

48 bit 
address

36 bits 12 bits

056781112242547

Tag-High

Figure 5: Cloak LLC addressing scheme.

PTRs and CLRs differ in the tag match logic. Specifically, for
tag matching, a PTR access ignores the page offset bits and uses
Tag-High bits only. In contrast, a CLR access uses both Tag-High
and Tag-Low bits for tag matching.

The lines of a page could be split across LLC slices, mapping to
the same physical row in each slice. However, in order to simplify
the tag hit logic and NVM to PB data movement, we choose to map
the entire page in the same LLC slice. Note that our layout does
not impose any restrictions on the LLC organization (e.g., line size,
associativity, etc.).
Example. To illustrate the proposed layout, we show an example
with a single-slice of 32MB size, 16-way set-associative LLC with
64B cache lines and 4KB pages. The LLC has 8192 physical rows,
each organized in 4 sets, 16 ways each. Each physical row is 4KB
and can be banked if needed. As shown in Figure 5, the physical
address (PA) has 48 bits, the 12 least significant ones are the PPO,
and bits 0-5 form the line offset.

The cache index bits include the row index bits (bits 24:12), which
select the row of the cache, and the set index bits (bits 7:6), which
select the cache set within a row. Note that the row index bits (bits
24:12) do not include any PPO bits. Bits 11:8 and 47:25 form the
tag, split into Tag-Low and Tag-High parts, respectively. For tag
matching, a CLR selects a row and a set using indexing bits 24:12
and 7:6, respectively, and finds a match using the tag bits (bits 47:25

and 11:8). For tag matching, a PTR selects a row using the row index
bits (bits 24:12) and finds all matches using the subset of tag bits
lying outside the PPO, namely the Tag-High (bits 47:25). Thanks to
this layout, the PTR does not search the entire cache; it only checks
the Tag-High (bits 47:25) of the 64 lines in the selected cache row.

The dynamic energy of a CLR tag access is proportional to the
16 lines x 27 tag bits comparison (432 bits). The dynamic energy
of a PTR tag access is proportional to the 64 lines x 23 tag bits
comparison (1,472 bits). A PTR tag access consumes 3.4x more
energy than a conventional CLR tag access. Triggering PTR tag
searches only on DTLB re-filled pages whose lines are not already
in a PB keeps the total energy cost of these operations low.

Our data layout could be extended to optimize for huge pages.
However, we find that such a design is not efficient, as huge pages
increase the overhead of tag lookup and data movement, while it is
unlikely that a large fraction of their lines will be LLC-resident. In
Section 5.5, we discuss how to efficiently handle huge pages.

5.2 Promotion of Cache Lines to Page Buffers
Cloak populates each PB with LLC-resident cache lines from one
page. The process is as follows. Once a PTR reaches the LLC con-
troller, the hardware checks if any PB already has lines from the
accessed page. If not, the hardware checks the LLC tags to find if
the LLC holds more than a threshold number of cache lines of the
accessed page. If so, the LLC-resident lines of the page are trans-
ferred to a PB. Since the NVM cache is inclusive of the PBs, the
transferred lines are not invalidated from the NVM data array.

Cloak provides hardware to bring cache lines to the PBs. Accord-
ing to Figure 2, the LLC may only contain a fraction of the lines
from a given page. Hence, PBs will be sparsely populated. In order
to increase PB utilization, we use PBs that are smaller than a page.
However, given that the data in a physical row is equal to a page
(4KB), steering the data from a row to a PB is not trivial and may
require additional metadata and complex routing logic. To simplify
both the metadata and the routing overhead, we propose using PBs
of size equal to half a page (2KB). Moreover, we logically partition
a physical row into two 2KB regions, and multiplex the two regions
into the same PB.
Example. Figure 6 shows an example that promotes cache lines
from page A into a PB. The two logical partitions of a physical row
are formed as follows. The first partition contains the first set of
the LLC row with all its 16 ways, in order, and the second set with
all its 16 ways. The second partition contains the third and fourth
sets. The top left part of Figure 6 shows the state of a physical row
with its 64 cache lines ordered and partitioned as described. The
entries with Ai values are lines with data from page A. Promoting
the lines of the page to the PB proceeds in two steps: first from the
leftmost region of the physical row (Step 1 in Figure 6), and then
from the rightmost region of the row (Step 2 in Figure 6).

