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S. W. Hancock, S. Zahedpour, A. Goffin, H. M. Milchberg'
Institute for Research in Electronics and Applied Physics, University of Maryland, College Park,
Maryland 20740

ABSTRACT

We review highlights of our recent contributions to understanding the propagation dynamics and transverse orbital angular
momentum of optical pulses carrying spatiotemporal optical vortices (STOVs). STOVs, which were first observed as an
emergent phenomenon in nonlinear self-focusing, were first /inearly generated using a 4f pulse shaper and measured using
transient-grating single-shot supercontinuum spectral interferometry (TG-SSSI). That STOV-based transverse orbital
angular momentum (OAM) is carried at the single photon level was then confirmed in measurements of OAM conservation
in second harmonic generation. Our recent theory for the electromagnetic mode structure and transverse OAM of STOV-
carrying pulses in dispersive media predicts half-integer OAM and the existence of a transverse OAM-carrying
quasiparticle: the bulk medium STOV polariton.
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1. INTRODUCTION

Optical vortices are electromagnetic field structures characterized by a rotational flow of energy density around a phase
singularity, comprising a null in the field amplitude and a discontinuity in the azimuthal phase. In the most common type
of optical vortex in optical beams, the azimuthal phase circulation resides in spatial dimensions transverse to the
propagation direction. Examples are the well-known orbital angular momentum (OAM) modes [1], typified by Bessel-
Gaussian (BG;) or Laguerre-Gaussian (LGy,;) beams with nonzero azimuthal index . OAM beams have been used in optical
trapping [2] and super-resolution microscopy [3], with proposed applications such as turbulence-resilient free-space
communications [4,5] and quantum key distribution [6].

Previously, we reported on the experimental discovery and analysis of the spatiotemporal optical vortex (STOV) [7],
whose phase winding resides in the spatiotemporal domain. Toroidal STOVs were found to be a universal electromagnetic
structure that naturally emerges from arrested self-focusing collapse of short pulses, which occurs, for example, in
femtosecond filamentation in air [8,9] or in relativistic self-guiding in laser wakefield accelerators [10]. As this vortex is
supported on the envelope of a short pulse, its description is necessarily polychromatic. For femtosecond filamentation in
air, a pulse with no initial vorticity collapses and generates plasma at beam center. The ultrafast onset of plasma provides
sufficient transient phase shear to spawn two toroidal spatiotemporal vortex rings of topological charge | = —1 and ! =
+1 that wrap around the pulse propagation axis. In air, the delayed rotational response of N, and O, [11] provides
additional transient phase shear, generating additional [ = +1 toroidal STOVs on the trailing edge of the pulse [7]. After
some propagation distance and STOV-STOV dynamics, the self-guided pulse is accompanied by the [ = 41 vortex,
which governs the intra-pulse energy flow supporting self-guiding [7].

The requirement of transient phase shear for such nonlinearly generated STOVs suggested that phase shear linearly applied
in the spatiospectral domain could also lead to STOVs, and use of a zero dispersion (4f) pulse shaper and phase masks
have been proposed [12] and first demonstrated [13, 14] for this purpose, later followed by [15]. In this paper, we review
our recent results: the generation of free-space propagation of STOVs [14] and their measurement [16], the conservation
of OAM in second-harmonic generation from STOVs [17], and the electromagnetic mode structure and transverse OAM
of STOVs [18].

A 4f pulse shaper can be used to impose STOVs on Gaussian pulses and record in-flight phase and amplitude images of
these structures in a single shot using a new diagnostic developed for this purpose. The structures generated are “line-
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STOVs” as described in [7, 12-18]; the phase circulates around a straight axis normal to the propagation direction and to
the spatio-temporal plane. An electric field component of a simple |I|** order line-STOV—carrying pulse of center
wavenumber k,, at position z along the propagation axis (for |z| << z, the Rayleigh range) can be written as

T o ) .
E(r,z1)=a (T— +isgn (D) x_) e*o?E (r;,z,7) = A(x,T)e!®s-teko?E (r|, z,T), D
S S

where 1, = (x,y), T =t — z/v, is a time coordinate local to the pulse, v, is the group velocity, 7, and x are temporal
and spatial scale widths of the STOV, ®,_,(x, 1) is the space-time phase circulation in x — t space, | =+1,%2,...,
ACe, 1) = a((t/19)? + (x/x)DHW2 | a =2 ((xy/x5)? + (1/75)?) /% for | = +1, and E, is the envelope of the
STOV-free near-Gaussian pulse input to the 4f shaper, where x, and 7, are its spatial and temporal widths. Here a is a
normalization factor ensuring that pulse energy is conserved through the shaper: [ d?r, dt|E|? = [ d?r, dt|E,|?.

