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Abstract. Unknown view tomography (UVT) reconstructs a 3D density map from its 2D projections at un-
known, random orientations. A line of work starting with Kam (1980) employs the method of
moments with rotation-invariant Fourier features to solve UVT in the frequency domain, assuming
that the orientations are uniformly distributed. This line of work includes the recent orthogonal
matrix retrieval (OMR) approaches based on matrix factorization, which, while elegant, either re-
quire side information about the density that is not available or fail to be sufficiently robust. For
OMR to break free from those restrictions, we propose to jointly recover the density map and the
orthogonal matrices by requiring that they be mutually consistent. We regularize the resulting
nonconvex optimization problem by a denoised reference projection and a nonnegativity constraint.
This is enabled by the new closed-form expressions for spatial autocorrelation features. Further, we
design an easy-to-compute initial density map which effectively mitigates the nonconvexity of the
reconstruction problem. Experimental results show that the proposed OMR with spatial consensus
is more robust and performs significantly better than the previous state-of-the-art OMR approach
in the typical low signal-to-noise-ratio scenario of 3D UVT.
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1. Introduction. Unknown view tomography (UVT) arises in applications such as single-
particle cryo-electron microscopy (cryo-EM), where noisy projections of biological macro-
molecules are taken at random, unknown view angles and then used to reconstruct the 3D
molecular density map [12]. The unknown particle orientations and the low signal-to-noise
ratio (SNR) of projection images make this reconstruction a challenging task. Depending on
whether the particle orientations need to be estimated, there are generally two approaches to
reconstruction. The first approach proceeds by alternating between reconstructing the density
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map and estimating the particle orientations. Since the projection images typically contain
more noise than signal (SNR < 1), it is hard to estimate the particle orientations accurately.
Soft assignments are thus adopted in the form of posterior distributions over view angles. The
density map is computed as the maximum a posteriori estimate via the expectation maximiza-
tion algorithm [13, 29, 30, 33]. Since all projection images need to be matched to reference
templates at each iteration, this approach is computationally expensive.

The second approach bypasses estimation of particle orientations and recovers the den-
sity map through autocorrelation analysis, an instance of the method of moments (MoM)
[21, 22, 23]. For uniformly distributed orientations, it is known that the MoM achieves generic
list recovery—determining the density map up to a finite list of candidate densities—from
first-, second-, and third-order moments [3]. Autocorrelation analysis, however, primarily
uses the first- and second-order moments. Levin et al. [24] have shown that using second-
order moments suffices for unique recovery if they are complemented by two projections with
known view angles. For a known, nonuniform rotation distribution, Sharon et al. [32] showed
that the first- and second-order moments suffice to determine a finite list of possible struc-
tures. Higher-order moments come with a price: while it is possible to use the third- or even
fourth-order moments, the computational complexity scales exponentially with the moment-
cutoff order, and the noise amplification in higher-order moments drastically increases the
number of required projection images [34]. For uniformly distributed orientations, the sample
complexity of the MoM with moments of order up to m scales at a rate of 1/SNR™ [3]. In
general, the moments are calculated with respect to single-particle projection images cropped
from micrographs. Bendory et al. [7] also showed that it is possible to recover the density
map through autocorrelation analysis on the micrographs directly.

Kam proposed an MoM approach with Fourier autocorrelation functions which are rotation-
invariant second-order moments [22]. The same moments were used for reconstruction in a
number of follow-up works [9, 24, 32]. Fourier autocorrelations can be estimated from the pro-
jection images assuming that particle orientations are uniformly distributed. They determine
the spherical harmonic expansion coefficients of the Fourier transform of the density map up
to a set of unknown orthogonal matrices. They are useful in the low SNR regime, where it is
difficult to get accurate orientation estimations.

Our proposed approach builds on the line of work spearheaded by Kam and leverages
the MoM with rotation-invariant features [9, 22, 23, 24, 32, 35]. Kam’s spherical harmonic
expansion coefficients can be either solved for directly [23, 32] or recovered by solving an
orthogonal matrix retrieval (OMR) problem [9, 24]. Existing OMR methods, however, require
additional information that is usually not available. For example, Bhamre, Zhang, and Singer
[9] describe two algorithms: the orthogonal extension method which requires the structure of
a similar molecule and the orthogonal replacement method which requires projection images
from two unknown structures and assumes the differences between the two structures are
known. Levin et al. [24] describe an improved OMR by projection matching (OMR-PM) which
requires (at least) two denoised projection images to perform the reconstruction. However, it
is not robust enough to handle complicated density maps (cf. section 6).

On the other hand, earlier work on unassigned distance geometry and UVT shows that
the density map can be directly optimized in the spatial domain [20, 41, 42]. That earlier
work, however, employs a parametric point-source density map which does not scale easily to
realistic molecular density maps.
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1.1. Our contributions and paper outline. We formulate the reconstruction in terms of
both the orthogonal matrices and the density map for a consistent recovery.

e We propose novel radial and autocorrelation features in the spatial domain. Compared
to Fourier autocorrelations, the proposed spatial autocorrelations have simpler closed-
form expressions in terms of the density map.

e Previous OMR approaches recover only the orthogonal matrices, and it has been
difficult to incorporate spatial information through the orthogonal matrices. We relate
the orthogonal matrices to the density map and recover them jointly via alternating
optimization, so that the spatial consensus on the density can be enforced among the
orthogonal matrices.

e To make this work, we construct an initial density by solving a convex optimization
program that involves the spatial radial features and a denoised reference projection
image. This initialization provides the basis for the orthogonal matrices to “reach a
consensus” on a density that additionally satisfies the nonnegativity constraints and
matches the reference projection.

Experimental results show that the proposed OMR with spatial consensus (OMR-SC) is more
robust across a range of different density maps than the previous state-of-the-art OMR-PM
and that it excels in the low-SNR regime that is common in UVT. Reproducible code and
data are available at https://github.com/shuai-huang/OMR-SC.

Paper outline. In section 2, we first set up the mathematical model for UVT and review
Kam’s autocorrelation analysis in the frequency domain. The proposed spatial radial and
autocorrelation features and their relations to Fourier features are then introduced in section 3,
and the density map is parameterized in section 4. Building on the parametric radial and
autocorrelation features, we propose the OMR-SC approach in section 5. We then compare
the OMR-SC and OMR-PM approaches on the recovery of random and protein density maps
in section 6, and we conclude the paper with a discussion in section 7. Additional experimental
results are given in the supplementary material (UVT_SIIMS_Supplementary.pdf [local/web
3.45MB]).

Notation. We use nonboldface lower- and upper-case letters to represent scalars, boldface
lower-case letters to represent vectors, and boldface upper-case letters to represent matrices.
For readers’ convenience, we provide a list of notations of the variables in Table SM1 in the
supplementary material.

2. UVT via the MoM.

2.1. Problem formulation. Let r — p(r) denote the 3D density map to be estimated,
where r = [z y 2|7 € R? contains the Cartesian coordinates. We assume p(r) is compactly
supported within a ball, approximately bandlimited with an effective bandwidth 7, and square-
integrable.’

As illustrated in Figure 1, our input data consist of N projection images, each containing
a projection of p at some unknown orientation. Let R, denote the 3 x 3 rotation matrix
representing a 3D rotation x, € SO(3). The rotated density model is then p(RLr). The
noiseless projection P,(x,y) along the z-direction is

!Since supp(p) is compact, square integrability implies integrability.
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Figure 1. The UVT via the MoM.

o0
(2.1) Noiseless projection: P (x,y) :/ 0 (Rg[x Yy z]T) dz.

—0o
It is further corrupted by additive noise e,(x,y) to produce the observed noisy projection
image S (2,y),

(2.2) Noisy projection: Sy (z,y) = Pn(z,y) + en(z,y).

The noise ¢, is modeled as white Gaussian noise with variance estimated from the measured
data [6]. In practice, images of individual particles are cropped from the micrographs. Addi-
tional in-plane translation misalignment may occur when the particle is not centered during
particle picking; a number of methods are available to mitigate it [8, 19, 39, 40, 45]. In this
paper, we extract rotation-invariant features from the projection images and assume that the
particles have been properly centered in the projection images. Although the distribution
of particle orientations is not strictly uniform in practice, the uniform assumption is widely
adopted by MoM approaches and has enjoyed empirical successes [9, 22, 24]. Here we also
assume that the unknown rotations x,, € SO(3) are uniformly distributed in SO(3). Our goal
is then to reconstruct the 3D density map p(r) from a collection of 2D noisy projection images
{Sp | n=1,..., N} with unknown, uniformly distributed view directions.

2.2. Kam’s autocorrelation analysis in the frequency domain. We next review the re-
cent developments in Kam’s autocorrelation analysis and discuss the limitations of previous
OMR approaches in this subsection. The MoM approach proposed by Kam performs the
reconstruction in the frequency domain using autocorrelation features extracted from 2D pro-
jections [21, 22]. The Fourier transform p(k) of the 3D density map p(r) is given by

(2.3) pi)= [[[ e mptwy ar= [[ [ tressepie) ar.

where 1 is the imaginary unit, k = [k, ky k.7 € R? is the frequency, k = ||k|| is the norm of
k, r=||r| is the norm of r, and « is the angle between k and r. We shall write a = ad with
a=|lal| and ||@|| =1 for the polar representation of a generic vector a € R3.
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The Fourier autocorrelation features used by MoM are expressed in terms of the spherical
harmonic expansion coefficients { Ay, (k) }im of p(k). We have

(24) p(k MU MU A (k) - Yim Ok, k) »

=0 m=

where (0k, pk) is the angular direction of k and Y}, (+) is the real spherical harmonic function
of degree [ and order m. Note that A, (k) is purely real for even [ and purely imaginary for
odd [. We have

Aw.mv \33 \\\ o, \mV . S‘Sﬁmmvﬁbv . mwﬁ%m &w&%m&ﬁmﬁ

where 6(+) is the Dirac impulse. R
Features are computed from the 2D projection images. The 2D Fourier transform .S, of a
projection S, is

(2.6) S (kg ky) = \ \ exp AL. (ke k] ﬁ M C - Su(z,y) ddy.

