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The drift method, introduced in [22], provides a new formulation of
the Einstein constraint equations, either in vacuum or with matter
fields. The natural of the geometry underlying this method com-
pensates for its slightly greater analytic complexity over, say, the
conformal or conformal thin sandwich methods. We review this
theory here and apply it to the study of solutions of the constraint
equations with non-constant mean curvature. We show that this
method reproduces previously known existence results obtained by
other methods, and does better in one important regard. Namely,
it can be applied even when the underlying metric admits confor-
mal Killing (but not true Killing) vector fields. We also prove that
the absence of true Killing fields holds generically.
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1. Introduction

Let (M, g, K) denote a triplet consisting of an n-dimensional manifold M,
a metric g on M, and an auxiliary symmetric 2-tensor K. The vacuum
Einstein constraint equations for this triplet are

(1.1a) R, — ’KE + (trg K)2 =0 [Hamiltonian constraint]
(1.1b) divy K —d(try K) = 0. [momentum constraint]

We typically assume that M is compact, or at least that (M, g) is complete.
Solutions correspond to space-like hypersurfaces in a Lorentzian spacetime
(X, G), i.e., solutions of the vacuum Einstein equations Ric(G) = 0, so g is
the induced metric and K the second fundamental form of this hypersurface.
Solutions to system (1.1) serve as Cauchy data for the Einstein evolution
problem (which of course must be supplemented by some choice of gauge
to make the problem hyperbolic). The interest in finding solutions of the
constraint equations is directly tied in this way to the study of the gen-
eral Einstein equations. More general versions of these equations include a
cosmological constant and source terms, and will be recalled below.

The set of pairs (g, K) which solve (1.1a, 1.1b) is infinite dimensional,
and in a suitable topology constitutes a Banach manifold (at least away
from the solutions for which the linearized operator has cokernel). To turn
the search for these solutions into a less underdetermined and hence more
tractable problem, it is customary to decompose the space of all pairs (g, K)
into ‘slices’ and consider the constraint equations as an equation within each
slice. If done correctly, this leads to a family of semilinear elliptic equations,
one for each slice, to which one can apply a vast panoply of known tech-
niques. The traditional slicing is known as the conformal method, originally
proposed by Lichnerowicz and Choquet-Bruhat, and studied by them and
many others over the past 60 years. Another common method appearing
in the intervening years is called the conformal thin sandwich method. Al-
though apparently different, it was proved by the second author [23] that
this is completely equivalent to the older conformal method.

In the conformal method, the data for the slices consist of triplets
(g,7,0; N) where g dictates the conformal class [g] of the solution metric g,
7 is the ‘mean curvature function’, i.e., 7 = trg K for the eventual solution,
o is a transverse-traceless (i.e. trace-free and divergence-free) tensor with
respect to g, and N is a positive function that plays the role of a gauge
choice and is related to the so-called lapse associated with a coordinate
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system on the spacetime generated by the solution of the constraint equa-
tions. A comprehensive description of solutions to the conformal method is
known in the special case when 7 is constant [13], and this led to perturba-
tive results shortly thereafter [15]. Significant breakthroughs were obtained
by the first and later the second authors [11, 20] concerning existence for
‘far-from-CMC’ data, where the mean-curvature function is allowed to be
variable and seemingly nowhere close to constant, with a price of requiring
the transverse-traceless tensor to be very small. This led to several new de-
velopments, and extensions and refinements of these ideas in various other
standard settings. It was pointed out recently, however, by Gicquaud and
his collaborators [9] that upon recasting the setup in certain way, all of these
results are still fundamentally perturbative and hence should be regarded
as ‘near-CMC’.

In recent years limitations of the conformal method in the far-from-CMC
setting have appeared. We point to [21] [24] along with the very nice results
n [26] (based on the original blowup analysis of [7]) for examples where
there exist either no or multiple solutions of the constraint equations corre-
sponding to a given set of conformal data (g,o,7; N), and there is nothing
apparent in the geometry of this data set which allows one to a priori pre-
dict what happens. Motivated by these difficulties, the second author here
proposed [22] a different idea to slice up the space of pairs (g, K). This is
known as the drift method, and is based on an invariant geometric interpre-
tation of the dynamics of spacelike hypersurfaces evolving in a Lorentzian
Einstein manifold. We review these methods carefully below. For now let us
note one key difference. In the drift method, the mean curvature function 7
is replaced by a pair (7, V'), where 7, is a certain average V' is a vector field
which represents a ‘drift’ equivalence class. The equations in this formulation
are more nonlinear and more complicated than for the older methods, but
the key motivation is that this new framework should make it easier to han-
dle various well-known obstructions and subtleties in the conformal method.
More specifically, it is not clear how to make the conformal method work
when the conformal class [g] admits conformal Killing fields, and indeed, we
show here that there is a fundamental breakdown in that procedure. That
method is also less tractable when 7 has zeros. In fact, there are no general
a priori estimates for solutions of these equations, and there are examples of
families of solutions which blow up. The hope remains that better methods
may predict the data sets near which a priori estimates fail.

The goal of the present paper is to show that drift method does at least
as well as the conformal method, and in a certain sense, much better. More
specifically, we prove a set of existence results for the drift formulation of the
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constraint equations, both without and with source terms, which include the
far-from-CMC results cited above. All of this is done perturbatively around
the CMC case. The major improvement is that these results also hold when
the conformal class [g] admits conformal Killing fields, so long as the the
metric we are perturbing from has no Killing fields.

This paper is organized as follows. We begin by reviewing the standard
conformal method and introducing the notion of conformal momentum, and
then describe the precise way by which conformal Killing fields present an
obstruction in the conformal method. We finally present the drift method in
§4, and in §5 the adaptations necessary to incorporate matter fields. Section
6 then proves the existence of near-CMC solutions using the drift method,
and also establishes that the hypotheses needed to apply this theorem hold
generically.

1.1. Notation and conventions

In this paper we assume that M is a manifold of dimension n > 3. We assume
M is compact, and occasionally do not say this explicitly in the statements
of results, etc. Solutions to various equations are found in a Sobolev space
WFkP where k € N, k> 2, and p > 1 are chosen so that

1 k-1

P n

< 0;

this ensures that W*? functions have Holder continuous first derivatives. If
E is any smooth vector bundle over M, we write Wk» (M, E) for the space
of sections of E which are in W*P with respect to any local trivialization. In
particular, we have the bundles T'M of vector fields, T*M of covector fields,
SoM of symmetric (0,2) tensors and its subbundle Si(g) of transverse-
traceless tensors with respect to the metric ¢g. Function spaces of positive
functions are denoted by a subscript +, e.g. Wﬁ’p (M).
We henceforth set the constants
2n n—1

q=—"7 K= ) a:2/€Q7
n—2 n

S0 ¢ is a critical Sobolev exponent and x and a are dimensional constants
which appear in various equations below.

We also consider the conformal Killing operator, whose action on vector
fields is

2
(LX)ap = VaXp + Vi Xg — - div X gap-
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Its adjoint L™ acts on symmetric, trace-free (0,2) tensor A,y by
(L* A), = =2V Ay,

The kernel of L is the finite dimensional space Q of conformal Killing
fields.

2. The standard conformal method and conformal
momentum

The conformal method appears in the literature in two forms. The original
conformal method was introduced by Lichnerowicz [19] and substantially
extended by York, O’'Murchadha, and Choquet-Bruhat among others in the
1970s. Some decades later York introduced the conformal thin-sandwich
method [30], and later, with Pfeiffer, also gave an equivalent Hamiltonian
formulation [27]. It turns out that the original conformal method and the
conformal thin-sandwich method are really the same parameterization of the
constraint equations [23]; we describe them here in a unified fashion that will
also be helpful for describing the drift formulations of the constraint equa-
tions. For simplicity, we focus for now on the vacuum constraint equations;
Section 5 below describes an approach for incorporating matter fields into
both the standard conformal method and the drift formulation.
A metric and second fundamental form (g, K') canonically determine

e a conformal class [g], and

e a mean curvature 7 = gabKab.

These are two of the parameters of the conformal method. The third and final
parameter is not completely canonical and depends on a choice of volume
form a. We will call o a volume gauge. Once this has been fixed, the final
parameter is

e the conformal momentum of (g, K') measured by a,

which we define in Definition 2.3 below. We refer to [23] and [22] for the
geometric and physical motivation behind this terminology.

Definition 2.1 (Conformal Momentum). A conformal momentum is
an equivalence class of pairs (g, o) where g is a metric, o is transverse trace-
less with respect to g (i.e., o is trace-free and divergence-free) and where we
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identify pairs

(2.1) (9.0) ~ (¢77%g,6 0)
for any conformal factor ¢ € Wf’p (M).

To complete the description of the measurement of conformal momen-
tum, we first recall a variation of York splitting [29].

Lemma 2.2. Suppose that A € WF1P(M,SoM) be trace-free and fix any
N € Wf’p(M). Then there is a unique transverse-traceless o € WrE=LP (M,
SoM) and a vector field W € WFP(M, TM) such that

1
2.2 A= —LW.
(2.2) o+ o
This formulation uses that M is compact. The vector field W here is uniquely
determined up to addition with a conformal Killing field.

