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Abstract—In-memory key-value caches are widely used as a performance-critical layer in web applications, disk-based storage, and
distributed systems. The Least Recently Used (LRU) replacement policy has become the de facto standard in those systems since it
exploits workload locality well. However, the LRU implementation can be costly due to the rigid data structure in maintaining object
priority, as well as the locks for object order updating. Redis as one of the most effective and prevalent deployed commercial systems
adopts an approximated LRU policy, where the least recently used item from a small, randomly sampled set of items is chosen to evict.
This random sampling-based policy is lightweight and shows its flexibility. We observe that there can exist a significant miss ratio gap
between exact LRU and random sampling-based LRU under different sampling size Ks. Therefore existing LRU miss ratio curve
(MRC) construction techniques cannot be directly applied without loss of accuracy. In this paper, we introduce a new probabilistic stack
algorithm named KRR to accurately model random sampling based-LRU, and extend it to handle both fixed and variable objects in
key-value caches. We present an efficient stack update algorithm that reduces the expected running time of KRR significantly. To
improve the performance of the in-memory multi-tenant key-value cache that utilizes random sampling-based replacement, we propose
kRedis, a reference locality- and latency-aware memory partitioning scheme. kRedis guides the memory allocation among the tenants
and dynamically customizes K to better exploit the locality of each individual tenant. Evaluation results over diverse workloads show
that our model generates accurate miss ratio curves for both fixed and variable object size workloads, and enables practical,
low-overhead online MRC prediction. Equipped with KRR, kRedis delivers up to a 50.2% average access latency reduction, and up to a
262.8% throughput improvement compared to Redis. Furthermore, by comparing with pRedis, a state-of-the-art design of memory
allocation in Redis, kRedis shows up to 24.8% and 61.8% improvements in average access latency and throughput, respectively.

Index Terms—Application servers, multi-tenant, LRU, modeling methodologies, memory allocation.
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1 INTRODUCTION

TO reduce the latency of accessing back-end servers,
today’s web services pervasively adopt in-memory

key-value caches in the front end which cache frequently
accessed objects. For large-scale web services, key-value
caches like Redis and Memcached [1], [2] are crucial to
ensure low-latency service when serving enormous work-
loads. Compared to a dedicated cache that serves a single
application usage, a multi-tenant cache allows multiple
applications to share a single cache instance, where the
available memory is partitioned for each tenant to meet their
caching requirements. Due to the limited size of memory, an
in-memory key-value cache needs to be configured with a
fixed amount of memory, thus maximizing memory utiliza-
tion of the shared memory is a key to delivering the best
system performance.

In a long history, the miss ratio curve (MRC) has been
a useful tool for cache memory management [3], [4], [5],
[6], [7], [8], [9], which is a function mapping from cache
sizes to miss ratios. Given the MRC of a workload, one can
immediately know the miss ratio for any cache allocation.
Since accesses in real-world commercial key-value caches
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show high data locality [5], [10], LRU becomes a good
choice as it can exploit the locality well. As of today, most
studies on efficient MRC construction are focused on the
LRU cache [3], [6], [11], [12], [13]. However, exact LRU im-
plementation can be costly. In software caches, prioritizing
items according to their last-access-time usually relies on
linked structures to book-keep their orderings [14], and item
evictions require list operations including pointer updates.
All of these introduce space overhead and computation
overhead. In addition, each time when an item is accessed,
the LRU list must be locked to facilitate the update of
corresponding LRU priority, resulting in extra performance
degradation [15]. Memcached, another popular key-value
cache, only maintains the LRU structure at the slab class
level [2].

To avoid using expensive ordered-data structures and to
improve performance, many existing schemes have adopted
the idea of random sampling: on eviction, the cache ran-
domly selects a small number of items and then evicts the
item with the lowest priority. Ideally, the evicted item from
a set of relatively small random sampled items could closely
approximate the lowest priority in the whole cache [14].
The commercial in-memory cache, Redis, applies an approx-
imated LRU policy [19] that only needs to keep track of the
access time of each object. On an eviction, the candidate
with the oldest access time is selected from a pool consist-
ing of randomly sampled keys. Experiments have demon-
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strated that, with a relatively small sampling size, random
sampling-based LRU closely approximates exact LRU. For
simplicity, we use K-LRU to denote a random sampling-
based LRU policy, where K represents the sampling size.

Years of research have improved the asymptotic com-
plexity of modeling exact LRU MRC. For a workload of N
references to M distinct objects, the baseline Mattson’s stack
distance algorithm takes O(NM) time. More recent designs,
such as Footprint [12], Statstack [13], and AET [21], improve
it to O(N). However, those algorithms may lose accuracy in
K-LRU (see Section 2.2). Additionally, the recent research on
cache-sharing models that guide memory allocation among
the tenants, including LAMA [5], mPart [22], pRedis [24],
and Memshare [25], are all based on the exact LRU policy.
To the best of our knowledge, the memory management
for the multi-tenant key-value cache that employs K-LRU
still needs to be addressed. This paper develops an efficient
algorithm to model random sampling-based LRU and con-
struct the K-LRU MRC accurately. Using such a model, we
propose a multi-tenant cache memory partitioning scheme
to improve cache performance. This paper makes the fol-
lowing contributions:

• To accurately model the behavior of the K-LRU
cache, we present a new probabilistic stack algo-
rithm, KRR, which statistically approximates the K-
LRU policy with arbitrary K . When K is relatively
large, KRR closely approximates the LRU policy.
When K = 1, KRR degenerates to Mattson’s RR
stack algorithm [41], a stack algorithm statistically
equivalent to the random replacement policy.

• We propose an efficient backward stack update
mechanism that reduces KRR’s expected running
time from O(NM) to O(NlogM). Together with the
spatial sampling technique [3], we further reduce
the time overhead to a tiny magnitude which makes
it practical for constructing a K-LRU MRC online.
We extend KRR by applying a new byte-level stack
distance estimation algorithm to accurately handle
variable object sizes.

• We propose kRedis, a multi-tenant memory partition
system, which is guided by merged K-LRU MRCs
and is aware of tenant miss latency. Inspired by
our previous work, DLRU, which explores the con-
figurable random sampling size K to improve the
single-tenant in-memory cache performance [27], this
paper presents a new memory arbitration scheme
dynamically configures the random sampling size
K for each individual tenant to adapt to access
pattern changes, exploring the possible miss ratio
gap between various K options. We adopt a new
multi-dictionary design to increase the efficiency of
random sampling for the individual tenants.

• Using MSR and Twitter workloads [29], [32], we
show that KRR yields a highly accurate MRC for
K-LRU cache with low space and time overhead.
And the performance evaluation shows that kRedis
attains up to a 50.2% lower average access latency,
and up to a 262.8% higher hit throughput than Redis.
When compared to pRedis, a state-of-the-art design
of memory allocation, kRedis yields up to 24.8% and

61.8% improvements in access latency and through-
put, respectively.

The rest of the paper is organized as follows. We review
MRC construction techniques and the opportunities in de-
signing latency- and locality-aware caching in Section 2.
We present the K-LRU MRC model and its extension to
handle variable object sizes in Section 3. We develop the
merged-MRC guided and latency-aware memory partition-
ing system on top of a multi-dictionary design of Redis
in Section 4, and present its implementation in Section 5.
Evaluation results are shown in Section 6. We discuss related
work in Section 7 and conclude the paper in Section 8.

2 BACKGROUND

We first briefly describe the classic single-pass MRC con-
struction algorithm, namely Mattson’s generic stack algo-
rithm. Next, we address the motivation for exploring the
miss ratio gap of K-LRU for different Ks, and the DLRU
model that dynamically explores it in a single-tenant key-
value cache. Then, we describe the challenges of memory
partitioning for multi-tenant cache environments and the
motivation for handling variable-sized objects in the Redis
cache. Lastly, we use an example to address the motivation
of combining the miss latency into the memory alloca-
tion strategy and describe the spatial sampling technique
adopted from SHARDS [3].

2.1 Stack Algorithm

Mattson’s Stack Algorithm is a generalized algorithm that
models a general class of replacement policies. A replace-
ment algorithm is called a stack algorithm if such replace-
ment algorithm satisfies the inclusion property, that is,
Bt(C) ⊂ Bt(C + 1), where Bt(C) is a set of distinct objects
in a cache of arbitrary size C at given time t. The inclusion
property of the stack algorithm makes it possible to generate
an MRC in just one pass of the trace.

The algorithm models the cache as a stack, and the stack
location i (stack top location = 1), where the referenced
object resides, is called the object’s stack distance (to the stack
top). Under the stack model, an MRC can be calculated
based on stack distance distribution: the miss ratio of a cache
size c is the probability of stack distance greater than c.

Under the general stack model, all previously referenced
objects have an associated priority. Depending on the re-
placement policy, an object’s priority can change over time.
At any given time, all referenced objects’ priorities form
a total ordered set. Mattson et al. show that in order to
preserve the inclusion property, the stack St at time t must
be maintained according to the following constraints:

St(1) = xt

St(i) = maxPriority (yt(i− 1), St−1(i)) for 2 ≤ i < ϕ

St(ϕ) = yt(ϕ− 1)

St(j) = St−1(j) for ϕ < j ≤ γt−1

where:

xt : object referenced at time t
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St(i) : object at ith stack position at time t.

yt(i) : lowest priority object in cache of capacity i at time t.