2. GENERATION AND MEASUREMENT OF STOVs

The pulse shaper imposes a line-STOV on an input Gaussian pulse (50 fs, 1.5-20 pJ) using a 2l spiral transmissive phase
plate (with [ = +1,—1) or a & -step plate at the shaper’s Fourier plane (common focus of the cylindrical lenses). The
vertical and horizontal axes on the phase masks lie in the spatial (x) and spectral (w) domains. The phase plate orientations
are shown in the figure, where for the step plate, the adjustable angle a is with respect to the spectral (dispersion) direction.
While the shaper imposes a spatiospectral (x,w) phase at the phase plate, leading to a spatiotemporal (x,7) pulse
immediately at its output at the exit grating (near field), our desired spatial effects appear in the far field of the shaper,
where the desired STOV-carrying pulse emerges.
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Figure 1. Top: Setup for transient grating single-shot spectral interferometry (TG-SSSI) [16]. The STOV-carrying pump pulse
(center wavelength 4, =800nm) at the output of a 4f pulse shaper is focused (~1.5 pJ) or imaged (~20 pJ) into a 500 um
thick fused silica witness plate. The pump pulse energy is kept sufficiently low so that the STOV pulse propagates nearly
linearly in the plate. A interferometric probe pulse €; (15 = 795nm, 2 nm bandwidth) crosses the STOV pulse direction at
angle 6 = 6°, forming a transient grating with modulations f(x,t) = cos(kx sin 8 + A®(x, 1)), where the symbols are
defined in the main text and reference coordinates are shown next to the witness plate, and A®(x, T) is the spatiotemporal
phase to be extracted . The transient grating is probed by SSSI[19], which uses ~1.5 ps long chirped supercontinuum reference
and probe pulses Erf and Ep, (19~575 nm). The result is single-shot time and space resolved images of amplitude and phase
of STOV-carrying pulses. Extracted is Bottom left: Cylindrical lens-based 4f pulse shaper [12-14] for imposing a line-STOV
on a 45 fs, A=800nm input pulse. A thin phase plate is inserted in the Fourier plane at the common focus of the cylindrical
lenses. We used spiral phase plates (I = 1, [ = —1) and a © —step plate, all etched on fused silica, where the © —step angle
a and the spiral orientation (for [ = —1) are also shown. The | = +1 plates have 16 levels (steps). Shaper gratings: 1200
line/mm, cylindrical lenses: focal length 20cm.

Here, we project to the far field by lens-focusing the STOV output pulse from the shaper into a 500 um thick fused silica
“witness plate”, whereupon it is measured using transient grating single-shot supercontinuum spectral interferometry (TG-
SSSI) [16].
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Figure 2 shows typical TG-SSSI measurement results. Row (a) shows the pulse with no phase plate in the pulse shaper.
This is the far field output of the shaper as measured by TG-SSSI in the witness plate. The temporal leading edge is at
7 < 0. The left column plots the extracted A (x, T) < |Es(x,T)|? + 2|Es||€;1f (x, T), where |E¢|? o I, is the 1D space +
time pump intensity envelope and f(x,t) = cos(2k,,x sin(6,,/2) + A®(x, 1)) where k,, = nyk is the pump central
wavenumber in the witness plate and 8,, is the angle between E; and €; inside the witness plate (see Fig. 1 and caption).
The fringes are removed with a low pass filter, yielding Is(x, T) in the next column, while in the third column, a high pass
filter leaves the fringe image f (x, 7). The far right column shows the extracted spatio-temporal phase A®(x, 7). It is seen
that the pulse envelope I closely agrees with the 50 fs pulse input to the shaper, and that A®(x, T) is weakly parabolic in
time (small chirp) and relatively flat in space.
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Figure 2. (a) Output of pulse shaper with no phase plate. The 50 fs input pulse, with a weakly parabolic temporal phase, is
recovered. (b, ¢) Intensity and phase of pulse in far-field of pulse shaper with [ = 1 and | = —1 spiral phase plates. White-
bordered insets: pulse shaper near-field intensity images. The red arrows show the direction of phase circulation. Headings of
each column are described in the text. In all panels, the temporal leading edge of the pulse is on the left (t < 0), so propagation
is right-to-left. The pulse energy for the three far field cases above is ~1pJ. For the near field cases (insets), the pulse energy
is increased to ~20uJ to offset the reduced signal due to magnification.