In Step 1 (left side of Figure 6), we process the leftmost region,
which has lines in its first position (A1) and in the one before last
(A2). The hardware promotes these lines into the PB. To simplify the
routing, as shown in the figure, the lines are placed in the PB in the
same slots that they use in the 2KB region. The PB does not need to
store any address tags because any memory access will check the
SRAM LLC tags first, to decide whether the corresponding PB line
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Step 1

A1 - ... A2 - A3 A4 … - A5

2KB Region 2KB Region

Cache 
Row

A1 - … A2 -PB

0 … 0
Region 

bits

Step 2

A1 - ... A2 - A3 A4 … - A5

2KB Region 2KB Region

A3 A4 … A2 A5

1 1 … 0 1

PB

Region 
bits

Figure 6: Promotion of the lines of a page to a PB.

is valid. However, each PB slot has a bit to identify which region
the line comes from. In our example, we need 32 such bits, which
we call Region bits. This bit is needed to fully identify the line. In
the example, since the two lines come from the leftmost region, the
bits are 0.

In Step 2 (right side of Figure 6), we process the rightmost region,
which has lines in its first (A3), second (A4), and last (A5) positions.
The hardware promotes these lines into the PB and sets the Region
bits of the entries to 1. The figure shows the final state of the PB.

Note that the two lines in the first position of the two regions
wanted to use the same PB slot, and we had to pick a winner. In
the example, we picked A3 over A1. To pick a winner, Cloak uses a
simple algorithm that guesses which of the two lines is more likely
to be used in the future. Specifically, Cloak records if the address
ar ef that triggered the DTLB miss belongs to the first or second
half of the page. Then, when populating a PB, when two lines want
to use the same PB entry, the line from the same half of the page as
ar ef is the one that wins. This algorithm guesses that, because of
spatial locality, this line is more likely to be accessed soon that the
other line.

Given Cloak’s proposed LLC organization, the operation of pro-
moting the lines from the two regions (and, in another design, from
potentially more regions) into a PB does not stall the LLC pipeline
more than a single read access would. Indeed, all the cache lines of
a page are on the same physical row, and thus they are promoted to
a PB from the NVM data array with a single read operation. Finally,
the writes into the PB are pipelined: as the first region is written,
the second region performs the checks.

5.3 Tag Checks
To keep track of the pages and cache lines that are present in the
PBs, Cloak employs an array called the Page Buffer Tags (PB Tags)
(Figure 7). Each entry in the PB Tags corresponds to one PB. An
entry has: (a) the PPN of the page whose lines are stored in the PB,
(b) a Replacement counter to manage PB replacement, (c) a Residency
counter that tracks the number of valid lines in the PB, and (d) the
Region bits discussed above.

Both PTR and CLR use the PB Tags to determine whether a PB
contains data for the page requested. In the case of a PTR, the PB
Tags are searched using the PPN of the requested page. In a CLR,
the PB Tags are searched using the PPN of the requested page and
the correct bit in the Region field corresponding to the requested
address.

A CLR operation starts by accessing both the LLC SRAM tag
array and the PB Tags simultaneously (Figure 7). It uses the PPN
bits of the PB Tags to identify if a PB contains lines from the page

SRAM Tag 
Array

NVM Data Array

Page Buffer

Sense Ampl

Data 
out

Data 
out

Replacement

Replacement

Replacement

Replacement

Hit/Miss

Region

Region

Region

Region

PB 
Hit/Miss

LLC Read 
Request

PPN

PPN

PPN

PPN

Page Buffer Tags

Residency

Residency

Residency

Residency

Figure 7: LLC read request path in Cloak.

accessed. It uses the LLC tag array to identify if and where the
requested line resides in the LLC. If the address of the line is not
found in the LLC tag array, an LLC miss is declared.

However, if the LLC tag array indicates a cache hit, Cloak checks
for a PB hit. A PB hit will occur if: (i) there is a PB with lines of the
page accessed and (ii) the region of the LLC physical row with the
matching address is the same as the one indicated by the Region
bit of the corresponding location of the PB. In this case, the line
is accessed from the PB in the same position. Recall that, during
data promotion, lines were moved from the LLC to the PB without
reordering. If the Region bit does not match or the PPN bits do not
match, the line is accessed from the NVM-LLC data array.

Note that the access to the PPNs in the PB tags overlaps with
the access to the LLC tag array. The access to the Region bit in the
PB tags is only performed after the LLC tag array access (Figure 7).
However, accessing the Region bit only extends the critical path by
one cycle—when both the PPN and the LLC tag array hit.