The special case N =1/2 is more commonly known as York splitting,
but the result for arbitrary N is a consequence of the N = 1/2 case [23], or
alternatively, can be proved directly by applying Lemma 6.10 below to solve

* 1 *
(2.3) L WLW—L A.
Definition 2.3 (Measurement of Conformal Momentum). Suppose
that « is a fixed W*? volume form on M. The conformal momentum of
(g9, K) measured by «, denoted [g, K], is the equivalence class of the pair
(g,0), where o is computed as follows. Write K = A 4 T g where A is trace-
free, and let N = dV;/a; then apply York splitting to decompose

1
2.4 A=c+—LW.
(2.4) 5N
Briefly, the aim of the conformal method is to use the conformal class,
conformal momentum measured by «, and mean curvature as the ‘seed data’
for solutions of the constraint equations. Fixing «, we prescribe a conformal
class g, a conformal momentum o, and a mean curvature 7, and seek a

solution (g, K) of the vacuum constraints with
(25) [g] =8, [?, F}a =0, gab?ab =T.

To cast this as a PDE, pick an arbitrary representative g of g, let ¢ be the
unique g-transverse-traceless tensor such that (g, U) is a representative of o,
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and define the lapse N = dV,/a. We call (g,0,7; N) a conformal data set,
with the lapse segregated from the other terms to reflect its role as a gauge
choice. Starting from a conformal data set we seek a conformal factor ¢ and
a vector field W solving

2

1
(2.6a) —alA¢p+ Rp — |0+ N LW| ¢ 9 4 k2?1 =0

[CTS-H Hamiltonian constraint]

1 1
— Gl — d =
(2.6b) 2L [2 LW} + rkp?ldT =0

[CTS-H momentum constraint]

which we call the conformal thin-sandwich equations in their Hamiltonian
formulation (the CTS-H equations). If (¢, W) solves these equations then
the pair

_ 1
2. g=092g, K =¢ 2 — LW
(2.7) g=9¢""g, ¢ <0+2N )+ g

-
n
solves (2.5), and all solutions of problem (2.5) are obtained this way.

We observe that (2.5) is intrinsically conformally covariant, and hence
the CTS-H equations must also be. Concretely, the solutions determined by
(9,0,7; N) and

(2.8) (9,6.7 N) = (7 2g, 920,75 YIN)

are the same. In other words, we are expressing the same problem (2.5) using
two different, but conformally related, sets of data. The standard conformal
method corresponds to using the conformal representative of g with volume
form dV; = a/2, so that N =1/2 in (2.6); we are thus restricting ourselves
to an inflexible choice for the background metric to represent the problem,
whereas if we allow an arbitrary background metric in the conformal class,
we must introduce the lapse function N into (2.6), which then gives the
Hamiltonian conformal thin-sandwich method of [27].

A conformal data set (g, 0, 7; N) determines the volume gauge o by N =
dVy/a. Thus, fixing the background metric, the choice of lapse is equivalent
to the choice of a volume gauge. It is important to note that the lapse
transforms conformally by N = ¢IN, cf. [30]; we say that the conformal
method involves a densitized lapse. On the other hand, the volume gauge «
is a fixed object, and applies to all representatives of a conformal class.
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3. Conformal Killing fields and the conformal method

Suppose (7, K) is a vacuum initial data set and that § admits a conformal
Killing field @. The momentum constraint implies

(3.1) —V(Kap = 7 Gap) = 0

where, as usual, 7 = g®K,,. Multiplying equation (3.1) by the conformal
Killing field @, integrating by parts, and using the conformal Killing equa-
tion

_ _ 2__
(32) anb + Van = ;chcgaba

we find

_ 1l —a =0 ~a
OZ/M[Kab_Tgab]Q(v Q" +V'Q") avy

1
(3.3) — [ (a7 0] (V.00 a1
M n
1— _
S / T V.Q° dvy.
n M

Integrating by parts one more time gives the CKF compatibility condition

(3.4) /M Q(r) AV, =0

between mean curvature and conformal Killing fields.

Suppose (g,0,7; N) is a CTS-H conformal data set where g admits a
conformal Killing field @, and let (¢, W) be a solution of the corresponding
CTS-H equations. The CKF compatibility condition (3.4) then becomes

(3.5) /M Q) ¢ dV, = 0.

Since (3.5) involves the unknown ¢, it is not obvious whether the CKF com-
patibility condition imposes a genuine restriction on allowable conformal
data sets; conceivably, the conformal method might always manage to find
a conformal factor ¢ satisfying (3.5), regardless of the choice of 7. Never-
theless, equation (3.5) presents an obstacle in current solution techniques
for the CTS-H equations. Typically one generates a sequence (@, W(y)) of
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approximate solutions iteratively; each iteration involves solving a variation
of the momentum constraint such as

_nfl

(3.6) Vi [2;\[(11 W(n+1))ab] _ (dm))? VOT.

n

Equation (3.6) is solvable for W, ) if and only if

(3.7 | ), av, =0

for all conformal Killing fields Q. Any standard method does not ensure that
the successive functions ¢, still satisfy (3.7), so it may not be possible to
continue the iteration procedure.

Nevertheless, for certain conformal data sets, conformal Killing fields are
not an obstruction to solving the CTS-H equations. Most importantly, if 7 is
constant then Q(7) = 0 for any conformal Killing field, and condition (3.5)
is satisfied trivially for every conformal factor. In other words, the presence
of conformal Killing fields plays no role in the CMC theory as described
in, for example, [13]. A minor generalization is that if 7 is constant on the
integral curves of every conformal Killing field ), then we still have that
Q(7) =0, hence (3.5) is satisfied trivially regardless of the conformal factor.
This observation was exploited in [4] to construct near-CMC solutions under
this hypothesis on the mean curvature function. This is a strong hypothesis,
of course (and amounts to assuming that 7 is constant for metrics conformal
to the flat torus or the round sphere). Moreover, this hypothesis is not
necessary: [21] and [24] contain examples of non-CMC conformal data sets
where the background metric is a flat torus (hence not covered by [4]) and
where there exist solutions. The current theory for the CTS-H equations
does not exclude the possibility that conformal Killing fields are irrelevant
to solvability.

We now give a simple example which shows that at least in certain situ-
ations, the existence theory is sensitive to the presence of conformal Killing
fields. The argument stems from the observation that (3.4) is analogous to
the Pohozaev constraint

(3.5) | amyav, o

which relates the scalar curvature function R and conformal Killing fields @
on a compact manifold [2]. Its proof is a straightforward adaptation of ideas
from [17] and [2] concerning obstructions to the existence of solutions for the
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Nirenberg problem of finding metrics in a conformal class with prescribed
scalar curvature.

Proposition 3.1. Let g be the round metric on the sphere S™, 0 20 a
smooth transverse traceless tensor, and 1y a constant. There exists a smooth
function T such that for every e € R, the conformal data set (g,o, 79+
€T; N) admits a solution of the vacuum CTS-H equations if and only if
e=0.

Proof. Fix p € S™ and let T be the distance function from p, and @ the
conformal Killing field grad T". Define 7. = 19 + €T. Since (S™, g) is Yamabe
positive and o # 0, the CMC case of existence theory for the conformal
method implies there exists a solution of the CTS-H equations when € = 0.
On the other hand, if € # 0, then Q(7.) = eQ(T) has a single sign (except
at the antipodal points), and hence fsn Q(7)¢? dVy # 0 for any choice of
conformal factor ¢. This violates the CKF compatibility condition (3.5)
for every possible conformal factor and hence there exists no solution of the
CTS-H equations for this conformal data when € # 0. The lack of smoothness
of T at the antipodal points is not relevant here since we could replace T
by a smooth nonnegative function of dist(p,-) which is smooth on S™ and
satisfies the same conclusion. (]

Proposition 3.1 shows that there exist CMC solutions of the constraint
equations such that, replacing the mean curvature function by certain arbi-
trarily small perturbations of it in the conformal data set, then the CTS-H
equations no longer have a solution. This means that the standard hypothesis
in the near-CMC theory that the metric does not admit nontrivial confor-
mal Killing fields cannot be dropped completely. It is not at all clear if there
is some natural and easily apparent geometric condition that distinguishes
when one should expect there to exist solutions or not.

We shall take an alternate course and give up on prescribing the mean
curvature function specifically. The drift method described in the next sec-
tion involves the prescription of different sets of data, and implicitly shows
how to adjust the mean curvature to account for the CKF compatibility
condition.

4. Drift variations of the conformal method
In this section we give a brisk description of the drift formulations of the

conformal method [22]. Before getting into details, we observe that the prin-
cipal distinction between the drift and standard conformal methods is that
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while the conformal method prescribes the mean curvature 7 of the solution
directly, the drift techniques involve a decomposition

1
(4.1) T:T*—i-ﬁdivv

where 7, € R, N is a positive function (the same lapse appearing in the
CTS-H equations) and V' is a vector field. The mean curvature determined
by 7« and V' changes as we move between representatives in a given confor-
mal class for several reasons. First, the divergence operator depends on the
choice of representative. Second, the lapse transforms as a densitized lapse,
as described at the end of Section 2. Finally, if the metric admits confor-
mal Killing fields, we cannot prescribe V directly, but must add a suitable
conformal Killing field @ that changes as we change the conformal class
representative. So in general,

(4.2) T="Te+ %div(V +Q)

where @) is a conformal Killing field determined by V. In short, the actual
mean curvature function determined by the data in the drift formulations
naturally adapts to the presence of conformal Killing fields. This allows one
to prove slightly more general results.

As discussed next in Section 4.1, the constant 7, in equation (4.2) rep-
resents a certain dynamical quantity called the volumetric momentum. To
interpret the vector field V', we first note that the mean curvature is un-
changed by adding a divergence-free vector field to V. Moreover, V is pre-
scribed only up to adjustment by a suitable conformal Killing field, so V
is an element of the space of vector fields modulo both conformal Killing
fields and divergence-free vector fields. This quotient space is the space of
so-called drifts. We discuss them further in Section 4.2, before giving the
equations for the drift formulations in Section 4.3.