The slight curvature of the fringes of f(x, ) seen in Fig. 2 is attributed to spectral phase mismatch between Eg and E;.
One form of line-STOV-carrying pulse can be generated with a spiral phase plate in the pulse shaper. For a [ = 1 plate,
row (b) of Fig. 2 shows, as in (a), the various extractions from TG-SSSI. The presence of a spatio-temporal phase
singularity is evident from the characteristic forked pattern in f(x,7). The spatio-temporal envelope Is(x,T) and
phase A®(x, 7) of the STOV are shown in the second and fourth columns, where the pulse appears as an “edge-first flying
donut” with a 27 phase circulation around the phase singularity at the donut null. Using a l = —1 plate (flipping the [ = 1
plate) generates the opposite spatio-temporal phase circulation, as seen in row (c). The small insets in (b) and (c) show the
corresponding near-field intensity envelopes from the shaper, consisting of 2 lobes separated by a space-time diagonal.

3. OAM CONSERVATION IN SECOND HARMONIC GENERATION OF STOVs

Because OAM in standard beams (such as Laguerre-Gaussian) is conserved under second harmonic generation (SHG)
[20], it is of significant interest to test this with STOV pulses. Given perfect phase matching in the undepleted pump
regime, the process of second harmonic generation (SHG) involving monochromatic and polychromatic beams yields a
nonlinear polarization and second harmonic field output proportional to the square of the input field [21]. As applied to
the fundamental STOV pulse of Eq. (1), the same process would give
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T x\ 21
E2%(r,,z,1) < a? (T— + isgn(l) x_) Ey*(ry, 2, 1), (2)
S S

= A?(x,1)e?'®s-tE2(r,, z,7)
Note that the propagation phase factor e?*o% in Eq. (1) contributes a purely spatial phase shift, affecting only extrinsic
orbital angular momentum; it does not contribute to the SHG process. Equation (2) predicts that the frequency doubled
pulse will have twice the topological charge and angular momentum as the fundamental STOV-carrying pulse.

TG-SSSI measurements of the fundamental and SHG STOV pulses (generated by placing a 100um thick BBO crystal at
the exit of the pulse shaper) are shown in Fig. 3, where the red colourmap panels of (a) show the spatiotemporal intensity
Is(x,T) and phase A®(x,T) of the fundamental [ = +1 STOV Es(x,7) at the near-field output of the 4f pulse shaper
(here using a n-step plate). Is(x, T) has the characteristic edge-first flying donut profile, with the pulse propagating right-
to-left, while A®(x, 7) is a single 27 phase winding centred at (x, t) = (0,0). The dip in intensity near x = —60um in

Fig. 3(a) is due to scattering off the m-step of the phase plate. Figure 3(b), in blue colormap, shows the measured
spatiotemporal intensity 12®(x,t) and phase A®2?®(x,7) of EZ“(x,T). Instead of a single [ = +2 STOV , for which
12¢(x, ) would have a single intensity null and A®2® (x, T) would have a 47 phase winding, we see that 2% (x, ) and
AD%?(x, T) show two spatiotemporally offset vortices, embedded in the second harmonic pulse, around whose centers are
two 2m phase windings. This constitutes two [ = +1 STOVs, and thus energy conservation dictates that the EZ% pulse

carries, on average, twice the OAM per photon of the fundamental Es. The spatiotemporal splitting of the STOV in E2¢
is due to (1) group velocity mismatch GVM (= 1/ vézw) -1/ v;(”)) between the E¢ and EZ2®pulses in the BBO crystal [17]
and (2) group delay dispersion (GDD) in both the BBO crystal and imaging lens.
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Figure 3. TG-SSSI measurements of fundamental and SHG STOVs. (a) Top: Intensity profile Is(x, t) of fundamental [ = +1
STOV; Bottom: spatiotemporal phase A®(x, T) showing one 21 winding. (b) Top: SHG output pulse I12° (x, ) showing two
donut holes embedded in pulse; Bottom: spatiotemporal phase profile A®2¢ (x, T) showing two 2n windings. Phase traces are
blanked in regions of negligible intensity, where phase extraction fails. These images represent 500 shot averages: the
extracted phase shift from each spectral interferogram is extracted, then the fringes of each frame (shot) are aligned and
averaged, then the phase map is extracted [16].