The PB contents are always kept synchronized with the contents
of the LLC NVM data array. When a line is written to the LLC, the
corresponding line in the PB, if present, is updated. For this reason,
there is no need to write back PBs to the NVM data array. There
is also no need to keep valid or coherence state bits in PB Tags
because the LLC tags provide such information. Whenever an LLC
line is invalidated (due to an external probe or L2 promotion), or
evicted (due to an LLC replacement), the corresponding valid bit of
the line in the LLC tags is reset. No other action is needed: given
that the PB hit logic waits for the LLC tag search to complete, a
CLR will not read the PB slot data if its corresponding LLC line is
invalid, even if the data is still resident in the PB entry.

The Residency counter in the PB Tags tells how many cache
lines are valid in a PB. This counter is set when the lines of a page
are moved from the NVM data array to the PB. It is decremented
when one of the lines is invalidated or evicted from the LLC. It is
incremented when an L2 victim is installed in the LLC and copied
into the PB. The Residency and Replacement counters are used to
handle PB replacement, as we discuss in Section 5.4.
Example. The PBs add little area overhead to the LLC. To see
why, consider an example based on Figure 5. A PB is composed
of tag and data. For the tag (Figure 7), we have a 36-bit PPN and
assume a 10-bit Replacement counter. The Residency counter needs
loд2(PBsize/linesize) bits, which is 5 in our example. The Region
bits are (PBsize/linesize) ∗ (loд2(Paдesize/PBsize)), which is 32 in
our case. The total comes to 83 bits per PB tag entry. The size of
the PB data per entry is 2KB. Based on this, if we assume a 4:1 area
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ratio between NVM and SRAM, we estimate that each PB adds a
0.046% area overhead over the 16MB LLC slice.

5.4 Page Buffer Replacement Policy
Cloak needs to find an available PB to promote a page’s cache lines,
when all PBs are in use. To pick a PB, Cloak uses a PB replacement
algorithm that considers: (i) how many cache lines are resident in
a PB, and (ii) the frequency of accesses to the page in the PB. The
goal is to capture the dynamic behavior of accesses to each PB, and
neither replace a PB too early (before its entries are accessed), nor
keep a page resident in a PB if it is not being accessed.

Specifically, when a PB is loaded, its Replacement counter is
set to the product of the Residency counter and a programmable
constant called Activation Period. At every cycle, the Replacement
counter is decreased by one. When a PB entry is accessed, either for
a read or a write operation, its Replacement counter is recalculated
by multiplying the current value of the Residency counter with the
Activation Period.

Note that PB accesses also change the Residency counter. On a
PB read, Cloak decrements the Residency counter because a line
from the PB is moved to the private caches. On a PB write because
of a line eviction from the private caches, Cloak increments the
Residency counter. Once the Replacement counter reaches zero, the
PB entry is subject to replacement.

5.5 Huge Page Management
Modern systems support huge pages, such as 2MB and 1GB, to
alleviate TLB pressure. Even though we described Cloak in the
context of 4KB pages, Cloak can support huge pages without any
modification to the NVM cache layout.

We envision a physical row in the LLC cache to still hold 4KB of
data. However, if we chose to transfer a whole 2MB page into a PB,
we would need to search many rows. Moreover, larger PBs would
likely be underutilized.

Consequently, Cloak only transfers lines from individual 4KB
chunks of a huge page at a time into a PB. Specifically, when a huge
page entry is re-filled into the L1 DTLB, Cloak only promotes lines
from the 4KB chunk of this huge page that contains the address
that triggered the DTLB miss. In addition, the L1 DTLB records this
4KB chunk that triggered the DTLB miss. Subsequently, when an
access occurs to the same huge page, but a different 4KB chunk,
Cloak triggers the transfer of lines from the new 4KB chunk, and
again records the chunk in the DTLB. In this way, Cloak can have
multiple 4KB chunks of the same huge page active in the PBs.

Cloak adds this support for 2MB and 1GB pages. For the 2MB
pages, Cloak needs to add 9 bits per L1 DTLB entry to record the
most-recently-promoted 4KB chunk. For the 1GB pages, Cloak
needs to add 18 bits per L1 DTLB entry. These are minimal area
overheads.