4.1. Volumetric momentum

The first step toward the drift parameterization of the constraint equations
involves the identification of a parameter, volumetric momentum. This plays
a role somewhat analogous to the transverse-traceless tensor in the standard
conformal method, and represents a cotangent vector to the one-dimensional
space of volume forms modulo diffeomorphisms, so the volumetric momen-
tum is just a number. It arises in the following analog of York splitting.
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Lemma 4.1. Let 7 € WF1P(M) and let N € Wf’p(M). There is a unique
constant T, and a vector field V € WP such that

1
(4.3) T="Te+ N div V.

Moreover, V is uniquely determined up to addition of a divergence-free vector
field, and

N7 dV,
(4.4) T, = M_
Ju N 4V
This is proved in [22] when the data is smooth, but the same proof works
for metrics and data with the regularity stated here.

Definition 4.2 (Measurement of Volumetric Momentum). Let a be
a WP volume form on M. The wvolumetric momentum of (g, K) measured
by a is computed as follows. First, let N = dV,/a and define 7 = g K .
By Lemma 4.1, 7 = 7, + % div V for a unique constant 7. The volumetric
momentum of (g, K') measured by « is

(4.5) [9,T]a = —2kT, K= (n—1)/n.

Volumetric momentum is already an interesting parameter in the stan-
dard conformal method. Examples in [24] exhibit the development of certain
one-parameter families of non-CMC solutions of the constraint equations
generated by the standard conformal method, and 7. = 0 is among the sev-
eral necessary conditions needed to generate these families. Curiously, 7, = 0
is not easily detected from the usual conformal data; in effect, one must solve
the equations of the conformal method to determine if 7, vanishes or not.
These examples motivate finding a parameterization in which 7, is explicitly
prescribed.

4.2. Drift

Fixing a volume gauge «, the conformal momentum and volumetric momen-
tum of (g, K') measured by « drop out of the momentum constraint. Indeed,
using Lemmas 2.2 and 4.1 to decompose

1 1
(4.6) K=0+-—LW+

1.
5N - [7'* + N div V} g,
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then the vacuum momentum constraint becomes

1 1 1
4.7 —L"—LW=kd |=divV].
(4.7) 2" 2N " [N v ]

The momentum equation in this formulation has interesting symmetries.
The vector fields W and V appearing in it each represent a certain geometric
object, coined a drift in [22].

Definition 4.3 (Drift). Let g be a W*P? metric. A drift at g is an element
of

(4.8) WHrP(M, TM)/(Ker L, + Ker div,).

We write [W]S“ft for the drift at g determined by the vector field W and
Drift, for the space of drifts at g.

Remark 4.4. The spaces KerL, and Kerdiv, intersect in the space of
Killing fields, but since Kerdiv, is closed in W*P(M,TM) and Ker Ly is
finite dimensional, Ker Ly + Ker div, is also a closed subspace and the quo-
tient Drift, inherits a Banach space topology.

As elaborated in [22], a drift represents an infinitesimal motion in the
space of metrics, modulo diffeomorphisms, that preserves the conformal class
up to diffeomorphism and the volume. Note that such a motion need not
preserve the diffeomorphism class of the metric.

Equation (4.7) represents a relationship between two drifts. To see this,
suppose V is a drift at g, with V" any representative. Equation (4.7) can be
regarded as a PDE in W. If g admits conformal Killing fields, there is no
solution unless the right-hand side of (4.7) is orthogonal to Ly. Assuming
this orthogonality, hypothesis Theorem 10.1 of [22] shows (in the smooth
category) that there is a conformal Killing field ) and a vector field W such
that

(4.9) —%L*%LW:md [ifdiv(V—i—Q)} .

Here @ is uniquely determined up to a true Killing field, W is uniquely
determined up to a conformal Killing field, and [V[/]j“ft is independent of
the choice of representative of the drift V.

This process can be reversed. Suppose W € Drift, and let W be any
representative. We now wish to solve (4.7) for V, but to do so, the left-
hand side of (4.7) must be orthogonal to the space of divergence-free vector
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fields. Theorem 10.6 of [22] shows (in the smooth category) that there is a
divergence-free vector field £ and a vector field V' such that

(4.10) _;L*JVLWV+E):Kd[;dwaq}

Now FE is uniquely determined up to a true Killing field, V is uniquely
determined up to a divergence-free vector field, and [V]fqh”ift is independent
of the choice of representative of the drift W.

Motivated by this discussion, we assign a pair of drifts to a pair (g, K)
as follows.

Definition 4.5 (Measurement of Drift). Suppose g is a W*P metric,
K € WF-LP(M,S,M) and « is a WP volume form. Set N = dV,/a and
decompose

(4.11) K:A+%m

where A is trace-free. Now use Lemmas 2.2 and 4.1 to write

1
4.12 A= —L
(4.12) o+ 5 w
and

1
(4.13) T="Te+ N div V.

The volumetric drift of (g, K) measured by « is [V]S™" and the conformal

drift
. . d 'f 9
drift measured by a is [W]gM.

In our application of drifts to the construction of near-CMC solutions of
the Einstein constraint equations we shall specify the conformal class of the
solution metric and, among other parameters, the volumetric drift. Since
drift is defined in terms of a metric rather than the conformal class, one
needs to be able to specify a drift at an unknown solution metric g = ¢9-2¢
starting from a given representative g of the conformal class. One can always
specify the vector field V' and let it determine the drift [V]grift, but unless one
knows the conformal factor ¢, it is impossible to know a priori whether V
is divergence-free with respect to the solution metric and hence [V]grift = 0.
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To address this difficulty, suppose for the moment that the W*? metric
¢ admits no (nontrivial) conformal Killing fields. The Helmholtz decompo-
sition implies

WEP(M,TM) =€ @ &L

where € is the set of W*P divergence-free vector fields and £ is the image
of grad acting on W*+1P functions. The factors in the direct sum are L2
orthogonal, and the projection of a vector field X onto £t is grad u where
Awu = div X. Because g admits no conformal Killing fields, the drifts at g can
be identified with €. Moreover, for a conformally related metric § = ¢?~2¢
the conformal transformation rule for gradients implies

1L _ 2—qel
£+ = > gt

Hence in absence of conformal Killing fields we have a mechanism for pa-
rameterizing drifts within a conformal class: drifts can be represented by
elements of é’j and V € 5; corresponds to ¢>~9V € (%L'

In the event that g admits conformal Killing fields the representation of
drift within a conformal class is less straightforward because divergence-free
vector fields and conformal Killing fields obey different conformal transfor-
mation laws. In this case the drifts at g can be identified with any one of a
number of subspaces of £, and it seems natural to use the L? orthogonal
complement of P(Q), where P is the L? projection of W*P(M,TM) onto
&+ discussed above.

Definition 4.6. A canonical drift representative at a WP metric g is a
vector field V € £+ satisfying

/ o(V, P(Q)) dVy = 0
M

for all conformal Killing fields (). The set of canonical drift representatives
at g is denoted by D,.

It is easy to see that the map V +— [V]g“ft from D, to Drift, is a Banach
space isomorphism and hence Drift, can be identified with a subspace of 5;
with codimension equal to dim P(Q). This codimension need not be constant
among all representatives of a conformal class, however. Indeed, a conformal
Killing field @ is a true Killing field exactly when it is divergence-free, i.e.
when P(Q) = 0. Thus dim P(Q) < dim Q with strict inequality whenever
the metric admits nontrivial Killing fields. The non-constant codimension
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of Dy in 5; poses an obstacle to the universal representation of drift for
a fixed conformal class. Nevertheless, our main application of drifts to the
conformal method is perturbative, and the following lemma shows that we
can use D, to identify drifts at nearby representatives of the conformal class
so long as g does not admit any true Killing fields.

Lemma 4.7. Let g be a W*P metric. Given a conformal factor ¢ € Wk»
let g = ¢92g. The map

Vi [¢2—qv]%rift
from Dy to Drifty is an isomorphism if either

e g admits no (nontrivial) conformal Killing fields, or

e g admits no (nontrivial) Killing fields and ¢ is sufficiently close to 1
in WhP,

Proof. Let &, S(j, D, and so forth represent objects associated with the
metric g = ¢ 2g, let P, be the g-L? projection of W*P(M, TM) onto S(j,
and let Dy be the g-L? projection of W*P(M,TM) onto Dy. One readily
verifies that these maps are continuous, in part using the standing hypothe-
ses on k and p (which ensure that W*P C L?), along with the fact that
P(Q) is finite dimensional. Given a vector field V, the projections Py(V)
and (Dg o Py) (V) differ from V' by linear combinations of conformal Killing
fields and g-divergence-free vector fields. Hence

[VIFH = [PVIE = [(Dy 0 Py)(V)IEE,

In particular, if V € Dy, then ¢?~9V € Sj; and
[¢27qv]grift _ [D¢<¢27qv)]grift.

Since the projection from Dy onto Drifty is an isomorphism it is therefore
enough to show that Fy : Dy — Dy defined by

Fy(V) = Dy(¢*V)

is an isomorphism under the given hypotheses on g and ¢.