From the central slice theorem, the above S, corresponds to a central slice of p(k)
[26, Appendices B and C],
Sp(ks, ky) = A ko Ky O]7) + €k, ky)

l l
Awﬂv M \:3 Aw}b?v USSAX@v AT\m/Q@.S\A@v )

m=—lm/'=—|

Il
zw

where ¢ = atan2(ky, k), and D! . (xn) is an element of the Wigner D-matrix. However,
since \mwm rotation x, (that is to say, R,,) is unknown, we do not know a priori which central
slice Sy, corresponds to. What we do know is that the relative position of two frequencies in
the Fourier slice W: is the same as the relative position of their “true” 3D counterparts since
(ks ky, 0)[K),, k), 0] = [k, ky, Ol RR [k}, k), 0" for any rotation R. (In particular, this allows
us to compute the correct length of a frequency vector in the slice.)

Let k1 and k9 denote two frequency vectors in the same 2D Fourier slice W: o, = £k
be the azimuth angle of k1, and ¢ be the angle between ki and k2 such that g, + ¢ =
Ako. Assuming that the rotations UQL,Z ; are drawn uniformly from the rotation group
SO(3), Kam proposed to estimate the autocorrelation function Cn(k1,k2,1) of the Fourier
transform p(k) in the frequency domain by averaging M:QSVM * (k) over all the projections,
or, equivalently, over all the Fourier slices [21],

N o
1 1 . N
On (hiko) == S = | Sulki,on,) - S5 (ke on, + ) digy,
N (K1, k2,7) Z:HHmﬂ\o (K1, 0k,) - Sy, (k2, ok, + ) dog

(2.8) Nogo 1 N
Mm cost)) > Apn(k1) - Al (k2)+ C(k1, ko, )

m=—1

=:C(k1,k2,%),
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where Pj(+) is the Legendre polynomial of degree I and C(kq,ko,) is the asymptotic noise-
less autocorrelation function of the Fourier transform p(k) in the frequency domain over the
rotation group SO(3). C(k1, k2,%) is a nonlinear quadratic function of p(k). When the projec-
tions are corrupted with noise, C(k1, k2,%) is a biased estimator of C(k1,k2,v). The bias is
captured in the additional term ((k1, k2,)) in (2.8), and its asymptotic expression as N — 0o
is derived in Appendix A.1.

The direct computation of the covariance Cin(k1,k2,%) via (2.8) has high complexity.
Alternatively, C(k1,k2,%) can be computed from the rotation-invariant covariance matrix
and mean of the clean projection images. The covariance matrix and mean image can be
efficiently estimated from noisy images using the fast steerable principal component analysis
(PCA) [43, 44]. In addition, for images modified by the contrast transfer functions, one can
use covariance Wiener filtering (CWF) for the estimation [10]. We shall use C(k1, k2,%) to
denote the estimated C(k1, ka,1)).

Kam further computed the contribution of the subspace of all spherical harmonics with
degree [, using orthogonality of Legendre polynomials [21, 22],

Crlha k) =202 +1) [ Clhn ko) Rlcost) s d
0

(2.9) !
= M \:3 Qﬁv ’ \@3 A\va .
m=—1
Discretizing k into U levels, k € {ui,ug,...,uy}, the (discretized) l-subspace features
Cy(k1,k2) can be organized in a U x U matrix C| of rank 2/ + 1 (assuming U > 2] + 1):
Ci(uy,u1)  Cilur,ug) -+ Cilur,uy)
Ci(uz,ur)  Cyluz,uz) - Ciluz,uy)
(2.10) C =
Ci(uy,u1) Ciluy,uz) - Ci(uy,ur)
Let A; denote the U x (2 + 1) matrix of discretized coefficients { Ay (k) i,
Ap(ur)  Ajgony(ur) - Ay (ur)
Au(uz)  Ap-—1(u2) -+ Ayg(u2)
(2.11) A= A
Auluy)  Ag—ny(ur) - Ay luy)

We then have C; = A; A}, where A; is real for even [ and purely imaginary for odd I. OMR
aims to recover A; from the Cholesky decomposition of Cj: C; = FiF} [9]. The matrix
F'; returned by the Cholesky decomposition is in general different from A; since, for any
orthogonal matrix Oy, it holds that C; = AerNHX\rQU*. OMR then attempts to compute
the orthogonal matrices AO&WH that result in the true but unknown Aj, i.e., such that for
all I, F;0; = A; (with possible discrepancies due to sampling and noise). Since the Cholesky
decomposition of C; is independent for different /, the challenge faced by OMR is to coordinate
the orthogonal matrices to reach a consensus so that {F;0;}; collectively produce the correct
Fourier transform p(k) via (2.4).
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The earlier OMR methods rely on additional information about the density map that is
usually unavailable and thus have limited applicability [9]. Levin et al. [24] later introduced
an improved OMR by projection matching (OMR-PM) that requires (at least) two denoised
projection images to retrieve ADLNhHH. FEach projection image can be used to determine every
other column of Oy, and the relative orientation associated with one of the images is needed to
merge the results for a completed O;. However, the retrieval of AQL%HH from a single image
is a nonconvex problem without a known closed-form solution and the estimated relative
orientation based on the retrieved AQL%HH generally contains error. For these reasons, the
OMR method is unstable. Additionally, since the orthogonal matrices AQL%HH are coupled in
determining the density map p(r), there is no easy way to impose constraints on {0}/, to
ensure the recovered density p(r) corresponds to a nonnegative physical density. As a result,
the recovered p(r) generally has negative values, leading to additional reconstruction errors.

3. Spatial features for the MoM. We propose to formulate the recovery problem in
terms of both the density map p(r) and the orthogonal matrices {O;}% ;. This allows us to
alternate between recovering p(r) subject to nonnegative summation constraints and updating
the orthogonal matrices AQ;%HH with respect to the recovered density p(r) using closed-
form solutions. Starting from an initialization density, we then seek a consensus among the
orthogonal matrices on the spatial density map that satisfies the nonnegative summation
constraints and matches a reference projection image. To this end, we propose spatial radial
and spatial autocorrelation features that are linear and quadratic functionals of p(r). Using
the derived connection between spatial and Fourier autocorrelations, we can finally link the
Fourier autocorrelations to p(r) as well.

3.1. Spatial radial features. From the Fourier slices AW:?: we compute the first-order

o~

moment of the Fourier transform p(k) by averaging S, (k) over all directions of k with the
same norm k:

ANy

(3.1) ZHV 1 \ \ k) - k? sin Oxdyordby, I\\\ sin(kr) p(r) dr

=:M(k),

where ¢ is the azimuth angle of k in the Fourier slice S,. The detailed derivation of (3.1)
is given in Appendix D. As derived in Appendix A.2, debiasing is not needed for the (linear)
Fourier radial feature My (k) in (3.1). Orthogonality of the sine functions yields the sought
spatial radial features.

Spatial radial features. The integration of the 3D density map p(r) on the sphere with
radius r is given by

(3.2) W(r) = w \o ke M(k) - sin(kr) dk — \ \ \ p(F) - 6(r — 7) di.

Radial feature extraction is summarized in Algorithm 3.1. The radial feature W (r) is a
linear functional of the density map p(r). We additionally compute the total mass W), of p(r)
in the real space,
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Algorithm 3.1. Spatial radial feature extraction.

Require: The collection of 2D projection images {S,|n=1,...,N}.
1: Compute S, (k, @) from S, using nonuniform FFT.
2: Estimate the first-order moment My (k) in (3.1), and use it to approximate M (k).
3: Compute the radial feature W(r) in (4.5).
4: Return W(r).

(3.3) W, = \ \ \ p(r) dr = \o Wi ar,

which is a linear constraint on p(r), and W(r) can be evaluated from data by plugging My (k)
defined in (3.1) into (3.2).

3.2. Spatial autocorrelation features. We first expand the density map p(r) using the
real spherical harmonics Y},,(+) in the spatial domain,

00 l
Awm@ b?.v = M MU m?:?,v : M\MSSA%QJ ﬁﬁv >

=0 m=-1

where (0., ) is the angular direction of 7, By, (r) is the spatial spherical harmonic expansion
coefficient given by

(3.5) By (r) = \\\ p(7) - 6(r —7) - Y (05, @) - sin 0z didbrdps

where 4(-) is the Dirac impulse. We then have the following definition.
Spatial autocorrelation feature. The inner product of the spherical harmonic coefficient
vectors { By (r1)},,, and {Bjn(r2)},, is given by

!
(3.6) Ei(r1,r2) = > Bim(r1) - Bun(r2).

m=—1

We call Ej(r1,rs) the spatial autocorrelation feature in that we can compute the autocorrela-
tion function E(rq,72,%) from it as follows:

E(r1,r9,7) = MSASVGV - Py(cos)

1=0
— ez ][] o5 s = ) 60— ) 60, ) i,
ﬂ.ﬁ.ﬂﬁ.w

where 9, 7, is the angle between 7 and 7, ¢ € [0, 7], and E(rq,72,%) is the autocorrelation
function of the density map p(r) in the spatial domain over the rotation group SO(3). The
detailed derivation is given in Appendix B. We note that Kam proposed a more complicated
spatial correlation function calculated from the projection images in [22] which is different
from the autocorrelation function in (3.7).

(3.7)
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Suppose r is sampled from {vy,vs,...,vy}. We group the (discretized) spatial autocorre-
lations into a V' x V matrix E; of rank at most 2 4+ 1 (assuming V > 2] + 1),
Ey(vi,v1)  Ey(vi,v2) -0 Ej(vi,vy)
Ey(v2,v1)  Ei(ve,v2) -+ Ej(va,vy)
(3.8) E =
Ey(vy,v1)  Ei(vy,v2) - E(vy,vy)
According to the definition in (3.6), we can write E; as
(3.9) E,=B/B{,
where B is a V x (21 4 1) matrix
By(vi)  Bjg-1)(v1) -+ By—p(v1)
Bu(vz2)  Byjg-1)(va) -+ By_p(v2)
(3.10) B; = . . . .
Bu(vy) Byjg—1y(vv) -+ By—plvy)

The matrix B; contains the spherical harmonic coefficients { B, (1) }1m of p(r) in the spatial
domain.