6 EVALUATION METHODOLOGY
6.1 Modeled Architecture and Infrastructure
We use full-system cycle-level simulations using the SST [52] frame-
work to model a server architecture with 4 cores and 64 GB of main
memory. The main architecture parameters are shown in Table 2.
Each core is out-of-order with private L1 and L2 caches, and a

shared LLC. The L1 and L2 caches use stride and next-line prefetch-
ers, respectively, as implemented by SST. The L2 cache is inclusive
of L1, while the LLC is populated by L2 victims. The baseline sys-
tem uses an SRAM-based physically-distributed logically-shared
LLC. For Cloak, the LLC has SRAM tags and an increased-latency,
non-pipelined, STT-RAM-based data array.

We use published data (Table 1) to set the read and write laten-
cies to access the STT-RAM LLC data array to be 3 ns and 8 ns,
respectively. Note that this latency is not the total round trip latency
to access the LLC from the core. Such latency is shown in Table 2
to be 63 cycles for reads and 78 cycles for writes.

There are private L1 and L2 DTLBs, and a page walker per core.
For our evaluation, we integrate the Simics full-system simula-
tor [42] with the SST [52] framework. Simics is a full-system func-
tional simulator that provides SST with the necessary information
about the executed instructions. SST gets the executed instruc-
tions alongside information about virtual and physical addresses,
page walk addresses, and registers. It then simulates our system
architecture with the parameters of Table 2.

To model main memory, we use the DRAMSim2 [53] memory
simulator. We use Intel SAE [13] on top of Simics for OS instrumen-
tation. Finally, we use CACTI [11] and McPAT [39] to calculate the
timing and energy parameters of our processor and SRAM-based
tags, data arrays, and buffers. For Cloak’s STT-RAM data array,
we scale the SRAM energy values according to prior work [61, 63].
After the hardware checks the LLC tags, we add one extra cycle for
the hardware to determine whether it is a PB hit or miss. This is
necessary because the LLC tag search determines the location of
the line inside a PB.

6.2 Configurations and Workloads
We compare four different design configurations.
Baseline: SRAM-based LLC with the latency and size parameters
described in Table 2.
NVM-Only: LLC with STT-RAM for the data array and SRAM
for the tag array with the parameters of Table 2, but without PB
support and with conventional indexing.
Cloak: LLC with STT-RAM for the data array and SRAM for the
tag array with the proposed data layout and PB support.
O-SRAM: Optimistic LLC hybrid design with conventional index-
ing, pipelined access latency and energy characteristics of Baseline,
combined with STT-RAM area density.

To evaluate the efficacy of our design, we run 14 workloads. They
are shown in Table 3 with their memory footprint and L2 misses per
kilo instructions (MPKI). We chose ten benchmarks from the SPEC
CPU® 2017 (Group A) [6] and SPEC CPU® 2006 (Group B) [22]1
benchmark suites with high MPKI to stress the memory subsystem.
We also run four benchmarks from the CORAL [1] and CORAL2 [3]
suites (Group C), as representative HPC applications. The memory
footprint of our workloads does not fit in the L2 and can stress the
LLC. We select the region of interest (ROI) with SimPoint [20] for
the SPEC® workloads with intervals of 200 million instructions for
each of 10 different regions, and we instrument the source code
for the other workloads. In all cases, we warm-up the architectural

1SPEC® and SPEC CPU® are registered trademarks of the Standard Performance
Evaluation Corporation. See www.spec.org for more information.
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Table 2: Architectural parameters used for the evaluation. In
the table, RT means round trip latency from the core.

Processor Parameters
Multicore chip 4 OoO cores, 4-issue, 22nm, 3.2GHz
Ld-St queue; ROB 92 entries; 192 entries
L1 cache 32KB, 8-way, 2 cycles round trip latency (RT), 64B line
L2 cache 512KB, 8-way, 14 cycles RT, 64B line
Prefetchers L1 cache: stride prefetch. L2 cache: next-block prefetch
Baseline LLC cache 4MB/core, 16-way, 1 slice/core, 64B line

53 cycles RT, 2 cycles tag latency, 12 cycles data latency
Energy: Read/Write 0.47/0.48nJ, Tag 4pJ, Leak: 1.4W

L1 DTLB 64 entries, 4-way, 2 cycles RT
L2 DTLB 1024 entries, 12-way, 12 cycles RT

NVM cache parameters
LLC cache (SRAM 16MB/core, 16-way, 1 slice/core, 64B line
tag + NVM data) 63 cycles RT read latency, 78 cycles RT write latency

2 cycles tag access latency, 22 cycles data access latency
(of which 10 cycles are not pipelined)
Energy: Read/Write 0.95/6.3nJ, Tag 7pJ , Leak: 829mW

Page Buffers (PB) 20 PBs, 2KB/each, 43 cycles RT
Energy: Read/Write 12/13pJ, Tag 12pJ, Leak: 4.1mW

PTR signal latency 6 cycles
STT-RAM cache to
PB threshold 6 cache lines
PB activation period 20 cycles per active cache line
PB area overhead 0.92% area overhead over an LLC slice (0.046% per PB)

Main-Memory Parameters
Capacity 64GB
Channels; Banks 2; 8
Latency 190 cycles RT (on average)
Freq; Bus width 1.6GHz DDR; 64 bits per channel

System Parameters
Host OS Ubuntu Server 16.04

Table 3: Workloads.