γt : total distinct referenced objects at time t

ϕ : xt’s stack distance, if xt never referenced, ϕ = γt

The maxPriority() function in the stack maintenance
procedure above is a function comparing the priority of
yt(i − 1) and St−1(i). Intuitively, the lower priority object
determined by maxPriority() function is the evicted ob-
ject in the cache of size i. For simplicity, one can think
that the only difference among stack algorithms is their
maxPriority() function. The stack update process typically
takes linear time, on average, with respect to the stack size.
Given an access stream, X = x1, x2, ..., xt, one can obtain
a stack distance histogram (SDH) by processing the access
stream via the corresponding stack algorithm. For an LRU
stack, the stack update process is particularly trivial; Since
objects’ priority ordering is equivalent to stack ordering in
the LRU stack, then, on a stack update, all objects from stack
position 1 to ϕ − 1 are pushed down by one position, or
equivalently it takes O(1) to move the referenced object to
stack top when the stack is organized as a doubly-linked
list. However, finding the stack distance of an object still
takes the expected linear time with respect to the stack size.
The running time of Mattson’s LRU stack algorithm is thus
O(NM).

2.2 Random Sampling Replacement and K-LRU Policy

In Redis’ random sampling-based LRU, each time when an
eviction is needed, K keys are randomly sampled from all
keys in the memory and added to the eviction pool. All
keys in the eviction pool are sorted by their last access time
and the one with the oldest time is evicted. The default
setting of Redis is K = 5. Each time, 5 randomly sampled
keys are added to the pool for the eviction decision. The
number of sampled keys, K , is configurable but is fixed
across Redis execution for the current design. Redis [19]
shows that K = 5 is good for picking the approximate
LRU keys while saving memory and CPU usage. And it
recommends raising K to 10 for a closer approximation of
exact LRU.

We run a collection of real-world enterprise server traces
from Microsoft Research Cambridge [29] on Redis to plot the
MRCs. Figure 1 shows the MRCs of six different sampling
size Ks for trace web where cache size is represented as the
number of objects. We can clearly observe that the sampling
size K could impose large impacts on miss ratios. When
the cache size is less than 5 * 1e5, the miss ratio of K-LRU
with K = 1 is almost always lower than other settings
of K , which means that the random replacement policy
can perform better. As pointed out by Jaleel et al. [35],
LRU is not able to explore well the reuse intervals (reuse
distances) that are larger than the cache size. (Note that
the reuse distance between access and its next reuse is the
number of distinct accesses in between.) For trace web,
random replacement performs better when the cache size
is tight. However, when the cache size grows large, the
MRC apparently indicates that other options of K are better
choices if we only consider the impact of the miss ratio. The
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Fig. 1. MSR web K-LRU MRCs.

maximum absolute difference of miss ratio under various K
settings at a fixed cache size could be more than 10%.

We observe that the MRCs of K-LRU with K = 16
can closely approximate those of the real LRU. A larger K
normally indicates a closer behavior of eviction to the exact
LRU policy, since the more keys are sampled to add into the
eviction pool, the more likely the evicted object is near the
least-recently-used side of the exact LRU list.

2.3 Dynamic LRU (DLRU)

Observing the potential miss ratio difference in K-LRU
eviction policy with various K options, our previous work
introduces DLRU [27], a method that dynamically adjusts
K to improve the performance of the single-tenant key-
value cache. DLRU utilizes a scaled-down cache simulator,
miniature cache [28], which monitors the miss ratios of
various Ks with low overhead. Each K is assigned a specific
miniature cache. A penalty cost model is employed to select
a K that optimizes the overall miss latency and is applied
to reconfigure Redis in real-time. Experiments show that
DLRU is capable of adapting to workload access pattern
changes and consistently surpasses a fixed-K system across
diverse traces.

2.4 Memory Partitioning

In real-world cache deployments, one cache instance usually
serves multiple tenants, forming a multi-tenant environ-
ment. There are two basic memory partitioning strategies,
equal partitioning, and free competition. In equal partition-
ing, each of the n tenants running simultaneously takes 1/n
of the total memory. This strategy seems to be fair to all
tenants. However, due to access pattern change or trace
locality difference, cache performance might deteriorate by
offering some tenants more memory than needed, while
others suffer from memory shortage. Free competition, on
the other hand, is a first-come-first-serve policy, all tenants
are competing for shared memory. The memory usage of
tenants is decided according to various factors, including
access rate, locality, object size, miss latency, etc. This is the
default strategy that Redis employs. A tenant’s throughput
may be significantly affected by some noisy neighbors. To
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maximize the memory utilization of high-throughput multi-
tenant storage systems, recent studies consider better mem-
ory partitioning schemes for applications based on online
MRC construction techniques. For example, LAMA [36]
adopts footprint theory [12], [37] while Dynacache [38]
applies bucket algorithm [39], and both mPart [22] and
pRedis [24] utilize AET [21] for online MRC construction.
A variety of optimization strategies have been applied in
memory partition including minimizing the overall miss
ratio [22], [36], [38] or the average response time [24],
[36]. However, those MRC techniques are designed for the
exact LRU policy, which is not accurate for workloads with
miss ratio sensitive to sampling size K as demonstrated in
Sections 2.2 and 6.3.

2.5 Variable Object Size
One of the key features distinguishing in-memory key-value
caches from other caching types is the variable object size
distribution. Recent studies show that the size of objects
in the in-memory cache can be very diverse. For example,
Facebook’s caching systems can deal with object sizes that
span over seven orders of magnitude [43]. Also, the size
distribution of workloads is usually not static over time, it
can display both periodic shifts and sudden changes, as ob-
served in systems like Twemcache [32], affecting both miss
ratio and throughput. For slab-based caching systems such
as Memcached, the non-static object size distribution can
cause slab calcification [5], [32]. For Redis employing heap
memory allocators such as Jemalloc, the dynamic object size
can pose challenges to memory fragmentation management.
Also, object size affects the time to fetch objects from the DB
or over the network, the larger the size, the longer the time
it takes for the request. Moreover, Handling variable-size
objects in Redis holds particular importance given the com-
plexity and richness of its internal data structures, which
markedly differ from those in systems like Memcached.
Redis supports a diverse set of data structures, including
strings, linked lists, arrays, sets, hash tables, and ordered
lists, amongst others. Due to this diversity, the metadata
size of the data structure varies with data type and size.
For instance, the String Object in Redis, the simplest type,
has three different encoding methods - int, embstr, and raw -
each with its own memory allocation strategy depending on
the length of the string. Pan et al. [44] demonstrate that miss
ratio curves constructed under uniform size assumption can
significantly deviate from the true miss ratio curve when
the workloads follow non-uniform size distribution. We also
discuss this observation in Section 6.3.

2.6 Miss Latency
Research has shown that the overall performance of a cache
system is highly determined by its miss ratio – even a slight
reduction of it could introduce a significant improvement in
performance [22], [25]. To further estimate the performance
impact of misses, we need to know the related latency. In
this paper, the miss latency is defined as the time interval
from the miss of a GET operation in the key-value cache to
the completion of a SET operation with the same key sent by
the client. Previous work [24] shows the distribution of miss
latency in real-world cloud computing can be widespread in

the range between 10’s to 10000’s of microseconds depend-
ing on the locations of the back-end servers.

We use a multi-tenant example to show how miss latency
impacts cache performance. Assume that one networked
cache instance is serving two co-running tenants. The hit
time of each object is 40 µs, while the miss latency of each
tenant is 2000 µs and 12000 µs, respectively. We also assume
that all tenants use equal-sized memory, they send requests
at the same rate, and the miss ratio of all tenants is 0.5. The
average access latency can be expressed as:

(0.5×40+0.5×2000)+(0.5×40+0.5×12000)=7040 µs.
According to MRC profiling, if we can actively, for

instance, decrease the memory usage of low miss latency
tenant while increasing that of high miss latency tenant,
such that the miss ratios have been changed to 0.8 and 0.1,
respectively. Then the average access latency becomes:

(0.2×40+0.8×2000)+(0.9×40+0.1×12000)=2844 µs.
The average access latency difference between the two

memory partitioning cases cannot be ignored. Memory par-
titioning in a multi-tenant key-value cache must consider
both miss ratios and miss latencies.

Though average access latency is an essential metric for
in-memory key-value cache, other metrics such as through-
put, back-end database load, tenant fairness, etc. need to be
considered for use-case-specific needs. A memory partition-
ing scheme should be capable of adjusting its optimization
target according to variable performance requirements.