3.3. Connection between spatial and Fourier autocorrelations. The proposed spatial
autocorrelations are related to Fourier autocorrelations via a spherical Bessel transform. This
transform can be derived from the connection between spherical harmonic expansion coeffi-
cients of p(r) and p(k). Just like the above spatial expansion coefficients By, (r) in (3.5), the
Fourier expansion coefficients Ay, (k) in (2.4) can also be computed using the density map
p(r). We begin by expanding the plane wave e'*") in spherical harmonics via the Rayleigh
equation [25],

) l
(3.11) H®r —dr NN A Gi(kr) - (V) Ok k) - Y (O ),
=0 m=-1

where ji(kr) is the spherical Bessel function of order ! and Y;"(-) is the complex spherical
harmonic. We then expand p(k) using the complex Y, (-),

(3.12) RElMU M AP (R) - Y™ Ok, 1) »

1=0 m=—1

where Aj"(k) are different from real spherical harmonic coefficients Ay, (k) in (2.4). Combining
(2.3), (3.11), and (3.12), we mmd

(3.13) Ay =ax (V)" [[[ o)tk () 6rior) ar

Expressing Ay, (k) in terms of KAEA , we compute

(3.14) A8y =12 ()" [[[ otr) - ithr) - YinOr.i) ar

Putting together (3.5) and Au.:v, we obtain the following proposition.
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Proposition 3.1. The spherical harmonic coefficients (B, (r))im of p(r) and (A (k))im
of p(k) are related by the following spherical Bessel transforms:

1 > .
_ \ A (k) - Go(kr) - k2 dk,
1 v 0

(3.15) By (1) = 2@

(3.16) »sgimgfaqx@s¢vsgzém%u

where By, (r) is the spherical harmonic coefficient of the density map p(r) and Apy (k) is the
spherical harmonic coefficient of the Fourier transform p(k).

Using the spherical Bessel transforms in Proposition 3.1, we can connect the spatial and
Fourier autocorrelation features as follows:

1 00 00 . ) . .
(3.17) Ei(r1,r9) = %\ A\ Cy(k, ko) - ji(kir1)k? &ﬁv < Ji(kara) ks dks,
0 0

a.é Q;?@u?w \ A \ ngsqéim &:v s:ss:w?.
0 0

As summarized in Algorithm 3.2, we extract the spatial autocorrelation features from the
Fourier autocorrelation features according to (3.17).

To formulate the reconstruction problem in terms of the density map p(r), the autocorre-
lation features must be expressed as functions of p(7). The proposed spatial autocorrelation
feature Ej(r1,72) in (3.6) is a quadratic functional of p(r). Using (3.18), we can also write the
Fourier autocorrelation feature Cy(k1,k2) as a quadratic functional of p(r).

It is convenient to formulate (3.18) in matrix form. To this end, we approximate the
spherical Bessel transform in (3.16) by Gauss—Legendre quadrature (GLQ). Let {¢1,...,qv}
denote the GLQ weights associated with the GLQ sampling locations r € {v1,...,vy} in the
spatial domain and the frequency sampling radii k € {u,...,uy}. The U x (24 1) matrix A;
in (2.11) that contains the coefficients { Ay, (k)}im can be computed as

(3.19) A=QiB,

Algorithm 3.2. Spatial autocorrelation feature extraction.

Require: The collection of 2D projection images {Sy|n=1,...,N}.

1: Compute S, (k, @) from S, using nonuniform FFT.
Estimate the Fourier autocorrelation function Cy(k1, k2,%) in (2.8).
Calculate the debiased and denoised OJQaT ka,1), and use it to approximate C(k1, ko, ).
Extract the [-subspace features Cj(ki, k2) in (2.9), and save them in a matrix C;.
Compute the autocorrelation feature matrix E;:
e Transform each column of C) according to (3.15), and save the transformed matrix as
C.
e Transform cach row of C} according to (3.15), and save the transformed matrix as E;.
6: Return FE;.
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where the (7, )th entry of the V' x U matrix Q; is determined according to (3.16),

(3.20) Qi(vi,uy) = A%ﬂm - Ji(vig) - ewv i
We can then write the Fourier autocorrelation features C; as
(3.21) Ci=AA} =Q[B:B/Q,=Q/EQ,.

We will use this link between Fourier autocorrelations C; and p(r) through the spatial auto-
correlations E; to encourage consistency between the orthogonal matrices and the estimate
of p.

4. Parametric density map. Since the density map has finite spatial support in practice,
the 3D spatial domain is discretized into a G x G x G Cartesian grid. For simplicity we assume
G is odd and let the discrete coordinates range from —(G — 1)/2 to (G — 1)/2. We fix the
center of mass at the central cell (0,0,0). The 3D density map p(r) is then sampled at grid
points within a radius of % from the origin, leading to the following discrete representation:

D
(4.1) p(r) = wa- hir — 1),
d=1

where D is the number of sampling locations, gy = [pa() pa(y) pa(z)]" € R? is the coordinate
of the dth sampling location on the Cartesian grid, h(:) is a nonnegative bump function
associated with the sampling grid, and wg > 0 is the weight corresponding to the dth sampling
location. By abuse of notation, for simplicity we also use p(r) to denote the parametric density
map.

Reference projection. To reduce the computational complexity, we can choose an arbitrary
projection image as the reference projection with an identity rotation matrix R = I and prune
away the grid points that are inconsistent with this reference projection. When the SNR level
is relatively high, the images can be denoised via a low-pass filter. Here we shall denoise the
reference projection using the multifrequency vector diffusion maps (MFVDM) [15]. However,
MFVDM (like many other denoising methods) introduces unknown bias to the denoised image
which makes it no longer suitable to estimate features. Notwithstanding, it can still be used
for support estimation and pruning. Let S(x,7) denote the denoised reference projection, and

let M denote the set of grid points. We then have
G-1
(12) M={ s

() ) > 5 and Jagl < S

where § > 0 is a threshold chosen to filter out those small perturbations in the denoised
image S(z,y). As discussed later in section 5, we also use the denoised reference projection
as additional linear features that play an important role in forming the consensus among the
orthogonal matrices on the spatial density map.

The bump function A(-) in (4.1) should be isotropic and have a controlled effective spherical
harmonic bandwidth. We use the isotropic Gaussian function

2
(1.3) W) = —exp Alwgv V

(2m) 573 2 72
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where 7 is the usual width parameter. Assuming that the grid cell has size 1 x 1 x 1, setting
T= % empirically yielded optimal performance. The isotropic Gaussian h(-) is conveniently
rotation invariant. Its spherical harmonic coefficients decay exponentially with increasing [
and are available in closed form [2], enabling efficient computation of autocorrelation features.
The problem of reconstructing the 3D density map p(r) is then equivalent to recovering the
weights {wy | d=1,..., D} in the sampled discrete representation (4.1).

Using the parametric density map defined by (4.1) and (4.3), we can write p(7) in terms
of real spherical harmonics as

l

D %S
TP.RC bﬁﬁv = M wq - M M Q?:Aﬁ .tdv : M\?:A%? ﬁ\xv s
d=1 =0 m

=

where gy, (1, p4) is the spherical harmonic expansion coefficient of h(r — ) for which a closed-
form expression exists, and Y}, () is the real spherical harmonic function. The derivation of
(4.4) is detailed in Appendix C. Plugging (4.4) into (3.2) and (3.6), we finally express the
proposed spatial radial and autocorrelation features in terms of the weight vector w.
Parametric spatial radial feature. Assuming that the density follows the introduced para-
metric model, there exist real vectors g(r) that let us express W(r) as a linear functional of

the weight vector w = [wy,...,wp]”,

(4.5) W(r)=g(r)w.

The expression for g(r) is derived in Appendix D.
Parametric spatial autocorrelation feature. Similarly, assuming the parametric model holds,
there exist real vectors g;,,(r) such that Ej are quadratics in w,

l
(4.6) Ey(rire)=w’ - Y gin(r1) - gl(r2) | - w.

m=—1|

We note from (4.6) that FEj(r1,72) = Fj(re,r1). Hence we only need to compute spatial
autocorrelations for those triplets {(I,r1,72)} that satisfy r; <rg. The derivations for g, (r)
and (4.6) are given in Appendix E.

As mentioned in section 2.1, we assume that p(r) has compact support and an effective
bandwidth of m. To reduce the computational complexity, we further set a cutoff threshold
L on the spherical harmonic degree | when p(r) in (4.4) can be well approximated by a
function of bandwidth L. Summarizing, the domains of 7, k,l used to compute the features
are 0 <r< %, 0 <k<m, and 0 <[ < L. We approximate the integrals with respect to ¢,
¥, k, and r (cf. sections 2 and 3) by the GLQ [16, 38].

5. OMR-SC. In this section we introduce the proposed OMR-SC. Starting from the initial
density, we update the orthogonal matrices simultaneously with the estimated density so that
they are mutually consistent, while respecting the nonnegativity and total-mass constraints
on the density, and agreeing with the denoised reference projection.

Since we model the density p(r) by a weighted sum (4.1) of Gaussians (4.3) on a grid, the
reconstruction of p(r) is cast as a constrained recovery of the mixture-weight vector w. We
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estimate the weight vector w and update the orthogonal matrices {O;}/; in an alternating
fashion. We begin by presenting OMR-SC with Fourier autocorrelations and then show how
to simply adapt it to spatial autocorrelations.