Suppose first that g admits no conformal Killing fields. In this case
D) = ElL, Dy = E(bl, and the result follows from the previously discussed
isomorphism £ — ¢> 1€ = 8;.
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Now consider the case where g admits conformal Killing fields, but no
Killing fields. Let G be the g-L? projection of WP (M, TM) onto Py(Q); we
claim that G is continuous in ¢ when thought of as a map with codomain
WHhP(M,TM). Indeed first note that the maps P,, defined previously in
terms of solving a Poisson problem for the metric g, are continuous in ¢.
Hence, fixing a basis {Q;} for Q, the vectors Py (Q;) also depend continuously
on ¢. Moreover, since g has no Killing fields the map Pj|g is injective,
and the continuity of Py with respect to ¢ (along with the fact that Q is
finite dimensional) ensures that Pp|g is injective for ¢ sufficiently close to
1. Hence the vectors {P4(Q;)} are linearly independent. The map taking
a frame (in this case {P4(Q;)}) to an orthonormal frame via the Gram-
Schmidt algorithm is continuous in the frame and the inner product jointly,
and writing the projection Gy with respect to the orthonormal frame it
readily follows that G is continuous in ¢, as is Dy = Id — G4 with codomain
WHhP(M, TM).

Now consider the maps

B¢ = (D1 OS(;l)O(D(bOS(b) 2D1 —)Dl

where S(V) = ¢*~9V. From our observation that Dy is continuous in ¢, so
are the maps By. And since By = Id, we conclude that By is an isomorphism
for ¢ sufficiently close to 1. Noting that

(4.14) By = (D10 S, p,) 0 Fy,

to show that Fy is an isomorphism for ¢ close to 1 it is therefore enough to
establish the same fact for Dj o S;1|D , - Dg — D1. Moreover, the factoriza-
tion (4.14) already implies that D; o S(;l‘p , is surjective for all conformal

factors sufficiently near 1, and we need only establish injectivity.
The kernel of D; is P;(Q) and hence

Ker Dy 0 S |p, = (Sy 0 P1)(Q) N Dy.

Now (S40 P1)(Q) C 5¢l, and since Ker G¢]5$ = Dy, to show that the sub-
space (Sy o0 P1)(Q) N Dy is trivial (for ¢ close to 1) it is enough to show
that

GyoSsoPilg: Q— WrEP(M, TM)

is injective. But this follows from the fact that this family of linear maps has
finite-dimensional domain, is continuous in ¢, and is injective at ¢ = 1. [
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4.3. Parametrizations of the constraints using conformal
deformation, expansion and drift

Recall that in the standard conformal method we prescribe the conformal
class, conformal momentum, and mean curvature of the solution. In the
drift formulation, we replace the mean curvature with the combination of
volumetric momentum and either volumetric or conformal drift.

Consider a solution (g, K) of the vacuum constraint equations, and let
a be a volume gauge. From Lemmas 2.2 and 4.1 the solution uniquely de-
termines

e a conformal class [g],

e a conformal momentum measured by « represented by (g,7) where &
is transverse-traceless with respect to g,

e a volumetric momentum —2x7, measured by «

1/ |drift

e and a volumetric drift [V]Z™" measured by a.

The first three parameters can be prescribed in a conformally invariant fash-
ion by choosing a representative g of the conformal class, along with a g-
transverse-traceless tensor o and a constant 7,. Then g = ¢9~2¢g for some
conformal factor ¢ and @ = ¢20. As for the drift, recall from Lemma 4.7
that the map D, — Driftg given by V — [¢?4 V]grift is an isomorphism so
long as ¢ has no conformal Killing fields, or so long as ¢ has no Killing
fields and g is sufficiently close to g. Hence we will select V' € D, and set
V = ¢?>79V, and the aim of the drift method is to recover the solution of
the constraint equation from these parameters.
More precisely, we prescribe the following conformal data:

(415) (9707 T*7V; N)

where o is transverse-traceless, 7, is a constant, V' € D, is a canonical drift
representative at g, and N is lapse specifying a volume gauge a according
to the relationship N = dV, /.. We seek a solution (¢, W, Q) of the following
variation of equations from [22] Section 12:

2

—alA¢+Ro+ a+%LW a1
2
(4.16) +k <7'* + Nl¢q divg(? 9V + Q))) Tt =0

L (2 pw) e (Lo s o)
2L (2NLW> Hd1V¢<Nd1V¢(¢ V—l—Q))—O
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where W is an arbitrary vector field and @) is a conformal Killing field. Here
we are using the notation

(4.17) divg = ¢~ 1 div ¢?
for the divergence operator of the metric ¢p9~2¢g, while
(4.18) divy, = —¢7 d ¢ 1

is the adjoint of divy with respect to the background metric g. The conformal
Killing field @ is determined by the CKF compatibility condition

1
(4.19) / N divg(¢?~ 7V + Q) divy P dV, =0

for all conformal Killing fields P, which can be added to system (4.16) to
make the number of equations match the number of unknowns.
Supposing (¢, W, Q) solves system (4.16), let

g=0""
— 1 : 2—q
(4.20) T=Ts+ N7 divg(¢“ 1V + Q)
— 1 T
— AH2 i =
K=2¢ [U—FQNLW}—i—ng.

Following arguments from [22] it follows that (g, K) is a solution of the
constraints with conformal class [g], conformal momentum represented by
(g9,0), volumetric momentum —2xk7,, and volumetric drift [q§2*qV]grift as
desired. We will call system (4.16) together with (4.19) the vacuum CED-
V equations, short for conformal deformation, expansion, and (volumetric)
drift.

Alternatively, we can prescribe the conformal drift instead of the volu-
metric drift. Starting with conformal data

(4.21) (9.0, 7, W; N)



1176 M. Holst, D. Maxwell, and R. Mazzeo

with W € D, we seek a solution (¢, V, E) of

2
—alA¢+Ro+ |0+ % L(¢* W + ¢ 1E)| ¢4
1 2
(422) + K <7’* + W diV¢(V + Q))) (bq_l =0

% L* <2§v L(¢* W + ¢—qE)) — rdiv}, (;7 div¢(V)> =0

where V is an arbitrary vector field and F is divergence free. The vector
field E is determined by the compatibility condition

(4.23) — / ﬁ L(¢* W + ¢ 1E)L(¢ 9F) dV, = 0

for all divergence-free vector fields F'. Given (¢, V, E) solving system (4.22),
let

g=0¢""g
1 .
(4.24) T="Te+ N divg(V)
— 1 T
K=¢7? — (LW + ¢ ‘E ~3.
¢ 0+2N( + ¢ )+ng

We find (g, K) is a solution of the constraints as before, except that we have
prescribed conformal drift [¢?~¢ W]g’“ft rather than volumetric drift, and we
will call system (4.22) the vacuum CED-C equations.

5. Conformal description of matter

Section 2 described the conformal method in terms of natural geometric
parameters such as conformal momentum. By contrast, the current litera-
ture for including matter in the conformal method is somewhat ad hoc, and
is guided by finding formulations that make the problem mathematically
tractable [3]. We note, for example, the methods of scaling and unscaling
sources, in the vocabulary of [5]. It has long been understood that in the
CMC case the conformal method is compatible with scaling sources, whereas
unscaling sources lead to undesirable non-uniqueness properties [28]. We also
point to [16], which enunciates a fundamental guiding principle that leads
to to the method of scaling sources; in effect we specify the configuration
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and momentum of matter independent of the metric.! Given our interest in
constructing near-CMC solutions, we employ scaling sources in the frame-
work laid out in [14]. This is described briefly here without any focus on the
underlying principle of [16].

We represent matter fields as sections F of a smooth vector bundle over
M. The energy and momentum densities of the matter fields are functions
jointly of F and the metric g,

(5.1) E(F,g) and J(F,g)

respectively, and with this notation the full Einstein constraint equations
read

(5.2a) Ry — |K|2 + (trg K)?
(5.2b) divy K —d(try K)

167E(F,g) + 2A

where A is the cosmological constant.

We assume that F obeys a conformal transformation law. Specifically,
if the metric changes from g to § = ¢9~2g then the fields transform accord-
ing to F= O(F,¢) where @ is a group action of the conformal factors on
the matter fields, i.e., ®(F,1) = F and ®(P(F, ¢1), p2) = ®(F, p1¢p2). We
assume moreover that any necessary compatibility conditions on the matter
fields (e.g. the divergence-free condition for magnetic fields) are preserved
as we transform from g to ¢ and F to F. The key hypothesis for scaling
sources is that

(5-3) J(®(F,9),67%g) = ¢~ 1T (F, g).

This perhaps unmotivated scaling occurs naturally in practice and for CMC
conformal data leads to a momentum constraint that is semi-decoupled from
the Hamiltonian constraint. Fixing F at the metric g, the transformation
law (5.3) amounts to assuming that the momentum density is described by
a one form j that conformally transforms according to

(5.4) j=v¢71.

Tn light of [16], the term ‘scaling sources’ is a misnomer. In the method of scaling
sources the configuration of matter is conformally invariant, and only the metric
used to measure it changes.
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Turning to the energy density, again fix F at g and define

(5:5) p(9) = E(D(F,9), " 29).

The details of this map depend strongly on the specific type of matter, and
we make the following minimal hypothesis.

Definition 5.1. A smooth map p: Wf’p(M) — WHF=2P(M) satisfies the
energy scaling condition if:

1) The linearization of p at ¢ in the direction gb can be written in the

form
(56) Dpyld] =r¢
where r € W*=2P(M) depends on ¢.
2) Either

e p(¢) =0 for all p € WHP(M), or
o for all ¢ € Wi’p (M) the W*=2%P(M) function that is the lineariza-
tion of

(5.7) ¢ = 7 %p(9)
is non-positive and not identically zero.