Workload Footprint L2 Workload Footprint L2
(MB) MPKI (MB) MPKI

Group A Group B
505.mcf_r 613 39
519.lbm_r 409 10 450.soplex 436 10
557.xz_r 800 3 459.GemsFDTD 146 4

Group C 473.astar 372 18
Kripke 608 39 462.libquantum 267 11
XSBench 110 63 433.milc 123 7
QLA 375 11 471.omnetpp 388 12
lulesh 110 15 437.leslie3d 62 3

state by running one quarter of the instructions before simulating
the remaining three quarters of the instructions.

7 EVALUATION
7.1 Cloak Performance and Energy
In this section, we evaluate the performance of Cloak. When re-
placing an SRAM-based cache with NVM (STT-RAM), there are
two factors that affect application performance. The first is the
higher read and write latencies of STT-RAM. The second is the
lower cache miss rate due to the higher area density of NVM tech-
nology. We consider two different metrics in Figure 8 to show the
performance impact of Cloak. Figures 8a and 8c show the L2 miss
response times for read CLRs, while Figures 8b and 8d depict the

application speedup. All figures are normalized to the Baseline con-
figuration. We conduct experiments on a system with 4KB pages
only, and a system with Transparent Huge Pages enabled (2MB and
1GB pages).

Figures 8a and 8c show the L2 miss response time, which is
calculated as the total number of cycles from issuing an L2 miss
until the miss response reaches back to the L2. On average, Cloak
reduces the L2 miss response time by 30.0% and 30.5% over Baseline,
with and without Huge Pages. This impact is really close to that of
the O-SRAM configuration. The NVM-Only configuration lowers
the L2 miss response time by only 15.8% and 15.9%. It does not
achieve the same reduction as Cloak because, without PBs, it has
high and non-pipelined LLC hit latency. These results indicate that
the PBs are effective at reducing the NVM cache read latency—
practically as much as O-SRAM.

Figures 8b and 8d show the application speedup over Baseline.
We see that NVM-Only LLCs can increase performance. The reason
is the larger LLC capacity achieved via NVM technology, which
can greatly decrease the LLC miss rate. However, there are bench-
marks where NVM-Only experiences a performance degradation
compared to Baseline (505.mcf_r, 473.astar, Kripke, and XSBench).
This is because the lower LLC miss rate cannot compensate for
the higher LLC hit latency. Benchmarks with high L2 MPKI and
high LLC hit rate suffer more from the increased read latency of an
NVM-based LLC. For instance, 473.astar and XSBench with Huge
Pages experience 13% and 19% lower performance than Baseline,
respectively.

On the other hand, Cloak consistently attains higher perfor-
mance than Baseline and NVM-Only. There are times when it even
outperforms O-SRAM. This can happen for benchmarks with high
PB hit rate, because a PB hit has a lower access latency than a hit
in an SRAM-based LLC. This is due to the lower routing latency
observed when retrieving data from the PB data array compared
to the much larger SRAM-based LLC slice. On average, Cloak is
25.6% and 23.8% faster than Baseline with and without Huge Pages,
respectively, while NVM-Only is 15.5% and 14.9% faster than Base-
line. Cloak outperforms Baseline by up to 97%, effectively hiding
the increased read latency of STT-RAM.

We also tested Cloak’s efficacy by running mixes of four bench-
marks at a time. It can be shown that NVM-Only and Cloak outper-
form baseline by 24% and 31% without Huge pages and by 27% and
33% with Huge pages, respectively. Additionally, we also tested all
the low L2-MPKI SPEC® benchmarks and found that Cloak con-
sistently achieves the same or slightly higher performance (1-2%)
than the Baseline and NVM-Only cases.

The rest of our evaluation focuses on a system that utilizes only
4KB pages. However, the performance trends remain the samewhen
huge pages are enabled.