5.1. OMR-SC using Fourier autocorrelations. As discussed in section 3.3, Fourier auto-
correlations are efficiently computed from spatial autocorrelations using the spherical Bessel
transform (cf. Proposition 3.1). Let us express the spatial autocorrelations in terms of the
weight vector w. Under the parametric representation in (4.6), the (i, j)th entry of the spatial
autocorrelation matrix E; in (3.8) can be written as

(5.1) Ey(vi,v;) = b} (v;, w)by(vj, w),

where b;(v, w) is a vector with (21 4 1) elements,

%MASS %w?v
(-1 ()W 9i1-1)(v)
b(v,w):= ; = ) w.
.Qmmlsﬁevg Sumlcﬁcv

The spherical harmonic coefficient matrix B of size V' x (21 + 1) is then

@WAGTSV

X Vo, W
(5.2) B - bi (v2,0)

SHAS}SV

Fach entry in B;j is a linear function of the weight vector w.
Using A; = Q; B in (3.19), we compute the Fourier autocorrelation matrix C from w as

(3.21 revisited) Ci=AA; =QiBiB| Q,

where A; is purely real for even [ and purely imaginary for odd [. Since the recovery of w
from its quadratic functionals C; is nonconvex and in general challenging, the prospect of
recovering w from the linear functionals in A; is appealing. However, although A; is unique,
the decomposition of C; is not. We have, for any orthogonal O; of size (204 1) x (20 +1), that

(5.3) C,=A,0] (A0 =FF7,

where F; = x:QW. The Cholesky decomposition of C yields F'; for some unknown orthogonal
matrix O that needs to be recovered. The orthogonal matrices {O;}; must be consistent
across the different degrees | € {0,...,L} so that for all I, F;O; = A;, and they generate
the correct density. When the sampling radii k € {uy,...,uy} are fixed, the matrix A; only
depends on w. We thus jointly estimate the weight vector w and update the orthogonal
matrices {O;}/; by alternating between the two tasks.

As mentioned in section 4, we supplement the radial and autocorrelation features by one
denoised reference projection image. Since we cannot recover the absolute orientation from

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/27/23 to 130.126.143.60 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

ORTHOGONAL MATRIX RETRIEVAL WITH SPATIAL CONSENSUS 1411

uniform unknown view projections, we can associate an arbitrary projection with the viewing
direction R = I without loss of generality. This reference projection acts as a regularizer that
is empirically crucial for successful reconstruction.

Let Bj(:) denote the linear operator on w such that Bj(w) = By in (5.2), g(v) is the
measurement, vector that produces the vth radial feature W (v) in (4.5), w is the weight vector
to be recovered, S(z,7) is the denoised reference projection, and Py (x,y) is the projection
of the density map represented by w along the z-direction corresponding to S. We then
formulate the following nonconvex OMR-SC problem to recover the density in the spatial
domain:

minimize f(w,Oy): F,0, - Q;B)(w
minimize M__ Buw)l;

A M w— W)’

(OMR-SC-F) +¢- M ~S(x,y))*

subject to 0 <wg < W),

D

MS&HS\?

d=1

ofo,=00f =1, 1<{0,...,L},

where L is the spherical harmonic cutoff degree and A and £ are the regularization parameters
corresponding to the mean-squared-error (MSE) of radial and projection features which can
be tuned on some training data acquired under the same setting. The constraints on w
in (OMR-SC-F) come from the requirements that the entries of w are nonnegative and the
integration of p(r) in R? equals the total mass W, in (3.3), and they can be easily enforced
in the spatial domain. Together, they define a convex set S that is a simplex,

D
(5.4) S=qw | 0<wg <W, and MUS& =W,

d=1

Initialization. Since the problem in (OMR-SC-F) is nonconvex, the initialization wq di-

rectly affects the final solutions w and ,HQIUHO. We first reconstruct a low-resolution ab initio
model from the downsampled projection images and then use it as the initialization to (OMR-
SC-F). Noting that both the radial and the projection features are linear measurements, the
ab initio model is initialized by solving the following convex problem:

\%4
C b2 -
minimize Y (g(v)"w’ — W ()" + Y (Pur(,y) = 5(x.1))°
v=1 .y
(5.5) subject to 0 <wj; <W,,
D
W —
wly =
d=1
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The above (5.5) is an underdetermined linear problem with multiple globally optimal solutions.
Such a problem can be solved by the projected gradient descent initialized at 0 that favors
the minimum /3-norm solution [14, 17].

In practice, a single initialization often fails to produce a good reconstruction due to the
nonconvexity of (OMR-SC-F). To obtain multiple initializations for multiple trials, we note
that we have access to multiple denoised projection images which generally yield different
solutions to (5.5). We can thus attempt to solve (OMR-SC-F) starting from multiple initial
points and choose the reconstructions w, ﬁthno that minimize the MSE of autocorrelation
features: Muwuo | F10; — QWW;\SV__W. For the experiments later in section 6, we find that 10
random choices for a reference projection generally suffice.

Given an initialization wg, we propose to minimize (OMR-SC-F) by alternating between
solving for O; and w:

e (O-update). Fix w, and update {O;}F_, with respect to w:

minimize f(Oy): |1F,0;, — Q Bj(w v__w
Amav ,HQLJ 0 M : 2
subject to OO, =0,0f =1, 1€{0,...,L}.

This is an orthogonal Procrustes problem, and the closed-form solution for AQL%HH is
[31]

(5.7) o,=v,url,
where V| and U, are obtained from the singular value decomposition of WMHASV@NM,T
(5.8) Bf (w)Q,F=U X V]

e (w-update). Fix {0}, and estimate w with respect to {O;}£ ;:

L
. o e 2
minimize fo(w) .IM__N.JNQN Q; Bi(w)][3

A MU w—W(v)°

5.9 :
(5:9) +MMU Py(a,y) - S(a.y))*
subject to 0 <wg <W),
D
D wg=W,.
d=1

The above (5.9) is a convex problem which can be solved using projected gradient
descent. In the (¢ + 1)th iteration, we have

(5.10) wiy1 = Ps(wy —n -V fa(wy)),
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where 1 > 0 is the step size, V fo(w;) is the gradient at w; from the previous tth
iteration, and the operator Ps(-) projects the gradient descent update onto the convex
set S. We compute the projection Ps(-) efficiently using the method proposed in [14].
The consensus among the orthogonal matrices on the density map begins with the initialization
wp. Under the requirement that w matches the denoised reference projection subject to
nonnegative summation constraints, the consensus in the spatial domain is finally reached
through the alternating updates of AQLN@HH and w. The proposed OMR-SC with Fourier
autocorrelations is summarized in Algorithm 5.1.
5.1.2. Computational complexity. Let N denote the number of projection images and
G x G the size of the image. The complexities of the proposed OMR-SC steps are then as
follows:
(1) Feature extraction. The complexity of feature extraction is O Q< G+ thv.
(2) Optimization with respect to {O;} ;. The overall complexity of computing {O;}
per iteration is O(L3(LG + G?)).
(3) Optimization with respect to w. The overall complexity of computing w per iteration
is O(L*G? + G3log G).

Algorithm 5.1. OMR with spatial consensus using Fourier autocorrelations (OMR-SC-F).

Require: Denoised reference projections {S; | i=1,...,I}, step size 1, convergence
threshold s.

1: Extract the spatial radial features {W(v)}, and Fourier autocorrelation features {C}},.

2: Perform Cholesky decompositions of Fourier autocorrelation matrices {C/};.

3: fori={1,...,1} do

4:  Compute the initialization wg(i) from the spatial radial features {W(v)}, and

the ith reference projection S;.
5. fort={0,1,...,7} do

6: Fix w, (i), and update {O;(7)}; with respect to w;(i) via singular value
decomposition.
T Fix {O,(4)};, and estimate w;1(7) with respect to {O;(i)}; via projected
gradient descent.
g if LWl < ¢ then
9: Convergence is reached, set w(i) = w¢y1(¢), and break.
10: end if
11: end for
12:  Save the ith set of solutions {w(%),{O0;(i)};}.
13: end for
14:  Find the set of solutions that minimizes the MSE of autocorrelation features:
L
(5.11) i=argmin Y| F10(7) — QBi(w(®))]3-
=0

15: Return w = w(i).
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Detailed derivations are given in Appendix F. We only need to go through the projection
images once to extract the features, which is more efficient compared to approaches that
estimate the particle orientations of projection images at every iteration. Additionally, the
nonuniform FFT of projection images can be parallelized and computed on the fly during data
acquisition. For the experiments performed later in section 6, we observed that convergence
was reached after ~ 500 iterations of optimizing AQ;%HH and w in an alternating fashion.

5.2. OMR-SC using spatial autocorrelations. The proposed OMR-SC using spatial au-
tocorrelations (OMR-SC-S) is derived in Appendix G. We empirically observe that the Fourier
autocorrelations perform better than spatial autocorrelations (cf. section 6). We conjecture
that this is due to the implicit spherical harmonic frequency marching effect that is signif-
icantly stronger when using Fourier autocorrelations. Indeed, Figure 12 in Appendix G.1
shows that the gradient norms of Fourier features for lower spherical harmonic frequencies
(degrees) ¢ are much larger than those for higher frequencies at initialization and remain so
through the iterations. This suggests that the low-frequency Fourier features are matched
first and given priority during optimization, which gives rise to the aforementioned implicit
frequency marching effect. By contrast, the differences among the gradient norms of spatial
features are much smaller, and the corresponding frequency marching effect is thus weaker.

5.3. Comparison with earlier OMR methods. As we briefly discussed in section 2.2, the
earlier OMR approach is based on Kam’s (autocorrelation) method, where the I-subspace
features Cj(k1, ko) in (2.9) are used to recover the spherical harmonic coefficients { Ay, (k) bim
in the frequency domain. The feature matrix C; and the coefficient matrix A; are related
as C; = AjA]. OMR performs Cholesky decomposition on C; to produce C; = F;F} and
attempts to recover a set of orthogonal matrices AOL%HH such that F;0; = A;. The main
difficulty OMR faces is how to relate the orthogonal matrices AQL;@HH of the different degrees
I. A naive attempt leads to the following ill-posed optimization problem:

(5.12) minimize |F,0, — Aj||3 forallle{0,...,L}.