2.7 Spatial Sampling
For any stack algorithm, an MRC can be calculated from the
generated SDH. The problem is that it is very expensive,
in both space and time, to obtain the actual SDH for a
long trace because the asymptotic space/time cost of the
stack algorithm is correlated with the number of unique
references in the workload, which can be very large. Due
to the large overhead, it is impractical to directly use a stack
algorithm online. In order to make it suitable for online
usage, the uniformly random spatial sampling described
in SHARDS [3] has become a widely adopted technique.
Instead of feeding entire reference streams to the stack
model, the spatial sampling technique uses the sampling
condition hash(L) mod P < T , with referenced key L,
modulus P, and threshold T, to collect only a subset of
references. The effective sampling rate is R = T/P . As
shown by Waldspurger et al., for the majority of workloads
tested, the sampled subset has very high statistical similarity
compared to the original workload, even with R = 0.001. The
spatial sampling technique can thus significantly reduce the
number of tracked references for online MRC prediction.

3 K-LRU REPLACEMENT MODEL

As demonstrated by Figure 1, a cache can have a very
different miss ratio under K-LRU when K varies. It is
desirable to have an efficient model to construct an MRC for
K-LRU. Current stack distance approximation techniques
such as AET, Counterstack, and SHARDS1 only model stack
distance distribution for caches under the exact LRU policy.

1. The SHARDS here specifically refers to the spatially scaled-down
version of the LRU balanced tree, not the spatial sampling method.
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Fig. 2. Eviction comparison between K-LRU and KRR.
The red edge represents the movement of objects’ ranks. The blue oval
groups a coarse-grained ordering of objects’ recency.

They clearly are not the best choice for a K-LRU cache. To
tackle this problem, we propose a new MRC construction
method that models K-LRU’s miss ratio under arbitrary K
and cache size.

3.1 KRR Stack Algorithm

An object x’s recency r can be defined as r(x) =
1

time since last referenced Under the LRU policy, all objects are
ranked according to their recency and the least recently
used object will be removed from the cache on eviction. The
cache with capacity C can be described as a total ordered
set {xd : 1 ≤ d ≤ C} where x1 is the object with the highest
ranking, that is, the object most unlikely to be evicted. We
define ρt,C(r) : r → d as the mapping function that maps
the object’s recency r to the object’s relative priority ranking
d in the cache of size C at time t.

In a random sampling-based cache with cache size C and
sampling size K , the eviction probability, QC,K(x == xd),
of the object xd with ranking d is:

QC,K(x == xd) =
dK − (d− 1)K

CK
(1)

Now, we formulate K-LRU as a probabilistic policy:

Definition 1.
Replacement policy K-LRU is a probabilistic policy such
that, on cache eviction, the eviction probability of the
object with recency r is QC,K(x == xρ(r)).

We propose KRR based on an approximation of object
St(i)’s recency:

Assumption 1.
St(i) is the least recently used among {St(j) | 1 ≤ j ≤ i},
or equivalently, ρt,i(r(St(i))) = i.

Based on the above assumption, we now start con-
structing KRR’s maxPriority function. The maxPriority
function takes two inputs St−1(i) and yt(i− 1) then returns
the one with higher priority. In other words, object St(i) will
be replaced by yt(i − 1) if St−1(i) is evicted from cache of
size i at time t. Under Assumption 1 where the object at the
ith stack position has relative ranking i in cache of size i,
the probability of St−1(i) being evicted can be calculated,

according to Equation 1, as Qi,K(x == xi) = iK−(i−1)K

iK
.

Equivalently, the probability of St−1(i) staying in cache at
time t can be simplified to

(
i−1
i

)K
. Then, the maxPriority

function for KRR can be formally described as:

maxPriority(yt(i− 1), St−1(i)) ={
St−1(i) random(0, 1) <

(
i−1
i

)K
yt(i− 1) otherwise

(2)

With maxPriority function defined, one can trivially
simulate the KRR replacement scheme using Mattson’s lin-
ear stack update procedure described in Section 2.1.

Figure 2 illustrates the difference between the KRR and
K-LRU replacement algorithms on cache eviction. Both KRR
and K-LRU maintain object’s ranking. The difference is that
K-LRU cache maintains object’s ranking implicitly through
object’s recency, where the more recent object ranks higher
and the less recent one ranks lower; On the other hand, the
KRR replacement policy maintains object’s ranking explic-
itly through the stack update procedure under maxPrioty
function described above, or we say object’s ranking at time
t under KRR is exactly object’s stack position at time t.

According to the KRR algorithm, an object on stack
position i, denoted as St(i), will be evicted from the cache
of size C , if and only if, objects yt+1(i − 1) and St(i + 1),
St(i + 2), ..., St(C) all have higher priority than St(i).
Mattson et al verified that the eviction probability of an
arbitrary object under RR is equivalent to random eviction,
that is ΦC,1(st(i)) =

1
C . Using the same approach we show

that:

ΦC,K(St(i)) =(
iK − (i− 1)K

iK

)
∗
(

i

i+ 1

)K

∗
(
i+ 1

i+ 2

)k

∗ ...
(
C − 1

C

)K

=
iK − (i− 1)K

CK
(3)

Based on Definition 1 and ΦC,K(st(i)), we see that KRR
and K-LRU cache yield exactly the same eviction probability
for an arbitrary object if Assumption 1 holds true. Hence, the
accuracy of using the KRR algorithm to approximate K-LRU
depends on the effectiveness of Assumption 1.

The K-LRU cache ranks objects according to their re-
cency, thus, when the new object enters the cache, all other
objects downshift their ranking by one, and their relative
ranking to one another remains the same. Unlike K-LRU,
KRR performs one-way shifts of object’s rank only on a
subset of objects as illustrated by Figure 2. Although less
recent objects are still likely to rank lower in KRR cache,
due to these probabilistic shifts, objects’ ranking in KRR
cache does not fully resemble recency ordering as the K-
LRU cache does. Since KRR only orders objects according to
their recency at a coarse granularity level, a more recently
used object could have a higher chance of being evicted
compared to a less recently used object. However, in our
evaluation, we observe that using KRR’s stack ordering to
approximate K-LRU’s recency ordering is sufficient to yield
a very accurate MRC for most cases. The error magnifies
only under an occasional circumstance, such as repeatedly
accessing objects with the same recency order, i.e. loop
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pattern. To further reduce the error, we make a simple
modification to the KRR algorithm. In general, the K-LRU
cache is more likely to evict less recently used objects
compare to the KRR cache, because, unlike KRR, the K-LRU
cache ranks objects strictly by their recency. To fix that, we
can increase the K in the KRR algorithm, that is, for a K-
LRU with sampling size K , we choose a value K ′ for the
corresponding KRR, such that K ′ > K . By using a larger
value K ′, we increase the eviction probability of objects with
low rank. This effectively offsets KRR’s tendency of evicting
more recently used objects. In our evaluation, we find that
K ′ ≈ K1.4 yields a very accurate approximation for K-LRU.

3.2 Backward Stack Update

As described in Section 2.1, the naive stack algorithm re-
quires O(M) update time for every access. A downshift
object would need to be compared to and swapped with
the objects from the stack top to the recent hit location
based on the maxPriority function in Equation 2. Clearly,
O(M) per update is prohibitive for online processing. To
overcome the expensive update overhead, we propose an
efficient backward stack update mechanism, which reduces
the overhead from O(M) to O(logM).

First, we notice that the probability that maxPriority
function returns St−1(i) increases as we scan down the
stack. This suggests that, for every stack update, the object
in St(i) remains the same as in St−1(i) for most stack
positions, only a small portion of St−1(i)’s are replaced by
yt(i − 1)’s. For convenience, we now call the stack position
i, where St−1(i) have lower priority than yt(i− 1) as a swap
position.

Let βswap denote the total number of swap positions
per stack update, then the expectation is: E(βswap) =
O(KlogM), with a small constant K , the expected num-
ber of swap positions per update is bound by O(logM).
Naturally, if all swap positions can be identified prior to the
stack update, then the update process can be done by simply
performing one-way shifts on swap positions from stack
top to ϕ, which would be considerably faster than linearly
scanning through the entire stack.

Mattson et al.’s linear stack update determines swap
positions by performing random draws from stack top till
St−1(ϕ). We find that a more efficient way can be done by
generating swap positions backward, starting from St−1(ϕ)
to stack top. Let v1, v2, ..., vβ , vβ+1 denote swap positions
ordered by their stack positions in increasing order, where
St−1(1) and St−1(ϕ) are v1 and vβ+1, respectively. We will
start by first identifying swap position vβ . Since vβ is the
second to the last swap position, this implies that the objects
in stack positions greater than vβ and smaller than ϕ will
remain in the same positions at time t. Semantically, the
object in swap position vβ is the evicted object in a cache
of size ϕ − 1 at time t. Next, from Equation 3, we know
the eviction probability of an object in the KRR cache is
directly associated with its stack position. Furthermore, the
cumulative distribution function (CDF) of Equation 3 is
P (X ≤ xi) =

(
i
C

)K
. Now, we can obtain vβ by simply

taking the inverse of the CDF with C = ϕ−1. For vβ−1, since
vβ is already identified, we can compute it using a similar
idea with C = vβ−1. Algorithm 1 shows the complete steps

for this backward stack update approach. For total random
replacement, or when K = 1, this approach degenerates to
the D-RAND proposed by Bilardi et al., which is another
stack version of random replacement policy [42].