To further understand the performance impact of Cloak, we
present two more performance metrics in Figures 9 and 10. In
Figure 9, we show the LLC Misses per Kilo-Instructions (MPKI)
for the four configurations. The increased capacity with STT-RAM
greatly reduces the LLC MPKI of the applications. The MPKI drops
across all benchmarks—including those with the highest MPKI such
as XSBench, which shows a 50% drop. In most cases, Cloak achieves
an LLC MPKI close to that of O-SRAM.
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(a) Normalized L2 miss response time with 4KB pages
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(b) Speedup with 4KB pages
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(c) Normalized L2 miss response time with 4KB and huge pages
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(d) Speedup with 4KB and huge pages

Figure 8: Performance impact of Cloak normalized to the Baseline configuration, when huge pages are disabled (a,b) and
enabled (c,d). The figures show the normalized L2 miss response times (a,c) and the application speedup (b,d).
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Figure 9: LLC misses per Kilo-Instructions (MPKI).

To isolate the performance impact of PBs, Figure 10 compares
the total time that read requests spend in the LLC in NVM-Only and
Cloak. This time is calculated as the total number of cycles from the
time that an L2 miss is issued until the response is sent back to L2 by
the LLC data array or a PB (in case of a hit), or until the LLC declares
a miss. Note that the two configurations have similar LLC MPKIs.
Therefore, their cycle count difference depends on the PB hit rate
in Cloak. Figure 10 shows that Cloak notably reduces the LLC read
latency cycles and, therefore, accelerates the LLC read requests. On
average, LLC CLRs spent 42.5% less time in the LLC with Cloak
than with NVM-Only. The PBs are able to speed-up Cloak because
they service CLRs much faster than the LLC NVM-based data array
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Figure 10: LLC read latency reduction of Cloak over NVM-
Only.

(both in latency and bandwidth). Moreover, when CLRs are serviced
from the PBs, they do not block the LLC data array pipeline, giving
the opportunity to subsequent CLRs that do not access the PBs, to
proceed in parallel. As a result, the PBs not only service requests
faster, but also increase the overall throughput of the LLC.

Figure 11 shows the ED2 of the different configurations normal-
ized to Baseline. The bars are broken down into the contributions
of the core plus private caches, the LLC, and main memory. Overall,
we see that all STT-RAM designs have a lower ED2 than Baseline.
On average, NVM-Only reduces the ED2 by 22.4%, while Cloak
reduces it by 39.9%. The reasons are the lower execution times
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of the STT-RAM configurations, the lower leakage power of the
STT-RAM data array (which is the main energy contributor of the
LLC), and the reduced number of accesses to main memory.

Compared to the NVM-Only design, Cloak consumes more dy-
namic energy in the LLC because it performs more tag checks (LLC
and PB) and read accesses to the STT-RAM data array when fetch-
ing data to the PBs. Cloak also consumes more static energy due to
the PB leakage. Specifically, it can be shown that: (i) PB static en-
ergy accounts for 6.6% of total LLC energy consumption, (ii) cache
line promotion to the PBs accounts for 8.5% of total LLC energy,
and, (iii) the energy of PB tag checks and PB data accesses accounts
for 0.04% of the total LLC energy.
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Figure 11: ED2 normalized to Baseline.

However, this extra energy is compensated by Cloak’s faster
execution because it services many requests from the PBs. O-SRAM
reduces the ED2 by 43.3% over Baseline on average, delivering the
best energy efficiency on average. Yet, in some cases, Cloak achieves
better energy efficiency because O-SRAM’s faster execution time
can not compensate for its higher leakage.

7.2 Cloak Characterization
To achieve high performance, it is crucial to maximize the use of
PBs. We find that 84.4% of the PTRs sent by Cloak to the LLC are
for pages that have at least 6 cache lines in the LLC. Moreover, 99%
of the PTRs are able to find a PB to promote the lines to.

To get further insight, Figure 12 shows the percentage of LLC hits
serviced from the PBs (instead of from the STT-RAM data array).
On average, 54% of the hit CLRs are serviced from the PBs instead
of the STT-RAM data array. The benchmarks with the highest LLC
hits per kilo-instruction (HPKI) such as XSBench (45 HPKI) and
Kripke (32 HPKI) hit in the PB 57% and 48% of the time, respectively
(Figure 12). This leads to substantial performance gains of Cloak
over NVM-Only, as shown in Figure 8b.