1,430
Since the above (5.12) is an independent problem for different degrees I, there is no reason
for the recovered (O;, A;) to be consistent with the true underlying density. To resolve this,
different authors proposed to use different kinds of side information [9, 24]. The orthogonal
extension method [9], for example, assumes a similar 3D structure is known so that we can
compute its spherical harmonic coefficients A] and recover O; by replacing A; with A,

(5.13) min | F,0; — Aj||3 foralllc{0,...,L}.
1

Such additional information is usually unavailable, which limits the method’s practical value.

A different approach known as OMR-PM was introduced in [24] which instead relies on (at
least) two denoised projections with estimated relative rotations to compute the orthogonal
matrices. Let {O;.1}; denote the orthogonal matrices recovered from the first projection,
{02}, the orthogonal matrices recovered from the second projection, x the unknown relative
rotation associated with the second projection, and UM& the corresponding Wigner D-matrix

at degree [. It was shown in [24] that every other column of QNLUMXV should equal the
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corresponding column of Oypg. The relative rotation x is estimated by a dense grid search
over the rotation group SO(3) which tries to match every other column of QEUMXV and
O2. The estimated rotation x is then used to merge {O;1}; and {O2}; to produce the
final solution {O;}f ;. Since the retrieval of {Oy,1}; (or {Oy2};) from a single projection is a
nonconvex problem that does not have a known closed-form solution, this introduces errors
in the estimated rotation , which makes the final merging step unstable. Additionally, the
orthogonal matrices AOL%HH are coupled to one another in determining the density map p(r)
since, for example, they should result in a nonnegative density, but in this formulation there
is no easy way to implement the nonnegativity constraint.

Our proposed OMR-SC approach alternates between recovering the spatial density map
p(r) and updating the orthogonal matrices {O;}}-; with respect to the recovered density
p(r). Tt is thus straightforward to enforce nonnegativity via a projection onto the simplex
in (5.4). Compared to a single projection used by OMR-PM, the 3D density map in the
OMR-SC formulation, together with the appropriate constraints, contains all the information
needed to determine the orthogonal matrices, and the updates of {O;}% , have closed-form
solutions in (5.7). With a suitable initialization as computed in (5.5), OMR-SC is more robust
in recovering the density map and the orthogonal matrices. This is enabled by the new spatial
autocorrelation features and their relation to Fourier autocorrelations in Proposition 3.1.

6. Experimental results. In this section we compare the proposed OMR-SC approach
with the OMR-PM approach on the recovery of 3D density maps.

e We first reconstruct 10 random density maps:” each groundtruth density map is a
mixture of Gaussian components whose means are generated using a 3D random walk
with 500 steps, and variances are set to 1. The model is further scaled to fit within
the ball embedded in a 101 x 101 x 101 Cartesian grid.

e We then reconstruct three protein density maps: (1) the human calcium-sensing re-
ceptor (CaS) density model from the Electron Microscopy Data Bank [27]; (2) the
Holliday junction complex (HJC) density model; (3) the human patched 1 protein
(PTCHI) density model. HJC and PTCH1 maps are synthesized in Chimera [28§]
from their atomic models in the Protein Data Bank. The three models are downsam-
pled and scaled to fit within the ball embedded in a 101 x 101 x 101 Cartesian grid,
with voxels corresponding to cubes with physical side lengths 2.1672 A, 2.5 A, and 1.5
A, respectively.

Without loss of generality, the density maps are normalized so that the total mass of each
density W, = 50. The 2D projection images are generated from N uniformly distributed 3D
rotations. As shown in Figure 2, we generate N = 10,000 noiseless projection images of size
101 x 101 and corrupt them with additive white Gaussian noise (AWGN) so that the resulting
SNR =0.1 as in the typical low-SNR scenario of UVT, where

i E|>,, S y)?
SNR — Power of Signal _ ﬁ z,y g

Power of Noise [ ﬁMU e(a ti
Mﬁa@ ’

2Due to the high computational complexity of UVT applications such as cryo-EM, the number of recon-
structions is generally limited to several density maps.
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(a) (b)

Figure 2. (a) A noiseless 2D projection image. (b) A noisy 2D projection image with SNR =0.1.

6.1. Feature extraction. The integrations involved in feature extraction are computed
according to the GLQ rule. Using a holdout random density as the training data, we empiri-
cally (through trial and error) determined that the following choices provide a good balance
between complexity and accuracy: kmax = 4 as the cutoff frequency (approximate bandlimit)
of the 3D density and its projection images, ® =401 GLQ points for ¢ € [0, 27], V' =101 GLQ
points for € [0,50], U = 51 uniformly sampled points for the frequency bandwidth k € [0, T],
and the spherical harmonic bandwidth L =10. The nonuniform FFT of the projection image
is calculated using the FINUFFT package [4, 5].

The linear radial features do not need to be debiased or denoised. Using the ASPIRE
package [36], we calculate the debiased and denoised autocorrelation features C; via the fast
steerable PCA [43]. As shown in Figure 3, the normalized-root-mean-squared-error of the
features is usually larger for higher spherical harmonic degrees.

6.2. Reconstruction of 3D density maps. The proposed OMR-SC approach leverages
one denoised reference projection image as additional linear features. We denoise this one
projection by MFVDM [15]. Although the denoised images contain unknown bias and cannot
be used for computing MoM features, they can be used as linear “measurements” in our
recovery formulation. As discussed in section 4, we can prune away the sampling locations
{p4}a on the Cartesian grid that are not consistent with the reference projection to reduce
the computational complexity. The regularization parameters A and ¢ in (OMR-SC-F) are
both set to 100 (by monitoring the loss on a training random density map generated under
the same setting), and they are both set to 1 in OMR-SC-S.

As discussed in section 5, we can combine spatial radial features with different denoised
images to compute different initializations for OMR-SC. Here we use 10 randomly selected
projections to perform the reconstructions in parallel. In practice, we first perform ab initio
modeling via OMR-SC, where a low-resolution density map is reconstructed by downsam-
pling the projection images. Specifically, a 33 x 33 x 33 ab initio model is computed for
every density map. We then refine the ab initio models via OMR-~SC again to get the high-
resolution reconstruction. Among all the obtained solutions, we choose the one that minimizes
the “rotation-invariant” MSE of autocorrelation features. On the other hand, the objective
function of OMR-PM is not rotation invariant and depends on the chosen set of projections
[24]. Hence it could not be compared across different sets of projections to select the best
solution. As a result, we use all of the same 10 projections in OMR-PM to achieve the best
performance.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/27/23 to 130.126.143.60 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ORTHOGONAL MATRIX RETRIEVAL WITH SPATIAL CONSENSUS 1417

—wcc

200 1.0

o 40

100

-
a8 L

0.0 0.5 1.0 1.5 0.0 0.5 1.0 15 0.0 05 1.0 15
ki ki ki

(a) Noiseless C (b) Noiseless Cs (c) Noiseless Cio

Ll

0.0 05 1.0 15 0.0 0.5 1.0 15 0.0 0.5 1.0 1.5
K ks K

(d) NRMSE of C: 0.0821 (e) NRMSE of Cs: 0.0197 (f) NRMSE of Cio: 0.1034

Figure 3. Fourier autocorrelation feature C, is estracted from N =10,000 projection images with SNR =0.1.

We also note that OMR-PM uses a different set of autocorrelation features constructed
from the spherical Bessel expansion coefficients agy,s of Ay, (k) [11],

Si
Am.c A (k) = M Qs - Jis(k),

s=1

where jis(k) is the normalized spherical Bessel function. We can see that aj,,s is connected to
A (k) through a linear spherical Bessel transform, and our previous discussion of OMR-PM
based on Aj, (k) would still hold in this case. The proposed OMR-SC could also be adapted
straightforwardly to use aj,s as features, which produces similar performance to Ay, (k).

A standard reconstruction quality metric in UVT is the Fourier shell correlation (FSC).
It measures the similarity between two volumes (p1, p2) with respect to the spatial frequency
and is given by the normalized cross-correlation coefficient between two aligned volumes over
corresponding spherical shells with radius % in the frequency domain [18]:

Sk Pr (k) pa(ka)*
Vb DRI\ /3 i P2

where p1 and ps are the Fourier transforms of the two aligned volumes and k; corresponds to
the ith voxel in the frequency domain. We apply a cutoff threshold of 0.5 on the FSC curve

(6.2) FSC(k) =
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Table 1
Resolutions (in vozel) of recovered random density maps using the OMR-PM and OMR-SC approaches
(FSC cutoff threshold =0.5).

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Noiseless OMR-PM  11.64 11.90 7.00 14.14 11.15 10.95 13.68 9.57 11.93 21.93
OMR-SC-S 8.83 9.32 898 12.06 11.33 833 13.39 12.67 12.24 10.19
OMR-SC-F 6.70 9.62 5.90 7.28 5.94 4.10 10.63 7.48 8.46 5.54

Noisy OMR-PM  34.13 31.55 11.71 21.98 27.32 17.42 28.65 14.03 17.64 26.11
OMR-SC-S 13.09 15.20 7.98 14.73 10.48 6.45 21.37 16.13 14.14 12.15
OMR-SC-F 8.47 10.80 7.42 10.98 9.18 6.01 17.51 8.94 12.14 8.45

Table 2
Correlation coefficients of recovered random density maps using the OMR-PM and OMR-SC approaches.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Noiseless OMR-PM 081 0.69 0.90 0.76 0.75 0.61 0.79 0.86 0.84 047
OMR-SC-S 0.78 0.75 083 0.75 0.76 0.73 0.80 0.75 0.79 0.80
OMR-SC-F 0.92 0.84 0.96 0.92 0.96 0.96 0.83 0.91 0.91 0.91

Noisy OMR-PM  0.39 0.45 0.78 0.56 0.43 050 0.58 0.77 0.67 0.38
OMR-SC-S 0.68 0.62 0.85 0.74 0.75 080 0.62 0.68 0.77 0.67
OMR-SC-F 0.85 0.71 0.92 0.82 0.88 0.89 0.71 0.85 0.77 0.86

to determine the volume resolution [37]. To evaluate how well the reconstruction matches the
groundtruth globally, we calculate another standard metric, the correlation coefficient [1].