The expected running time for Algorithm 1 is O(logM),
because the expected number of swap positions is bound
by O(logM), and each iteration of Algorithm 1’s while loop
computes exactly one swap position. By using Algorithm 1,
our KRR model can approximate the K-LRU cache in just
O(NlogM) time.

Algorithm 1 Backward Stack Update
1: procedure STACKUPDATE(ST , obj)
2: ▷ ST: data structure include KRR stack and metadata
3: ▷ obj: referenced object
4: i← obj.ϕ
5: while i > 1 do
6: r ← random() ▷ random(): PRNG from (0,1]
7: x← ⌈r 1

K ∗ (i− 1)⌉
8: ST.stack[i]← ST.stack[x]
9: i← x

10: end while
11: ST.stack[1]← obj
12: end procedure

3.3 Variable Object Size-Aware KRR
The original stack model was designed to model a class
of replacement algorithms under the assumption that the
size of objects is fixed. This assumption works for hardware
cache where the size of a cache block is fixed. However,
this assumption does not always hold for software cache as
discussed in Section 2.5.

The basic array implementation of the KRR stack in
Algorithm 1 implicitly assumes that all objects on the stack
have identical sizes. The stack distance can be directly
related to the object’s array index. However, for workloads
with diverse object size distribution [32], computing the
object’s stack distance based on its logical location on the
stack could be problematic. For example, in Figure 3, we see
that under uniform object sizes assumption, the estimated
byte-level stack distance of object D is 16 which significantly
differs from the actual byte-level stack distance 11. In other
words, the predicted cache size to achieve a cache hit when
referencing D is 16, but in reality, a cache size of 11 is
sufficient. This highlights the importance of considering
object size distribution when modeling cache performance.
However, calculating the precise byte-level stack distance is
costly, as it requires summing up the sizes of all objects from
the stack top to the referenced object.

To collect byte-level stack distance efficiently, our solu-
tion is to add an additional array structure, sizeArray. The
length of sizeArray is logb M , where M is the stack size. Each
entry of the sizeArray maintains a partial accumulation of
stack size, specifically, entry i of the sizeArray (Σi) stores the
total size of objects from stack top to stack position bi, where
b is the base parameter. Figure 4 illustrates the stack update
process for a KRR stack with a base-2 sizeArray. As depicted
in Figure 4, to compute byte-level stack distance of the
object in the stack position Φ, we use the actual cumulative
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Fig. 3. Byte-level stack distance example

size to position 64 (Σ64) and add it with the approximated
size from position 64 to Φ ((Σ128 − Σ64) ∗ Φ−64

128−64 ) through
interpolation. Once we obtain the byte-level stack distance,
we update the stack similar to the Algorithm 1, and we also
update all Σi where i < Φ as illustrated. Since the length
of sizeArray is logarithmically bounded with respect to the
KRR stack length, the cost of maintaining the sizeArray is
at most O(logM), where M is the stack size. With aids
from sizeArray, we can make better estimations on byte-level
stack distance using Algorithm 2. Now we are capable of
constructing MRC of variable object-size K-LRU cache.

Algorithm 2 Byte-level KRR Stack Distance
1: procedure STACKDISTANCE(st, sizeArry, b, ϕ)
2: ▷ st: Ordered Stack, imple-

mented as an arrayList
3: ▷ sizeArry: array of partial

stack sizes
4: ▷ b: sizeArray’s base
5: ▷ ϕ: stack position of refer-

enced object
6:
7: index← logb (ϕ)
8: sdLow ← bindex

9: if sdLow < ϕ then
10: sdHigh← bindex+1

11: res← (sizeArry[index+1]−sizeArry[index])∗
ϕ−sdLow

sdHigh−sdLow
12: else
13: res← 0
14: end if
15: return sizeArry[index] + res
16: end procedure

4 KREDIS: K-LRU MERGED MRC GUIDE AND
LATENCY-AWARE PARTITIONING

In this section, we focus on the multi-tenant cache use
case and propose a novel multi-tenant memory allocation
scheme that is guided by the merged K-LRU MRCs and dy-
namically configure the sampling size K for each individual
tenant to better explore workload locality.

When multiple applications/tenants share a single Redis
cache instance, the available memory is partitioned for
each tenant to meet their caching requirements. Since Redis

memory space is limited, maximizing the utilization of the
shared memory pool is critical for system performance.

In existing MRC-guided partitioning designs, such as
LAMA [5], mPart [22] and pRedis [24], reference keys are
randomly sampled to construct reuse time histogram, from
which an MRC for each application can be calculated using
the footprint model or the AET model [6], [21]. At a specified
interval measured as the number of requests, a dynamic
programming algorithm is invoked to minimize the number
of expected misses based on the constructed MRC. This
partitioning scheme is based on the fact that the MRC of
each tenant is fixed, which is true for Memcached when
applying the exact LRU eviction policy. However, for Redis
and other caches that employ K-LRU, the sampling size K’s
impact on miss ratio can be significant. This means there are
multiple MRCs available corresponding to different K for
each application. Therefore, the search space for finding the
optimal partition solution significantly increases.

We introduce a memory partitioning scheme for K-LRU
Redis cache named kRedis assuming that K is configurable
on the fly. To reduce the search space, kRedis dynamically
allocates memory based on a merged MRC from a small set
of MRCs of different Ks. The MRCs of each K-LRU cache
for each tenant application are constructed online using the
KRR model introduced in Section 3.3 and spatial sampling
described in Section 2.7.

4.1 Merged MRC

Intuitively we need the MRCs with different Ks for each
application, where we can choose the MRCK that yields
the minimum miss ratio at cache size C and record the cor-
responding sampling size K . In order to avoid expanding
search space, we simply merge several MRCKs of each
tenant into one MRC where only the lowest miss ratio
and respective K at every cache size are recorded. For
each tenant, miss ratio curves MRCK with different K are
merged into a single miss ratio curve mMRC as following:

mMRC(C) = min MRCK(C) (4)

Now the optimization problem can be reduced to a
partitioning problem with each tenant having one fixed
MRC, mMRC(C). Figure 5 shows three K-LRU MRCs of
MSR src1 with K = 1, 5, and 16 merged to one mMRC . The
sampling size K is not shown on mMRC , it is encoded in
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Fig. 4. Variable object size stack update

Fig. 5. Merge K-LRU MRCs to mMRC.

the data structure of mMRC so that later it can be used to
configure the eviction policy of the corresponding tenant.

4.2 Memory Partitioning
Similar to mPart and pRedis [22], [24], a memory partition-
ing scheme is computed at the end of each periodic interval
window, which is preset as the number of requests (default
is 1 million). At each evaluation interval, for each tenant,
we measure its average miss latency and access rate, and
construct the K-LRU MRCs by spatial-sampling its requests.
We then determine the memory partitioning scheme using
a dynamic programming algorithm. The partitioning is then
enforced at the next interval. Specifically, there are four steps
in each evaluation interval.

Step 1: Latency & Access Rate Measurement
We record the cumulative miss latency and the number

of cache misses to calculate the average miss latency p for
every application sharing a memory pool. The tenant access
rate a is estimated as the rate of interval time and tenant
access count in the interval window.

Step 2: Merged K-LRU MRC Construction
For each tenant, we construct MRCK for several small

Ks on the fly based on spatial sampling and the variable ob-
ject size-aware KRR model, then derive the merged mMRC
for each application as discussed in Section 4.1.

Step 3: Memory Partitioning Scheme and K Selection
To take the impact of miss latency into account, we

estimate interval miss latency Pi for application i as follows.

Pi = mMRCi(Ci) ∗ ai ∗ pi (5)

Our goal is to minimize the overall miss latency for a set
of N tenant applications in a Redis cache instance with total
memory M .

min
N∑
i=1

Pi =
N∑
i=1

mMRCi(Ci) ∗ ai ∗ pi (6)

subject to
N∑
i=1

Ci = M

Inspired by DCAPS [8], kRedis memory partitioning
could achieve various optimization targets by adjusting
Equation 6. For example, the following metric can be
adopted to optimize hit throughput which is defined as the
number of GET hits per access time.

max
N∑
i=1

TPi =
N∑
i=1

(1−mMRCi(Ci)) ∗ ai (7)

The optimization problem of Equation 6 can be solved
using dynamic programming similar to mPart [22] and
pRedis [24].

At the end of each evaluation interval, we run the
memory allocation algorithm presented in Algorithm 3. We
calculate the minimum overall miss latency and record the
memory allocation for each application. The i loop (line 8)
and j loop (line 9) combined find the best latency when the
first i tenants are allocated j amount of memory. The in-
nermost C loop (line 10) enumerates all possible allocations
of tenant i subject to the upper bound of memory size j
(line 10). The second loop nest from line 21 to 24 backtracks
optimal memory partition recorded in {A}.