We now quantify the coverage of PTRs to the LLC in Figures 13a
and 13b. Figure 13a shows the percentage of cache lines promoted
into PBs that are actually accessed from the PBs. In the figure, Group
A, Group B, and Group C are the mean of the SPEC CPU® 2017,
SPEC CPU® 2006, and Coral benchmarks in Table 3, respectively.
We see that, on average, CLRs reference 51.1% of the cache lines
promoted to the PBs. This relatively high hit ratio is helped by our
PB replacement algorithm that favors the victimization of PBs with
few lines or with a low number of hits.
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Figure 12: Percentage of LLC hits that are serviced by PBs.
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Figure 13: Characterizing PB use: (a) percentage of cache
lines (CLs) promoted into PBs that are actually accessed
from the PBs, and (b) percentage of LLC-resident CLs of a
page that are promoted to a PB in a PTR.

Besides our adaptive replacement policy, we tried the LRU re-
placement policy that is typically used in caches. With LRU, we
find that PB hits drop by 10.1%, PB hits per cache line fetched to
PBs drops by 14.2%, and Cloak is 2% slower. Thus, LRU introduces
more data movement and delivers lower performance. We also tried
a greedy replacement policy that always replaces the PB that con-
tains the smallest number of valid cache lines. We find that this
policy reduces the number of PB hits by 7%, decreases the PB hits
per cache line fetched to PBs by 15%, and reduces Cloak’s speed
by 1.2%. Note that an important aspect of the PB design, besides
the replacement policy, is that when we promote cache lines into a
PB, we do not pollute the L2. This is because the PBs simply hold a
copy of the data present in the STT-RAM data array.

Figure 13b shows the percentage of LLC-resident cache lines
of a page that are promoted to a PB in a PTR. This number is not
100% for two reasons. First, for a given page, some of the lines
from different regions in the same physical row may conflict with
each other, and cannot all be promoted to the PB. Second, if the
number of LLC-resident lines is less than a threshold, Cloak does
not promote the page. On average, Cloak promotes 68% of the
LLC-resident cache lines of a page to a PB—or about 26 lines.

7.3 Alternative Cloak Design
To further highlight the benefits of Cloak, we evaluate a scheme
that fetches NVM-resident cache lines to the L2 cache instead of
the PBs, using the same trigger as Cloak. For this experiment, we
keep the data layout of the LLC that we introduced in this paper,
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so that we can identify the cache lines of a page with a single LLC
read operation. Moreover, as an optimization, we make sure that
the L2 cache always prioritizes read requests from the core over
LLC-to-L2 prefetches. In addition, when the L2 MSHR entries are
heavily utilized (i.e., 90% or higher), we drop outstanding LLC-to-L2
prefetches.

We find that this design is not competitive with Cloak: on aver-
age, it is 19.8% slower than Cloak and increases the writes to NVM
by 183%. This is because bulk data moves from LLC to L2 saturate
the interconnect, causing core requests to stall while arbitrating
for the network. Moreover, fetching many lines to L2 causes L2
thrashing, which in turn increases L2 misses. This is especially the
case for benchmarks with a high L2 MPKI such as XSBench. This
benchmark takes 90% longer to complete with the new design than
with Cloak because of the increased traffic between the L2 and
the LLC. Only benchmarks with a small L2 MPKI and a high PB
hit ratio, such as 450.soplex and 437.leslie3d, can benefit from this
design, and attain a performance that is comparable to Cloak’s.

An aggressive L2 prefetcher that tries to prefetch the same cache
lines as Cloak faces the same performance bottleneck. Furthermore,
if the Cloak LLC data layout is not used, read requests from the
core suffer from low LLC read bandwidth due to the non-pipelined
nature of STT-RAM data array accesses.

7.4 Sensitivity Analysis
Finally, we perform two sensitivity analyses. First, we examine the
sensitivity of Cloak to the LLC size, which is the primary parameter
dictating the LLC hit rate. Figures 14a and 14b show the average L2
miss response time and the average workload speedup, respectively,
across all benchmarks, as the size of the LLC increases from 4MB
to 32MB per core. All results are normalized to Baseline, which has
an SRAM-based LLC with 4MB per core.
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Figure 14: Sensitivity analysis of different LLC sizes per core
over Baseline with an SRAM-based LLC of 4MB per core: (a)
normalized L2 miss response time and (b) speedup.

Figure 14a shows that the relative L2 miss response time drops
with the increase in LLC size for all the schemes. Cloak has lower
L2 miss response time than NVM-Only for all configurations. It has
practically the same L2 miss response time as O-SRAM because the
PBs provide even faster access than a larger SRAM LLC slice due
to their smaller routing overhead.