6.2.1. Random density maps. Table | shows the resolutions (in voxel) of recovered ran-
dom density maps using OMR-PM and OMR-SC. Table 2 shows the corresponding correlation
coefficients. We see that OMR-SC-F with Fourier autocorrelations generally performs better
than OMR-SC-S with spatial autocorrelations. Without noise, OMR-SC-F performs better
than OMR-PM on all the densities. With noise, OMR-SC-F performs significantly better than
OMR-PM on all the densities. In both cases, OMR-SC-F is more robust across the different
densities than OMR-PM. The information used by OMR-PM and OMR-SC is essentially the
same. As discussed in section 5.3, the performance differences are due to the different problem
formulations and their corresponding optimization procedures.

Using the first and tenth random densities as representative examples, we plot the FSC
curves in Figure 4 and show the 3D and 2D projection views of the reconstructed density maps
in Figures 5 and 6. Additional figures showing the rest of the FSC curves and reconstructed
density maps are given in the supplementary material (UVT_SIIMS_Supplementary.pdf
[local/web 3.45MB]J). We can see that the OMR-PM reconstructions are generally much
blurrier. The quantitative correlation coefficients in Table 2 are also consistent with the vis-
ual observation that 3D structures are revealed better by OMR-SC reconstructions in general.
We also note that there is always a mismatch between the parametric density map in (4.1) and
the groundtruth, since the Gaussian mixtures in the groundtruth are generally not located on
the sampling locations of the Cartesian grid and their variances are different from the one in
the bump function (4.3). Despite the model mismatch, OMR-SC is still able to recover the
density map well.
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(b) Density 10 (D10)

Figure 4. F'SC curves of recovered random density maps D1 and D10 using the OMR-PM and OMR-SC
approaches in the noiseless case and the noisy case (SNR =0.1). The cutoff threshold of 0.5 is used to determine
the resolution (in vozel).

Due to the nononvexity of the problem, the initialization directly affects the performance
of OMR-SC. The proposed initialization scheme draws information from a reference image
and spatial radial features. The performances of the ab initio models produced by OMR-
SC-F are given in Appendix H. Tables 3 and 4 compare the performances of the OMR-SC-
F approaches with the random (R) and proposed (P) initializations. We can see that the
proposed initialization scheme generally leads to better performances except on the noisy
recovery of the densities D9 and D10.

The nonnegativity constraints are important to the robustness of OMR-SC; they ensure
that the orthogonal matrices reach the consensus on a “physical” density map in the spatial
domain. Tables 5 and 6 compare the performances of the OMR-SC-F approaches with and
without the nonnegativity constraints. In terms of correlation coefficient, we can see that
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Noiseless Reconstruction Noisy Reconstruction

Groundtruth OMR-PM OMR-SC-F OMR-PM OMR-SC-F

X-z view X-y view 3D density

y-z view

Figure 5. Density 1 (D1): reconstructions using the OMR-PM and OMR-SC-F approaches in the noiseless
case and the noisy case (SNR =0.1).

OMR-SC-F achieves significantly better performances when the nonnegativity constraints are
included.

6.2.2. Protein density maps. Table 7 shows the resolutions and correlation coeflicients
of recovered protein density maps, Figure 7 shows the FSC curves, and Figures 8, 9, and 10
show the recovered density maps in 3D and 2D projection views. In the noiseless case, we
can see that OMR-PM performs better than OMR-SC on CaS and HJC, and they perform
equally well on PTCH1. However, in the noisy case OMR-PM becomes unstable, and OMR-
SC performs much better on all three density maps. In particular, for the noisy reconstruction
of PTCH1, the OMR-SC-S that uses spatial autocorrelations outperforms the OMR-SC-F that
uses Fourier autocorrelations.

We also compare the performances of the OMR-SC-F approaches in Tables 8 and 9, where
we either used random initializations or removed the nonnegativity constraints. The results
also show that the proposed initialization and the nonnegativity constraints generally lead to
better and more robust performances. In terms of correlation coefficient, although OMR-SC-
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Figure 6. Density 10 (D10): reconstructions using the OMR-PM and OMR-SC-F approaches in the noise-
less case and the noisy case (SNR =0.1).

Table 3
Resolutions (in vozel) of recovered random density maps using the OMR-SC-F approaches with the random
(R) and proposed (P) initialization schemes (FSC cutoff threshold =0.5).

DI D2 D3 D4 D5 D6 D7 D8 D9 D10

Noiseless OMR-SC-F (R) 6.48 10.99 6.09 7.47 6.86 4.27 11.21 9.43 12.59 5.93
OMR-SC-F (P) 6.70 9.62 5.90 7.28 5.94 4.10 10.63 7.48 8.46 5.54

Noisy OMR-SC-F (R) 9.72 18.73 7.23 13.64 8.83 5.97 16.39 14.51 9.78 7.29
OMR-SC-F (P) 8.47 10.80 7.42 10.98 9.18 6.01 17.51 8.94 12.14 845

F without the nonnegativity constraints performs better on the particular noisy recovery of
PTCHI, it is not as robust as the OMR-SC-F with the constraints.

7. Conclusion. In an effort to expand the applicability of the method of moments in
UVT, we proposed spatial radial and autocorrelation features that can be expressed as linear
and quadratic functionals of the density map. Via a spherical Bessel transform, the spa-
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Table 4
Correlation coefficients of recovered random density maps using the OMR-SC-F approaches with the random
(R) and proposed (P) initialization schemes.

D1 D2 D3 D4 D5 D6 Dr D8 D9 D10

Noiseless OMR-SC-F (R) 0.90 0.78 0.95 091 0.90 094 0.81 0.79 0.73 0.91
OMR-SC-F (P) 0.92 0.84 0.96 0.92 0.96 0.96 0.83 0.91 0.91 0.91

(
(P)
Noisy OMR-SC-F (R) 0.78 0.57 0.93 0.71 0.87 0.89 0.71 0.67 0.87 0.89
OMR-SC-F (P) 0.85 0.71 0.92 0.82 0.88 0.89 0.71 0.85 0.77 0.86

Table 5
Resolutions (in vozel) of recovered random density maps using the OMR-SC-F approaches with (w/) and
without (w/0) nonnegativity constraints (FSC cutoff threshold =0.5).

D1 D2 D3 D4 D5 D6 Drv D8 D9 D10
w/o) 8.98 9.54 11.16 10.67 8.01 6.27 15.24 9.03 16.16 6.54

Noiseless OMR-SC-F

(
OMR-SC-F (w/) 6.70 9.62 5.90 7.28 5.94 4.10 10.63 7.48 8.46 5.54
Noisy OMR-SC-F (w/o0) 9.68 13.30 8.54 68.03 21.32 10.19 16.18 20.79 17.39 10.64
OMR-SC-F (w/) 8.47 10.80 7.42 10.98 9.18 6.01 17.51 8.94 12.14 8.45

Table 6
Correlation coefficients of recovered random density maps using the OMR-SC-F approaches with (w/) and
without (w/0) nonnegativity constraints.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Noiseless OMR-SC-F (w/o) 0.78 0.75 0.76 0.85 0.86 0.75 0.78 0.83 0.68 0.87
OMR-SC-F (w/) 0.92 0.84 0.96 0.92 0.96 0.96 0.83 0.91 0.91 0.91

Noisy OMR-SC-F (w/o) 0.74 0.64 0.88 0.22 0.53 0.64 0.70 0.62 0.68 0.76
OMR-SC-F (w/) 0.85 0.71 0.92 0.82 0.88 0.89 0.71 0.85 0.77 0.86

Table 7
Resolutions (A) and correlation coefficients of recovered protein density maps using the OMR-PM and
OMR-SC approaches (FSC cutoff threshold =0.5).

Resolution (A) Correlation coefficient
CaS HIC PTCH1 CaS HIC PTCH1

Noiseless OMR-PM 13.84 26.59 18.92 0.95 0.88 0.86
OMR-SC-S 16.44 40.26 20.46 0.89 0.74 0.87

OMR-SC-F 14.04 29.38 16.52 0.93 0.78 0.86

Noisy OMR-PM 29.49 95.42 44.51 0.77 0.53 0.69
OMR-SC-S 28.78 38.23 43.73 0.76 0.73 0.74

OMR-SC-F 16.15 36.82 31.38 0.87 0.73 0.73

tial autocorrelations provide a closed-form link between the Fourier autocorrelations and the
sought density. Prior work noted that (under realistic assumptions) the autocorrelation fea-
tures determine the spherical harmonic coefficients of the density map up to a set of unknown
orthogonal matrices. But that prior work only attempted to recover the a priori uncoupled
orthogonal matrices. Due in part to the functional forms of the used features, recovering the
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Figure 7. FSC curves of recovered protein densily maps using the OMR-PM and OMR-SC' approaches in
the noiseless case and the noisy case (SNR =0.1). The cutoff threshold of 0.5 is used to determine the resolution
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Figure 8. Human CaS: reconstructions using the OMR-PM and OMR-SC-F' approaches in the noiseless
case and the noisy case (SNR =0.1).

correct matrices that “agree” on a proper density estimate that satisfies the problem-specific
constraints has been challenging. The challenge has been exacerbated by the nonconvexity of
the involved optimization problems.

In this paper we addressed the first challenge by the newly proposed closed-form spatial
features, and we greatly alleviated the second, nonconvexity challenge, by designing an effi-
ciently computable initial density. We then formulated a joint recovery of the density map
and the orthogonal matrices in an alternating fashion, constraining the density map to be
(1) nonnegative, (2) compactly supported, (3) of correct total mass, and (4) consistent with
the denoised reference projection. Experiments show that the proposed OMR-SC is more ro-
bust and performs much better in the the presence of noise than the previous state-of-the-art
OMR-PM.