The time complexity of such dynamic programming is
O(VM2), where V is the number of applications and M
is the size of the memory pool. In real applications, the
memory bound M could be a large value in bytes, but we
use configurable larger granularity G in memory allocation,
for instance, 1 MB or 10 MB, according to the application
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profiles. Then the time complexity becomes O(V (M/G)2)
which is affordable for online usage.

Algorithm 3 Memory Allocation
Require: M ▷ Total cache memory
Require: {V} ▷ Set of tenants
Require: {mMRC} ▷ Set of merged MRC for each tenant
Require: {a} ▷ Set of access rate for each tenant
Require: {p} ▷ Set of average miss latency for each tenant

1: procedure ARBITRATE
2: for i ∈ V do
3: for j ← 0 to M do
4: f [i][j]←∞
5: end for
6: end for
7: f [0][0]← 0
8: for i ∈ V do
9: for j ← 0 to M do

10: for C ← 0 to j do
11: missi ← mMRCi(C) ∗ ai
12: latency ← f [i− 1][j − C] +missi ∗ pi
13: if latency < f [i][j] then
14: f [i][j]← latency
15: Target[i][j]← C
16: end if
17: end for
18: end for
19: end for
20: T ←M
21: for i← N ; i→ 1 do
22: Ai ← Target[i][T ]
23: T ← T − Target[i][T ]
24: end for
25: return {A}
26: end procedure

Step 4: Dynamic Memory Allocation and K Adjust-
ment

Once the memory partitioning scheme is determined,
Redis memory should be allocated for each application ac-
cordingly. Inspired by the work of pRedis [24], we maintain
two arrays to book-keep the amount of memory used in
each tenant and the suggested memory allocation by our
model. To ensure tenant references are processed under
its appropriate K-LRU eviction policy, we configure the
sampling size Ki for application i according to mMRCi.

We adjust the tenant memory usage by modifying
the Redis eviction process. Initially, Redis memory size is
maintained by the eviction procedure named freeMemory-
IfNeeded. Each time Redis receives a request, this procedure
checks the used memory against the max-memory setting
and free items if needed. In kRedis, we pick the application
in which the used memory is greater than the suggested
memory for eviction. Thus the tenant space is adjusted on
the object level and the pace of adjustment is dependent on
the tenant’s request pattern.

4.3 Efficient Random Sampling Eviction Design
The challenge in step 4 of Section 4.2 is that from the whole
Redis key space, how can we effectively sample K keys

that belong to a specific tenant. pRedis [24] adopts a bloom
filter to determine the tenant belonging of each sampled
key in the process of eviction. However, the bloom filter
time overhead can be notable according to our evaluation.
Each time a key is stored in the cache, the bloom filter
needs to check if such key is a new key, then map the
key to its tenant in the bloom filter structure. On evictions,
every randomly sampled key must be checked to decide if it
belongs to the memory-overusing tenant. According to our
evaluation, when there are 4 tenants, the key space size of
each tenant is about 12 million, and the cache max-memory
is set to 50% of the working set size, the total time used in
the eviction process is about 50 seconds, in which the bloom
filter judgment time takes 15 seconds or 30%. On average,
the bloom filter judgment takes 2 µs to identify a key for
eviction. If the number of tenants and key space increase,
the bloom filter time overhead in the K-LRU eviction process
will only be larger.

Our solution is to separate key dictionaries for the ten-
ants in Redis. The original Redis design uses a single dictio-
nary, where the keys of all the tenants reside, so there is no
ready-made support for multi-tenant memory partitioning
in a single Redis instance. By using multiple dictionaries, the
K-LRU eviction is to simply sample K keys randomly in the
desired tenant’s dictionary and the bloom filer is no longer
needed in both setting and eviction processes. In practice, it
is trivial to distinguish tenant keys using the unique client
ID embedded in the Redis data structure or other available
parameters such as the source socket id of a request.

The data objects of Redis are stored as dictionary entries
in the hash table and connected by pointers. Our multi-
dictionary design only sets up multiple tenant-wise hash ta-
bles pointed by the dictionary header, which has a negligible
effect on the Redis command processing, and the overhead
is the metadata of the dictionary header, which is in a total
of 176 bytes per tenant.

5 IMPLEMENTATION

Unlike the LRU stack, the KRR stack only shifts a small
subset of objects on the stack per stack update. To take
advantage of that, we implement the KRR stack as a simple
array, where objects are ordered according to the stack order.
When the object is referenced, we can find it in constant
time using a hash table where a hash table entry holds a
pointer to the array location. An object’s stack distance is
simply its array index. On a stack update, first, we identify
all swap positions by using the algorithms described in
Section 3.2. Then we perform cyclic swapping on all marked
positions. In our implementation, we adopt the spatial sam-
pling technique described in Section 2.7. By default, we use
a sampling rate of R = 0.001, but to ensure the accuracy of
spatial sampling using SHARDS [3], a higher sampling rate
of R = 0.01 is applied to workloads with relatively small
working set sizes (less than 8M distinct objects).

For MRC accuracy evaluation and comparison, we have
implemented Mattson’s LRU stack algorithm using a bal-
anced search tree [34]. The conventional LRU stack can be
implemented using a doubly-linked list which yields O(M)
per search and O(1) per update. Using a balanced search
tree results in O(logM) for both search and update. This
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implementation can generate an accurate MRC for the exact
LRU policy. We also implement SHARDS [3], which can
output an approximated MRC for the exact LRU policy. To
reveal the ground truth of the miss ratio of a K-LRU cache,
we have designed and implemented a cache simulator that
adopts K-LRU replacement. A simulator can only generate
one miss ratio for a given cache size with one pass of the
input trace. To generate an MRC, we run the simulator
multiple times for different cache sizes and use interpolation
for miss ratio prediction.

For performance evaluation, we implement kRedis on
top of Redis-4.0 with the default Jemalloc allocator. It uses
KRR to model K-LRU policy with random sampling size K
of 1, 5, 8, and 16, and chooses the best K on the fly for each
tenant. It adopts the multi-dictionary scheme to accelerate
tenant-level K-LRU random sampling and eviction process.
Besides the original Redis as a primary baseline, we use pRe-
dis [40] as a secondary baseline to evaluate the performance
of kRedis in multi-tenant key-value cache. pRedis is based
on the original Redis single-dictionary design and uses
EAET to model exact LRU plus a bloom filter to discriminate
key-value’s tenant belonging. Both Redis and pRedis set K
to 5 as default.

6 EXPERIMENTAL EVALUATION

In order to evaluate the effectiveness of kRedis, we first
give a brief description of the experimental setup and
evaluation workloads. Second, we evaluate the accuracy of
the predicted miss ratio of KRR. Third, we compare the
performance of Redis, pRedis, and kRedis. Next, we discuss
the memory size impact, throughput, tail latency, and both
time and space overhead of our design. Finally, we compare
kRedis with our previous work DLRU [27] and discuss the
applicable fields of those two schemes.

6.1 Experiment Setup

We use two separate machines for our evaluation. Machine
A is configured with an Intel(R) Xeon(R) Gold 5118 2.30GHz
processor with 30 MB shared LLC and 188 GB of memory,
and the operating system is Fedora 31 with Linux kernel
5.6.15. Machine B is configured with Intel(R) XEON(R) E5-
2620 v4 2.10GHz processor with 20 MB shared LLC and 128
GB of memory, and the operating system is Ubuntu 18.04.6
LTS. All major evaluations are done on machine A, machine
B is only used in Section 6.4.3.

A Redis cache server and multiple tenant front-ends are
deployed on the local host. We implement Redis tenant
front-end based on Hiredis library [45], which reads refer-
ences from an evaluation trace and sends access requests to
the Redis server on the fly. When the Redis server returns
a miss, the tenant front-end will immediately follow a
SET command to store the key-value pair into the server.
With such a setup, the miss latency is simply the round-
trip setback time between the tenant front-end and the
Redis server. In most of our evaluations, we use various
time delays to simulate fetching items from the database,
providing flexibility and variety in the miss latency setup to
our evaluation. We also set up an evaluation environment
with a real remote and local database to cross-validate the

test case with the simulated environment. When evaluating
multi-tenant scenarios, we set up multiple tenant front ends,
with each tenant front end repeatedly sending requests from
a workload until the server terminates.

6.2 Workloads

We use two different workloads for our evaluation:

• MSR MSR Cambridge suite [29] is a collection of
block-level I/O traces from 36 volumes across 179
disks on 13 different enterprise data center servers in
a Microsoft data center. We evaluate our model on
all 13 traces, as well as the merged ”master” MSR
workload which is also used in Waldspurger et al [3].
The workloads encompass various applications such
as home directories, project directories, hardware
monitoring, firewall/web proxy, source control, web
staging, media services, and more. The 13 workloads’
reference counts range from 1 to 181 million, working
set sizes range from 1 to over 1000 GB. More detailed
trace information can be found in [30].

• Twitter Twitter cache traces [32] is a collection of
one-week-long cache request traces from 54 Twitter’s
in-memory caching clusters. We use sub-traces from
Twitter clusters to evaluate our K-LRU model and
kRedis performance. Each sub-trace consists of 100
million requests, detailed information of each work-
load including working set size, object size distribu-
tion, compulsory miss ratio, etc. can be found in [32],
[33].