The question of whether photons in an ultrashort STOV pulse individually carry transverse OAM is difficult to answer
experimentally in linear optics: one would need to attenuate the pulse and somehow examine the statistical spatiotemporal
distribution of photons. However, this question is more easily answered using nonlinear optics. The conservation of photon
number implied by the Manley-Rowe relations for SHG, 2d/dz (I (@) / h(u) =d/dz (1 2w) h(u) [21], implies that, on
average, photons at the second harmonic carry twice the OAM of photons at the fundamental. However, because SHG is
fundamentally a quantum mechanical process involving light-matter interactions of the quantized electromagnetic field,
and because all photons in the STOV pulse from our pulse shaper carry the same bandwidth, polarization, and
spatiotemporal phase, we conclude that energy and angular momentum conservation in the SHG process holds at the
individual photon level—and that photons in STOV-carrying pulses have OAM orthogonal to their direction of
propagation. It is also worth noting that if we take a STOV pulse of the type generated here, and greatly attenuate it to just
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a few photons, the uncertainty relations Ak,Ax > 1/2 and Ak;A$ > 1/2 ensure that a photon with STOV OAM could

be found anywhere in the transverse and longitudinal extent of the pulse, and could have any frequency consistent with
the bandwidth.

4. MODE STRUCTURE AND ORBITAL ANGULAR MOMENTUM OF STOVs

Next, we present a review of our modal theory of STOVs and transverse OAM [22]. STOV-supporting modal solutions of
the paraxial wave equation, accounting for possible dispersion in the propagation medium, have been found from the
Fourier transformed wave equation for a uniform isotropic medium with dielectric function £(w) and wavenumber given
by k*(w) = w?e(w)/c?,

92 ~
(Vi + FP + kz(w)> A(r,,z,w) =0, 3
where A is the t - w Fourier-transformed vector potential, pulse propagation is along Z, r, represents transverse
coordinates orthogonal to Z, and V7 is the corresponding transverse Laplacian. After assuming a slowly varying envelope
and adopting the paraxial approximation, expanding around the central wavenumber, assuming the bandwidth is not too
large and making the substitutions { = vt — z and 5, = vgz kok{ , we get for the paraxial spatiotemporal wave equation
[22],

d 92
2ik, EA(FL, $z2) = <—Vi + B, a_fz) A(ry, ¢ z) = HA(r,, § 2), 4)

Here, ¢ is a (local time-like) space coordinate in the frame of the pulse, 3, is the dimensionless group velocity dispersion
(GVD), A is the slowly varying envelope, H = (—=V4% + 8, 32/0&?) is the spacetime propagator, and we separate z with
a semicolon as it plays the role of a time-like running parameter.

Next, we assume a uniformly polarized beam A(r,,¢; z) = A(r, &;z)€ , where & is the complex polarization (here we
take € = § as in our experiments [14], where there are no effects of spin angular momentum [23,24]), and find modal
solutions to Eq. (4) forr, = (x,y):

Ampq(%,y,8;2) = A g (6 2w (v; 2D)ug (& 2), (5)
where
iko&?
() = Cq i V2§ e_gz/wéz»(z)e_zﬁzf?f(z)ei(q+%)¢€(z), (6a)
q "\ we(2)
Wf(Z)
and

ikgx?
uE (x' Z) _ Cm H ‘/E X e—xz/sz(Z)e_Zle(Z)e_i(m%)w"(z) (6b)
e J " \wy(2) '
w,(2) x

1

= . 1
Here, G, = (%)4 (27 m")7z, H,, is a Hermite polynomial of order m, wy(2z) = wo,(1 + (2/20x)*)*?, R (2) = z(1 +
(Zox/2)?), Y, (2) = tan"1(z/zy,), and z,, = kow?,/2 is the x-based Rayleigh range. The expression for ug (y) is
identical to Eq. (6b) with the substitution x = y everywhere. Associated with ug (&2) is zos = kowgf /21B2|, we(2) =
Woe(1 + (2/206)*)Y?, Re(2) = z(1 + (20¢/2)?), and ¢ (2) = sgn(B,)tan™*(z/z¢). The quantities w(z), R(z) and
1 (z) express the z-variation in beam size, phase front curvature and Gouy phase shift as they do for standard transverse
modes, except that here they also apply in the ¢ domain.