As with hypothesis (5.4) for the momentum density, Definition 5.1 is
somewhat unmotivated, but admits the following loose interpretation: en-
ergy density measured by the metric is a local property, depending on the
value of ¢ but not its derivatives, and it grows at least as fast as ¢>~9 as
¢ — 0, and decays at least as fast as ¢>~9 as ¢ — oo. We will use the nota-
tion p(-) for the map p as a reminder that it is a function taking a conformal
factor as an argument, rather than simply a function defined on M.

The framework for matter described here is broad enough to include a
number of important matter models including electromagnetism (and Yang-
Mills fields more generally), perfect fluids (including dust), and Vlasov mod-
els. These details were treated in [14], where the energy scaling condition
appears in a somewhat obscured form as hypothesis N1.2 This framework
notably excludes scalar fields, however, where condition 2 of Definition 5.1

2Condition N1 of [14] is equivalent to

(5-8) ¢ = 7 %p(9)
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fails, and we refer to [10] for alternate techniques needed to include scalar
fields in the conformal method. As a concrete example, consider electromag-
netism in 3-dimensions without charged sources. The matter fields consist
of divergence-free one-forms F and B representing the electric and magnetic
fields and we have energy and momentum densities

E(E,B,g) = |E|; +|B?|
J(E,B,g) = *¢(E N B)

2
(5.9) g

where *, is the Hodge-star operator. We conformally transform the fields ac-
cording to ®((E, B), ¢) = (¢ 2E, ¢~ 2B) which preserve the conditions that
these one-forms must be divergence-free. One readily verifies that

J(@72E,¢°B,¢77%g) = ¢ * x4 (6" E N ¢ *B)

(510) - ¢_qj(EaB7g)

since ¢ = 6 when n = 3. Thus we can take j = x4(E A B). For the Hamilto-
nian constraint we have

(5.11) E(¢TE,¢7°B,¢" %g) = ¢ P|E” + ¢~ ¥|BJ?
and hence
(5.12) p(¢) = [|E]* +|BJ*] ¢°.

Noting that ¢ —2 = 4 when n = 3,
(5.13) 0" ?p(¢) = [|E]* +1B*] 67

which evidently satisfies the energy scaling condition.

For convenience, we treat the cosmological constant A as an additional
form of matter, and we will call a triple (p(-),j, A) where p(-) satisfies the
conditions of Definition 5.1 a conformal matter distribution. The CTS-H

being decreasing in ¢. The hypothesis of Definition 5.1 that it is strictly decreasing
somewhere (except in vacuum) does not appear explicitly in [14], but is easy enough
to verify from the expressions computed in that paper that this additional condition
is satisfied for all the specific matter fields treated in that work.
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equations include a conformal matter distribution according to
(5.14)

—alA¢p+ Rp —

2
o+ % LW| ¢~ 9"+ w7207 =2 [87p(¢)p7 " + Ag?]

1 1
—L*|—LW Idr = 87j.
5 [2” ]—i—m]ﬁ dr = 87}

If (¢, W) is a solution of these equations then (g, K) defined by equations
(2.7) solve the constraint equations for matter fields F = ®(F, ¢) giving an
energy density p = p(¢) and a momentum density j = ¢~ %9j. We will call
(p,7,\) a physical matter distribution. An easy computation using the fact
that ® is group action shows that the CTS-H equations with matter are
conformally covariant as well, so long as when we conformally transform to
G = 17 2g we also transform to the field F = ®(F, §) to obtain p(-) = p(¢ -)
and j = ¢~9j.

Because the drift formulations differ from the CTS-H equations only
in their treatment of the mean curvature, a conformal matter distribution
(p(+),7,A) appears in the drift formulations of the constraint equations in
exactly the same way as for the CTS-H equations. Simply replace the zeros
on the right-hand sides of equations (4.16) or (4.22) with the right-hand sides
of equations (5.14), but observe that the associated compatibility conditions
need to account for the momentum density.

The CED-V equations in their final form, extending system (4.16) to
include matter, are

2

—alA¢+ Ro+ a—i—%LW pa1
1 2
(5.15) + 5 <r* * Nai divg(¢? 9V + Q))) ¢!

=2 [8mp(6)¢"! + A" ] ;

1. /(1 S .
iL <2]VLW>—I€d1V¢ <Nd1V¢(¢ qV+Q)> :877]

where the CKF compatibility condition (4.19) becomes
1
(5.16) m/ N divg(¢?~ 1V + Q) divg P dV, = —87T/ JaPdV
M

for all conformal Killing fields P.
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Analogously, CED-C equations with matter, generalizing system (4.22),
are

2
0+ 5 LG W + ¢-qB)| 671"

2N
1 2
(5.17) + 5 (n + Wdiv¢(V+Q))) o1
=2 [81p(¢)o" " + ApT ] ;

L (e s e (i ) — s
2L <2NL(¢) W+ ¢ E)> Hd1V¢(Nd1V¢(V)>—87Tj,

—aA¢+Ré+

with compatibility condition
1
(5.18) / N L(¢* W + ¢ 91E)L(¢ 1F) dV, = 87 / Ja”UFdV,
for all divergence-free vector fields F'.
6. Near-CMC solutions on compact manifolds using drifts

In this section we prove the main result that, loosely stated, the drift method
provides a good parameterization of solutions of the constraint equations
on compact manifolds near CMC solutions, even when the metric admits
conformal Killing fields.

To begin, we characterize the CMC solutions with respect to drift pa-
rameters.

Lemma 6.1. Suppose (g, K) is a solution of the constraints equations (1.1)
with matter fields (p,j,\), and let  be an arbitrary volume gauge. The
solution is CMC if and only if

1) the solution has zero volumetric drift measured by o, and

2) for all conformal Killing fields P,
(6.1) /jaP“dVg =0.

Proof. Write K = A + +g, where A is trace-free with respect to g, and then,
applying Lemmas 2.2 and 4.1 with N = dV/a, decompose further as

_ . 1 _
(6.2) A=+ ——(LW), T:T*+NdivV,

1
2N
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where 7 is transverse-traceless, 7, is constant, and W and V are vector fields.
With respect to this decomposition, the momentum constraint reads

L 1

1
(6.3) 5L 5w

LW + md%divv =7j.

First suppose that the solution is CMC. The expression for 7 in (6.2) im-
plies that [ N(7 — 7.)dVz = [divV dV5 = 0, and since N > 0 everywhere,
we see first that 7 = 7 and then that divV = 0. Recall now from Definition
4.5 that the volumetric drift measured by « is V + (Ker L + Ker div). Since
V € Kerdiv, the solution has zero volumetric drift. Moreover, multiplying
equation (6.3) by a conformal Killing field and integrating by parts on the
left-hand side yields (6.1).

Conversely, suppose the solution has zero volumetric drift measured by
a and that (6.1) holds. Since the solution has zero volumetric drift we can
write V = E + @ where E is divergence-free and @ is a conformal Killing
field. Observe that divV = div Q. Now multiply the momentum constraint

(6.3) by @ and integrate by parts to get
(6.4)

0= /jaQad‘/g = —K// N(le V)(le Q) dV§ = —/q;/ N(dlv Q)Q dVE,
i.e., div@Q = 0. Finally,
(6.5) = —l-id' V= +id' Q=

. T = Tk N 1V = Tx N 1V = T,

so the solution is CMC. O

Lemma 6.1 suggests that the volumetric form of the drift method is
nicely adapted to generate CMC solutions. Indeed, if a volumetric drift
conformal data (g,0, 7, V; N) generates a solution metric § = ¢9-2g, then
the corresponding volumetric drift is [¢2*qV]gri&. This means that V =0
suffices; furthermore, at least when the metric admits no conformal Killing
fields, Lemma 4.7 implies that V' = 0 is the only choice in D, which results in
a zero volumetric drift. The only potential difficulty is that (6.1) involves the
unknown solution metric and the solution momentum density j. Fortunately,
the scaling law (5.4) for momentum density ensures that (6.1) is conformally
invariant, so this is not a real problem.

Corollary 6.2. Consider a CED-V data set (g,0,7«,V; N) with V=0
and a conformal matter distribution (p(-),j,A) that generates a solution
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(0, W, Q) of the CED-V equations. The associated solution of the constraint
equations is CMC' if and only if

(6.6) / JuP" dV, =0

for all conformal Killing fields P. Moreover, when the solution is CMC,
then Q is a true Killing field for the solution metric, (¢, W,Q = 0) is also
a solution of the CED-V equations that generates the same solution of the
constraints, and (¢, W) solves the standard CTS-H equations (5.14) with
constant mean curvature T = Ti.

Proof. Let (¢, W, @) be the solution of (5.15) corresponding to a solution
(g, K) of the constraints. Since V = 0 the volumetric drift of the solution
is [p274 V]grift =0, and Lemma 6.1 implies that the solution is CMC if and
only if

(6.7) / 3. PV = 0

for all conformal Killing fields P; here j is the physical momentum density
given by

(6.9) 7 =07

The physical volume form is dV5 = ¢?dV,, and hence jdV;z = jdV,. So (6.7)
holds for all conformal Killing fields P if and only if the same is true for
(6.6).