6.3 MRC Accuracy

To measure the accuracy of KRR model, we report the mean
absolute error (MAE) as used in [3]. The MAE between the
actual and KRR MRCs is calculated as the mean of miss
ratio differences across all simulated cache sizes. There are
three sources of errors: (1) Simulation error. K-LRU and KRR
are both probabilistic policies. There will always be a slight
difference in miss ratio under different rounds of simulation.
(2) Sampling error. Waldspurger et al. show that the spatial
sampling error is inversely proportional to

√
ns, where ns

is the amount of data sampled. Our default sampling rate
is R = 0.001. To make the sampling error low, we apply
a higher sampling rate of R = 0.01 to those workloads
with a small working set size (less than 8M objects in our
experiments). (3) Modeling error. Since KRR only orders
objects according to their recency at a coarse granularity,
KRR and K-LRU are not statistically identical except when
K = 1.

We evaluate KRR with a uniform object size version
and the variable object size-aware version using MSR and
Twitter traces, where object sizes vary. We compare the mod-
eled MRCs with the actual MRCs generated from directly
simulating the K-LRU cache under 40 different cache sizes
that are evenly distributed over the workload’s working set
size. For convenience, we use uniKRR and varKRR to denote
the uniform object size KRR and the variable object size-
aware KRR, respectively.

The uniKRR does not take an object’s size into considera-
tion, which leads to unreliable MRC results when workloads
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TABLE 1
MAE under different sampling size for variable size MSR and Twitter

workloads

varKRR varKRR+Spatial

K MSR Twitter MSR Twitter
1 0.00094 0.00023 0.00190 0.00201
2 0.00067 0.00045 0.00159 0.00213
4 0.00062 0.00034 0.00132 0.00176
8 0.00074 0.00018 0.00116 0.00165
16 0.00089 0.00013 0.00125 0.00238
32 0.00096 0.00014 0.00136 0.00268

Average 0.00080 0.00025 0.00143 0.00210

contain diverse object sizes. In Figure 6, we show MRCs
from 8 different representative traces (4 MSR and 4 Twitter).
Each graph compares uniKRR and varKRR with the true
MRC generated by the K-LRU simulator. We observe that
the MRCs generated based on uniform size assumption
(uniKRR) do not always approximate the real MRCs well
(shown in Figure 6(A)). In contrast, varKRR approximates
the real MRCs with negligible errors. And varKRR’s time
cost stays at the same level as uniKRR. Table 1 summarizes
the MAE of MSR and Twitter traces under different K
values from 1 to 32 for varKRR. Overall, varKRR achieves
an MAE of 0.0008 (0.00143 with spatial sampling) for MSR
traces and 0.00025 (0.00210 with spatial sampling) for Twit-
ter traces.

6.4 Access Latency
The memory allocation objective in Equation 6 is to min-
imize the overall miss latency or response time, so we use
the average of tenants’ mean access latency as the evaluation
metric. The access latency is the wall clock time used by
each access. We use the MSR and Twitter workloads in this
evaluation. Redis cache maximum memory is set to 50% of
the total working set size.

The workload sensitivity to the changes in sampling
size K is the key to the exploration of the K-LRU miss
ratio gap, and it is also the source of potential performance
improvement from pRedis to kRedis. In order to compare
the performance between the two, we first choose the work-
loads that are sensitive to the change of K and conduct case
studies on a 4-tenant system. The MRCs of some example
workloads are shown in Figure 7. We then stress the system
by increasing the number of tenants to 15 using randomly
selected traces from the Twitter suite.

6.4.1 4-Tenant Case Study
In this case study, we set up four tenants with MSR web
and src2 workloads, representing fetching objects from web
local-DB, web remote-DB, src2 local-DB, and src2 remote-
DB, respectively. According to the access latency analysis of
real Redis traces [40], the remote DB miss latency is typically
distributed around 2000 µs. Therefore the miss latency is
configured to 200 µs (local-DB) and 2000 µs (remote-DB),
respectively. As shown in Figure 8, when compared to Redis,
pRedis reduces the mean access latency of both web remote
and src2 remote at the cost of a slight increase of the latency
with the local-DB ones. And compared to pRedis, kRedis
has further reduced the latency of web remote. Overall, the

average access latency improvement of kRedis is 17.3% and
14.3% compared to Redis and pRedis, respectively.

Furthermore, in order to analyze the contribution of each
optimization within kRedis, including the multi-dictionary
design, the KRR model, and dynamic K configuration based
on merged MRC, we use a series of variants to decom-
pose their impact on performance, results are shown in
Figure 9. First, pRedis, which considers miss latency, shows
a 3.6% improvement over Redis, contributed by locality- and
latency-aware memory partitioning. Second, we transform
pRedis to the multi-dictionary design, which gains an addi-
tional 1.5%. Third, we use varKRR instead of EAET to model
MRC under a fixed K of 5, which is the default setting in
Redis and pRedis. Note that pRedis uses EAET to model
exact LRU rather than K-LRU with K = 5, which could
reduce MRC accuracy. With the more accurate KRR model,
this variant of pRedis shows a 10.8% of improvement over
Redis. Lastly, kRedis, combining optimization of KRR, dy-
namic K configuration, and multi-dictionary design, yields
a 17.3% improvement over Redis. When comparing kRedis
to the pRedis variant with varKRR and fixed K of 5, the
dynamic K configuration contributes a 6.5% improvement.

In Figure 8, we observe that compared to pRedis, kRedis
has decreased the access latency of web remote. To dig
deeper into the process of dynamic K selection based on
merged MRC, we provide snapshots of web remote K-
LRU MRCs constructed by KRR in two individual intervals.
Figure 10 (A) shows that in the 11th interval, the K-LRU
MRC with K = 1 yields a lower miss ratio than other Ks at
the partitioned memory of 800 MB, and kRedis sets K to 1
for the tenant. Figure 10(B) shows that in the 15th interval,
the K-LRU MRC with K = 16 shows a lower miss ratio than
other Ks at the partitioned memory of 800 MB, and kRedis
sets K to 16 for the tenant.

In another test case, we use Twitter sub-traces of clus-
ter4.0, cluster29.0, cluster34.0, and cluster54.0 to generate
references of 4 tenants, with their miss latency configured to
200 µs, 400 µs, 1000 µs, and 2000 µs, respectively, bringing
more variety to the simulated miss latency. The average
access latency improvement of kRedis is 27.0% and 16.7%
compared to Redis and pRedis, respectively. Figure 11 sum-
marises the latency results of pRedis, pRedis variants, and
kRedis, compared to Redis baseline. First, we observe a
12.4% improvement related to locality- and latency-aware
memory allocation. Second, with the multi-dictionary de-
sign, the improvement increases to 14.5%, Then equipped
with varKRR for K-LRU MRC construction of K fixed to
5, it shows an 18.2% decrease in latency. Finally, kRedis
which employs all optimizations shows a 27.0% improve-
ment against Redis.

6.4.2 15-Tenant Case Study
To evaluate the performance of kRedis for a large number
of tenants, we increase the number to 15, adding pressure
to MRC construction, the cache partitioning algorithm, and
the sampling-based eviction process. Now we assume each
Twitter cluster trace comes from multiple tenants. Each
reference of Twitter clusters includes a parameter named
Client-ID which is the anonymous front-end service client
who sends the request. We use this ID modulo 15 to generate
a tenant ID. We randomly select 6 traces from Twitter:
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Fig. 6. Accuracy and time cost for uniKRR and varKRR
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Fig. 7. Workloads that are sensitive to the change of K. Miss ratio show
gaps between different Ks at the same cache sizes.

cluster4.0, cluster17.0, cluster18.0, cluster29.0, cluster44.0,
and cluster52.0. For each workload, we set up the miss
latency of each tenant based on the observed exponential
distribution of miss latency of real-world Redis traces [40]:
the miss latency of each tenant is set as 1 µs, 2 µs, 4 µs, 8
µs, 16 µs, ..., 4,096 µs, 8,192 µs and 16,384 µs, respectively.
Figure 12 shows the average latency reduction of pRedis and
kRedis, compared with the Redis baseline. kRedis reduces
access latency up to 50.2% against Redis, and improves up
to 24.8% when compared to pRedis.

Fig. 8. Average access latency reduction with 4 tenants loading MSR
workloads.

6.4.3 Real Back-End Database Case Study

In this section, we use two separate machines described
in Section 6.1 running real back-end MySQL databases to
cross-validate the test case shown in Section 6.4.1 with MSR
workloads. Both Redis cache server and tenant front-end
are running on Machine A. The web local-DB and src2
local-DB are also running on Machine A, and the web
remote-DB, src2 remote-DB are running on Machine B. Both
local and remote DB are deployed on MySQL Community
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Fig. 9. Impacts of kRedis optimizations on latency for MSR workloads,
compared to Redis baseline.
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Fig. 10. K-LRU MRCs of web remote in two evaluation intervals and
K configurations. The periodical evaluation interval size is 1 million
requests.