The “spot sizes” woy, Wy,,, and wog describe the transverse space and temporal shape of the beam envelope of the lowest
order mode ((m,p,q) = (0,0,0)) at z = 0, Aggo(x, ¥, &2 =0) = Ag%)o e~ (% /Wixty? [wéy) e_fz/wé, which approximates
the input beam to our pulse shaper. The effective wavenumber k, /8, associated with ug (&) accounts for the different rate
of spreading in temporal dispersion compared to transverse beam diffraction. We have allowed the beam to have elliptical
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envelopes in both the x — y (space) and x — & (spacetime) planes, and different phase curvatures in x, y, and &. The
choice of HG basis functions for the solution of Eq. (4) is motivated by our experimental generation of STOV-carrying
pulses using a 4f pulse shaper [12-14], which imposes rectilinearly-oriented ellipticity and astigmatism in both the space
and spacetime domains.

In vacuum or in the very dilute medium (air) of the experiments of [14], B, =0 and v, =, ug(f;z =0)=

H, (V2¢ / Wog)e_fz/ Wog , and Eq. (1) can be represented as a linear combination of spacetime modes (Egs. (6a), (6b)) at

z=0:
AT (3,62 = 0) = Agud (v 0) (w§ (6 0)uf (65 0) + i (5 00 (£, 0)) ™)
Given this initial STOV field at z = 0, the propagator H = (—V2 + B, 3% /0&?) of Eq. (4) generates the full z-dependent
evolution
ATy, §52) = A (3 2) (u§ (s DU (65 2) & i (6 2D (§.2) ). ®)

For the case wo, = woe (@ = woe/Wo, = 1), the factor ug(x; Z)uf(f; z) + iuf(x; Z)ug(f; z) is analogous to the
superposition of the 0¢*and 15¢ order Hermite-Gaussian transverse modes (HG, and HG,) to give the Laguerre-Gaussian
spatial mode LGsopi;llce = HGy(x)HG,(y) £ iHG,(x)HGy(y). In our experiments, the y-dependent beam envelope shape,
aside from transverse diffractive spreading, is preserved in propagation. So, we henceforth neglect y variations in the beam

by setting y = 0, noting that any 3D mode can be constructed by multiplying the (x, §)-dependent results by u,, (y; z).

We now examine the STOV angular momentum, §L,,, which is orthogonal to the x — ¢ plane of spatiotemporal phase
circulation. First, we must find the appropriate angular momentum operator L,,. To do so, we consider Eq. (4) along with
the conservation of energy density flux j [25], |A|?/0z = =V -j, where j =j, +jy,j. = —i(2ke) 1(A*V, A — AV, A%)
and j; = if,(2ko) " 1[A*(0/06)A — A(0/0E)A*]E, where € is a unit vector along increasing &. This gives j =
kGHAIP(V,o® — B, (8/88) §) = kgt|A|?V; @, where A =|Ale'® and V=V, —§B,(0/08) is the spacetime
gradient. Therefore, the spacetime linear momentum operator is p = —iVy, giving L, = (f X p), = (—ir X Vg), =

—i(£9/0x + xB, 8/%).

To calculate the STOV OAM associated with A(p, y, ®; z)(l:il) , we note that it is sufficient to do so at the beam waist
z = 0. This is because (L, ) is invariant with propagation, namely (d/dz){L,) = i(2ko)"*([H, L,]) = 0, owing to the fact
that [H,Ly] = 0 [22]; L, commutes with the propagation operator, as it should for a conserved OAM quantity. It is
straightforward to show that [H,L,] = 0 even under non-paraxial conditions. This greatly simplifies the calculation,
especially for non-zero f8,, where we consider the beam waist to be placed just inside the material interface (z = 0%)
without additional chirp from the material yet induced.

In spacetime polar coordinates (x = p cos @, & = p sin @), the STOV field at z = 0 for general [, a can be written as
AL, = AL (p,y = 0,®,z = 0)

11 2
=4, <L> exp| — p_z (cos? ® + a?sin? @) | (cos ® + ia sgn(l) sin ®)!. 9
Wog Woe

It is then straightforward to show that the expectation value of the intrinsic transverse OAM is