Supposing now that the solution is CMC, equation (6.6) along with the
choice V' = 0 implies that the CKF compatibility condition (5.16) reduces
to

(6.9) / (v Q)(divy P) dV, = 0

for all conformal Killing fields P. In particular, [(divy Q)2N~!dV, = 0. But
divy = divg, so @ is a divergence-free conformal Killing field for g, i.e. it is
a true Killing field for g. Since ) appears in the CED-V equations only via
divy @, we may as well take it to be zero and arrive at the same solution
of the constraints. Finally, since V =0 as well, a quick inspection verifies
that the CED-V equations (5.15) reduce to the CTS-H equations (5.14) with
T = Ty. O
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Corollary 6.2 shows that the CMC theory for the CTS-H equations trans-
fers directly to the CED-V equations. In vacuum we have the tidy and com-
plete classification of CMC solutions completed in [13]. Conversely, for a
positive cosmological constant A with 2A > k72 we have all the complexity
demonstrated in, e.g, [6].

6.1. Near-CMC solutions parametrized by small volumetric drift

Given the natural connection between CMC solutions and volumetric drift,
we first examine the construction of near-CMC solutions by perturbing to
small volumetric drift. We use the implicit function theorem in a fashion
parallel to that of [9], but with some technical features to handle conformal
Killing fields. Indeed, in the presence of conformal Killing fields, the vector
Laplacian 3 L* 53 L : WHP(M, TM) — W*=2P(M,T*M) is Fredholm and
has kernel equal to @ and cokernel

Qt = {n e Wr=2P(M, T*M) :

/ 1aQ" dVy = 0 for all conformal Killing fields Q}
M

By modifying the domain and range slightly we can make this into an iso-
morphism

1
(6.10) Lol WhP(M, TM)/Q — W*=2P(M,T*M) N Q*.

Indeed, writing [W]g for the projection of a W*? vector field W to the quo-
tient space W*P(M,TM)/Q, it is clear that L[W]g = LW is well-defined.
We also set

(6.11) P WHE2P(M, T*M) — WE=2P(M, T*M) N Q*,

to be the projection with kernel consisting of the conformal Killing covector
fields; this is defined since W*=2P(M,T*M) N Q' has finite codimension in
WhE=2P(M, T*M).

For the remainder of this section, fix a metric g, a lapse IV, and a con-
formal matter distribution (p(-), 7, A). Before setting up an implicit function
theorem argument, we define the following three functionals:
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e the Hamiltonian constraint

CH(U) T, V7 d)? [W]Q7 Q)

2
= —aAp+Ro—|o+ %L[W]Q ga!
(6.12) 9
+ K (7'* + Nl(;ﬁq div¢(¢q*2V + Q)) p1t

—2(87p(¢) + A)o? ™Y,

e the momentum constraint

(613) CM(U7 T, V5 &, [W}Qa Q)
= %L* % LW]g—-P |:I€ divy, <]17 divg(p?™2V + Q)> + 87Tj]

where P is the projection (6.11);
e the CKF compatability constraint

(614) CC(Ua T, V5 (ba [W]QvQ)
1
=P+ /KN divg(¢972V + Q) divy(P) + 87j, P* dV,

where P is an arbitrary conformal Killing field.

There is a semicolon appearing in the arguments of these maps to separate
those variables that are prescribed, the following spaces:

(6.15) (0,7, V) € [ker L* C W*1P(M, SoM)] x R x [D, € WEP(M,TM)],
versus those that must be solved for,
(6.16) (¢, [W]o,Q) € WEP(M) x (WHP(M, TM)/Q) x Q.

The maps Cg, Car, and Cp take their values in W =2P (M), Wk=2P (M, T* M)
N Q+ and Q% respectively.

Lemma 6.3. A triple (¢,W,Q) solves the CED-V equations (5.15) for
CED-V data (g,0,7«,V; N) and conformal matter distribution (p(-), 7, A)
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if and only if

CH(¢7 [W]Qv Q? O, Tk, V) =0
(6.17) Cum(d, W], Q; 0,7, V) =0
CC(¢7 [W]Qv Q? O, Tk, V) =0.

Proof. If the definition of Cj; were not to involve the projection P there
would be nothing to do other than to observe that the distinction between
W and [W]g is immaterial since W only appears as an argument to L. Hence
it suffices to show that if Co = 0 then Cj; = 0 is equivalent to

1 1 1

Indeed, if Cc = 0, then integration by parts shows that

NP A .
(6.19) —divy, (N divg V) —8rj € ot
Hence
YA S )
(6.20) P |:le¢ <N divg(V + Q)) + 877]]

1
= divy, <N divg(V + Q)> + 877,
which is (6.18). O

Theorem 6.4. Consider volumetric drift parameters (g,é’,f'*,f/; N) and
and a conformal matter distribution (p(-), j, A) where g, N, and V have Wh»
reqularity, & is of class WK1 j is of class W*=2P, and where p satisfies
the energy scaling condition of Definition 5.1.

Suppose that V =0 leads to a CMC solution of equations (5.15) and
additionally that

i) The CMC solution metric does not admit any true Killing fields.
ii) kT2 > 2A.

iii) Either kT2 > 2A, or o # 0, or the solution is not vacuum.
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Then there exists € > 0 such that all conformal data (g,0, 7, V; N) satisfy-
mng

(6.21) o — &llweer + |7 — 7 + [V |l < €

generate a solution of system (5.15), and the map from (0,7, V) to the
associated solution of the constraint equations is smooth and injective.

Remark 6.5. As we show below, in the absence of matter fields, hypothesis
i) is satisfied generically in the space of CMC solutions.

Proof. By conformal covariance of the CED-V equations, assume that the
background metric g is the CMC solution metric, which means that the
solution of the CED-V equations is (¢, W, Q) with ¢ = 1. Moreover Corol-
lary 6.2 implies Q must be a true Killing field, hence Q = 0. This simplifies
various expressions later in the proof. Although W does not have a simple
expression, the momentum constraint implies

1 .
22 L —LW =
(6.22) sv LW =1

which we also use in the sequel.

Define F = (Cy,Cy,Cco). By Lemma 4.7 there is a neighborhood &
of 1in WP(M) such that V [q§2*qV]g§ift2§, from Dy to Driftge—2g, is an
isomorphism for any ¢ € ®. We restrict the domain of F to these conformal
factors; it remains an open set in the Banach space (6.15), (6.16).

The map F is continuously differentiable and its derivative with respect
to (¢, [W]g, @) at

(6.23) (6,7, V36, [W]a, Q) = (6,%,0;1,[W]g,0)

can be written as

(6.24) DF(6¢,6[W]g,dQ)
—aA+A -2 <r7+ ﬁLWﬁL(» 2/{7'*%(11\7() 0
= 0 TLF (5 L) KP(div* (4 div(-))) (5[W}Q)
0 0 P & [+ div(-) div(P) dV oQ

where
2

(6.25) A=(q+2) + (q — 2)[w72 — 24]

— 16m[p'(1) + (¢ — 2)p(1)]-

1 .
— LW
U+2N
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Note that we have used the Hamiltonian constraint

.2
o+ ——LW| +r72=16mp(1) + 2A

2 —
(6.26) R o

to replace the scalar curvature that would otherwise have appeared in the
expression for A. From the block upper-triangular form of the matrix we
conclude that DF is invertible if each diagonal block is, and we treat each
in turn.

The operator

(6.27) —a A+A: WEP(M) — WE=2P()),

is invertible if A > 0, A # 0. Looking at the expression (6.25) we have three
terms to consider. First,

(6.28) (q—2)[x72 —2A] >0
since ¢ > 2 (for any n > 3) and since k72 > 2A by hypothesis. Next,

(6.29) [0'(1) + (= 2)p(1)]

is the linearization of

(6.30) ¢ = 7 %p(9)

evaluated at ¢ =1. By Definition 5.1, this is non-positive and hence
—167[p'(1) + (¢ — 2)p(1)] > 0. The final summand of A is

2

1 .
o+ —LW

(6.31) o

)

which is obviously nonnegative. Moreover, multiplying expression (6.31) by
N and integrating yields

(6.32) / N

using that transverse-traceless tensors are L? orthogonal to the image of L.
Altogether, A = 0 means that

1 o
c+—LW

2
1 ~
_ 20 LIV
2N _/N|U| TR

(6.33) kT2 =27, 0=0, W=0, and p'(1)+ (¢ —2)p(1) =0
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Equation (6.22) shows that W = 0 implies j = 0; by Definition 5.1, if p/(1) +
(g —2)p(1) = 0 then p(-) = 0. From these we get that k72 = 2A, 0 = 0 and
the solution is vacuum. Hypothesis 6.4 thus ensures that A # 0.

The middle block of the matrix in (6.24) is invertible by the discussion
around (6.10).

Finally, for the last block, the symmetric bilinear form

(634)  B:Ox QR B(Q,P):/deindideVg

is nonnegative, and positive definite so long as Q contains no true Killing
fields, which are precisely the divergence free elements in Q. This too holds
under our assumptions. Therefore, the map

(6.35) Qs / %div@div(-) av,

is an isomorphism from O to Q*.

Taking Lemma 6.3 into account, the implicit function theorem now
provides the existence of the solution map for (o, 7, V) sufficiently near
(G, Tx, V= 0) in W*P x R x D,. It remains to establish the global injectiv-
ity.

Suppose (0,7, V) determines a solution (¢, W, Q) of the CED-V equa-
tions, and thereby a solution (g, K) of the constraint equations. We demon-
strate injectivity by showing that we can recover (o, 7, V') from (g, K) under
the hypothesis that ¢ € ®.