The main drawback of the proposed OMR-SC is that it needs a large number of projec-
tion images to counter the noise and extract features of sufficient quality, especially at high
spherical harmonic degrees. A naive attempt to use off-the-shelf (or even bespoke) denoisers
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Figure 9. HJC: reconstructions using the OMR-PM and OMR-SC-F approaches in the noiseless case and
the noisy case (SNR =0.1).

fails; since current image denoising methods only aim to improve image quality, they intro-
duce typically unknown bias which makes them unsuitable for feature extraction. While we
could improve the situation by denoising the extracted features, it is an interesting and impor-
tant challenge to design schemes that simultaneously extract features and denoise projection
images. Further, like prior work, OMR-SC relies on first- and second-order moments. Using
higher-order moments is challenging since, for a fixed SNR, noise amplification and the related
computational complexity grow exponentially with the moment order.

Another major challenge is the nonconvexity introduced by the orthogonality constraints.
We proposed an effective computational strategy that greatly reduces the impact of this
challenge: a data-dependent, efficiently computable initialization reminiscent of spectral ini-
tialization in phase retrieval with random measurements. Importantly, the reconstructions for
multiple initializations can be carried out in parallel, and we empirically found that a small
number of initialization (=2 10) suffices to obtain a good reconstruction. Alas, unlike for phase
retrieval with random measurements, existence of theoretical guarantees for deterministic mo-
ments used in our approach remains an open question.
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Figure 10. PT'CHL: reconstructions using the OMR-PM and OMR-SC-F approaches in the noiseless case

and the noisy case (SNR =0.1).

Table 8

Resolutions (A) and correlation coefficients of recovered protein density maps using the OMR-SC-F ap-
proaches with the random (R) and proposed (P) initialization schemes (FSC cutoff threshold =0.5).

Resolution (A) Correlation coefficient
CaS HJC PTCH1 CaS HJC PTCH1
Noiseless OMR-SC-F (R) 15.99 26.12 30.00 0.85 0.78 0.74
OMR-SC-F (P) 14.04 29.38 16.52 0.93 0.78 0.86
Noisy OMR-SC-F (R) 31.78 41.88 28.20 0.75 0.61 0.71
OMR-SC-F (P) 16.15 36.82 31.38 0.87 0.73 0.73

Appendix A. Noisy feature debiasing. Let P(x,y) denote the noiseless projection image
of size G x G, and the noisy image S(z,y) = P(x,y) + €(z,y). We compute the frequency

component Wge}@v using the discrete (nonuniform) Fourier transform
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Table 9
Resolutions (A) and correlation coefficients of recovered protein density maps using the OMR-SC-F ap-
proaches with (w/) and without (w/o0) nonnegativity constraints (FSC cutoff threshold =0.5).

Resolution (A) Correlation coefficient

CaS HJC PTCH1 CaS HJC PTCH1
Noiseless OMR-SC-F (w/o) 14.23 39.62 24.27 0.92 0.67 0.77
OMR-SC-F (w) 14.04 29.38 16.52 0.93 0.78 0.86
Noisy OMR-SC-F (w/o) 17.11 72.89 32.68 0.85 0.58 0.77
OMR-SC-F (w/)  16.15 36.82 31.38 0.87 0.73 073

S(ka, ky) MUMUm%Al [k \a; C.Aw@éi@év

= .wﬁ.w Aﬂw —+ mv )
where p is the vectorized projection image P(z,y), € is the vectorized noise €(z,y), and fy, is
the vectorized exponential term to compute S(k).

(A1)

A.1l. Fourier autocorrelation feature. When the number of projection images goes to
infinity, i.e., N — oo, according to the strong law of large numbers, the sample average
converges almost surely to the expected value. The average with respect to the projection
images in (2.8) can thus be replaced by an expectation operator. The bias term ((ki, k2,v)
is then
1 2m

AQAT \@mg @v =E _Hl

5 fe.p+e) - fi, " (p+e) %L

(A.2) s
Lim Fip T3P %w%

where ¢, = £k1 and g, +1 = £ka. The noise €, is modeled as AWGN with variance Q [6].

Since the AWGN noise € is independent from the projection image p and E[e] =0, we :m:\m
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From the above (A.3), we can get the following bias term:

1 wﬂﬁ—m\uﬂ x T &
3 J, Elfhe gile] o
1 [ i . .
=5r ) BN 2@ e )| D AG) e || den
? J
H_y 27 . " . 9 . « .
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) 7]

27
— W ; MU?E,QNS ‘E [€] +MU.? ) fi,(5) - Eleie;] deox,
: i#]

27
B Y g [ 056 den,

(A.4) HEE.MMW\W% AL.AEL@% ﬁ ; C di,
z oy

Since the noise € is additive white Gaussian with variance o2, we have that E[¢?] = o2.

€ €

bias term of the autocorrelation function is then

(A5) C(k1, k2, 9) HQW.MMW\”:Q@ AIT (k1 — ko)™ ﬁ M @ depr, -
x oy

The

A.2. Fourier radial feature. When the number of projections images goes to infinity, the
average with respect to the projection images in (3.1) can also be replaced by the expectation

operator. We then have

2 2

1 27 " 1 27 )
E[fkp] dowt 5o | M&UENVE& dpr

E T / k) %L - TEfLp+e)] den
(A.6) ~or A
1 21

_ = T

We can see that we do not need to perform debiasing on M (k) since E[e] = 0.

Appendix B. Autocorrelation function in the spatial domain. Using (3.5), the spatial

autocorrelation feature Ej(r1,r2) can be rewritten as
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N
Ey(ry,r2) = MU Bim(r1) - Bin(r2)

_ 6(r1 —71) - p(T2) - §(rg — 72)
\\\ JIf oo

X MU Yim (05,5 07,) - Yim (05, p3,) dT1d72

= r1 —71) - p(re) - 6(re — 7a)
e

90+ 1
2 P (costs, 5,) divdis,
47 ’

where ¥z, 7, is the angle between 71 and 73.
The autocorrelation function E(r1,r2,1) can be computed from Ej(ry,re) using the com-
pleteness of Legendre polynomials as follows:

X

mﬂ\\.fﬂ.wv@v = MUMNG»HL:M . mAOOm@V

_ 6(r1 —71) - p(T2) - 6(r2 — 72)
w2 Il J]] oo

H wN._.H zz
x |M ——Pi(coss, 7.) - Pi(cosy) dirdiy

= r1—71) - p(T2) - 0(ra — 72)
=l [

— - 0(cos s, 7, — costp) dridiy

2 d(ry —71) - p(2) - 6(r2 — 72)
5 ol 1] e

X 0(V7, 7y — ) dPrdrg,

(B.2)

where ¢ € [0, 7].

Appendix C. Spherical harmonic expansion of the Gaussian basis function. The Gauss-
ian basis function at the sampling location p, is

1 Lr — pgll3
C.1 h(r — H|u@€AI|| .
GV )= e
It can be expanded in real spherical FNEBOEOP
AOMV ?A? - t& M M .Q?: vt&v M\ A%ﬁv A_DQ.V )

=0 m=-I
where Y}, (0, ©r) is the real spherical harmonic function of degree [ and order m, and
9im (7, ) is the expansion coefficient,
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2 T
in(ropd) = [ [ b= 1a) Vi Oror) dbdi
0

1 1 2
=———e¢exp A s __.:g__mv \ \ exp Aﬁ tdv “Yim (0r, or) sin6,.d0,dp, .
(2m)203 2

(1) When py =0, we have

(C.3)

1 172 1
(C.4) h(r —0) |Amiwo1w exp AIMMV Var | -] —

= goo Aﬁ Ov : %@oﬁmti ﬁt;v )

where Yoo (0u,, opu,) = 1%.
(2) When p; # 0, we can use the Funk—Hecke formula and get

2 pm ?nﬁt&

\ \, exp A 5 v Yy (0r, or) sin b, dbrdp,

o *ir -l
- c(r, || pqll2

S ),
where ¢;(r, ||pg4||2) is the Legendre series expansion coeflicient of exp A v Let ¥y pu,
denote the angle between r and p,, and x = cost, . We can compute ¢;(r, ||pegll2)
as follows:

2041 [* 7| gll2 - K

atr i) =25 [ oo (T2 PG

(C.6) -t

™

ﬁ__:g__wv
T s @411 A| g
gl © B D (T

where Pj(-) is the Legendre polynomial and I,(-) is the modified Bessel function of

the first kind of order v. To avoid numeric overflow, we often use the scaled Bessel
function I,,(-) instead:

= (rlleall2 rl|peqll2 rllpeall2

The expansion coeflicient g, (7, p4) is then

r— 2
G (T t&vlhmﬁuﬂ MA _“@&__wvv

(C.8)

x SgA%ti ﬁtgv .
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Appendix D. Linear formulation of spatial radial features. We first give the detailed
derivation of (3.1),

1 M1 e
umMm\ Su(k) di
N—oo gowﬁ o P(k) - k? sin O dprdby
B " [y k2 sin b deogdoy,
(3.1 revisited) _ \\ %owﬁ I e~ kT2 5in 0), dbrdyr, () dr
O[T k2 siny, dgpdby,

2 —ik ” .

mﬂ &ﬁ\a,ﬁ ,\Joﬁ \aw sin %?i &%?i

- [ snr) plr) dr,

where ¢ is the azimuth angle of k in the Fourier slice W: and (0gr,pkr) is the angular
direction of k with respect to r when r was selected as the pseudo-z-axis during a change of
coordinates.

As derived in (4.5), we can compute the radial feature W (r) as

B \\\%% (A
HMSQ %\QUA 5 +q_w§__wv

([ [ o (P85 st ) ),

which can be simplified as

D
(D.2) W(r)=> wa-g(r,pg)-
d=1
(1) When r =0, we have
1 H__t&__wv
D.3 r, = — 3 - €X .
03 om0 = s e (5144

(2) When 7 #0 and ||p4|l2 =0, we have

2
D4 r H%:b.%ox f}| .
(D-4) 9(r, pa) S eXp
o
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(3) When r # 0 and ||peg4ll2 # 0, by using (C.5), (C.6) and setting [ = 0,m = 0, we can

compute
™ Q;__E__wv
[ — .Q...NP —_— .
2| pall2 : A o

2w M
(D.5) \ \ exp A av sin6; dfpdp; =4 -

Plugging (D.5) into (D.1), and using the scaled Bessel function in (C.7), we have

(D.6) m?:gv|mmx@m 1(r— __t&__wvmv 7 Aﬁ_ww__wv .