(Ly) = (A4 |Ly|AL) = 31 (a - %) ) (10)

where (L, ) depends explicitly on topological charge I, STOV eccentricity @ and material dispersion 8, [22]. This is a
remarkable result, for which we first consider the case @ = 1, a space-time symmetric STOV. For the case of vacuum
(B2 =0), (Ly) =1/2: STOV OAM is quantized in half integer units. For dispersive media (8, # 0), a quantum
interpretation of the role of [, is strongly suggested, where one might consider the material disturbance induced by a
STOV-encoded photon field as a new type of quasiparticle, a “STOV polariton”.
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Figure 4. (a) Plots of STOV intensity |A£,==11(x,y =0,¢&; z)| 2 and energy density flux j (depicted by overlaid arrows),
computed using Eq. (9) for =1, ¢ =1 and , =1, 0.5, 0,—0.5,—1. The purely diffractive contributions to j have been
subtracted out, leaving the flow contributing to OAM [22]. Propagation is shown through the beam waist (z/zy, = 0) and
into the far field (+o0 ). The red arrows indicate the direction of spatiotemporal phase gradient V& (x, £) and the red diagonals
mark the boundary across which there is a phase jump of . (b) Similar plots for spacetime-eccentric I = 1 STOVs with a =
0.5 and B, = 1,0, —1. For each row in (a) and (b), the value of (L, is shown in the z = 0 (centre) panels. Within each panel
of (a) and (b), the pulse propagates right to left.

A physical explanation for half-integer STOV orbital angular momentum in vacuum is that electromagnetic energy density
flow in the pulse frame is purely along +x, or along V. In our coordinates, for [ = +1, energy density flows along —x
in advance of the STOV singularity and along +x behind it. Because 5, = 0 or is negligible in vacuum or extremely dilute
media, there is no energy flow along &. This is in contrast to a standard LG9, mode, where electromagnetic energy
density circulates clockwise or counterclockwise around the singularity. The dependence of (L} on 3, can be interpreted

as STOV-based transverse OAM being shared between a photon and a bulk medium STOV polariton.

We contrast our result with a recent calculation of STOV transverse OAM assuming zero dispersion (8, = 0) [24, 26],
which yields (L‘;,) = l(a + a™')/2 for the intrinsic OAM. This result differs from the 8, = 0 case of our Eq. (10): {L,) =
la/2. It also conflicts with the direct computation from the [ = 1 STOV fields in vacuum, (r X (E x H)), = a/2 where E
is the electric field of an [ = 1 STOV and H is the corresponding magnetic field [27]. This is not surprising, since the
operator for intrinsic transverse OAM written down in [24, 26], L’;, = —i(g‘r (0/0x) —x(0/0¢ )), does not commute with
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the space-time propagator H (that is, [H, Lg’,] # 0) and is therefore not conserved during propagation. Additionally, the
result of [24, 26] worrisomely implies local superluminal and subluminal energy density flow along € [22, 27].

Figure 4(a) shows plots of STOV intensity |Af,,:=11 (x,y=0,¢& Z)| 2 and energy density flux j, computed using Eq. (8), for
l=1,a=1and B, =1, 0.5, 0,—0.5,—1, and Fig. 4(b) shows similar results for a spacetime-eccentric [ = 1 STOV
with @ = 0.5. For each row of Fig. 4, (L, ) = 3(a — B, /) is a constant. The purely diffractive contributions to j have been
subtracted out, leaving the flow contributing to OAM [22]. The red arrows show the direction of the spatiotemporal phase
gradient V& (x, &), and the red diagonals mark the boundary across which there is a phase jump of 7. In the panels with
the red diagonal, even though the phase winding has disappeared, (L, ) remains at the constant value of that particular row.
It is seen that for a STOV propagating in a medium with 8, > 0, the energy density flow exhibits a ‘saddle’ pattern with
respect to the singularity, while for 8, < 0 the flow is spiral and, as discussed for 5, = 0, the flow is restricted to *x.
Note that for 8, = 1, where (L)) = (1 — ;) x [ dxd&(r x j)y = 0 and OAM is shared equally by the electromagnetic
and polariton response, j vanishes everywhere at z = z,..

A range of interesting behaviour is observed in Fig. 4, with the main points summarized as follows: (1) In normally
dispersive materials (8, > 0), the directions of the OAM and the phase gradient do not always coincide; the phase winding
direction can flip to maintain OAM conservation (see rows (i),(ii), and (vi)); (2) The phase winding can disappear, yet
nonzero (L,,) remains (rows (iii) and (vi)); (3) A donut-shaped STOV launched in vacuum or dilute media does not stay
together as a donut; the spatio-temporal energy flow component j, forces the donut into spatiotemporally offset lobes
(rows (iii) and (vii)); (4) For 8, # 0, the near and far field intensity profiles are self-similar (all rows except (iii) and
(vii)); (5) There exists a self-similar STOV mode with integer OAM for @ = 1 and 5, = —1 (row (v)). Classically, this
is visualized as balanced STOV energy flow along £ and &.
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