Setting N = ¢?N, apply Lemmas 2.2 and 4.1 to write

_ 1 — T _ 1 .. —
K:a—i—ﬁLgW—kﬁg, T:T*—I—ﬁdlvg(‘/)

where 7 is transverse-traceless with respect to g, 7 is constant, and V is a
vector field. On the other hand equations (4.20) and the conformal trans-
formation laws for the divergence and conformal Killing operators imply

1 T 1
K=¢?0+=L;W+ -7, 7=r+=divg(¢* 7V +Q).
¢ +2N gV 9 *+N g(¢ +Q)
Since ¢~ 20 is transverse-traceless with respect to g, the uniqueness clauses of
Lemmas 2.2 and 4.1 imply 7, = 7+, 0 = ¢?@ and that there is a g divergence-

free vector field E such that

PV +Q+E=V.
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But this shows that we have agreement of drifts

[¢27qv]grift — [V]grift
g g -
Since ¢ € ®, the map D, — Driftg given by V — [¢52_‘1V]g“ft is an isomor-
phism and V' € D, is uniquely determined by V. O

Proposition 3.1 shows that given a CMC solution of vacuum constraint
equations with a metric conformal to the round sphere, there exist inadmis-
sible perturbations of the mean curvature. By contrast, Theorem 6.4 shows
that, so long as the CMC solution has no Killing fields, arbitrary small per-
turbations of drift and volumetric momentum produce nearby solutions. We
now verify that this condition is generic among the CMC solutions within a
conformal class.

Proposition 6.6. In the space of all CMC solutions to the vacuum con-
straint equations, the subset of pairs (g, K) for which there are no Killing
fields is open and dense. In fact, this is true even within a conformal class.

Proof. Let (g, K) be any CMC solution and denote by K4 and Q, the spaces
of Killing and conformal Killing vector fields for g, respectively; thus

Q,={X:LX =0}, and Kg={X € Qg :divy X =0};

of course Q; = Q, for any metric ¢’ = ¢72%g.

We first show that if X, = {0}, then the same is true for any metric ¢’
near to ¢ in the W*P? topology. The second part is to prove that if K, is
nontrivial, then there exist metrics ¢’ arbitrarily near ¢ in the W*? topology
such that Iy = {0}.

To begin, observe that the K4 is also characterized as the nullspace of
the map

Tg : Qg — Qg, ng =Po le; Odng,

where P is the L? orthogonal projection from the space of symmetric two-
tensors onto the finite dimensional space Qg; this follows easily from the
identity 0 = (T,&,€) = || div,y &||? if T,¢ = 0 and € € Q4. We henceforth iden-
tify Q, with R for some N. Observe also that T, depends in a real analytic
way on g.

For the first assertion, simply note that if g admits no Killing fields, then
ker T, = {0}, and this is an open condition in the space of all W*? metrics,
hence also in the space of metrics ¢’ which appear in a pair (¢, K') of CMC
solutions of the constraint equations.
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As for the second assertion, suppose Ky, is nontrivial for some metric
go which appears in a CMC solution pair (go, Ko = 7-go + 00). Without loss
of generality we can assume that 7 # 0 and ¢ Z 0, for otherwise the CMC
theory of the conformal method ensures we can perturb to a nearby solution
of the constraint equations satisfying this condition. We consider families of
solutions which arise by varying o in U = W*P(M, Si;) \ {0}, but keeping
the conformal class fixed. From the CMC theory of the conformal method,
since 7 # 0, for o € U there is a well defined conformal factor ¢ (o) obtained
by solving the Lichnerowicz equation

(6.36) —alog + Roo — [of3,6™0 ! + wr?¢t ! =0,
and

_ _ T _
(6.37) (9o, Ky) = <¢q 29,6 20 + Egbq 29)

is a solution of the constraint equations. For simplicity, we write T, instead
of Ty,

Consider, for j =0,..., N, the subsets F; = {o € U : rank T, < j}. We
claim that since ¢, and hence g, depends real analytically on o, each Fj is
an analytic subvariety of finite codimension in ¢/. Indeed, o lies in F; if and
only if the determinant of every (j + 1)-by-(j + 1) minor of T}, vanishes, and
this is a finite number of polynomial conditions. By analyticity again, if the
set F7 = F;j \ Fj—1 of TT tensors o where the rank of 75 is exactly j has
an interior point, then it is an open dense subset in Y. Furthermore, U is
the union of the sets F;, hence some F; must have interior, and hence is
open and dense. The main conclusion follows if we can show that &k = N,
since T, has full rank implies that its nullspace is trivial.

Suppose that this is not the case, so F; is open and dense in U for
some k < N. We first show that there exists a submanifold in ¢ with finite
codimension such that the nullspace of T}, is equal to the same k-dimensional
subspace for every o in the submanifold. Indeed, consider the map G : F] —
G(k,N) into the Grassmanian of k-planes in RY, which sends o to the
nullspace of T,,. Let R be the image of U under G. By construction, R is a
subanalytic set in G(k, N), and hence itself admits a stratification, R = UR;
where each R; is a smooth j-dimensional submanifold. Suppose that J is
the maximal dimension of these strata, and let 4’ = G~1(R ;). This is an
open dense set in U.

The point of these maneuvers is to obtain a map G’ = G|;» with maximal
rank and image in a smooth manifold. We may now apply some familiar
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tools of differential topology. By the Sard-Smale theorem, there exists a
full measure set of regular values of G’, and hence we may choose a k-
plane I ¢ RY such that Z := (G’)~'(II) is a smooth analytic submanifold
of finite codimension in ¢’. In particular, the nullspace of div,, is the same
k-dimensional subspace II C Q, for all o € Z.

Fix 61 € Z and and write ¢1 and g1 for the corresponding conformal
factor and metric. Set Z = ¢=2Z, so Z C W5P(M, Si;(g1)) is a submani-
fold with finite codimension, and o1 = ¢1_20 € Z. The Lichnerowicz equation
with g1 as background metric is then

(6.38) —al1¢p+ Rigp — \Ulglqb_q_l )

By solving (6.38) for ¢, each o € Z determines a metric g, = ¢9~2g; and
second fundamental form K, solving the constraint equations. Moreover,
let H denote the connected component of the identity in the isometry group
of (M,g1). This is a compact, connected Lie group of positive dimension,
and the quotient M/H is an orbifold of strictly smaller dimension than M.
Each g, with o € Z is invariant under H, or equivalently, the conformal
factor ¢(o) (where g, = ¢?2g1) is invariant under H. This follows since
ToH = K4, is actually constant as ¢ varies in Z. We show now that this
leads to a contradiction.

Suppose that o(e€) is a one-parameter family of TT tensors lying in Z
with 0(0) = o1 and set n = ¢(0). Differentiating the Lichnerowicz equation
with respect to € gives

(639) L¢ = 2<017 77>91
where
L= —aly + Ry + (g + Vo1 + (g — w7’

is the Frechet derivative of the Lichnerowicz equation at ¢ = 1. Next differ-
entiate (6.39) with respect to X € K; to obtain

Lng, = _[Xv L]¢+ 2X<0-1777>91

Setting o = o1 in equation (6.38), the solution is ¢ =1 and hence R; +
k72 = |o1[2,. The left side of this last relation is annihilated by any X € Kj,
hence so is the right, so it follows that all the coefficient functions of L are
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annihilated by X, and in particular [X, L] = 0. Hence
LX¢' = 2X (01,1},

On the other hand, X (¢(c)) = 0 for all 0 € Z and therefore X¢' = 0. Since
Ry = |o1[3, — k7% we can rewrite

L=—-aA;+ (¢g+ 2)\01|§1 + (q — 2)r7?

to see that L is invertible, and we conclude that the pointwise inner product
(01,1M)g, is constant along the H-orbits for every 7 in the finite codimensional
subspace T, Z C WHEP(M, Sy (g1)).

We now show that this last conclusion is absurd. To this end, we use a
construction presented in a neat and general form in [8], but in fact in fact in
this finite regularity setting also following from [25]. Namely, we claim that
there exist n € W*P(M, Si(g1)) with arbitrarily small support. The basic
principle is that the operator div, is left-elliptic, and under a certain hy-
pothesis can be shown to be surjective acting between symmetric trace-free
two-tensors and vector fields (or 1-forms) which vanish to some high order at
the boundary of some domain O. (This is proved in [8] using a weight func-
tion which vanishes exponentially in the distance to 0O, but follows from
[25] if one is content with weight functions which vanish at any polynomial
rate.) We show how to apply this principle: suppose that x € C§° equals 1
on an open set (O which has closure contained in @ and which vanishes
outside O. Denote by Q the annular domain O \ O'. If £ € W*P(M, Sy (g1))
is arbitrary, then divy, (x¢) = «(Vx)¢ € W*LP has compact support in Q.
By [8, 25], there exists a symmetric trace-free W*P two-tensor v supported
in Q with divy, v = divy, (x§) if and only if ¢(Vx)€ is L? orthogonal to ev-
ery Y € Qg, i.e., fM &(Vx,Y)dVy, = 0. To show that this is satisfied here,
observe that since Y is conformal Killing and £ is trace-free,

divy, (x e(Y)§) = = Vg, (xaY")
ab 1
= £V Y) + X" (05, Y ) (91)as = ~§(V Y)
Integrating over M yields the desired orthogonality. Hence x& — v €

WHkP(M, Sit(g1)) agrees with € in ¢ and has support in O.
Now choose disjoint open sets (9;-, j=1,...,¢ such that

e ( is larger than the codimension of Z,

e 01 # 0 throughout each O’ (this is possible since o1 # 0),
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e no integral curve of X is contained in (’);-.