Server 8.0.33. In this real MySQL back-end DB setup, the
miss latency of the local DB is distributed around 200 µs,
and that of the remote DB is distributed around 2000 µs.
Compared to Redis and pRedis, the average access latency
improvement of kRedis is 17.2% and 13.3%, respectively.
The results show no notable difference between the real
back-end database and the simulated back-end database.

6.5 Impact of Memory Size

The max-memory setting of Redis impacts cache perfor-
mance. Over-provisioned memory to a cache can lower
the miss ratio of cache but at a higher cost on DRAM. In
contrast, over-tight memory provision brings harm to cache
performance. Intuitively, a tighter memory size introduces
a higher miss ratio for all tenants, where kRedis has the
potential to dynamically partition memory to meet the space
requirement of tenants that are performance-critical for the
optimization target. We evaluate kRedis performance on dif-
ferent max-memory settings to observe this trend based on
the 4-Tenant test case of Twitter workloads in Section 6.4.1.
The result shows that, compared to Redis, kRedis improves
average access latency by 21.2%, 27.0%, and 49.5% with
max-memory as 75%, 50%, and 25% of the working set
size, respectively. The tighter limit on Redis memory brings
higher performance improvement of kRedis against Redis.

Fig. 11. Impacts of kRedis optimizations on latency for Twitter workloads,
compared to Redis baseline.

Fig. 12. Average access latency reduction in Twitter workloads com-
pared to Redis baseline. Tenant accesses are generated by partial
references from a workload distinguished by Client-ID.

6.6 Throughput

As described in Section 4.2, kRedis could achieve different
optimization targets. We adopt Equation 7 and use the
rate of reference hits against system time as the metric to
evaluate throughput. We demonstrate the effect of kRedis
with a 4-tenant case study. The four tenants load MSR
workload mds, src2, stg, and web respectively. Cache max-
memory is set to 50% of the working set size. All tenants’
miss latency is set to 2000 microseconds simulating fetching
objects from remote DBs. Table 2 shows kRedis improves
the average throughput by 262.8% and 61.8% compared to
Redis and pRedis, respectively. The similar setup for the 4-
tenant case using 2 web and 2 src2 workloads shows similar
results.

TABLE 2
Throughput (hits/sec) in MSR workloads

mds src2 stg web avg
Redis 1113 1455 2499 1701 1692

pRedis 1474 9839 1949 1920 3795
kRedis 485 22071 1485 515 6139
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6.7 Tail Latency

kRedis has been proven to improve tenants’ average latency
as well as hit throughput, but we still need to figure out
if the statistics tracking and memory allocation of kRedis
affects references’ latency disproportionally. We evaluate the
tail latency of kRedis in the first 4-tenant case study with
MSR workloads discussed in Section 6.4.1. Table 3 shows
the results. When comparing kRedis with Redis, there are
no significant differences between the two for tenants with
remote DB. However, since kRedis allocates more memory
to the remote ones at the cost of increasing the miss rate of
local ones, kRedis shows higher latency than Redis for the
response times of src2-local.

TABLE 3
Request tail latency(µs)

90th 95th 99th 99.9th

web-remote Redis 2044 2049 2066 2457
kRedis 2046 2056 2100 2270

src2-remote Redis 2040 2047 2062 2129
kRedis 2044 2054 2091 2219

web-local Redis 223 228 241 267
kRedis 224 231 253 307

src2-local Redis 32 38 51 255
kRedis 44 203 247 284

6.8 Time and Space Cost

In this section, we evaluate the time and space overhead
of our approach. There are two sources of time cost: K-
LRU MRC modeling with spatial sampling, and hash table
resizing with multi-dictionary design in kRedis. The space
cost also comes from two aspects: the implementation of the
KRR stack and the multiple dictionaries. First, we discuss
time and space costs related to the KRR model. Then we
analyze the overhead of multi-dictionary design.

To measure the efficiency of our KRR model and
stack update mechanisms, we compare backward stack
update methods (with/without spatial sampling) with
the naive linear stack update method and the simula-
tion/interpolation approach. We simulate K-LRU under 25
different cache sizes evenly distributed across its working
set size. For demonstration purpose, we use the first one mil-
lion references from MSR src1 trace, and set K = 5. Table 4
is a summary of the results. We see that the backward stack
update method shows an 8247 times improvement over the
linear stack update approach. When spatial sampling with
R = 0.01 is applied, the running time is further improved
by two more magnitudes. We also observe similar time cost
improvement on other workloads.

Next, we use the merged ”master” MSR trace to compare
the running time of KRR+Spatial sampling with the existing
LRU MRC approximation technique, SHARDS. Table 5 con-
tains the running time for backward stack update KRR and
SHARDS. The running time of KRR shown in Table 5 is the
average across different Ks (1, 2, 4, 8, 16, 32). The average
running time for KRR with backward stack update and
SHARDS is very close to the master trace in our test.

With the previous 15-tenant case study in Section 6.4.2,
for all the 6 evaluated workloads, the total KRR time over-

TABLE 4
Running Time Comparison for Processing One Million MSR src1

Requests

Stack Update Efficiency

Methods Time (Sec)

Simulation 26
Basic Stack 53606

Backward Stack Update 6.5
Backward+Spatial 0.07

TABLE 5
Master Trace Comparison

Merged-MSR Trace, Spatial Sampling Rate = 0.001

Method Backward+Spatial SHARDS
Times (sec) 22.4 19.7

head including reference tracking and K-LRU MRC model-
ing is in the range from 0.57% to 0.66% of total execution
time.

The KRR stack is implemented as a simple array with
a hash table where an entry of the hash table holds a
pointer to an object location in the array. Then the total
space overhead of the KRR stack is proportional to the
total number of objects stored on the KRR stack. In our
implementation, each object consumes 68 bytes including
the hash table and other auxiliary entries. For variable object
size-aware KRR, a 4 bytes field is needed to store the size
of each object, the additional sizeArray consumes negligible
space in comparison to the stack. After incorporating spatial
sampling, the overall space overhead is further reduced by
sampling rate R. Thus the estimated percentage of space
overhead is 72 bytes * R / average object size. For instance,
assuming R = 0.001, and the average size of objects is 200
bytes2, then the space overhead is just 0.036% of the working
set size.

In the following, we discuss the time and space overhead
of multi-dictionary design in kRedis. The Redis hash table
is capable of resizing itself according to the load factor.
In the process of expansion or contraction of a hash ta-
ble, Redis performs rehash operations which bring extra
time overhead. In the original Redis, once the maximum
memory is reached, the size of the single hash table is
generally stable. But our multi-dictionary design may bring
extra overhead while the size of each tenant’s key space
is changing according to the dynamic memory allocations.
To measure the efficiency of our multi-dictionary design, we
profile the time overhead of hash table resizing and compare
it with Redis. We use the Twitter cluster 54.0 workload and
emulate a 16-tenant system as described in Section 6.4.2.
Redis’ total rehashing takes 1 second out of 81199 seconds of
running time, while kRedis’ total rehashing takes 9 seconds
out of 44474 seconds of running time. The rehashing time
cost of multi-dictionary design is almost negligible as it
accounts for only 0.02% of total running time.

2. Many real in-memory cache workloads have much higher average
key-value size [32]



WANG et al.: MULTI-TENANT IN-MEMORY KEY-VALUE CACHE PARTITIONING USING EFFICIENT RANDOM SAMPLING-BASED LRU MODEL 15

In Redis, all key-values are stored as dict-Entry in the
hash table, which is organized in a dictionary header struc-
ture containing type, pointer to hash table, rehash index, etc.
In kRedis’ multi-dictionary design, all space costs of actual
key-value pairs are the same as Redis, the only overhead
is the metadata of the dictionary header, which is in a
total of 176 bytes per tenant. Using the same instance in
evaluating the space overhead of the KRR stack, assuming
there are 15 tenants, then the space overhead for processing
workload with 100 million distinct objects is just 1.32e-5%
of the working set size.

6.9 kRedis vs DLRU
As described in Section 2.3, DLRU [27] is also capable of
reducing the overall access latency of a single-tenant, fixed
memory size key-value cache by using miniature cache [28]
to simulate the behavior of various K-LRU caches and
explore the potential miss ratio gap of various sampling
size Ks. kRedis can be downgraded to handle a single
tenant, where KRR is applied to identify an optimal K .
In this section, we first use a single-tenant environment
to compare kRedis and DLRU. Then we extend DLRU to
construct tenant MRCs in a multi-tenant key-value cache
and use those to guide tenant memory partitioning. We use
a multi-tenant test case to discuss the limitations of DLRU
versus kRedis.

6.9.1 Single-Tenant Case Study
In this case study, we set up a fix-memory size Redis
instance running a single tenant loading MSR workload. We
use KRR and DLRU to guide the selection of K , respectively.
We conduct two tests, using MSR workload src1 and web,
respectively. We choose the Redis memory size as 30% of the
workload’s working set size where the miss ratios of various
random sampling Ks show a large gap. The tenant’s miss
latency is configured to 2000 µs to represent fetching objects
from the remote database. As shown in Figure 13, there is
no notable difference in performance between DLRU and
kRedis in the single-tenant use case. This indeed verifies the
accuracy of the KRR model against simulation.