Figure 14b shows that the speedup of all the schemes increases
with the LLC size. This is because of the increasingly lower LLCmiss
rate. For all LLC sizes beyond 4MB per core, Cloak delivers higher

speedups than NVM-Only and lower speedups than O-SRAM. In-
terestingly, Cloak can tolerate the higher read latency of STT-RAM
and achieve equal performance to Baseline with a 4MB LLC.

We also analyze the effects of increasing the read latency of
STT-RAM LLC caches, while keeping the cache size at 16MB per
core. Figure 15a and Figure 15b show the average L2 miss response
time and the average workload speedup, respectively, across all
benchmarks, as the LLC read latency is increased. We increase the
latency by lengthening the NVM-based LLC data array read latency
by 10, 20 and 30 cycles over the SRAM Baseline. The configuration
with +10 cycles is the NVM cache configuration we have simulated
in our prior experiments. The three designs are an STT-RAM with
a read latency of 3ns, 6ns and 9ns. All results are normalized to
Baseline, which has an SRAM-based LLC of 4MB per core.
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Figure 15: Sensitivity analysis of different LLC read latencies
over Baseline with an SRAM-based LLC of 4MB per core: (a)
normalized L2 miss response time and (b) speedup.

As the STT-RAM LLC read latency increases, the relative L2 miss
response time increases, and the speedup drops. These trends occur
for both NVM-Only and Cloak, although they are less prominent
for Cloak. In all cases, Cloak has a lower L2 miss response time
and a higher speedup than both NVM-Only and Baseline. This is
because the PBs can tolerate part of the higher STT-RAM array
read latency.

8 OTHER RELATEDWORK
Page Caches. Prior work has looked into the use of die-stacked
eDRAM as large LLCs [25–28, 38, 40, 51, 64]. eDRAM-based caches
are typically organized in pages (i.e., Page Caches) instead of blocks
to avoid massive tag storage. When a request reaches a page cache
and the page is not cached, the whole or a subset of the page [26,
27] is brought from main memory, generating off-chip traffic. The
capacity of page caches is underutilized, since a page allocates cache
space even for lines that are not fetched. This reduces cache capacity.
In addition, page caches add extra overhead to keep track of a page’s
useful footprint. Cloak does not sacrifice any LLC capacity, does
not need to track any footprint, and does not generate any off-
chip traffic. Instead, it brings the LLC-resident lines into the PBs.
Efficient page caches cannot be easily designed as victim or non-
inclusive LLCs—e.g., storing a victim line requires the allocation
of space for the whole page. Instead, Cloak can be integrated with
LLCs of different inclusion properties.
Techniques to Hide High Latency. Conventional techniques
such as prefetching and dead block elimination [8] are orthogonal
to Cloak and can be used in conjunction with it. However, LLC
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prefetchers incur increased complexity and can saturate memory
bandwidth (Section 7.3) when using NVM caches [43, 61, 67].

The advantage of using the address translation to make early
decisions has been demonstrated before for page walks. Specifically,
TEMPO [12] uses PTE page walk requests that miss in the cache
hierarchy to prefetch the cache line that caused the page walk to
LLC from main memory. PageSeer [35] uses page walk information
to swap pages in a DRAM-NVMhybrid mainmemory system. Cloak
is different because it hides the higher read latency of NVM-based
LLCs. Second, it uses a different trigger, namely, the DTLB miss on
a page used in the past.

9 CONCLUSION
This paper presented Cloak, a novel, low cost NVMLLC architecture
that uses small SRAM-based page buffers to tolerate the higher and
non-pipelined latency of NVM reads. An L1 DTLB miss on certain
pages triggers the data transfer of LLC-resident lines belonging
to the page from the NVM LLC to the page buffers. The buffers
will service subsequent requests for this page, and use a novel
replacement algorithm to achieve high performance and low energy
consumption. Further, to enable the high-bandwidth, low-latency
transfer of lines of a page to the page buffers, Cloak uses an LLC
layout that accelerates the discovery of LLC-resident cache lines
from the page.

Cloak effectively hides the higher latency of NVM reads. We
find that, on average, a machine with Cloak is faster than one
with an SRAM LLC by 23.8% and one with an NVM-only LLC by
8.9%—in both cases, with negligible change in area. Further, Cloak
reduces the ED2 metric relative to these designs by 39.9% and 17.5%,
respectively.
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