We can then apply the above construction to n = o1 on each (’)3» to obtain
localizations o1;. Since /¢ is larger than the codimension of Z there is a
nontrivial linear combination

n= ijO’lj =0 mod T(,lZ.
J

That is, n € T,,, Z. Picking some j such that b; # 0, there is an integral curve
of X which contains a point in (99 where 7 = o1 # 0. But this same integral
curve is not contained in O} and hence also contains a point on 803 where
n = 0. It is then obvious that (o, )4, is not constant along the integral curve.

This is the contradiction we desired. The proof is complete. O

6.2. Rescaling CED-V conformal parameters

In [9], the authors observe that the far-from CMC solutions of the constraints
constructed in [12] and [20] can be considered as perturbations of solutions
with 7 = 0, together with rescaling. In this section we examine how these
arguments translate to the CED-V setting.

Starting from a pair (g, K), consider a length L > 0 and a rescaled pair
(9,K) = (L%g,LK). If (9, K) solves the constraints with physical matter

distribution (p, j, A), then (g, K) solves the constraints with physical matter
distribution

(6.40) (5,3, 8) = (L72p, L™ ja, LA).

A straightforward computation establishes how this homothety scaling ex-
tends to CED-V parameters.

Lemma 6.7. Suppose (¢, W, Q) is a solution of the CED-V equations (5.15)
for conformal data (g,0,7«,V; N) and conformal matter distribution
(p(-),4,A). For any L >0,

(6.41) (L27'¢, L"'W, L"1Q)

is a solution of system (5.15) for conformal data

(6.42) (9, L" o, L7 1, L"'V; N)



Conformal fields and the structure of the space 1195

and conformal matter distribution
(6.43) (L2p(L1% ), L5, L2A),

Lemma 6.7 should be compared with the analogous result for the CTS-
H equations, where a solution (¢, W) for conformal data (o,7; N) scales
to a solution (L2 1¢, L»'W) for conformal data (L"'o,L~'r; N). So
for the CTS-H equations, we can effectively trade small 7 for large o or
vice-versa. Furthermore, if a solution with 7 = 0 can be found, then nearby
perturbatios and rescalings allow for arbitrary mean curvature. The situation
is more complicated for the CED-V equations because there is an additional
parameter involved, but the principle is the same. If we can find a solution
with a parameter equal to zero, then we may hope to perturb off of it
and rescale to obtain any value of the chosen parameter. In the CMC case,
volumetric drift is zero, and hence we can obtain any desired volumetric
drift.

Corollary 6.8. Let L > 0 be a constant and consider drift conformal data
(9, L" o, L7 1, V;; N) with conformal matter distribution (L=2p(L>"1 "),
L™ 15, L=2A), all with the regularity hypotheses considered in Theorem 6.4.
There exists a solution of the CED-V equations (5.15) for this data if L is
sufficiently large and if all of the following hold:

e There exists a solution for the the CMC conformal data (g, 0, T«,0; N)
with matter distribution (p(-), 7, A).

o There are no true Killing fields for the metric at the CMC solution.
o kT2 > A

e Either k12 > A, or 0 # 0, or the matter distribution is not vacuum.

Proof. Consider the rescaled conformal data (g, o, 7, L=~V N) with con-
formal matter distribution (p(-), 7, A). From the stated assumptions we can
apply Theorem 6.4 to conclude that if L is sufficiently large (and hence
L~'7"V is sufficiently small) there exists a solution (¢, W, Q) of system
(5.15) for this data. Let

(6.44) (6, W,Q) = (L= ', L" "W, L"'Q)
Lemma 6.7 implies (é,W,Q) is a solution of system (5.15) for conformal
2

data (g, L" ‘o, L7'7,,V; N) with matter distribution (L=2p(L'~%-), L""1j,
L2A). O
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In effect, Corollary 6.8 provides a weak notion of the idea that we can
obtain any volumetric drift we please so long as we take the conformal mo-
mentum sufficiently large and the volumetric momentum sufficiently small.
For maximal CMC solutions (7. = 0) an analogous procedure shows that
we can perturb to an arbitrary volumetric momentum at the penalty of
shrinking both the conformal momentum and the volumetric drift.

Corollary 6.9. Under the same reqularity hypotheses as Theorem 6.4 sup-
pose:

e There exists a solution for the mazimal slice conformal data (g, 0,0, 0;
N) with matter distribution (p(-), 7, A).

e There are no true Killing fields for the metric at the CMC solution.
o kT2 > A
o Either k12 > A, or o # 0, or the matter distribution is not vacuum.

If L > 0 is sufficiently small, then there exists a solution of the CED-V equa-
tions (5.15) with prescribed conformal data (g, L" ‘o, 7., L""2V; N) and
matter distribution (L=2p(L2"1 "), L""15 L72A).

Proof. Consider the rescaled conformal data (g, o, L7, LV; N) with matter
distribution (p(-), j, A). Since we have assumed that there exists a solution
for the maximal slice data (g,0,0,0; N), Theorem 6.4 implies that if L is
sufficiently small there exists a solution (¢, W, Q) of system (5.15) for this
data. Rescaling as in the the proof of Corollary 6.8, we then find that that
there exists a solution for conformal data (g, L" ‘o, L~ 7, L"*2V; N) and
matter distribution (L= 2p(L'~%.), L" 14, L72A). O

7. Extension to the AE and AH settings

In this brief final section we indicate the modifications necessary to carry
these results over to the two main noncompact settings common in this
field, namely to sets of data which are asymptotically Euclidean (AE) or
asymptotically hyperbolic (AH), respectively. (Extensions to other cases of
interest, such as to compact manifolds with boundary, may be established
by following the same overall approach.)

As is well known, in either of these cases, we may take advantage of
known solvability results for the various linear operators which appear in
this paper, acting between appropriate weighted Sobolev spaces. Our in-
tent here is not to be complete, but rather just to briefly describe those
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parts of the arguments above that can be modified without further effort.
In fact, there are no nontrivial conformal Killing fields vanishing at infinity
in these settings, so the situation is somewhat simpler. On the other hand,
this absence of conformal Killing fields implies both the standard conformal
method and the drift method have perfectly adequate near-CMC theories for
AE and AH initial data, and any potential advantages of the drift method
is these cases would have to arise for far-from CMC data. In the AH setting
there are additional deeper questions concerning the ‘shear-free’ condition
(see, e.g., [1]) but these have not been previously addressed even for the
standard conformal method and we leave their resolution for elsewhere.

Asymptotically Euclidean Data. We say that (M, g, K) is an asymp-
totically Euclidean data set if there exists a compact region K C M such
that each of the finitely many components FE of M \ K is diffeomorphic
to R™\ Bgr(0) for some R > 0, and using this diffecomorphism to give co-
ordinates on each end, g|g = d +h where § is the Euclidean metric and
hi; = O(|z|™Y), along with corresponding estimates for the derivatives up
to order 2 + a. At the same time, K;; = O(|z|~2) along with derivatives. It
is equally easy from an analytic standpoint to include the somewhat more
general case of asymptotically conic data. Here M \ K is a finite union of
ends E where each F is diffeomorphic to the ‘large end’ of a Riemannian
cone C(Y), with metric dr? + r?ky, where (Y, ky) is a compact Riemannian
manifold, and so that the corresponding estimates as above hold with this
conic metric in place of the Euclidean metric. In either case, we also impose
suitable decay conditions on matter fields.

The results that need to be modified in this new geometric setting are
those which concern the global solvability of certain elliptic problems. The
particular results that require different proofs are the York splitting Lem-
mas 2.2 and 4.1, and our main Theorem 6.4. In Theorem 6.4, we decompose
the conformal factor ¢ = 1 + u, and because there are no conformal Killing
fields vanishing at infinity the map F' no longer involves the variable Q. Its
linearization from equation (6.24) becomes

. _[—aA+A -2 o+ 5 LW, 5 L() ou
(7.1)  DF(5u,0W) < 0 <;L*(2}VL<->) >> <5W>

where, in vacuum,

1 ~
(7.2) A=(q+2)|o+ ;- LW| 20,
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For all of these adjustments we require the basic Fredholm properties of
elliptic operators on asymptotically conic spaces, which appears, for exam-
ple, in [25] (and many other places). The main observation is that one needs
to let such an operator act between spaces which are weighted by powers of
|z| at infinity. This theory is well-known, the elliptic operators involved in
our application indeed invertible, and there are no unexpected issues.

Asymptotically Hyperbolic Data. Another main setting in relativity
is the asymptotically hyperbolic case; this generalizes the spacelike hyper-
boloid in Minkowski space, or equivalently, hyperbolic space. The natural
generalization of this is the class of conformally compact asymptotically hy-
perbolic spaces. We say that (M, g, K) is an asymptotically hyperbolic data
set if the following holds. First, M is the interior of a smooth compact mani-
fold with boundary M. The metric g is of the form g/p?, where g is a metric
smooth and nondegenerate up to M, and p is a boundary defining function
for the boundary which satisfies [VIp|3 = 1 at p = 0. The tensor K is again
smooth up to M, and if we write K = o + (7/n)g, then 7 converges to a
constant at p = 0. It is straightforward to relax the regularity assumptions
on the metric and second fundamental form.

Here too there is a rich and well-developed analytic theory, again to be
found in [25] (parts of which again appear in many other places as well).
We let the relevant operators act on function spaces which are weighted by
powers of p, or equivalently, by powers of e~?, where d is the Riemannian
distance function on M, e.g. distance to some fixed compact set in the
interior. We again observe that Laplace-type operators are Fredholm when
acting between weighted Sobolev spaces and that the three main results
mentioned above hold in this geometric setting as well. The monograph [18]
works out the indicial roots for the relevant elliptic operators in this setting;
these indicial roots determine the precise ranges of weights on the function
spaces.
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