Fig. 13. Average access latency reduction of DLRU and kRedis with
single tenant loading MSR workload. There is no notable difference
between the two schemes.

6.9.2 Multi-Tenant Case Study
To adopt DLRU for multi-tenant partitioning, we extend
DLRU by generating MRCs through miniature cache sim-
ulation and interpolation. For each tenant, a selection of

Ks, and a selection of cache sizes, we use D-LRU miniature
cache to find the miss ratios. We then construct an MRC
through interpolation for each K of each tenant, and use
these MRCs to guide partitioning instead of the KRR MRCs.
It is worth noting that interpolation may not be able to
capture every inflection point on the MRC, thus losing
accuracy in the constructed MRC.

To compare the extended DLRU against kRedis, we
employ the same 15 tenants set up as the one used in
Section 6.4.2 with Twitter cluster18.0 workload. In this
test case, for each of the 15 tenants, we set up 20 cache
sizes uniformly distributed across the range of Redis max-
memory and provide 4 K options. Therefore, there are a
total of 15 ∗ 20 ∗ 4 = 1200 independent miniature caches
in extended DLRU. Compared to Redis, extended DLRU
and kRedis reduce the mean access latency by 45.2% and
50.2%, respectively. The time overhead of extended DLRU
and kRedis are similar, which are 0.73% and 0.66% of total
execution time, respectively, but extended DLRU shows
higher space overhead than kRedis, which is 38 times that
of kRedis.

It is worth mentioning that in extended DLRU the space
and time overhead are directly associated with the number
of cache sizes simulated. In order to obtain more accurate
K-LRU MRCs, more cache sizes need to be simulated for
each tenant. And in a system with a large number of
tenants and a greater cache max-memory size, the DLRU
simulation overhead for the multi-tenant cache using K-
LRU can only be higher. Thus, even though both DLRU and
kRedis are efficient for the single-tenant use case, for multi-
tenant memory allocation usage, an efficient one-pass MRC
modeling algorithm such as EAET and KRR is preferred
over interpolation.

7 RELATED WORK

Two classes of studies are related to this work, one is MRC
techniques and the other is cache partitioning.

7.1 MRC Techniques

The baseline technique by Mattson et al. [41] generates
exact MRC for the LRU cache but comes with the cost
of extremely large space and time overheads. Many later
studies have attempted to reduce the overhead of stack
processing by using more compressed stack representation.
Olken et al. [34] reduced the algorithm complexity down to
O(NlogM) by replacing the linear stack structure with the
balanced search tree. Scale Tree [46] is a modified version
of Olken’s stack. Instead of using each node to store exactly
one reference, the scale tree stores a time range of references
in one node. Compressing multiple references into one
node is essentially a trade-off between error and space/time
overheads. The scale tree approximates stack distance with
a small bounded error which only takes O(NLog(Log(M)))
time and O(LogM) space. MIMIR [39] divides the LRU
stack into B variable size buckets, in which the elements
can be in any order within a bucket. The sequence of buckets
forms a coarser-grained LRU stack. This method takes O(B)
time and O(M) space. They demonstrate that MIMIR can
generate very accurate MRCs. Counter Stacks [4] replaces
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the original LRU stack with a set of cardinality counters.
Each cardinality counter stores the total number of unique
references observed since the counter was initialized. The
basic idea for Counter Stacks is that the LRU stack distance
is just counting the number of unique references between
re-references. Thus, the LRU stack processing can be consid-
ered as a stack of cardinality counters, one for each request.
To make it practical for online use, Counter Stacks employs
multiple compression techniques including downsampling
and pruning its data matrix as well as replacing the bloom
filter-based counter with a low overhead probabilistic cardi-
nality counter. The compressed Counter Stack only requires
O(NLogM) time and O(LogM) space to generate accurate
MRCs with bounded error. SHARDS [3] further reduces the
running time to linear by utilizing a uniform randomized
spatial sampling technique, which tracks references that are
chosen based on their hash values. This method makes it
possible to analyze long traces that were previously difficult
due to memory constraints.

More recent advancement in LRU MRC generation uses
the metric called reuse time [12], [13], [21]. Reuse time is
defined as the total number of references between two refer-
ences to the same object. These techniques do not explicitly
maintain any representation of stack when processing the
workload, instead, they collect the reuse time distribution
of the workload through sampling which can be done in
just linear time with a small fraction of space overhead.
Statstack [13] converts the reuse time distribution to an
expected stack distance distribution. For every reference
with reuse time r, or equivalently there is r number of
references in between the re-reference, they approximate the
expected stack distance as the expected number of refer-
ences out of the r references that have forward reuse time
greater than r. AET [6], [21], presents a kinetic model for
the LRU cache eviction process. This model uses reuse time
distribution to compute the object’s movement probability
(or equivalently its instantaneous velocity) at an LRU stack
position. For a reference, given its reuse time, the model
computes the approximated stack distance by integrating
the reference’s moving speed over reuse time. HOTL [12]
shows that the miss ratio of an LRU cache with capacity
c can be approximated as the finite difference of average
footprint at c, which is equivalent to the probability of reuse
time longer than the length of the footprint window.

7.2 Memory Partitioning

Memory allocation is important for the efficiency and per-
formance of in-memory key-value cache systems. Memory
pool can be partitioned according to application-related
properties, including object size, latency, expiration, fre-
quency, QoS, etc. And the optimization strategy of parti-
tioning is also tailored to satisfy various use case-specified
objectives.

LAMA [5] is a locality-aware slab class level memory
allocation for Memcached using the footprint theory [12] to
model slab class trace locality and construct an MRC for
each slab class. LAMA optimizes overall performance for
all size classes, either total miss ratio or average response
time. It can also be used in QoS-guaranteed applications
use cases. Dynacache [38] targets improving the hit rate of

web applications, uses a bucketing scheme to estimate item
stack distance in trace profiling, and allocates slab memory
of Memcached for tenants. Cliffhanger [47] employs a hit
rate gradient estimation mechanism using shadow queue
structures and incrementally transfers memory resources
to the application that would benefit most from those that
benefit the least.

Memshare [25] is a DRAM key-value cache memory
partitioning system that optimizes the overall hit rate of
applications and allows each application to specify its own
eviction policy. It extends the Cliffhanger model to track
a hit gradient for each application. Memshare abandons
slab classes and introduces a segmented in-memory log
to store application items. Varied-size items from different
applications can be allocated to the same segment and thus
memory reallocation can be at the item level. Memshare
reserves a specified minimum amount of memory for each
application to provide performance guarantees, and the
remaining memory is allocated to maximize the hit rate.
Both pRedis [40] and mPart [22] adopt AET [21] for on-
line MRC construction and use dynamic programming al-
gorithms guided by tenant MRCs to allocate memory. I-
PLRU [48] achieves minimized misses for a multi-flow LRU
cache with an insertion-based pooled LRU paradigm. The
cache space is pooled to serve multiple data flows but
organized as a single list. Each tenant data flow is assigned
an insertion position of the list. By configuring the insertion
point dynamically, it proves that I-PLRU can reach the
same minimum miss ratio of separated LRU caching. Robin-
hood [23] repurposes existing caches to mitigate backend
latency variability. Rather than solely caching popular data,
it dynamically reallocates cache resources from ”cache-rich”
backends, which do not significantly impact request tail
latency, to the ”cache-poor” backends, thereby increasing
hit ratios, reducing backend queries, and easing resource
congestion, which all contribute to improved P99 request
latency.

8 CONCLUSION

Random sampling-based cache replacement policies such
as K-LRU become more attractive recently due to their
small metadata and data structure maintenance overhead,
and acceptable miss ratio. However, modeling these policies
remains a challenging problem. This paper presents KRR, a
probabilistic stack algorithm that enables MRC construction
for variable object-size K-LRU key-value cache in one pass
of the trace. We also propose a fast stack update schemes to
further reduce the algorithm’s cost. With the support of this
random sampling-based LRU model, we present the design
and implementation of a lightweight memory partitioning
scheme in multi-tenant key-value cache. Besides the capa-
bility of capturing trace locality and awareness of reference
miss latency, it efficiently explores the potential miss ratio
gaps of various sampling sizes in K-LRU. Incorporating
spatial sampling, we show that KRR can construct accurate
MRC with low space and time overhead. The evaluations
over a variety of workloads show that our multi-tenant
memory allocation approach achieves better performance
than Redis and pRedis. The average access latency is re-
duced up to 50.2% and 24.8% when compared to Redis
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and pRedis, respectively. By adjusting the memory parti-
tioning strategy, we show that the throughput is increased
by 262.8% and 61.8% compared to Redis and pRedis, respec-
tively. We also compare kRedis with extended DLRU and
discuss the suggested application scenarios for the two. In
our future work, we will investigate other random-sampling
policies using diverse metrics, such as access frequency
and object expiration time, as priority functions, and utilize
those in memory management for border usage such as
scalable tired memory systems.
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