02 2 02

N

We then have the following measurement vector g(r):

(D.7) g(r)=1lg(r,pm) glrimy) - glrpup)”.

Appendix E. Quadratic formulation of spatial autocorrelation features. As derived in
(3.6) of section 3.2, the autocorrelation feature Ej(ri,r2) is given by

Ey(r1,72) M \\\ r1—71) Yim (05, 05,) sin by, di1dbs, des,
AH.C m=—I

\ \ \ 5(rs — 72) - Yim (05, 07,) sin O, diadfs, g7,

Using (4.4), we can compute the following integration:

\\\ 3(r —7) - Yim (07, p7) sin 0z drdfzdeps

B (r)

D oo U

MU M M e ( t& \\ 1 (075 97) + Yi (07, 07) sin 05 dOzdps
D

S

W I'm’ T t&v QQ HC%QS\H\:&

=w!gp,(r).
Using (E.2), we can get the quadratic formulation of Ej(r1,rs):

l
NNA%HZ\,MV = M gﬂm?:fzuv Qmmﬁ@:wvg

m=—I

(4.6 revisited) N
HGS. MU Q?:Q.HV.QW:‘TJV Cw,
m=—I1
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where w = [w1, ...,wp|! and the real measurement vector g, (r) is

(E.3)

Q?:sz = ENSA\? .QAV SSGJ twv T QNEA%, tbv_ﬂ .

Appendix F. Computational complexity. Let ® denote the number of selected GLQ

points

along the dimension of ¢, V denote the number of selected GLQ points along the

dimension of r, U denote the number of sampling points along the dimension of k, and L
denote the spherical harmonic bandwidth. There are a total of N projection images, and the

size of

the projection image is G X G. In general, the number of sampled points ®, V.U scales

linearly with G, i.e., O(G). For simplification, we shall give the complexity in terms of L, N,
and G. The proposed OMR-SC approach consists of the following three steps with different
computational complexities:

(1)

(2)

Feature extraction. The complexity of computing the Fourier-Bessel expansion m_uw

of C(k1,ka,1) using the fast steerable PCA and CWF is O(N G?). The complexity of
calculating {C)(k1, ko) }; from Cpp is O(LG?). The complexity of performing Cholesky
decompositions of {C}}; is O(LU?) = O(LG?). The overall complexity of extracting
the Fourier autocorrelation features is O(NG? + LG3 + LG?) = O(NG? + LG®). The
complexity of calculating the nonuniform FFT AW:QS @) }n from N projection images
is O (NG?logG). The complexity of calculating {M(k)}), is O(NU®) = O(NG?).
The complexity of calculating {W (1)}, is O(VU) = O(G?). The overall complexity of
extracting the spatial radial features is O AZQM logG + NG? + QMV =0 AZQM log Qv.

The overall complexity of feature extraction is as O Q< G? + LG3 + NG?log Qv =
O (NG3+ LG?).

Optimization of {O;},. The complexity of computing { B} (w)Q, F},is O(L*(LV L+
VUL)) = O(L3(LV + VU)) = O(L*(LG + G?*)). The complexity of performing
singular value decomposition of {B;(2)*Q,F;}; is O(L*). The complexity of com-
puting {V,U}}; is O(L'). The overall complexity of computing {O;}/, is thus
O(L3(LG + G?)).

Optimization of w. The complexity of computing the vector by(r, w) is O(Ir?). Since V
and G are typically in the same order as G, i.e., O(V) = O(U) = O(G), the complexity
of computing {Bj(w)}; is then O(L2G?3). Computing {A;}; via (3.19) only increases
the complexity of evaluating features to O(L?G®+L2G?). The complexity of evaluating
a radial feature g(v)Tw is O(r?), and the complexity of evaluating all radial features
is O(G?). The complexity of computing the gradient Vfao(w) is O(L?G®), and the
projection operation Ps(-) has a complexity of O(G%logG). The overall complexity
of computing w is O(L*G? + G?log G).

Appendix G. OMR-SC-S. For the spatial autocorrelation feature matrix E;, we have,
for any orthogonal O; of size (21 + 1) x (21 + 1), that

(G.1)

E,= B0/ 0,B} = PP},
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where P; = WNQN is obtained via the Cholesky decomposition of E;. The formulation of
OMR-SC-S is then

Bﬁwswﬁm f(w,0): MU__NUNQN Bi(w)lf3
Hi=o 1=0

+A- MU Tw — S\?va

V=

(OMR-SC-S) +¢- M (Pw(,y) — S(x,y))?

subject to 0 <wg < W),

D

MUS&HS\?

d=1

ofo,=00f =1, 1€{0,...,L}.

As summarized in Algorithm G.1, we can compute AOL%HH and w in a similar alternating
fashion as in section 5.1.

G.1. Performance comparison of spatial and Fourier autocorrelations. As shown in
Tables 1 and 2, OMR-SC-F performs better than OMR-SC-S. To find out possible causes
for the performance differences, we take a closer look at the two features. Take the density
“D1,” for example; as shown in Figure 11, the energy of spatial spherical harmonic expansion
coefficients is more evenly distributed across different degrees than that of Fourier spherical
harmonic expansion coefficients, and the energy of Fourier expansion coefficients is mostly
concentrated in the first few degrees. As a result, OMR-SC puts more effort into minimizing
the errors from the lower spherical harmonic degrees when Fourier autocorrelations are used.

0.14 ———————————————— , x10%

0.12

04
>
2008 | )
i~ o
o ©
@ o
3006 f 5
2 E
L5} ©
w &

0.04

0.02

0
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Spherical harmonic degree Spherical harmonic degree
(a) Spatial expansion coefficients (b) Fourier expansion coefficients

Figure 11. Energy distributions of spatial and Fourier spherical harmonic expansion coefficients.
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Algorithm G.1. OMR-SC-S

Require: Denoised reference projections {S; | h=1,..., H}, step size 1, convergence
threshold s.
1: Extract the spatial radial features {W(v)}, and spatial autocorrelation features {F;};.
2: Perform Cholesky decompositions of spatial autocorrelation matrices {E;};.
3. for h={1,...,H} do
4 Compute the initialization w(7) from the spatial radial features {W(v)}, and
the ith reference projection S;.

5: for t={0,1,---,7} do
6: Fix wy (i), and update {O;(7)}; with respect to w (i) via singular value
decomposition.
T Fix {O,(i)};, and estimate w1 (¢) with respect to {O;(i)}; via projected gradient
descent.
8: if % <, then
9: Convergence is reached, set w(i) = w;;1(4), and break.
10: end if
11: end for
12:  Save the ith set of solutions {w(%),{0;(9)};}.
13: end for
14:  Find the set of solutions that minimizes the MSE of autocorrelation features:
L
(G.2) i=argmin )| POy(i) — Bi(w(i)|l3
=0

15: Return w = w(1).

This can be verified by comparing the gradient norms of OMR-SC-S and OMR-SC-F. As
shown in Figure 12, the gradient norms of OMR-SC-S are more evenly distributed, and the
reductions of the gradient norms through the iterations are generally the same across different
degrees, whereas the gradient norms of OMR-SC-F are much larger in the first three degrees,
and the reductions of the gradient norms through the iterations are more significant in the first
three degrees, which leads to a much stronger spherical harmonic frequency marching effect.
OMR-SC-F thus focuses more on recovering the low-resolution base structure of the density
determined by the lower-degree spherical harmonic expansion coefficients, which proves to be
beneficial during reconstruction.

Appendix H. Ab initio models from OMR-SC-F. We calculate the resolutions and cor-
relation coefficients of the ab initio models from OMR-SC-F by downsampling the projection
images. As discussed in section 6.2, a 33 x 33 x 33 ab initio model is computed for every
density map. Tables 10-12 show that the refinements are generally significantly better than
the ab initio models. In particular, due to the noisy features, the refinement of PTCHI in the
noisy case turns out to be worse than the ab initio model.
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Figure 12. Gradient norms of OMR-SC-S and OMR-SC-F.

Table 10
Resolutions (in wvozel) of the ab initio models and refinements produced by OMR-SC-F (FSC cutoff
threshold =0.5).

OMR-SC-F D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Noiseless Ab initio 20.88 30.77 11.83 12.21 15.29 13.70 32.36 13.97 14.20 13.76
Refinement 6.70 9.62 5.90 7.28 5.94 4.10 10.63 7.48 8.46 5.54

Noisy Ab initio 12.76 22.88 11.35 29.67 24.39 10.91 42.19 17.57 16.86 11.51
Refinement 8.47 10.80 7.42 10.98 9.18 6.01 17.51 8.94 12.14 8.45

Table 11
Correlation coefficients of the ab initio models and refinements produced by OMR-SC-F.

OMR-SC-F D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Noiseless ~ Ab initio 0.58 043 080 079 0.67 0.64 047 076 071 0.71
Refinement 0.92 0.84 0.96 0.92 0.96 0.96 0.83 0.91 0.91 0.91

Noisy Ab initio 0.74 052 080 040 049 0.72 0.46 0.69 0.75 0.76
Refinement 0.85 0.71 0.92 0.82 0.88 0.89 0.71 0.85 0.77 0.86

Table 12
Resolutions (A) and correlation coefficients of the ab initio models and refinements produced by OMR-SC-F
(FSC cutoff threshold =0.5).

Resolution (A) Correlation coeflicient
OMR-SC-F CaS HJC PTCH1 CaS HJC PTCH1
Noiseless Ab initio 25.77 45.21 27.08 0.87 0.69 0.80
Refinement 14.04 29.38 16.52 0.93 0.78 0.86
Noisy Ab initio 50.64 86.21 30.67 0.74 0.62 0.79
Refinement 16.15 36.82 31.38 0.87 0.73 0.73
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